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Abstract

This paper forms a sequel to [4] where a family of conditional expec-
tations Et, for t ∈ R+, are constructed on the von Neumann algebra, V,
generated by the creation, annihilation and gauge operators acting on the
full Fock space over L2(R+). The aim here is to take the account a lit-
tle further and to investigate some aspects of stochastic integration with
respect to the ‘basic’ processes of creation, annihilation and gauge and to
compare this with what one obtains if one adopts the ‘abstract’ Belated
integral described in [3]. We were surprised at the outcome! Along the
way we adapt the representation theorem, [9], due to I.F. Wilde to this
context.

1 Introduction

Our aim was to write a complete account of our work on this subject, however
it soon became clear that we needed a S.A.L.T. 1 in order to proceed. The
problem is that even the proofs of the elementary results below are unavoidably
long if the details are included. Accordingly, in an earlier version, we excised
much routine material. We are grateful to Professor R. L. Hudson, who read this
earlier version, he convinced us that we should go much further. The reader
will have to decide if we have struck the correct balance between detail and
brevity. In any event the details remain in [8]. We have also employed the font
size ”scriptstyle” in order to scale down some of the displayed mathematics, this
makes the appearance of some arrays uneven, we hope not ugly.
We recall that the full Fock space, F over L2(R+), is defined as follows

F ≡ C ⊕⊕∞n=1L2(R+)
⊗n

1Strategic Arguments Limitation Theorem
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it has the usual scalar product. Note that all scalar products are linear in the
left argument. Ω will denote the vector (1, 0, 0, ...).

We define the annihilation operator, l(f) and creation operator, l∗(f), for
f ∈ L2(R+), as follows

l(f)f1 ⊗ ...⊗ fn = < f1, f > f2 ⊗ ...⊗ fn

l∗(f)f1 ⊗ ...⊗ fn = f ⊗ f1 ⊗ ...⊗ fn

l(f)Ω = 0
l∗(f)Ω = f

here n ≥ 1 and f1, ..., fn are in L2(R+). The operators l(f) and l∗(f) are
bounded and mutually adjoint. Furthermore,

‖l(f)‖ = ‖l∗(f)‖ = ‖f‖2

Given any T ∈ B(L2(R+)) we define the operator p(T ) by;

p(T )f1 ⊗ ...⊗ fn = T f1 ⊗ ...⊗ fn

p(T )Ω = 0

for fi ∈ L2(R+), 1 ≤ i ≤ n. The operator p(T ) is bounded with ‖p(T )‖ = ‖T ‖
and p(T )∗ = p(T ∗). For g ∈ L∞(R+), g will be considered to be the element of
B[L2(R+)] obtained by letting g act by multiplication on L2(R+). This makes
the meaning of p(g) clear. Moreover the following identities hold:

l(g).l∗(f) = < f, g > I
p(T1).p(T2) = p(T1.T2)
p(T )l∗(f) = l∗(T f)
l(g)p(T ) = l(T ∗g)

Let Do ⊆ F be the set consisting of λΩ with λ ∈ C and |λ| ≤ 1 and vectors of
the form u1⊗...⊗uk with k ∈ N , uj ∈ L2(R+)∩L∞(R+), ‖uj‖2 ≤ 1, ‖uj‖∞ ≤ 1
for 1 ≤ j ≤ k. For k = 0, u1 ⊗ ...⊗ uk = Ω. We use D to denote the linear span
of Do It is known that D is dense in F , and that F is separable. This leads
to a useful fact about the strong topology, τs, on B(F), the bounded operators
on F . The strong topology is metrisable on bounded subsets of B(F) and the
metric is given by a norm. This follows because F is a separable Hilbert space
and so there exists a countable base (ςn)∞n=1. So for x ∈ B(F) we define

‖x‖s =
{ ∞∑

n=1

1
2n
‖xςn‖2

} 1
2

Then ‖.‖s is a norm and ‖x − y‖s provides a metric for the strong operator
topology on bounded sets.

Definition 1 We define A to be the *-algebra generated by the annihilation and
gauge operators l(f), p(g) respectively and I, where f ∈ L2(R+), g ∈ L∞(R+).
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We shall denote by V the Von Neumann algebra, Aτs in B(F). Similarly, for
any t ∈ R+, At is defined to be the *-subalgebra of A which is generated by I
and the operators l(f), p(g) with g ∈ L∞([0, t]) and f ∈ L2([0, t]). Vt will denote
the strong-operator closure of At.

We note that any element of A can be written as a sum of basic elements of the
form λI or

l∗(f1)...l∗(fr)p(g)l(h1)...l(hs)

or
l∗(f1)...l∗(fr)l(h1)...l(hs)

with the convention that r = 0 (respectively s = 0) denotes an element with
no creation (respectively no annihilation) operators. Here r, s ∈ N ∪ {0} and
fi, hj ∈ L2(R+) and g ∈ L∞(R+), 0 ≤ i ≤ r, 0 ≤ j ≤ s. Furthermore if

supp fi, supp hj , supp g ⊆ [0, t] ∀i, j

as above, then we get basic elements for At. Indeed, for a basic element x, of
A, with, say,

x = l∗(f1)....l∗(fr)p(g)l(h1)...l(hs)

we can define

Et(x) = l∗(f1χ[0,t))....l∗(frχ[0,t))p(gχ[0,t))l(h1χ[0,t))...l(hsχ[0,t)).

A similar definition holds for the other basic elements. The map Et extends to a
conditional expectation of V onto Vt with all of the usual properties, see Lemma
7 of [4]. We note in particular that Et is strongly continuous on bounded subsets
of V.
For A ∈ A we introduce the notations, A+ and A−. The first of these denotes
the sum of those basic elements of A containing only I and creation operators
while the second term denotes the sum of those basic elements containing only
annihilation operators.

Definition 2 We define a process F (t) to be a function

F : R+ → { unbounded operators with domain containing D }

A V-adapted process is a process such that F (t) ∈ Vt and similarly for A-adapted
processes. We shall call a process simple if it can be written in the form

n∑
j=1

F (tj)χ[tj ,tj+1) with 0 = t1 ≤ ...tj ≤ tj+1 ≤ ... ≤ tn+1 = ∞,

1 ≤ j ≤ n F (tj) ∈ Atj

3



2 Prerequisites for a stochastic integral

In this section we will develop some of the prerequisites for a further development
of the stochastic integrals with respect to the basic processes. We begin with a
summary of definitions and elementary results.

If {wn}∞n=1 is a countable base for L2(R+) the set of vectors ξn = w
(i)
1 ⊗. . .⊗

w
(i)
k(i), i ∈ N , k(i) ∈ N and w

(i)
j ∈ {wn}∞n=1 for 1 ≤ j ≤ k(i), are orthonormal

and can be chosen so that ‖wn‖2 = 1 for each n ∈ N (we assume this hereafter).
If we write

Do′ = {Ω} ∪ {w(i)
1 ⊗ . . .⊗ w

(i)
k(i) : i ∈ N , k(i) ∈ N}

Then Do′ is a countable base for F .
Let d ∈ Do and Φd : B(F) → C be defined by:

Φd(x) =< xd, d >,

the vector state for d. Recalling the vectors ξn identified above, define a state
Φ : B(F) → C by

Φ =
∞∑

r=1

1
2n

Φξn .

Both Φ and Φd are normal faithful states on V. We introduce an inner product
on B(F) by:

< x, y >= Φ(y∗x)

This inner product defines the norm:

‖x‖s =
{ ∞∑

n=1

1
2n
‖xξn‖2

} 1
2 ≤ ‖x‖

which, as we noted in the introduction, when restricted to S gives the strong-
operator topology on S.

With this norm B(F) becomes a pre-Hilbert space. In order to get a Hilbert
space structure we shall consider those possibly unbounded operators x, with
domain containing D′ which satisfy:

∞∑
n=1

1
2n
‖xξn‖2 < ∞

We identify two such operators, x and y, if y ⊇ x, that is; dom(x) ⊆ dom(y)
and xh = yh for h ∈ dom(x). We shall denote this space by L2

{
B(F)

}
. We

have

Lemma 1 L2
(
B(F)

)
is a Hilbert space , with inner product:

< x, y >=
∞∑

n=1

1
2n

< xξn, yξn >
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See [8] for the proof.

Definition 3 For a simple process, F , we define∫
Fdl =

n∑
j=1

F (tj)l(χ[tj ,tj+1))

and∫ T

0

Fdl =
n∑

j=1

F (tj) · l(χ[tj ,tj+1) · χ[0,T )) ∀T ∈ R+

Replacing l with l∗ and p above yields the corresponding integrals with respect
to the creation and gauge processes. These integrals are linear functions from
the space of simple processes into V and the processes

∫ t

0
Fdl,

∫ t

0
Fdl∗,

∫ t

0
Fdp

are martingales with respect to the conditional expectation Et. The following
is easily proved.

Lemma 2 For any simple process F ,∫
Fdl =

∫ r

0

Fdl

for r ≥ tn+1 and

ET

∫
Fdl =

∫ T

0

Fdl

=
∫

χ[0,T )Fdl ∀T ∈ R+

With identical results for dl∗ and dp.

See [8] for the proof.
We remind ourselves of the definition of a+ for a ∈ A.

Definition 4 For an operator A with a =
∑

i∈I ai , and ai basic elements, we
define

a+ =
∑
i∈J

ai

where

J =
{

i ∈ I : ai = l∗(f i
1) . . . l∗(f i

ri
), ri ∈ N or ai = λiI, λi ∈ C

}
Summarising Lemmas 3.10 and 3.11 of [8] we have;

Lemma 3 Let a ∈ A then

‖a+‖ = ‖aΩ‖ ≤ ‖a‖

5



For basic elements, a and b with

a = l∗(f1) . . . l∗(fr)p(g)l(h1) . . . l(hs)

and
b = l∗(f ′1) . . . l∗(f ′r)l(h

′
1) . . . l(h′s)

with r 6= s and each of the vectors ξn we have:

Φξn
(a) = Φξn

(b) = 0

See [8] for the proofs.
We can now prove some of the basic inequalities which will drive our inte-

gration theory. The philosophy here is that we arrive at an inequality, the left
side of which is the integration theory we want to develop while the right side is
something altogether more familiar. This allows us to ‘bus’ results across from
the right to the left.

Theorem 1 Let F a simple processes and d ∈ D0. Recall the definitions of Φ,
Φd and ‖ · ‖. The following hold:

Φd

{
|
∫

Fdl |2
}
≤

∫ ∥∥∥F (t)
∥∥∥2

dt

and ∥∥∥∫
Fdl

∥∥∥2

s
≤

∫ ∥∥∥F (t)
∥∥∥2

dt

For l∗ we get something very similar

Φd

{
|
∫

Fdl∗ |2
}

=
∫

Φd

{
‖F+(t)∗‖2

}
dt ≤

∫ ∥∥∥F (t)
∥∥∥2

dt

and ∥∥∥∫
Fdl∗

∥∥∥2

s
=

∫ ∥∥∥F (t)
∥∥∥2

s
dt ≤

∫ ∥∥∥F (t)
∥∥∥2

dt.

For gauge process we get

Φd

{
|
∫

Fdp |2
}

=
∫

Φ
{
| F+(t) |2

}
dµ(d) ≤

∫ ∥∥∥F (t)
∥∥∥2

dt

where if d = u1 ⊗ . . .⊗ uk then (recalling that ‖ui‖∞ ≤ 1)

µ(d)(E) ≡ ‖u2‖22 . . . ‖uk‖22
∫

E

|u1(t)|2dt ≤
∫

E

dt

while µ(Ω) ≡ 0. We also have∥∥∥∫
Fdp

∥∥∥2

s
=

∫ ∥∥∥F (t)
∥∥∥2

s
dµ ≤

∫ ∥∥∥F (t)
∥∥∥2

dt
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where µ(E) =
∑∞

n=1
1
2n µξn(E). The isometries that follow are nice.

Φd

{(
|
∫

Fdl
)∗
|2

}
=

∫
Φd

{
| F (t)∗ |2

}
dt

and ∥∥∥(∫
Fdl

)∗∥∥∥2

s
=

∫ ∥∥∥F (t)∗
∥∥∥2

s
dt.

Proof

Φd

{(∫
Fdl

)∗(∫
Fdl

)}
≤

∥∥∥(∫
Fdl

)∗
·
(∫

Fdl
)∥∥∥ =

∥∥∥(∫
Fdl

)∗∥∥∥2

.

Now since V is a C∗-algebra∥∥∥(∫
Fdl

)∗∥∥∥2

=
∥∥∥(∫

Fdl
)
·
(∫

Fdl
)∗∥∥∥

so ∥∥∥(∫
Fdl

)∗∥∥∥2

=
∥∥∥ m∑

j=1

m∑
i=1

F (tj)l(χ[tj ,tj+1))l
∗(χ[ti,ti+1))F (ti)∗

∥∥∥
=

∥∥∥ m∑
j=1

F (tj)F (tj)∗(tj+1 − tj)
∥∥∥

The last step follows from the relation for ll∗. It is now clear that∥∥∥ m∑
j=1

F (tj)F (tj)∗(tj+1 − tj) ≤
m∑

j=1

‖F (tj)‖2(tj+1 − tj) =
∫
‖F (t)‖2dt.

Applying this to the expression for
∥∥∥ ∫

Fdl
∥∥∥2

s
gives the second inequality.

We turn to the integral with respect to l∗:∫
Fdl∗ =

m∑
j=1

F (tj)l∗(χ[tj ,tj+1)

=
m∑

j=1

F+(tj)l∗(χ[tj ,tj+1)) +
m∑

j=1

{
F (tj)− F+(tj)

}
· l∗(χ[tj ,tj+1))

We now observe that any basic element of F (tj) − F+(tj) is a product of an-
nihilation, gauge or creation operators. The last of these is either l(h) or p(g)
with h and g supported in [0, tj).

Moreover

l(h) · l∗(χ[tj ,tj+1)) =
∫ tj+1

tj

h(t)dt = 0
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and
p(g) · l∗(χ[tj ,tj+1)) = l∗(χ[tj ,tj+1) · g) = 0

Consequently:{
F (tj)− F+(tj)

}
· l∗(χ[tj ,tj+1)) = 0 1 ≤ j ≤ m

Hence: ∫
Fdl∗ =

m∑
j=1

F+(tj)l∗(χ[tj ,tj+1)) =
∫

F+dl∗.

At this point we introduce some notation to ease the presentation. We are going
to adopt the (dangerous) practice of giving the same object different names
according to the level of detail required in the proof. So, for example, a typical
term in the expression for F+(tj) will have the form;

l∗(f (j,k)
1 ) . . . l∗(f (j,k)

r(j,k))

and there will be N(j), say, of these. We will write

L∗j,k = L∗(f (j,k)
r(j,k)) = l∗(f (j,k)

1 ) . . . l∗(f (j,k)
r(j,k)).

So we can write F+(tj) in the following ways

F+(tj) =
N(j)∑
k=1

L∗j,k + λj =
N(j)∑
k=1

L∗(f (j,k)
r(j,k)) + λjI.

Returning to the proof

Φd

(∣∣∣∣∫ Fdl∗
∣∣∣∣2) = Φd

{ m∑
i,j=1

l(χ[tj ,tj+1))F
∗
+(tj)F+(ti)l∗(χ[ti,ti+1))

}
The right side above can be written

m∑
j=1

m∑
i=1

Φd

{
l(χ[tj ,tj+1))

[N(j)∑
k=1

(L∗k,j)
∗ + λjI

]
·
[N(i)∑

k′=1

L∗k′,i + λiI
]
· l∗(χ[ti,ti+1))

}
.

Some of the terms are zero;

Φd

{
λil(χ[tj ,tj+1)) · L

∗(f (j,k)
r(j,k))

∗l∗(χ[ti,ti+1))
}

=

= λi < χ[ti,ti+1), f
(j,k)
1 > ·Φd

{
l(χ[tj ,tj+1)) · l(f

(j,k)
r(j,k)) . . . l(f (j,k)

2 )
}

= 0
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which follows from Lemma 3. In a similar fashion

Φd

{
λj l(χ[tj ,tj+1))

N(i)∑
k′=1

l∗(f (i,k′)
1 ) . . . l∗(f (i,k′)

r(i,k′))l
∗(χ[ti,ti+1))

}
= 0.

So Φd

(∣∣∫ Fdl∗
∣∣2) is equal to

m∑
i,j=1

Φd

{
λjλil(χ[tj ,tj+1))·l∗(χ[ti,ti+1))+

N(j)∑
k=1

N(i)∑
k′=1

l(χ[tj ,tj+1))(L
∗
j,k)∗L∗

i,k′ l
∗(χ[ti,ti+1))

}
.

and this in turn is equal to

m∑
i,j=1

Φd

{
λjλiδij(tj+1−tj)I+

N(j)∑
k=1

N(i)∑
k′=1

δr(j,k)r(i,k′)

∏r(j,k)

s=1
<f(i,k′)

s ,f(j,k)
s >δij(tj+1−tj)

}
.

Here we have used Lemma 3 on the terms for which r(j, k) 6= r(i, k′) (they are
zero) and

l(χ[tj ,tj+1)) · l
∗(χ[ti,ti+1)) =

∫ tj+1

tj

χ[ti,ti+1)(t)dt = δij(tj+1 − tj).

This leaves us with

m∑
j=1

Φd

{[N(j)∑
k=1

L∗(f (j,k)
r(j,k))

∗ + λjI
]
·
[N(j)∑

k′=1

L∗(f (j,k′)
r(j,k′)) + λjI

]}
(tj+1 − tj)

=
m∑

j=1

Φd

{
F+(tj)∗ · F+(tj)

}
· (tj+1 − tj) =

∫
Φd

{
F+(t)∗ · F+(t)

}
dt

≤
∫
‖F+(t)∗ · F+(t)‖dt =

∫
‖F+(t)‖2dt ≤

∫
‖F (t)‖2dt

We have used the fact that ‖d‖ ≤ 1, that V is a C∗- algebra and the initial
conclusions of Lemma 3. Using Monotone convergence and Lemma 3.∥∥∥∫

Fdl∗
∥∥∥2

s
= Φ

(∣∣∣∣∫ Fdl∗
∣∣∣∣2) =

∞∑
n=1

1
2n

Φξn

(∣∣∣∣∫ Fdl∗
∣∣∣∣2)

=
∞∑

n=1

1
2n

∫
Φξn

{
|F+(t)∗|2

}
dt =

∫
Φ

{
|F+(t)∗|2

}
dt

=
∫
‖F+(t)‖2sdt ≤

∫
‖F+(t)‖2dt ≤

∫
‖F (t)‖2dt

Turning to the integral with respect to p, the proof follows what we have just
done for l∗ initially, with the same justification. Following these steps we arrive
at ∫

Fdp =
m∑

j=1

F+(tj)p(χ[tj ,tj+1)) =
∫

F+dp.
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Writing F+(tj) as before we retrace the argument for l∗ noting that ,as before,

some of the terms are zero. After some work we get that Φd

(∣∣∫ Fdp
∣∣2) is equal

to∑m

j=1
Φd

{[
|λj |2+

∑N(j)

k=1

∑N(i)

k′=1
<f

(i,k′)
1 ,f

(j,k)
1 >...<f

(i,k′)
r(i,k′)

,f
(j,k)
r(j,k)>

]
I
}
·Φd

{
p(χ[tj ,tj+1))

}
But now

ΦΩ

{
p(χ[tj ,tj+1))

}
= 0 = µ(Ω)

{
[tj , tj+1)

}
and for d = u1 ⊗ . . .⊗ uk.

Φd

{
p(χ[tj ,tj+1))

}
= < (χ[tj ,tj+1) · u1)⊗ . . .⊗ uk, u1 ⊗ . . . uk >

=
∫

[tj ,tj+1)

|u1(t)|2dt · ‖u2‖22 . . . ‖uk‖22

≡ µ(d)

{
[tj , tj+1)

}
And hence Φd

{(∫
Fdp

)∗
·
(∫

Fdp
)}

is exactly

∑m

j=1
Φd

{
|λj |2+

∑N(j)

k=1

∑N(i)

k′=1
<f

(i,k′)
1 ,f

(j,k)
1 >...<f

(i,k′)
r(i,k′)

,f
(j,k)
r(j,k)>

}
·µ(d)

{
[tj ,tj+1)

}
=

∑m

j=1
Φd

{[
λjI+

∑N(j)

k=1
L∗(f

(j,k)
r(j,k))

∗
]
·
[

λjI+
∑N(j)

k′=1
L∗(f

(j,k)
r(j,k))

]}
·µ(d)

{
[tj ,tj+1)

}
=

∑m

j=1
Φd

{
F+(tj)

∗·F+(tj)

}
·µ(d)

{
[tj ,tj+1)

}
=

∫
Φd

{
F+(t)∗ · F+(t)

}
dµ(d)

=
∫
‖F+(t)‖2sdµ(d) ≤

∫
‖F+(t)‖2dµ(d) ≤

∫
‖F (t)‖2dµ(d)

Using what we have just proved above∥∥∥∫
Fdp

∥∥∥2

s

= Φ

(∣∣∫ Fdp
∣∣2)=

∑∞
n=1

1
2n Φξn

(∣∣∫ Fdp
∣∣2)=

∑∞
n=1

1
2n

∫
‖F+(t)‖2sdµξn

=
∑∞

n=1
1

2n

∑m

j=1
‖F+(tj)‖2sµξn

{
[tj ,tj+1)

}
=
∑m

j=1
‖F+(tj)‖2sµ

{
[tj ,tj+1)

}
=

∫
‖F+(t)‖2sdµ≤

∫
‖F+(t)‖2dµ≤

∫
‖F (t)‖2dµ≤

∫
‖F (t)‖2dt.

QED
The isometries which conclude the statement of the theorem are easily proved,
the second requires the Monotone convergence theorem. We remark here that
the restriction to adapted processes is unnecessary in this case, so our integrands
can be non-adapted.
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3 Integrals

Let (N, ‖ · ‖) be a Banach space, f : R+ → N and ν a positive measure on
R+. We define f to be a step function if f(s) =

∑n
j=1 f(sj) · χ[sj ,sj+1)(s) with

0 ≤ sj < . . . < sn+1 < ∞.Define P (‖ · ‖, ν) to be the space of (ν-equivalence
classes) of functions which are the limit in ν-measure and ν almost everywhere
of a sequence of step functions and which satisfy∫

‖f(s)‖2dν < ∞.

The norm on P is the L2-norm:

‖ f ‖= {
∫
‖ f(s) ‖2 dν} 1

2 .

One can show that P (‖ · ‖, ν) is a Banach space. If (N, ‖ · ‖) has a Hilbert space
structure then P (‖ · ‖, ν) is also a Hilbert space. We shall now define stochastic
integrals for integrands belonging to a case of the space P . We take N = V,
the von Neumann algebra generated by the creation, annihilation and gauge
operators equipped with the standard operator norm on B(F). The class of
functions we shall be interested in are those which are adapted to the filtration,
(Vt). So the step functions above are now the simple (Vt)-adapted processes.

Definition 5 A process F is integrable if F ∈ P (‖ · ‖, dt) and there exists a
sequence

(
Fn

)∞
n=1

of simple processes in P (‖ · ‖, dt) converging to F in the ‖ · ‖p

norm. We denote by I the set of integrable processes.

Note: Since Fn → F as n → ∞ in the ‖ · ‖p norm, then it is a routine
argument to show that Fn → F in dt-measure, and that there is a subsequence(
Fnk

)∞
k=1

, of
(
Fn

)∞
n=1

, such that Fnk
→ F , as k →∞, dt-a.e.

Lemma 4 Let F be an integrable process with Fn a sequence of simple processes
converging to F in P (‖ · ‖, dt). Then each of the sequence of integrals(∫

Fndl
)∞

n=1
,
(∫

Fndl∗
)∞

n=1
,
(∫

Fndp
)∞

n=1

converge in L2
(
B(F)

)
.

So now we can make

Definition 6 For an integrable process F we write:

(i)
∫

Fdl ≡ limn→∞
∫

Fndl in L2
(
B(F)

)
(ii)

∫
Fdl∗ ≡ limn→∞

∫
Fndl∗ in L2

(
B(F)

)
(iii)

∫
Fdp ≡ limn→∞

∫
Fndp in L2

(
B(F)

)

11



One can show that these integrals are well defined, and lie in L2
(
B(F)

)
, see [8]

for details.

Lemma 5

(i) The set of integrable processes forms a vector subspace J in P (‖ · ‖, dt)
and the maps: F 7→

∫
Fdl, F 7→

∫
Fdp, F 7→

∫
Fdl∗ are linear

(ii) Any integrable process is V-adapted, dt-a.e.

(iii) If F is integrable then so is F ∗.

(iv) For an integrable process F with simple processes
(
Fn

)∞
n=1

converging to

F in P (‖ · ‖, dt): if

supn

∥∥∥∫
Fndl∗

∥∥∥ < ∞

supn

∥∥∥∫
Fndl

∥∥∥ < ∞

supn

∥∥∥∫
Fndp

∥∥∥ < ∞

then
∫

Fdl∗,
∫

Fdl,
∫

Fdp are bounded operators, and∫
Fndl∗ →

∫
Fdl∗∫

Fndl →
∫

Fdl∫
Fndp →

∫
Fdp

in the strong operator topology τs.

(v) We can extend our definition of
∫

Fdl to processes F that are limits in
P (‖ · ‖, dt) of not necessarily adapted step functions f : R+ → V, and∫
Fdl ∈ B(F) for any such F .

The proof of this Lemma is ‘almost’ routine. The details are in [8]. Recalling
that I is the space of integrable processes we have,

Lemma 6 Suppose F ∈ I. Letting M denote any of the processes, l, l∗, p.
Then ∥∥∥∫

FdM
∥∥∥2

s
≤

∫
‖F (t)‖2dt

Moreover I is a closed subspace of P (‖ · ‖, dt).

12



Again we refer to [8] for the details. Once again denoting by M any one of the
basic processes, then for an integrable process F we define∫ T

0

FdM =
∫

χ[0,T ) · FdM.

We observe that this definition agrees with our earlier one for simple processes
and that each of the integrals exist. It is a short argument to show that χ[0,T ) ·
F ∈ P (‖ · ‖, dt). As one might expect this ‘local’ integrability for every T > 0
does not imply integrability.

We shall now prove martingale properties for our integrals; in order to do
that we need to extend the definition of our conditional expectation Et, as
follows:

Definition 7 For x a possibly unbounded operator with domain containing D,
such that there exists a sequence (xn)∞n=1 in A with xnd → xd ∀d ∈ Do then
define:

(Etx)d = lim
n→∞

(Etxn)d, ∀d ∈ Do

The limit defining (Etx)d exists. This is proved in Lemma 5 of [4] which
shows that ((Etxn)d) is Cauchy in F . The same theorem may be used to show
that (Etx)d) is well defined. We extend to D by linearity. Finally, we note that
for x ∈ V this definition agrees with definition 6 of [4] where it is shown that
for a sequence (an)∞n=1 in A such that an → x in the τs-topology:

Etx = lim
n→∞

Etan

in the τs-topology. Which of course implies

⇒ (Etx)d = lim
n→∞

(Etan)d ∀d ∈ Do

But an → x τs-on Do, and so the two definitions agree.

Lemma 7 For an integrable process F we can extend the operators∫
Fdl∗,

∫
Fdl,

∫
Fdp

to have domain containing D.

Proof

Suppose (Fn)∞n=1 is a sequence of simple processes with Fn → F in
P (‖ · ‖, dt) . Hence, ∀ε > 0 ∃N(ε) such that:

n, m ≥ N(ε) ⇒ ‖Fn − Fm‖p < ε

13



and using Theorem 1

Φd

{(∫
(Fn − Fm)dl

)∗
·
(∫

(Fn − Fm)dl
)}

≤
∫
‖Fn(t)− Fm(t)‖2dt < ε2

Φd

{(∫
(Fn − Fm)dl∗

)∗
·
(∫

(Fn − Fm)dl∗
)}

≤
∫
‖Fn(t)− Fm(t)‖2dt < ε2

Φd

{(∫
(Fn − Fm)dp

)∗
·
(∫

(Fn − Fm)dp
)}

≤
∫
‖Fn(t)− Fm(t)‖2dt < ε2

for n, m ≥ N(ε). So
[(∫

Fndl
)
d
]∞

n=1
,
[(∫

Fndl∗
)
d
]∞

n=1
,
[(∫

Fndp
)
d
]∞

n=1
are

Cauchy sequences in F and so we can define(∫
Fdl

)
d ≡ lim

n→∞

(∫
Fndl

)
d(∫

Fdl∗
)
d ≡ lim

n→∞

(∫
Fndl∗

)
d(∫

Fdp
)
d ≡ lim

n→∞

(∫
Fndp

)
d

in F ,∀d ∈ Do.
This defines the operators

∫
Fdl,

∫
Fdl∗,

∫
Fdp on Do and by linearity, on

D. One can prove that these operators are independent of the particular se-
quence, (Fn), of simple processes. We can define the extension of the stochastic
integrals

∫ T

0
Fdl,

∫ T

0
Fdl∗,

∫ T

0
Fdp above and these will now denote the opera-

tors
∫

F · χ[0,T )dl,
∫

F ·χ[0,T )dl∗,
∫

F ·χ[0,T )dp with domain containing D. Since
span D′ ⊆ Do we note that the above operators are extensions of those defined
previously. QED
With this understood we have

Theorem 2 For
∫

Fdl,
∫

Fdl∗,
∫

Fdp described above the following holds;

Et

∫ T

0
Fdl =

∫ t

0
Fdl for t ≤ T < ∞

Et

∫ T

0
Fdl∗ =

∫ t

0
Fdl∗ for t ≤ T < ∞

Et

∫ T

0
Fdp =

∫ t

0
Fdp for t ≤ T < ∞

and also;

Et

∫
Fdl =

∫ t

0

Fdl

Et

∫
Fdl∗ =

∫ t

0

Fdl∗

Et

∫
Fdp =

∫ t

0

Fdp

for t ∈ R+.

14



Proof

From Lemma 5, for each integrable process F there exists a sequence
(
Fn

)∞
n=1

of simple processes for which:∫
Fdl = lim

n→∞

∫
Fndl τs- on D

and ∫ T

0

Fdl =
∫

F · χ[0,T )dl

= lim
n→∞

∫
Fnχ[0,T )dl τs- on D

by Lemma 5

Recalling how Et has been defined above, for t ≤ T < ∞ we have:

Et

∫
Fdl = limn→∞ Et

∫
Fndl τs- on Do

and Et

∫ T

0
Fdl = limn→∞

∫
Fn · χ[0,T )dl τs- on Do

Hence:

Et

∫
Fdl = lim

n→∞

∫
χ[0,t) · Fndl τs- on Do

and Et

∫ T

0

Fdl = lim
n→∞

∫
χ[0,t) · Fndl τs- on Do

by Lemmas 8 and 14

or Et

∫
Fdl =

∫ t

0

Fdl

= Et

∫ T

0

Fdl

The other cases are similar. QED

We conclude this section by using the isometry properties of Theorem 1
to define three integrals Il, Ip, Il∗ . In the next section we shall use these to
represent certain operators as stochastic integrals.

First we shall denote by ‖ · ‖s∗ the norm on B(F) given by ‖x‖s∗ = ‖x∗‖s.
with Vs∗

and L2(V) the completions of V according to ‖·‖s∗ and ‖·‖s respectively
and, as described at the start of this section, we can define the Banach spaces
P (‖ · ‖s∗ , dt) and P (‖ · ‖s, dµ) and P (‖ · ‖s, dt).

Definition 8

Let F be a function F : R+ → Vs
in P (‖ · ‖s∗ , dt). We call F l-integrable

iff there exists a sequence of step functions
(
Fn

)∞
n=1

Fn : R+ → V such
that: Fn → F in P (‖ · ‖s∗ , dt).

15



Let
Il(F ) = lim

n→∞

∫
Fndl

in B(F)
s∗

,the completion of B(F) with respect to the ‖ · ‖s∗-norm.

(i)(ii) Let F a function F : R+ → V in P (‖ · ‖s, dµ). We call F p-integrable
iff there exists a sequence of simple processes

(
Fn

)∞
n=1

with : Fn → F in
P (‖ · ‖s, dµ).

Let
Ip(F ) = lim

n→∞

∫
Fndp

in L2
(
B(F)

)
.

(iii) Let F a function F : R+ → V in P (‖ · ‖s, dt). We call F l∗-integrable
iff there exists a sequence of simple processes

(
Fn

)∞
n=1

with: Fn → F in
P (‖ · ‖s, dt).

Let
Il∗(F ) = lim

n→∞

∫
Fndl∗

in L2
(
B(F)

)
.

The above integrals are well defined by virtue of the isometries of Theorem
1.

These integrals are linear maps on the corresponding space of process and
furthermore they are extensions of the stochastic integrals of Definition 6 since:

if F is an integrable process with
(
Fn

)∞
n=1

a sequence of simple processes
such that Fn → F in P (‖ · ‖, dt) then,

Fn → F in P (‖ · ‖s, dµ)
and in P (‖ · ‖s, dt)

and also Fn → F in P (‖ · ‖s∗ , dt)

since ∫ ∥∥Fn(t)− F (t)
∥∥2

s∗
dt =

∫ ∥∥F ∗
n(t)− F (t)∗

∥∥2

s
dt

≤
∫ ∥∥F ∗

n(t)− F (t)∗
∥∥2

dt

=
∫ ∥∥Fn(t)− F (t)

∥∥2
dt

Hence F is p-integrable, l∗-integrable and l-integrable and:∫
Fdp = limn→∞

∫
Fndp in L2

(
B(F)

)
= Ip(F )∫

Fdl∗ = limn→∞
∫

Fndl in L2
(
B(F)

)
= Il∗(F )
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Finally, ∫
Fdl = lim

n→∞

∫
Fndl

in the τs-topology of B(F).[by Lemma 5 (v)] and so(∫
Fdl

)∗
= lim

n→∞

(∫
Fndl

)∗
in the τw-topology in B(F).

But
Il(F )∗ = lim

n→∞

(∫
Fndl

)
∗ in ‖ · ‖s- norm

supn

∥∥(∫
Fndl

)∗∥∥ < ∞ by Lemma 5 (v)

and so

Il(F )∗ = limn→∞
(∫

Fndl
)∗ in τs-topology

by Lemma 5

⇒ Il(F )∗ = limn→∞
(∫

Fndl
)∗

in τw-topology in B(F)

Combining we get

Il(F ) =
∫

Fdl.

4 A representation result

The result proved below was inspired by the proof of the representation result
offered by I.F.Wilde in [9]. Indeed it is fair to say that our result is simply a
reworking of his argument in this context.

Definition 9 Let Al be the *-subalgebra of A generated by basic elements of
the form:

l∗(f1) . . . l∗(fr)p(g)l(h1) . . . l(hs)
l∗(f1) . . . l∗(fr)l(h1) . . . l(hs)

λI
where fi, hj ∈ L2(R+), g ∈ L∞(R+) r, s ≥ 1 and λ ∈ C.

Now consider the strong closure of Al. Because the strong operator topology is
in this case metrisable we see that for x ∈ Al

τs there exists a sequence (an)∞n=1

in Al with;
an → x in τs-topology.

But for x ∈ Al
τs

, x∗ ∈ Al
τs and so there exists a sequence (bn)∞n=1 in Al

such that:

bn → x∗ in τs − topology
⇒ bn → x∗ in ‖ · ‖s − topology

because (Banach-Steinhaus): supn‖bn‖ < ∞
⇒ b∗n → x in ‖ · ‖s∗ − topology
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with (b∗n)∞n=1 in Al.

Theorem 3 For any x ∈ Al
τs ∃λ ∈ C and an l-integrable process F in

P (‖ · ‖s∗ , dt) with:
x = λI + Il(F )

This representation is unique.

Proof

The set of step functions in L2(R+) is dense in L2(R+). Hence ∀f ∈ L2(R+)
there exists a sequence of step functions

(
`(n)

)∞
n=1

with

‖`(n) − f‖2 → 0

so
‖l∗(`(n))− l∗(f)‖ = ‖`(n) − f‖2 → 0

and
‖l(`(n))− l(f)‖ = ‖`(n) − f‖2 → 0

so for
l∗(f1) . . . l∗(fr)p(g)l(h1) . . . l(hs)

or
l∗(f1) . . . l∗(fr)l(h1) . . . l(hs)

in Al, there are sequences
(
`
(n)
i

)∞
n=1

and
(
η
(n)
j

)∞
n=1

of step functions in L2(R+),

for 1 ≤ i ≤ r, 1 ≤ j ≤ s such that: l∗(`(n)
i ) → l∗(fi) and l(η(n)

j ) → l(hj) in
B(F).

Then

l∗(`(n)
1 ) . . . l∗(`(n)

r )p(g)l(η(n)
1 ) . . . l(η(n)

s ) → l∗(f1) . . . l∗(fr)p(g)l(h1) . . . l(hs)

and

l∗(`(n)
1 ) . . . l∗(`(n)

r )l(η(n)
1 ) . . . l(η(n)

s ) → l∗(f1) . . . l∗(fr)l(h1) . . . l(hs)

in B(F).
So any element inAl can be written as a limit in B(F), of linear combinations

of operators of the form:
λI λ ∈ C

or l∗(χJ1
) . . . l∗(χJr

)p(g)l(χ
J′

1
) . . . l(χ

J′s
)

or l∗(χJ1
) . . . l∗(χJr

)l(χ
J′

1
) . . . l(χ

J′s
)

with J1, . . . ,Jr,J ′
1, . . . ,J ′

s intervals in R+, g ∈ L∞(R+), and r, s ≥ 1.
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What this shows us is that if x ∈ Al
τs , there exists a sequence (xn)∞n=1 of

linear combinations of elements of the form described immediately above and
(λn)∞n=1 in C with:

λnI + xn → x in ‖ · ‖s∗ -topology

Now a moments thought will convince one that

l∗(χJ1
) . . . l∗(χJr

)p(g)l(χ
J′

1
) . . . l(χ

J′s
) =

= Il

{
l∗(χJ1

) . . . l∗(χJr
)p(g)l(χ

J′
1
) . . . l(χJs−1

) · χ
J′s

(t)
}

with a similar relation for

l∗(χJ1
) . . . l∗(χJr

)l(χ
J′

1
) . . . l(χ

J′s
).

By linearity of Il we have step functions Fn : R+ → V with

xn =
∫

Fndl

Since
(
λnI + xn

)∞
n=1

is ‖ · ‖s∗ Cauchy we get that{(
λnI + xn

)∗Ω}∞
n=1

is Cauchy

⇒
{

< (λnI + xn)Ω,Ω >
}∞

n=1
is Cauchy

⇒ (λn)∞n=1 is Cauchy
since xnΩ = 0 ∀n ∈ N

Let λ = limn→∞ λn. Then λnI → λI in ‖ · ‖s∗ -norm and so :

xn → x− λI in ‖ · ‖s∗ -norm

Hence
Il(Fn) → x− λI in ‖ · ‖s∗ -norm

By the isometry property (iv) of Theorem 1, (Fn)∞n=1 is Cauchy in
P (‖ · ‖s∗ , dt) and so there exists a function F : R+ → Vs∗

in P (‖ · ‖s∗ , dt) such
that: Fn → F in P (‖ · ‖s∗ , dt). Hence F is l-integrable and Il(F ) = limn Il(Fn)
in ‖ · ‖s∗ -norm.

Hence
x = λI + Il(F )

and the existence part of this result is proved.
If ∃λ′ ∈ c, F ′ ∈ P (‖ · ‖s∗ , dt) such that x = λ′I + Il(F ′) then

(λ− λ′)I + Il(F − F ′) = 0
⇒ (λ− λ′)IΩ = 0

⇒ λ = λ′

since Il(F )Ω = 0 ∀F which are l-integrable
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Furthermore

0 = ‖Il(F − F ′)‖2s∗

= lim
n→∞

‖
∫

Gndl‖2s∗

with Gn simple Gn → F − F ′ in P (‖ · ‖s∗ , dt)
= lim

n→∞
‖Gn‖2p

= ‖F − F ′‖p

Therefore,
F = F ′

and the representation is unique. QED
We make a few observations.

1. Similar results can be obtained for representations of certain classes of
operators, as Il∗ and Ip integrals of l∗ and p-integrable processes respec-
tively.

2. The *-operator V → V is an antilinear isometry that can be extended to
a surjective antilinear isometry Ψ : L2(V) → Vs∗

thus providing us with a
concrete representation of the abstract completion Vs∗

.

5 Belated Integrals

We compare our results of the earlier sections with the outcome of applying the
theory of Belated Integrals to our situation. Belated integrals were developed
by Barnett and Wilde in [3]. It is a vector integration theory derived from the
general bilinear vector integral of R. G. Bartle, [5]. In Bartles’ theory both
the integrand and the integrator are ‘vector’ valued. In order to arrive at a
numerical assay for subsets of a measurable space one employs the semivariation
of the vector measure. This ‘measure’ of the size of sets allows one to develop
a general integral. In the Belated theory one uses the belated semivariation
of the vector measure in place of the usual semivariation. The reason for this
modification is that the usual semivariation is infinite in many cases where the
belated semivariation is finite. We apply this theory to the present situation.

Fix a real number T > 0. Let Φ denote the field of subsets of [0, T ] generated
by the intervals. We note that each element of Φ can be written as a finite union
of disjoint intervals. For E ∈ Φ we define

l(E) = l(IE), l∗(E) = l∗(IE), p(E) = p(IE).

Each of these functions is a finitely additive set function on Φ. The belated
semivariation of E ∈ Φ with respect to the set function l is

‖E‖l = sup‖
∑

i

αil(Ei)‖s
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where the supremum is taken over all partitions of E in Φ, and choices
αi ∈ AinfEi

with ‖αi‖ ≤ 1. The semivariations with respect to l∗ and p are
defined in exactly the same fashion. We observe here that∑

i

αil(Ei) =
∫

φdl

where
φ =

∑
i

αiIEi
.

and φ is a simple process; the simple process associated with the partition Ei

and choice of αi’s. Indeed we can assume that the partition of E comprises
intervals Ei. With this in mind we have

Lemma 8 For E ∈ Φ we have

‖E‖l ≤ λ(E)
1
2

where λ denotes Lebesgue measure. We also have

‖E‖l∗ = λ(E)
1
2

and
‖E‖p = µ(E)

1
2

where µ(E) =
∑∞

n=1
1
2n µξn

(E) and for ξn = w
(n)
1 ⊗ . . .⊗ w

(n)
k(n)

µξn
(E) =

∞∑
n=1

1
2n

∫
| wn

1 (t) |2 IEdt.

Proof
Let (Ei) be a partition of E and αi a choice of elements from the unit ball(s)
of AinfEi . Denote by φ the associated simple process. By Theorem 1 (i)

(‖E‖l)2 = sup ‖
∫

φdl‖2s ≤ sup

∫
‖φ(t)‖2dt

the last supremum is clearly dominated by λ(E). Now for the gauge semivaria-
tion we have

‖E‖p = sup‖
∫

φdp‖2s = sup

∫
‖φ+(t)‖2sdµ.

Now ∫
‖φ+(t)‖2sdt =

∫ ∞∑
n=1

1
2n
‖φ(t)+(ξn)‖2dt.

Since φ(t)+ contains sums of basic elements with creation operators

‖φ(t)+(ξn)‖2 = ‖φ(t)+(Ω)⊗ ξn‖n = ‖φ(t)+(Ω)‖2.
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It now follows that if we select φ(t) = φ(t)+ = I then the supremum is attained
at exactly µ(E). A very similar calculation proves the result for the l∗ semivari-
ation. QED
So each of the semivariations associated with the basic processes is finite on
bounded subsets of R. What is more, there is in each case a control measure
and so the results of section 2 of [3] apply here. With the semivariations playing
the role usually occupied by measures we can define the notions of convergence
in dl-measure (respectively dl∗ and dp measure) and convergence dl-almost ev-
erywhere (respectively dl∗ and dp almost everywhere). For a dl (respectively
dl∗, dp)-measurable function f with (fn) a sequence of simple processes con-
verging to f in dl (resp’ dl∗, dp) measure we say that f is dl (resp’ dl∗, dp)
integrable if (fn) can be chosen so that

∀ε > 0∃ δ > 0 : E ∈ Φ ‖E‖l < δ then ∀n ‖
∫

E

fndl‖s < ε

with the appropriate modifications for the other cases. Note that the second
condition, (b), of definition 3.1 of [3] is automatically satisfied because the
semivariation of [0, T ] is finite (in every case). We say that f is belated integrable
with respect to dl (resp’ dl∗, dp ). It is natural to ask if a process which is
integrable in the sense of definiton 7 above with respect to one of the basic
processes is belated integrable with respect to that process. The answer is

Theorem 4 The set of processes integrable with respect to dl in the sense of
definition 7 is a subset of the set of processes which are belated integrable with
respect to dl and the two integrals agree.

Proof
Let f ∈ P (‖ · ‖, dt) and let (fn) be a sequence of simple processes converging to
f in P (‖ · ‖, dt) we can assume that the convergence is in Lebesgue measure and
Lebesgue almost everywhere. In view of the last lemma this means that (fn)
converges to f in ‖ · ‖l measure and ‖ · ‖l almost everywhere. So we must prove

∀ε > 0∃δ > 0 : E ∈ Φ and ‖E‖l < δ then supn‖
∫

E

fndl‖s < ε.

We argue by contradiction. Suppose that there is ε > 0 and a sequence of sets,
(Em) in Φ with ‖Em‖l < 1

2m and

sup‖
∫

Em

fndl‖2s > ε

Define Bn = ∪∞m=nEm then ∩∞n=1Bn = limsupEm. The sets, Bn, are outer sets
with their semivariation defined by (2.11 of [3])

‖Bn‖llimM−→∞‖ ∪M
m=n Em‖l

and because the semivariation is countably subadditive (2.10 of [3]) then

‖Bn‖ ≤
∞∑

m=n

‖Em‖ <
∑
m=n

(
1

2m
) =

1
2n+1

.
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Now it is easy to see that

‖ ∪M
m=n Em‖l ≥ ‖l(I∪M

m=nEm
)‖s

and so

‖l(I∪M
m=nEm

)‖2s =
∑

n

1
2n
‖l(I∪M

m=nEm
)ξn‖2 =

∑
n

1
2n

|
∫

w
(n)
1 I∪M

m=nEm
dt |2 .

And by the dominated convergence theorem∫
w

(n)
1 I∪M

m=nEm
dt −→

∫
w

(n)
1 IBndt

so that ∑
n

1
2n

|
∫

w
(n)
1 I∪M

m=nEm
dt |2−→

∑
n

1
2n

|
∫

w
(n)
1 I∪Bn

dt |2

as M −→∞ by the monotone convergence theorem. Therefore

‖l(I∪m=nEm)‖s −→ ‖l(IBn)‖s

and by taking a limit ‖Bn‖l ≥ ‖l(Bn)‖s. Using much the same argument as
above we have

‖l(IlimsupEn
)‖s = lim‖l(IBn

)‖s = 0.

From this we deduce that λ(limsupEn) = 0. However, from Theorem 1 and
the assumptions concerning the sequence (En) we have

supn

∫
Em

‖fn‖2dt > ε

which, since Bm ⊇ Em, tells us that

supn

∫
Bm

‖fn‖2dt > ε.

But λ(Bm) −→ λ(limsupEm) = 0 and so∫
Bm

‖fn‖2dt≤
∫

[0,T ]
‖f − fn‖2dt+

∫
Bm

‖f‖2dt+{
∫

Bm
‖ f ‖2dt}

1
2 ·{

∫
‖f − fn‖2dt}

1
2 .

Now the first of the right hand terms tends to 0 by the hypothesis of the theorem
while the remaining terms are both small once m ∈ N is chosen large enough,
m ≥ M , say. So there is N ∈ N such that for n ≥ N and m ≥ M we have∫

Bm

‖fn‖2dt < ε.

For n ∈ {1, 2, 3, . . . , N − 1} we use the dominated convergence theorem, N − 1
times, to obtain M1,M2,....,MN−1, such that for m>max{M1 ,M2 ,...MN−1,m} we
have

supn

∫
Bm

‖fn‖2dt ≤ ε.
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This is contradiction. So f is belated integrable and it is clear that the two
kinds of integral coincide. QED
We turn to the other integrals now.

Theorem 5 The set of processes which are integrable with respect to l∗ in the
sense of definition 5 are a subset of the the belated integrable processes and the
two integrals agree.

Proof
If f is integrable in the manner of definition 5 then there are simple processes,
(fn) converging to f in P (‖ ·‖, dt), and Lebesgue almost everywhere (and there-
fore in measure since T < ∞). The following inequalities hold,

‖
∫

E
fndL∗‖2s ≤

∫
E

‖fn‖2dt

≤
∫
‖f−fn‖2dt+

∫
E
‖f‖2dt+2{

∫
E
‖f−fn‖2dt}

1
2 {

∫
E
‖f‖2dt}

1
2

the first follows directly from theorem 1 the second from the triangle inequality.
Now the first term can be made small by choosing n ∈ N sufficiently large,
greater than N say, and the second term can be made small by choosing λ(E)
small enough. This takes care of the third term also. Now as ‖E‖l∗ = λ(E)

1
2

we see that by taking the l∗ - semivariation small enough then

‖
∫

E

fndl∗‖2s < ε

for n ≥ N . For 1 ≤ N − 1 one chooses the l∗ semivariation appropriately to
make the s−norm of the integrals small, again using theorem 1. It is then clear
the f is belated integrable and the the two integrals coincide. QED
One can prove a corresponding result for the gauge integral employing argu-
ments parallel to those in the last theorem. We leave the details for the reader
and state

Corollary 1 The collection of p-integrable processes (in the sense of definition
7) is a subset of the set of p-belated integrable processes and the two integrals
agree.

We conclude our discussion with an example. Let [0, T ] be the interval [0, 1].
Consider the function

f(s) =
1
s
l(I[0,s])

this is an adapted process. Let I(k, n) be the indicator function of the interval
[ k
2n , k+1

2n ) and I0(k, n) the indicator function of the interval [0, k
2n ). Define

fn(s) =
2n−1∑
k=0

I(k, n)(
2n

k
)l(I0(k, n)).
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We note that fn is an adapted process. We consider the l∗ integral of f . First
we note that ∫

fndl∗ =
∑

k

(
2n

k
)l(I0(k, n)l∗(I(k, n))

and the sum on the right is zero because the annihilation and creation act on
functions with disjoint supports. Therefore the integrals of the sequence, (fn),
will be uniformly small on sets of small l∗ semivariation. Moreover, it is not
difficult to see that (fn) converges ‖ · ‖l∗ almost everywhere on [0, 1]. So f is
integrable with respect to l∗ in the belated sense and has zero integral. But a
computation shows ∫

[0,1]

‖f‖2dt = ∞.

So f is not in P (‖ · ‖, dt). This means that the inclusion refered to in theorem
5 is strict!
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