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Abstract

By using numerical integration we price a novel form of barrier struc-
ture which is closely related to a barrier swaption. The new feature is
where the barrier is monitored before and during the exchange arrange-
ment and the arrangement can cease at any ‘reset date’. We call this a
Tenor-Varying Barrier Structure.

1 Introduction to Tenor Varying Barrier Struc-
tures

We would like to introduce a new type of barrier structure. It is similar to
a barrier swaption but differs in two ways. The structure is an option on an
exchange arrangement between two parties. Key features of the arrangement
determined at the outset are;

• A barrier level, H > 0,

• An underlying which we call (Kt), which is the P almost surely strictly
positive semimartingale (K0e

σBt+(r−σ2
2 )t) with K0 < H.

• A fixed payment, k.

• A Tenor structure which is a finite sucession of dates, 0 < T0 < T1 <
. . . < Tn. The dates, Ti−1 1 ≤ i ≤ n, are reset dates and Ti 1 ≤ i ≤ n are
payment dates.

1.1 The Arrangement

First of all we consider the exchange arrangement without any barrier structure
in place. This is almost exactly the same as a swap. The arrangement begins
at time T0. Over each of the time periods, [Ti−1, Ti], 1 ≤ i ≤ n, one party will
pay the fixed amount k the other will pay an amount determined by K. The
amount determined by K is set in advance, that is, it is KTi−1 , (the reset date)
but it is paid in arrears, that is, at Ti (the payment date). The party paying
the fixed amount, k is by convention “the payer” and the other “the receiver”.
The narrative takes the view of the payer. The value at time t ≤ T0 of this
arrangement, to the payer, is

e(k, t) =
n∑

j=1

MQ
t ((KTj−1 − k)

ert

erTj
).

As with a swap, the fixed payment, k can be chosen so that at initiation, T0,
e(k, T0) = 0. The value of k for which the arrangement is valueless at time
t ≤ T0 is

kt = (
Kt

ert
)

∑n
j=1 e−r(Tj−Tj−1)∑n

j=1 e−rTj
.
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We note that this means the process (kt) is a martingale on [0, T0]. If we assume
that the time interval between dates is a constant, δ, say, then

kt = (
Kt

ert
) n e−rT0

(erTn − erTn−1

erTn − erT0

)
.

So in this case the martingale (kt) is given by

kt =
(
eσWt−σ2

2 t
)
n erT0

(erTn − erTn−1

erTn − erT0

)
.

We use this directly.

1.2 An option on the Arrangement

Suppose now that at time 0 < T0 we buy an option to enter into the exchange
arrangement at time T0 with the fixed payment set at k. We imagine also that
we can at time T0 enter into the arrangement with the fixed payment set at the
“market” level of kT0 . Since e(kT0 , T0) = 0 the value at time T0 of the option
will be

e(k, T0)− e(kT0 , T0) =
n∑

j=1

MQ
T0

(kT0 − k)
erT0

erTj
.

So this is positive so long as kT0 > k which identifies the exercise region for this
option. Therefore, the value of the option at time T0 is

O(e(k, T0)) =
n∑

j=1

MQ
T0

(kT0 − k)+
erT0

erTj
.

The value at time t < T0 will be

O(e(k, t)) = er(t−T0)MQ
t (

n∑
j=1

MQ
T0

(kT0 − k)+
erT0

erTj
).

1.3 The option price at time t = 0

We assume that Ti − Ti−1 = δ. The price is

EQ((kT0 − k)I{kT0>k}

n∑
j=1

1
erTj

).

Noting that

kT0

n∑
j=1

1
erTj

= KT0e
−rT0 n e−rδ

that
kT0 > k ⇐⇒ KT0 >

k

n
(

erTn−erTn−1

erTn−erT0

) = κn

Therefore

EQ(kT0I{kT0>k}

n∑
j=1

1
erTj

) = e−rT0 n e−rδEQ(KT0I{KT0>κn}).
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The last term on the right is familiar. Since
∑n

j=1
1

erTj
= n e−rδe−rT0κn

k the
other term is

e−rT0n e−rδ κn Q({KT0 > κn}).

And this is very familiar too. The price appears now as

n e−rδ(K0N(d1)− e−rT0 κnN(d2))

That is, a multiple of the Black-Scholes price of an option stuck on K with
strike κn and expiry T0.

2 The Option on the arrangement with Barriers

The option begins at, say, time t = 0. The underlying K s monitored con-
tinuously over the time period [0, T0]. If max Kt

[0,T0]
≥ H then the option ends.

Otherwise, the exchange arrangement begins. But all of this is subject to the
condition that max Kt

[0,Ti−1]
< H. If, subsequently, max Kt

[Ti−1,Ti]
≥ H the arrangement

ceases at time Ti when (final) exchange payments are made. So this arrange-
ment can fail to begin at time T0, last for only one time period beyond T0, or
two time periods, and so on. Because of the protocol adopted for termination,
should the exchange arrangement be unterminated at time Tn−1 then it contin-
ues to its conclusion at time Tn irrespective of what K does in the time interval
(Tn−1, Tn]. For this reason the option is described as a tenor varying exchange
arrangement. It is similar to a barrier swap, but the barrier remains in place
after the arrangement has begun. Also, the underlying, K, which we have as-
sumed to be log-normal, is given at the outset and is not derived from or related
to a model of bond prices. We have assumed the existence of a cash account
process (ert) which along with K lives on the base (Ω,FTn

,Ft, [0, Tn], Q), and
Q is the risk-neutral measure.

2.1 The payoff of the option on the exchange arrangement.

To describe the payoff of the option we introduce the first time that K hits the
barrier H;

τ(w) = min[t : Kt ≥ H].

This is a stopping time of the filtration. If 0 ≤ τ ≤ T0 then the payoff is
zero. If, for 1 ≤ i ≤ n− 1, Ti−1 < τ ≤ Ti then the arrangement ends at time Ti

and the payoff at time Tn for the party paying the fixed amount k will be

i∑
j=1

(kT0 − k)+er(Tn−Tj).

If τ > Tn−1 then the (full) payoff (at time Tn) occurs,

n∑
j=1

(kT0 − k)+er(Tn−Tj).
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The payoff, at time Tn, for the party paying the fixed amount k is therefore

e(T0, Tn, k) =
n−1∑
i=1

(
i∑

j=1

(kT0−k)+er(Tn−Tj))I(Ti−1<τ≤Ti]+
n∑

j=1

(kT0−k)+er(Tn−Tj)I(Tn−1<τ≤∞].

The value of this payoff at time t < T0 is therefore

ertMQ
t (e(T0, Tn, k)e−rTn) = ert

n−1∑
i=1

(
i∑

j=1

MQ
t ((kT0 − k)+e−rTj I(Ti−1<τ≤Ti] ))

+ ert
n∑

j=1

MQ
t ((kT0 − k)+e−rTj I(Tn−1<τ≤∞]).

2.2 The price at time zero

For the value at time t = 0 we replace MQ with EQ in the last equation above.
Let us consider a typical term and simplify by assuming Ti−Ti−1 = δ. We have

i∑
j=1

EQ((kT0 − k)+e−rTiI(Ti−1<τ≤Ti]).

We also have

kT0 = KT0n
erTn − erTn−1

erTn − erT0
.

We have already observed that {kT0 > k} = {KT0 > κn} where

κn =
k

n

erTn − erT0

erTn − erTn−1

So
(kT0 − k)I{kT0>k} = k (

KT0

κn
− 1)I

{
KT0
κn

>1}

So our typical term contributes

EQ(k (
KT0

κn
− 1)I

{
KT0
κn

>1}

i∑
j=1

e−rTiI(Ti−1<τ≤Ti]).

Now we know already what
∑i

j=1 e−rTj amounts to. By analogy with the
definition of the constant κn we define

κi = erT1
k

i

i∑
j=1

e−rTj

This allows a moderate simplification to the term we are interested in, it now
looks like

e−rT1κiE
Q((

KT0

κn
− 1)I

{
KT0
κn

>1}
I(Ti−1<τ≤Ti]).
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Writing K̂t = Kt

κn
, Ĥ = H

κn
and noting that τ is identical with the first time that

K̂ is greater or equal to Ĥ we see that the quantity we have to calculate is

e−rT1κiE
Q((K̂T0 − 1)I{K̂T0>1}I{MK̂

Ti−1
<Ĥ , MK̂

Ti
≥Ĥ}).

So we can forget the “̂·’s” we just have remember that K̂0 = K0
κn

and Ĥ = H
κn

.
So now we consider

e−rT1κiE
Q((KT0 − 1)I

{KT0>1, M
KTi−1 <H , M

KTi≥H}
).

It seems natural to deal first with

Q({KT0 > 1, MKTi−1 < H , MKTi ≥ H})

So, in this case K lies under the level H over [0, T0] taking a value at time
T0 which is greater than 1. It remains under H in [T0, Ti−1] taking any value
less than H at Ti−1, then, during the interval (Ti−1, Ti] it hits the level H
taking any value at time Ti. These three time periods form the basis of our
analysis. Let p(T0,K0,H, x) denote the probability that K starts at t = 0
with the value K0, remains under the level H until T0 and takes a value x at
T0. Let p(Ti−1, x,H, y) be the probability that starting from a value x, K will
remain under the level H over [T0, Ti−1] taking any value y less than H at time
Ti−1. Let p

′
(Ti, y,H) be the probability that K takes the value y < H at time

Ti−1 and its running maximum over (Ti−1, Ti] exceeds H. These probabilities
are independent ( ...reborn Brownian Motion...)and the probability we wish to
calculate is given by a formal integral∫ H

−∞

∫ H

1

p(T0,K0,H, x)p(Ti−1, x,H, y)p
′
(Ti, y,H)dx dy (1)

We recall that
log(

Kt

K0
) = σ(Wt + (

r

σ
− σ

2
)t)

so we will deal with the drifted Brownian Motion. In terms of this the calculation
has the same form as in (1) and it is clear that the joint distribution of a drifted
Brownian motion and its running maximum will be useful.We note that

1 < KT0 < H ⇐⇒ a0 < Bν
T0

< b0

MK
T0

< H ⇐⇒ MBν

T0
< b0

where a0 = 1
σ log( 1

K0
) , b0 = 1

σ log( H
K0

) and Bν
t is the drifted Brownian Motion

Bν
t = Wt + (

r

σ
− σ

2
)t and ν =

r
σ
− σ

2
.

The joint distribution of Bν and MBν

with respect to the measure Q is well
known and we shall be using a partial derivative of this distribution,

Q({MBν

T0
< b0, B

ν
T0

= x}) =
1√
T0

(
φ(

x− νT0√
T0

)− e2b0νφ(
x− 2b0 − νT0√

T0

)
)

dx
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which gives the probability on the left above for a drifted Brownian Motion
starting at 0 at time 0. For the period [T0, Ti−1] where we need to consider Bν

starting at time T0 at the value x and staying below the level b0 throughout
[T0, Ti−1] and taking a value y at time Ti−1 we can obtain the probabilty by
‘translating’ everything by the value x, this relys on our Brownian motion be-
ing ‘reborn’ at time T0. Without giving the full details of the argument; the
probability we require is the same as the probability that the drifted Brownian
Motion, Bν starts from zero and over a time period of length Ti−1 − T0 never
reaching the value b0 − x and takeing a value y − x at time Ti−1. According to
our distirbution above the probability

Q({MBν

Ti−1−T0
< b0 − x,Bν

Ti−1−T0
= y − x})

will be

1√
Ti−1 − T0

(
φ(

y − x− ν(Ti−1 − T0)√
Ti−1 − T0

)−

e2(b0−x)νφ(
(y − x)− 2(b0 − x)− ν(Ti−1 − T0)√

Ti−1 − T0

)

)
dy.

For the third time period we require the probability that starting from a value
y our drifted Brownian Motion will exceed the level b0 during the time period
(Ti−1, Ti] and much as before, we calculate Q{MBν

Ti−Ti−1
≥ b0−y}. We can read

this off from the joint distribution of Bν and its running maximum;

Q({MBν

Ti−Ti−1
< b0 − y, Bν

Ti−Ti−1
< z})

is equal to

N(
z − ν(Ti − Ti−1)√

Ti − Ti−1

)− e2(b0−y)νN(
z − 2b0 − ν(Ti − Ti−1)√

Ti − Ti−1

).

But of course z ≤ b0 − y. Letting z = b0 − y leaves us with

N(
b0 − y − ν(Ti − Ti−1)√

Ti − Ti−1

)− e2(b0−y)νN(
−y − b0 − ν(Ti − Ti−1)√

Ti − Ti−1

).

Of course what we want is one minus this probability:

N(
y + ν(Ti − Ti−1)− b0√

Ti − Ti−1

) + e2(b0−y)νN(
−y − b0 − ν(Ti − Ti−1)√

Ti − Ti−1

).

To calculate the probability, (1);

Q({KT0 > 1, MKTi−1 < H , MKTi ≥ H})

we must integrate the product of the three probabilities determined above over
the appropriate limits, a0 to b0 for the x variable and −∞ to b0 for the y variable.
After this these must be summed from i = 1 to i = n− 1.

This deals with the terms

Q({KT0 > 1, MKTi−1 < H , MKTi ≥ H})
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and there remains

e−rT1κiE
Q(KT0I{KT0>1, M

KTi−1 <H , M
KTi≥H}

).

We can use the familiar change of measure technique; K0e
σBt+(r−σ2

2 )t and
eσBt+(r−σ2

2 )t provides the Radon-Nikodym derivative for a change of measure
to, say, Q

′
, under which there is a change of sign in the dynamics for K. This

leads to minor changes in the the calculations we have already outlined.
We have one last term to consider: At time t < T0 the event τ > Tn−1

contributes

ert
n∑

j=1

MQ
t ((kT0 − k)+e−rTj I(Tn−1<τ≤∞])

which amounts to
n∑

j=1

EQ((kT0 − k)+e−rTj I(Tn−1<τ≤∞])

at time 0. Using the analysis and the notations adopted for the previous case
this is equivalent to

e−rT1κnEQ((KT0 − 1)I
{KT0>1, M

KTn−1 <H }
,

since MKTn−1 < H ⇐⇒ τ > Tn−1. But we have already discussed how to
evalute an expectation like this. In terms of the formal integral described in
equation (1) above the probability we will need to calculate is∫ H

−∞

∫ H

1

p(T0,K0,H, x)p(Tn−1, x,H, y)dx dy (2).

As before we split this into two parts. We calculate the probability as before
and then move to the term involving KT0 .This is dealt with by the change of
measure technique alluded to above.

As one can imagine, the complete calculation generates a large number of
terms involving the integration of products of trios of Normal densities and
Normal distributions. Partial integration of some of these terms produces some
simplification but increases the number of terms. Numerically, the task is quite
staightforward and the computation time with Maple is of the order of seconds.

2.3 A Standard Barrier Arrangement

The reader will have noted that we have not looked at the case of a ‘standard’
barrier option on the arrangement where the underlying is monitored over [0, T0]
only and should it reach the level H during this monitoring period the option
expires worthless. It is reasonable that such a barrier option will be dearer than
the option on tenor varying arrangement. Indeed a simple formal calculation
confirms this. As one might expect, the price of the tenor varying option is
an increasing function of H, the barrier level, and that the price of both the
standard and tenor varying options converge to that of the option without bar-
riers as H increases to infinity. Again, as one expects, the price is an increasing
function of the length of the arrangement.

.
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2.4 Approximation of the Price

The computations were achieved using Maple. The first graph shows some
plots of price against barrier level. The time periods are of equal length in
this calculation and three different ‘tenors’ are calculated. The output is in
terms of basis points. The reader will see “C.T.B.S.” and ‘Swap’ in the legend.
This and our other diagrams arise from [1] where the “C” refers to continuous
monitoring of the underlying the exchange arrangement is described as a swap.
Of course this courts confusion with genuine Swaps and the term is deprecated
here. However there is a paper in preparation which usess a Swap Market
Model for the underlying k. The discretely monitored case of the tenor varying
arrangement was discussed in [1] and ‘barrier shifting’ used to approximate the
price in this case.

Figure 1: We consider the case where risk free rate r is at 2 percent, the
standard deviation σ is at 10 percent, k0 is equal to 4 percent, and the contract
starts (at T0) six months later and interest is paid quarterly. The strike rate is
equal to k0.

Using the same data set as above the price of the option on the exchange
arrangement is equal to 51.10477 basis points. We see that the price of the tenor
varying option is significantly less.
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