Grothendieck’s
approach to
equality

Kevin Buzzard

Grothendieck’s approach to equality

K. Buzzard, Imperial College London

6th May 2022, Grothendieck conference, Chapman
University.



Grothendieck’s
approach to
equality

Kevin Buzzard

Before we start

Two things before we start:

1) Thank you very much to the organising committee for the
invitation, and thanks to you all for coming!

2) I'm sorry I'm not there in person — | found it too difficult to
justify yet another transatlantic flight.
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A cool fact

Here’s a mathematical fact:

If ais a positive integer which ends in 7, and b is a positive
integer which ends in 4, then the product a x b will end in 8.

When we are young, we are taught an algorithm for
multiplying positive integers (“column multiplication”). You
can prove the above theorem by looking at the algorithm.
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The integers modulo 10

Later on, we learn that there’s something called “the
integers modulo 10”.

It is a finite “system of numbers”.

A “pre-university” model for it is the set
{0,1,2,3,4,5,6,7,8,9}.

There is a “reduction modulo 10” map from the positive
integers to this set, defined by “divide by 10 and take the
remainder”, or simply “take the last digit”.

For example, the integer 37 gets mapped to 7.
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The integers modulo 10

The integers modulo 10: {0,1,2,3,4,5,6,7,8,9}.
The integers modulo 10 have an addition and a
multiplication of their own!

It's defined by “if you go off the top, you appear again at the
bottom”. For example9+1=0,9+2 =1, and
7x4=28=18=28.

Alternative definition: “Do the calculation in the regular
integers, and then divide by 10 and take the remainder.”
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The integers modulo 10

Philosophical objection: {0,1,2,3,4,5,6,7,8,9} is a subset
of the integers. We already defined 7 x 4 to be 28; we are
now redefining 7 x 4 to be 8.

At university, we are taught the “correct” way to do it.
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The “correct” model for the integers modulo 10 is the
quotient ring Z/10Z, that is, the set

{[0], [1]. 2], [3], 4], [5]. [6], [7], [8]. []}-

The object [7] is an equivalence class, and it is itself an
infinite set: it is the numbers {...,7,17,27,37,47, .. .}.
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The integers modulo 10

How to multiply [7] by [4] in the “correct” integers modulo 10:
First, choose an arbitrary element of [7], for example 37.
Then choose an arbitrary element of [4], for example 204.

Then you multiply them together in the usual way, getting
7548.

This number ends in 8.
Soitsin[8]={...,8,18,28,...,7538,7548,...,}.
So this means [7] x [4] = [8].
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Problems with this definition:

A theoretical problem with this definition:

We need to check that multiplication of [7] and [4] is
“well-defined”.

What if | had chosen 31415926535897 and 271828182847

You still get [8] — for example, because of the analysis of the
algorithm.

The practical problem with this definition:

Undergraduates can get completely confused about why we
are doing it in such a complicated way, with all this
“well-defined” nonsense, when the {0,1,2,...,9} model
works perfectly well!
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Quotients

The whole idea of a quotient is that we have a set (like the
integers), but we want to put a new notion of equality on its
elements (an equivalence relation).

For example, if we only care about the last digit of a number,
we might want to treat 7 and 37 and 31415926535897 as
“the same”, even though they’re not.

We can do it the “subset way” (choose an element in each
equivalence class once and for all), or the “quotient way”
(sets of equivalence classes, or other models for quotients).

Are these two ways “equal”?
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Equality
Is {0,1,2,3,4,5,6,7,8,9} equal to
{[0], [1], [2], [3], [4], [3]. [6]. [7] [8] [9]}?
Well, yes and no.
A set theorist might tell you that they were not equal.

A smart undergraduate might tell you they were “isomorphic
as rings”.

A PhD student might tell you that they were even
“canonically isomorphic as rings”.

Probably everyone would agree that they “represent the
same mathematical idea”.

A student of homotopy type theory might tell you that they
really were equal.
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What do we want from equality?

A student of set theory might tell you that everything is a set.

They might go on to tell you that two sets are equal if and
only if they have the same elements.

With this viewpoint, {0,1,2,3,4,5,6,7,8,9} and
{[01, [1]. 12, [3], [4], [5]. [6], [7]. [8], [9]} are definitely not
equal.

They are different models of the integers modulo 10 within
set theory.
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What do we want from equality?

A key property that mathematicians want from equality is
the substitution property:

If Aand B are two mathematical objects and A= B, and if P
is any statement about mathematical objects such that P(A)
is true, then P(B) must also be true.

What is a “statement about mathematical objects” though?

Precisely what is allowed will depend on your foundations.
Homotopy type theorists allow more equalities than set
theorists, but they also allow fewer statements.

Of course most working mathematicians just trust their
intuition.
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On to Grothendieck

Grothendieck uses set-theoretic language in his
algebro-geometric works from the 60s.

However his use of equality does not conform to the
set-theoretic language.

No doubt this was well-known for a long time.

| certainly didn’t notice when | was reading his work when
doing my PhD.

| discovered this fact the hard way — when trying to apply the
principle of substitution to two rings which Grothendieck was
claiming were equal, in Lean, a computer theorem prover.

Here is the mathematical background.
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Localisation

Let’s say we have the positive integers {1,2,3,4,...}, but
we want to do division.

How do we build 1/2, or more generally the set of all
positive rationals?

We could make a preliminary definition: a positive rational is
an ordered pair (n, d) with n (the numerator) and d (the
denominator) being positive integers. Let’s use the standard
notation n/d instead of (n, d).

The problem with the preliminary definition: 1/2 # 2/4. The

ordered pairs (1,2) and (2, 4) are not the same ordered pair.
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Localisation

The problem: defining n/d to be the pair (n, d) gives us
1/2 +£2/4.
The fix: quotient!

Say that ordered pairs (a, b) and (c, d) are equivalent if
ad = bc (for example 1 x 4 = 2 x 2), and define the positive
rationals to be the equivalence classes.

This works!
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Duality between geometry and
algebra

Given a space, the functions on it form a commutative ring
(addition, negation, multiplication).

Grothendieck did the converse: given a commutative ring R,
he made a space Spec(R), such that the functions on
Spec(R) were the ring R again.

In fact, Grothendieck equipped the space with a sheaf of
rings, meaning that for every open set in Spec(R) he could
tell you what the functions on that open set were.

Let’s take a look at Grothendieck’s formula.
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Functions on an open set

The functions on Spec(R) are the ring R.
Now imagine f € R, so f is a function on Spec(R).
Consider the subset D(f) of Spec(R) where f = 0.

We want to allow R and 1/f to be functions on D(f). And
23/f37. So we need to force the existence of division by f,
and we know how to do this!

Let’s define the functions on D(f) to be R[1/f], i.e.,

functions of the form r/f", withr e Rand n=10,1,2,3,.. ..

Formally, this is a quotient of R x {1,f,f2 3 .. }.
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Here’s the problem.

What if you have two different functions f # g with the same
zeros?

This can happen! For example the polynomial functions
(T —23)(T —37)? and (T — 23)3(T — 37) both vanish only
at 23 and 37.

In this case, D(f) (the space where f doesn’t vanish) equals
D(g).

Then Grothendieck wants to define the functions on the
region D(f) = D(g) where they don’t vanish to be R[1/f]
and R[1/g].

One is a quotient of R x {1,f,f2,...}, one is a quotient of
Rx{1,9,0%9%...}.

So a set theorist would say these rings were not equal. But
they are isomorphic.



Grothendieck’s
approach to
equality

Kevin Buzzard

Here’s the problem

This looks like it is a serious logical issue. Grothendieck’s
“definition” is not well-defined!

We have: the functions on D(f) are R[1/f], the functions on
D(g) are R[1/g], and D(f) = D(g), but R[1/f] # R[1/9].

So this formally breaks the principle of substitution.

Let P(X) be the statement “X is a space, and the functions
on X are equal to R[1/f]”; then P(D(f)) is true but P(D(g))
is false.

Grothendieck noticed this back in 1960.

20
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r.3. Fai a i un

(x.3.1) Solent A un anneau commutatif, M un A-module, f un élément de A,
8; Pensemble multiplicatif des /", ot n>o0. Rappelons que nous posons A,=S,'A,
M,=5"M. Si §] est la partic multiplicative saturée de A formée des ge A qui divisent
un élément de S, on sait que A, et M, s'identifient canoniquement a S/ 'A et
S7M (0, 1.4.3).

Lemme (x.3.2). — Les conditions suivanies sont dquivalentes :

a) g=8;3 8) 5,¢8y; o) fer(g); d) x(f)cx(e); ¢) V(gcV(f); f) D(f)cD(g).

Cela résulte immédiatement des définitions etde (1.1.5).

(x.3. 3) S] D(f} D(g Ia lemme (1.3.2, 4)) montre que M,=M,. Plus géné-

21
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r.3. Fai a i un

(x.3.1) Solent A un anneau commutatif, M un A-module, f un élément de A,
8; Pensemble multiplicatif des /", ot n>o0. Rappelons que nous posons A,=5S,'A,

M,=5"M. Si 5] est la partic multiplicative saturée deui divisent
un élément de S, on sait que A et M, s'identified m STA et
S577'M (0, 1.4.3).

Lemme (x.3.2). — Les conditions suivanies sont dquivalentes :

a) g=8;; b) S,e8;; ¢) fex(g); d) x(f)cr(g); ) V(g)cV(f); f1 D(f)eD(g).

Cela résulte immédiatement des définitions etde (1.1.5).
(x.3.3) Si D(f)=D(g), le lemme (1.3.2, b)) montre qu! =M,. Blus géné-
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Canonical

So Grothendieck says that it's OK because even if the rings
aren’t equal, they are canonically isomorphic.

Milne in his book on étale cohomology, the cohomology
theory defined by Grothendieck in order to prove the Weil
conjectures, decides that this all sounds fine:

23
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The symbols a,, m,, G,., G, denote certain group schemes (I1.2.18).

An injection is denoted by <, a surjection by —, an isomorphism
by =, a quasi-isomorphism {(or homotopy) by ~, and a canonical iso-
morphism by =, The symbol X 4/ Y means X is defined to be Y, or that
X cquals Y by definition.

“a canonical isomorphism [is denoted by] =.”

24
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Canonical

But what does this word “canonical” mean?

Well let’s look at Wikipedia’s page on Canonical Maps.

25
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Definition of “canonical map”
from Wikipedia page on
canonical maps

“In mathematics, a canonical map, also called a natural
map, is a map or morphism between objects that arises
naturally from the definition or the construction of the
objects. In general, it is the map which preserves the widest
amount of structure, and it tends to be unique. In the rare
cases where latitude in choices remains, the map is either
conventionally agreed upon to be the most useful for further
analysis, or sometimes the most elegant map known to
date”

In my opinion, we have now degenerated into waffle. You
cannot type this definition into a computer theorem prover.

26



Grothendieck’s
approach to
equality

Kevin Buzzard

A true story

The main theorem of global class field theory is a theorem
saying that given a global field, two abelian groups
associated to the field are “canonically” isomorphic.

In fact there are two distinct “canonical” isomorphisms, one
due to Artin (used extensively by the Heegner point
community), and one due to Deligne (used extensively by
the Shimura variety community). They are both widely used,
and differ by a minus sign.

So much for “conventionally agreed upon”.

27
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So what is going on?

It seems to me that Grothendieck is sweeping something
under the carpet.

However, historically mathematicians have been doing this
for a lot longer!

For example, there’s something fishy about our definition of
the real numbers.

28
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The real numbers

Gauss and Euler and Riemann spoke unambiguously about
“the real numbers”.

Later on, people tried to make them. There are now several
known constructions.

Are the real numbers as defined by Cauchy equal to the real
numbers as defined by Dedekind? Not if you're a set
theorist! They are models for the real numbers.

But this does not cause problems, because of the
mathematician’s manifesto for real numbers:

“Don’t ask what they’re made of, just assume they’re a
complete ordered field”.

29
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The real numbers

“Don’t ask what they’re made of, just assume they’re a
complete ordered field”.

The common convention in mathematics is that we restrict
the language we use when speaking about the real
numbers.

We are not allowed to talk about elements of elements of
“the” set of real numbers, because there is more than one
answer!

By restricting what we allow as a valid statement about the
real numbers, we can have more leeway in how we treat
equality, without violating the principle of substitution.

For example, we can assume that the Cauchy reals and the
Dedekind reals are equal.

30
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Unwritten conventions

Similarly, there are restrictions in what we can say about
sheaves of functions in mathematics — “unwritten
conventions” which are obvious to every algebraic
geometer.

These unwritten conventions are subtle to explain to a
computer theorem prover written in set theory, simple type
theory, or dependent type theory.

These systems have a definition of equality which is weaker
than Grothendieck’s.

As a result, such systems have to work hard to apply
Grothendieck’s substitution principle; the inbuilt one is too
weak.

31
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Homotopy type theory.

Homotopy type theory forgets about “canonical” and
decrees that all isomorphisms are equalities.

So it looks like we can recover Grothendieck’s substitution
principle.

However, in homotopy type theory, things can be equal in
more than one way; whatever a “canonical” isomorphism
really is, homotopy theory type theory also allows equality
corresponding to “noncanonical isomorphisms” (e.g.

N = 7).

So this approach has gone too far! It also does not capture
what Grothendieck wanted.

32
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Conclusion

Axiomatically modelling Grothendieck’s concept of equality
seems to me to be an unsolved problem.

Thank you very much for your attention.
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