On the eigenvalues of the Hecke operator T_2 .

KEVIN BUZZARD*

Department of Pure Mathematics and Mathematical Statistics, ${16~{\rm Mill~Lane},}$ Cambridge, CB2 1SB, UK

ABSTRACT: Let K be the splitting field of the characteristic polynomial of the Hecke operator T_2 acting on the d-dimensional space of cusp forms of weight k and level 1. We show, for various values of k, that the Galois group $Gal(K/\mathbb{Q})$ is the full symmetric group on d symbols.

Let $k \geq 2$ be a fixed even integer and S_k the complex vector space of cusp forms of weight k for the full modular group $SL_2(\mathbb{Z})$. Say the dimension of S_k is d. Let $f \in S_k$ be an eigenvector for all the Hecke operators T_p as p runs through every rational prime. It is well-known that the eigenvalues a_p of T_p generate a number field L_f . Moreover, it is easy to check that if the characteristic polynomial of T_p acting on S_k is irreducible over \mathbb{Q} , then its splitting field K is the compositum of the L_f s for f running through the d eigenforms in S_k , and K is also the Galois closure of any L_f over \mathbb{Q} .

Because the Galois group $\operatorname{Gal}(K/\mathbb{Q})$ acts faithfully on the d roots of the characteristic polynomial of T_p , we can identify $\operatorname{Gal}(K/\mathbb{Q})$ with a subgroup of the symmetric group Σ_d on d symbols. We restrict now to the case where k=12l for some prime l. Then the dimension of S_k is l.

Theorem. If $l \in \{2, 3, 5, 7, 11, 13, 17, 19\}$ and k = 12l then the characteristic polynomial of T_2 on S_k is irreducible and if K is its splitting field over \mathbb{Q} then $\operatorname{Gal}(K/\mathbb{Q}) \cong \Sigma_l$.

Remarks.

- i) If $l \leq 7$ then the Galois group of the splitting field of an irreducible polynomial of degree l can be evaluated using standard computer algebra packages like PARI-GP or MAPLE. For l > 7 the packages available at present, to my knowledge, are unable to deal with polynomoials of degree l, so one has to use a trick
- ii) One has $\dim_{\mathbb{C}} S_k \leq 7$ for $2 \leq k \leq 98$, $k \neq 96$, and in these cases the referee has calculated $\operatorname{Gal}(K/\mathbb{Q})$, using the cited computer algebra packages, and has observed that it is isomorphic to the full symmetric group.

Corollary. If $l \in \{2,3,5,7,11,13,17,19\}$ and k = 12l, then for any cusp eigenform $f = \Sigma a_n q^n$ of weight k for $SL_2(\mathbb{Z})$ with $a_1 = 1$, the field L_f generated over \mathbb{Q} by the a_n has degree l over \mathbb{Q} and the Galois closure K of L_f over \mathbb{Q} satisfies $Gal(K/\mathbb{Q}) \cong \Sigma_l$.

Proof of corollary. This comes from the fact that for these k we have $L_f = \mathbb{Q}(a_2)$.

The proof of the theorem uses the following lemma.

Lemma. Let $l \in \mathbb{Z}$ be a prime, and let $P \in \mathbb{Z}[X]$ be a monic irreducible polynomial of degree l, with splitting field K over \mathbb{Q} . Say q is a prime such that the mod q reduction $\overline{P} \in \mathbb{F}_q[X]$ of P satisfies

$$\overline{P} = \prod_{i=0}^r h_i$$

for distinct irreducible polynomials h_i in $\mathbb{F}_q[X]$ with the following properties:

- i) The degree of h_0 is 2
- ii) The degree of h_i is odd, for $1 \le i \le r$.

Then $Gal(K/\mathbb{Q}) \cong \Sigma_l$.

Proof of lemma. Let G be $Gal(K/\mathbb{Q})$ identified as a subgroup of Σ_l . Now P has distinct roots modulo q and hence if \wp is a prime of K above q, there is a unique element $Frob_{\wp} \in G$, the Frobenius element at

^{*} Research supported by the Science and Engineering Research Council.

 \wp . Moreover, if d_i is the degree of h_i , we see that $\operatorname{Frob}_{\wp}$ is the product of r+1 disjoint cycles of lengths d_0, d_1, \ldots, d_r . Hence if $t = \prod_{i=1}^r d_i$ then $(\operatorname{Frob}_{\wp})^t$ is a transposition in G. So the transitive subgroup G of Σ_l contains a transposition. This forces G to be the whole of Σ_l as can be seen thus: Put an equivalence relation \sim on the roots of P by setting $a \sim b$ if either a = b or the transposition (a, b) is an element of G. Then because the action is transitive on the roots, all equivalence classes have the same size, and because l is a prime there can be either 1 or l of them. But there is some transposition in G, and hence there is only 1 equivalence class and so G contains all transpositions and is thus Σ_l .

Proof of theorem. Clearly it suffices to show that the characteristic polynomial of T_2 acting on S_k for k = 12l, $l \in \{2, 3, 5, 7, 11, 13, 17, 19\}$ satisfies the conditions of the lemma for some q. As remarked earlier, for $l \leq 7$ the characteristic polynomial of T_2 acting on S_k can be easily checked to be irreducible and the Galois group of its splitting field over \mathbb{Q} can also easily checked to be the full symmetric group. We shall restrict ourselves to the case l > 7. Let χ_k be the characteristic polynomial of T_2 acting on S_k . To prove that χ_k for k = 12l is irreducible, it suffices to show that it is irreducible mod p for some prime p. So we have reduced the theorem to finding, for all k in question, primes p and q for which χ_k is irreducible modulo p and satisfies the conditions of the lemma modulo q.

The first calculations of χ_k for $k \leq 158$ were done by Maeda in [1]. For larger k we calculated χ_k modulo many primes without actually calculating χ_k itself. The following table of results finishes the proof.

l	prime	Complete factorisation of χ_{12l} modulo this prime.
11	q = 37	$(X^2 + 30X + 34)(X + 4)(X + 6)(X + 11)(X + 14)$
		(X+15)(X+21)(X+26)(X+31)(X+33)
11	p = 479	$X^{11} + 189X^{10} + 343X^9 + 43X^8 + 424X^7 + 323X^6 +$
		$+58X^5 + 100X^4 + 131X^3 + 307X^2 + 192X + 133$
13	q = 29	$(X^2 + 24X + 26)(X + 9)(X + 11)(X + 13)(X + 14)$
		(X+16)(X+17)(X+22)(X+24)(X+26)(X+27)(X+28)
13	p = 353	$X^{13} + 287X^{12} + 288X^{11} + 304X^{10} + 252X^9 + 76X^8 + 139X^7 +$
		$+218X^6 + 62X^5 + 350X^4 + 249X^3 + 299X^2 + 307X + 73$
17	p = 263	$X^{17} + 123X^{16} + 97X^{15} + 194X^{14} + 30X^{13} + 60X^{12} + 99X^{11} + 2X^{10} +$
		$+94X^9 + 209X^8 + 203X^7 + 157X^6 + 46X^5 + 8X^4 + 83X^3 + 209X^2 + 204X + 4$
17	q = 317	$(X^2 + 123X + 261)(X^{15} + 91X^{14} + 66X^{13} + 205X^{12} + 71X^{11} + 191X^{10} + 77X^9 +$
		$+43X^{8} + 295X^{7} + 28X^{6} + 168X^{5} + 253X^{4} + 18X^{3} + 54X^{2} + 186X + 4$
19	q = 53	$(X^2 + 41X + 6)(X + 13)(X + 17)(X + 21)(X + 23)(X + 37)(X + 45)(X + 46)(X + 49)$
		$(X^3 + 47X^2 + 7X + 21)(X^3 + 35X^2 + 36X + 52)(X^3 + 18X^2 + 35X + 25)$
19	p = 251	$X^{19} + 186X^{18} + 5X^{17} + 86X^{16} + 71X^{15} + 237X^{14} + 15X^{13} + 145X^{12} + 113X^{11} +$
		$+30X^{10} + 155X^8 + 162X^7 + 70X^6 + 89X^5 + 241X^4 + 188X^3 + 52X^2 + 217X + 199$

Reference

1. Y. MAEDA, Table of characteristic polynomials for the Hecke operator T(2) on $S_k(SL_2(\mathbb{Z}))$. Hokkaido University, Sapporo, Japan.