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Introduction

These notes look at a number of ways of arriving at the Black - Scholes
formula for the price of a European call option. It is assumed that the
reader is familiar with the idea of an admissible self-financing portfolio, the
definition of a European call option and elementary stochastic calculus. Each
of the sections that follow arrive at the Black - Scholes formula in different
ways. No doubt we could demonstrate that some of these are mathematically
equivalent, but this is another project. The aim is give the reader the means
to compare existing derivations of the result and to provide an editorial
commentary which I hope is not too distracting.
Let us fix some notation: Our risky asset, a stock, has price St at time t
and we consider it over the time interval [0, T ] during which its dynamics are
given by

St = S0 +
∫ t

0
µSsds+

∫ t

0
σSsdWs

for t ∈ [0, T ]. At the same time our risk-less asset, a bond, has price Bt at
time t and its dynamics are given by

Bt = 1 +
∫ t

0
rBsds

∗Tel. 02075948562
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for t ∈ [0, T ] where r > 0 is a constant taken to be the continuously com-
pounded (risk-less) interest rate. Our European call option with strike price
K is the right but not the obligation to buy the stock for the price K at time
T . This right should come at a price and it was the achievement of Black
and Scholes to give a rational price for this and other options. A key idea in
all of this is arbitrage. We assume the reader is familiar with this idea and
its mathematical formulation.

1 A conventional derivation

Suppose that we have written a European call option on the stock. At
the outset we have the problem of what charge we should make for this
derivative security and at expiry, time T , we have the problem of meeting
our obligations. Now it is assumed throughout the life of the option there
are no taxes, transaction costs, bid-offer spreads and that we may sell short
either the stock or the bond and have full use of the proceeds immediately.
Under these conditions it is possible to construct a portfolio of stock and
bond which actually replicates the option value over [0, T ]. To see how one
can do this, consider forming a portfolio consisting of a European call option
on the stock, a certain number of stocks, φ(t) , and bonds, ψ(t), at time t.
We shall denote the value of the option at time t by P (t, St) where P (t, x)
is a C1,2 function of time, t, and its spatial variable, x. The reader should
note that this assumption is rather strong in that it restricts the influences
on the options value. This portfolio, whose value at time t we shall denote
by V (t), will be managed by altering the stock and bond amounts in a self -
financing manner so that

V (t) = P (t, St) + φ(t)St + ψ(t)Bt

and

V (t) = V (0)′ + P (t, St) +
∫ t

0
φ(s)dSs +

∫ t

0
ψ(s)dBs.

Here V (0)′ = V (0) − P (0, S0). Now, using Ito’s Lemma (the fundamental
theorem of stochastic calculus) we can express the options value as follows;

P (t, St) = P (0, S0)+
∫ t

0

∂P (s, Ss)

∂s
ds+

∫ t

0

∂P (s, Ss)

∂x
dSs+

∫ t

0

∂2P (s, Ss)

∂x2

σ2S2
s

2
ds.
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We observe that the integral with respect to the stock price can be expanded
to ∫ t

0

∂P (s, Ss)

∂x
dSs =

∫ t

0

∂P (s, Ss)

∂x
µSsds+

∫ t

0

∂P (s, Ss)

∂x
SsσdWs.

Recalling that we can write V (t) in its self - financing form we can also
expand the integrals with respect to S and B appearing there to get

V (t) = V (0)′ + P (t, St) +
∫ t

0
(φ(s)Ssµ+ rψ(s)Bs)ds+

∫ t

0
φ(s)σSsdWs.

To continue the analysis of this portfolio I need to combine together both the
expanded form for P (t, St) and the self financing form for V (t) above. The
limitations of space on the page demand that I do this in stages so let us
first of all combine together all of the integrals with respect to “ds”. These
terms amount to∫ t

0
(
∂P (s, Ss)

∂s
+
∂P (s, Ss)

∂x
µSs +

1

2

∂2P (s, Ss)

∂x2
σ2S2

s + φ(s)Ssµ+ rψ(s)Bs)ds

while the stochastic integral terms amount to∫ t

0
(φ(s)Ss +

∂P (s, Ss)

∂x
Ss)σdWs.

So our portfolio can now be expressed as the sum of three terms,

1. its initial value, V (0)1, involving the initial value of the option plus
that of the self - financing portfolio of stock and bond,

2. the terms involving the integrals with respect to “ds”,

3. the terms involving stochastic integration with respect to “dW”.

Now that we have expressed the value of our portfolio in these terms we can
take the next step which is to describe how we manage it (aside from the self
- financing condition). What we seek is a portfolio that is instantaneously
risk-less at each moment in time. Before we continue with the mathematics,
we remark upon two aspects of this strategy. First of all what do we mean
by a portfolio being risk-less? Second, why should we choose a risk-less
portfolio at all? The first aspect seems simple enough, a portfolio is risk-less

1Observe that V (0)′ gets together with P (0, S0) to give V (0)
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if its return is certain for the period in question. This raises a mathematical
question; how do we characterise risk-less portfolios? The answer, according
to Black and Scholes, is that the dynamics of its price, Rt, should be of the
form

Rt = R0 +
∫ t

0
Tsds

for some process, T 2. Notice that there is no term involving stochastic
integration in the equation above. This must rank as the least satisfactory
part of the argument presented by Black and Scholes and it led to ‘a minor
industry of getting the argument right’. The second aspect seems at first to
be only reasonable; if one holds a portfolio there may be downside risk. It is
natural, from at least one point of view, to want to avoid this risk. But how
does this help with our management of the portfolio? An heuristic argument
is that movement in the value of the option should be offset by a movement
in the portfolio of stock and bond so that the entire portfolio (option plus
stock plus bond) grows at a steady rate without any volatility. It turns out
that this is sufficient for us to be able to determine a portfolio of stock and
bond which tracks the value of the option exactly.

So let us return to our portfolio with value V (t) given by the three items
listed above. Given our remarks about risk-less portfolios, it is now clear
what strategy we should adopt to render our portfolio risk-less, we must set

φ(t) = −∂P (t, St)

∂x
.

This eliminates the third item of our list and modifies the second to leave us
with

V (t) = V (0) +
∫ t

0
(
∂P (s, Ss)

∂s
+

1

2

∂2P (s, Ss)

∂x2
σ2S2

s + rψ(s)Bs)ds.

At this point the second key ingredient of the Black - Scholes argument comes
into play. Our portfolio is now a ‘risk-less’ one. Therefore it should grow at
exactly the same rate as the risk-less bond. The argument for this follows
from the assumption that there are no arbitrage opportunities available to
investors. Should our portfolio exhibit a return that is different from the risk
free return then by selling one short (the worse!) and buying the other (the
better) one can lock in a risk-less profit immediately (if you’re cute) or later

2There is an annex to these notes that deals with this matter.

4



if you’re conventional. This ‘no-arbitrage’ argument hides a mathematical
difficulty addressed in the annex. What we now have is

V (t) = V (0) +
∫ t

0
V (s)rds

and, at the same time

V (t) = V (0) +
∫ t

0
(
∂P (s, Ss)

∂s
+

1

2

∂2P (s, Ss)

∂x2
σ2S2

s + rψ(s)Bs)ds.

Putting these two parts together while noticing that the terms involving ψ(s)
cancel gives

∫ t

0
(rP (s, Ss)− r

∂P (s, Ss)

∂x
Ss −

∂P (s, Ss)

∂s
− 1

2

∂2P (s, Ss)

∂x2
σ2S2

s )ds = 0 (1)

for every t ∈ [0, T ]. From this it is implied that the integrand is zero so that

rP (s, Ss)− r
∂P (s, Ss)

∂x
Ss −

∂P (s, Ss)

∂s
− 1

2

∂2P (s, Ss)

∂x2
σ2S2

s = 0.

For s ∈ [0, T ]. This suggests that the function P (t, x) is a solution to the
partial differential equation

rP (t, x)− r
∂P (t, x)

∂x
x− ∂P (t, x)

∂t
− 1

2

∂2P (t, x)

∂x2
σ2x2 = 0. (2)

I use the term “suggests” on purpose. The condition given in equation 1 and
the path-wise properties of St need to be employed to justify the assertion
that P (t, x) does indeed satisfy the partial differential equation in a given
region of (t, x)-space. Let us look at this point briefly. We can rewrite the
equation in 1 to emphasise what is going on; let

g(t, x) = rP (t, x)− r
∂P (t, x)

∂x
x− ∂P (t, x)

∂t
− 1

2

∂2P (t, x)

∂x2
σ2x2.

Then g(t, x) is a continuous function of both variables. When we write
g(s, Ss(ω)), for s ∈ [0, T ], we are evaluating g on the graph of the path ,
s → Ss(ω). For each continuous path of S then 1 holds. It follows that
g(t, x) is zero on these paths - differentiate the integral. Now, do the paths
of S completely fill our (t, x)-space? The answer is yes. This follows from the
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fact that the paths of Brownian Motion include every continuous function
( on [0, T ] ). As an exercise you might like to consider what path(s) Brow-
nian Motion must follow in order that the path(s) of S should follow some
prescribed function passing through a finite number of prescribed points of
the (t, x) space. From these considerations we can deduce that P should
satisfy the partial differential equation given in equation 2. This equation
is called the Black - Scholes equation. We should observe at this point that
we have not, so far, used the fact that P (t, x) is intended to be the function
of time and stock price which determines the value of the option. It follows
that the Black - Scholes equation is a quite general equation for the value
of a security whose value depends upon the stock price and time. When we
specify precisely the nature of the security we will specify precise boundary
conditions for the Black - Scholes partial differential equation and these will
pick out the appropriate solution which determines the securitys price over
time and the varying values of the stock. So, for example our option will
have value at expiry given by, (ST −K)+ that is the boundary condition for
P at time T will be P (T, x) = (x − K)+. To specify the other boundary
conditions for P (t, x) we observe that the region on which P (x, t) is defined
is [0, T ] × (0,∞), a rectangle with base the interval [0, T ], and comprising
the infinite strip above this in the (t.x) plane. We have already specified its
behaviour on the right hand side of the rectangle. On the bottom of this
rectangle we assign the boundary condition P (t, 0) = 0, which is reasonable
because as the stock price tends to zero the option becomes worthless. On
the other hand, as the stock price tends to ∞ the value of the stock and
the option become relatively the same, giving the boundary condition that
P (t,x)

x
→ 1 as x→∞.

We are now able to to specify a solution to the Black-Scholes p.d.e.. There
are many treatments of this part of the subject which motivate the choice of
the particular form of the solution. There is a careful and logical treatment
in “The Mathematics of Financial Derivatives” by Dewynne, Howison and
Wilmott, CUP. So, we shall take as our departure point the claim that the
following function solves the Black - Scholes p.d.e. . First of all let

d1(t, x) =
ln( x

K
) + (r + σ2

2
)t

σ
√
t
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where K is our strike price, r the (constant) risk-free rate and σ the constant
volatility of the stock price. We also define

d2(t, x) = d1(t, x)− σ
√
t.

Now let N(t) denote the distribution function of the standard normal random
variable, so

N(t) =
1√
2π

∫ t

−∞
e−

x2

2 dx

Our claim is that

ν(t, x) = xN(d1(T − t, x))−Ke−r(T−t)N(d2(T − t, x))

solves 2. Consider the values of ν as x → 0. We see that for a fixed t the
term d1(t, x) tends to −∞ so that both N(d1) and N(d2) tend to zero and
hence ν tends to zero also. In fact this shows (see later) that the partial
derivative of ν with respect to x also converges to zero as x tends to zero, so
we can “smoothly” assume that ν takes the value 0 on (t, 0) for t ∈ [0, T ].
On the vertical line (T, x) the values of ν are, strictly speaking, undefined
because the formula involves division by zero. but what we intend here is
that the values that ν takes on this line should be the limit of the values for
t < T . What we see is that the limiting value of d1(T − t, x) depends upon
the relationship between x and K. If x > K then ln x

K
is strictly greater than

0 and d1(T − t, x) tends to +∞ as t→ T as does d2 so that ν(t, x) → x−K.
If x = K then both d1(T − t, x) and d2(T − t, x) tend to zero as t→ T and,
as x = K,

ν(t, x) −→ xN(0)− 1 · xN(0) = 0

as t→ T . If x < K then ln( x
K

) < 0 and as t→ T both d1 and d2 tend to −∞
so that both the terms involving the distribution function tend to zero and
ν follows them. This shows that ν(t, x) → (x −K)+ as t → T as required.
The behaviour of ν as x gets large is identical with what we would expect
of the option price. We turn now to showing that ν does indeed satisfy the
equation 2.
To begin with

∂d2

∂t
=
∂d1

∂t
+

σ

2
√
T − t

,

so that

∂N

∂t
(d2) =

1√
2π
e−

(d1−σ
√

T−t)2

2 · (∂d1

∂t
+

σ

2
√
T − t

) (3)
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=
1√
2π

e−
d2
1
2
∂d1

∂t
er(T−t) x

K
+

1√
2π
e−

d2
1
2

σ

2
√
T − t

x

K
er(T−t)

=
∂N

∂t
(d1)e

r(T−t) x

K
+ (

1√
2π
e−

d2
1
2

1

xσ2
√
T − t

)
σ2x2

K
er(T−t)

=
∂N

∂t
(d1)e

r(T−t) x

K
+
∂N

∂x
(d1)

σ2x2

2K
er(T−t)

and it follows that

∂ν

∂t
= x

∂N

∂t
(d1)−Ke−r(T−t)∂N

∂t
(d2)− rKN(d2)e

−r(T−t) (4)

= x
∂N

∂t
(d1)−Ke−r(T−t){∂N

∂t
(d1)e

r(T−t) x

K
+
∂N

∂x
(d1)

σ2x2

2K
er(T−t)}

− rKN(d2)e
−r(T−t)

= −∂N
∂x

(d1)
σ2x2

2
− rKN(d2)e

−r(T−t).

We turn to consider ∂ν
∂x

. First of all we note that ∂d1

∂x
= ∂d2

∂x
and that

∂N

∂x
(d2) =

∂N

∂x
(d1 − σ

√
T − t) = e−

d2
1
2 eσ

√
T−t d1e−

σ2

2
(T−t) = e−

d2
1
2
x

K
er(T−t).

So that
∂N

∂x
(d2) =

x

K
er(T−t)∂N

∂x
(d1).

We now have

∂ν

∂x
(t, x) = N(d1) + x

∂N

∂x
(d1)−Ke−r(T−t)∂N

∂x
(d2) (5)

= N(d1) + x
∂N

∂x
(d1)−Ke−r(T−t) x

K
er(T−t)∂N

∂x
(d1)

= N(d1)

.

This is rather interesting! Recall the discussion of how we arrived at a risk-
less portfolio, we chose our stock amounts to be −∂P

∂x
. Perhaps we can inter-

pret the terms appearing in the expression for the option price, P , in terms
of our hedging strategy? In any event we immediately get

∂2ν

∂x2
=
∂N

∂x
(d1).
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Now we can put the parts together

∂ν

∂t
= −∂N

∂x
(d1)

σ2x2

2
− rKN(d2)e

−r(T−t) (6)

σ2x2

2

∂2ν

∂x2
=

∂N

∂x
(d1)

σ2x2

2

xr
∂ν

∂x
= xrN(d1)

−rν = −xrN(d1) + rKe−r(T−t)N(d2)

Their sum is zero. We now have a price at time 0 for our option, it is

ν(0, S0) = S0N(d1(T, S0))−Ke−r(T−t)N(d2(T, S0)).

We can also arrive at a hedging strategy for the option. In fact this part of
the treatment coincides with that in the next section, so we move to that
now.

2 Merton’s argument

We saw that there were some mathematical difficulties with the material of
the last section. Armed with the knowledge supplied by that section, we
define a stochastic process,

V (s) = ν(s, Ss(ω)).

Here ν is exactly the solution to the Black-Scholes equation 2 discussed in
the last section and we have given the name V to this process because it is
to be the value process for a portfolio, which we now construct. We define
a trading strategy in the underlying stock, φ(s) = ∂ν

∂x
(s, Ss(ω)). Notice that

this differs, by a sign, from the strategy adopted in the previous section to
make the portfolio there risk-less. We now define

ψ(s) =
V (s)− φ(s)Ss

B(s)

then we have (obviously)

V (s) = φ(s)Ss + ψ(s)B(s).

9



Now by Ito’s Lemma

ν(s, Ss) = ν(0, S0)+
∫ t

0

∂ν

∂t
(s, Ss)ds+

∫ t

0

∂ν

∂x
(s, Ss)dSs+

∫ t

0

1

2

∂2ν

∂x2
(s, Ss)σ

2S2
sds.

But because ν satisfies the Black - Scholes p.d.e.,

ν(s, Ss) = φ(s)Ss + ψ(s)B(s) (7)

=
∂ν

∂x
(s, Ss)Ss + ψ(s)B(s)

=
∂ν

∂x
(s, Ss)Ss +

1

r
(
∂ν

∂s
(s, Ss) +

1

2

∂2ν

∂x2
(s, Ss)σ

2S2
s )

Forcing the conclusion

rψ(s)B(s) =
∂ν

∂s
(s, Ss) +

1

2

∂2ν

∂x2
(s, Ss)σ

2S2
s .

Substituting into the formula for ν given by Ito’s Lemma above gives

V (s) = V (0) +
∫ t

0
φ(s)dSs +

∫ t

0
ψ(s)dB(s).

So our portfolio is self-financing and produces exactly the same cash flows
as the option. If the price of this portfolio and the option differed, then by
short selling one and buying the other one could achieve risk-less profitable
arbitrage. Under the assumption that this is not possible the prices of these
two instruments must coincide.

Martingale Methods

The assumptions governing this section are that the filtration is the P aug-
mentation of that generated by the Brownian Motion, W , over [0, T ]. The
stock and bond prices are described by exactly the same stochastic equations
as in our first section. We assume no transaction costs, margin requirements,
taxes, etc and unlimited short selling of stock and bond are allowed.
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A motivating case.

In order to motivate what follows we consider a special case. Suppose that
our stock, S, follows the stochastic equation

St = S0 +
∫ t

0
rSsds+

∫ t

0
σSsdWs

so that S has drift equal to r, the risk free rate. Our option has payoff
(ST −K)+ at time T and our task is to fashion a portfolio who’s final value
will be exactly the payoff of the option in all (or P -almost surely all) states
of the world3. Now the random variable, ST , is given by

ST = S0e
σWT +(r−σ2

2
)T

and since

E(e2σWT ) =
1√
2πT

∫ +∞

−∞
e2σxe−

x2

2T dx (8)

=
1√
2πT

e−2Tσ2
∫ +∞

−∞
e−

(x−2Tσ)2

2T dx

< ∞

then ST is in L2(Ω,F , P ) as is ST−K and its positive part. So that our target
is an L2 random variable. Note at this point that what we are seeking is an
admissible portfolio which will replicate the option payoff. We are trying to
prove that such a portfolio exists. So, it is not unreasonable to conclude that
we might need to invoke an ‘existence theorem’ during the course of our proof.
The existence theorem most familiar to us is the Martingale Representation
Theorem.

The martingale representation theorem comes in many forms, one version
states that in our situation, for any L2(FT ) random variable, X, there is a
constant, ν0, and a progressively measurable process, ρ(s), such that

Mt(X) = ν0 +
∫ t

0
ρ(s)dWs,

3Remember, the set of all possible states of the world is interpreted as Ω. With this in
mind, each ω ∈ Ω corresponds to some state of the world over the time interval [0, T ]
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for t ∈ [0, T ]. Taking X = (ST −K)+ the martingale representation theorem
tells us that ρ(s) exists such that

(ST −K)+ = ν0 +
∫ T

0
ρ(s)dWs (9)

= ν0 +
∫ T

0
ρ(s)

Ss

Ssσ
σdWs

= ν0 +
∫ T

0
(
ρ(s)

Ss

)rSsds+
∫ T

0
(
ρ(s)

Ssσ
)SsσdWs −

∫ T

0
(
ρ(s)

Bs

)rBsds

= ν0 +
∫ T

0
φ(s)dSs +

∫ T

0
ψsdBs

Here φs = ρ(s)
Ssσ

and ψs = −ρ(s)
Bs

. This shows our option payoff ‘represented’
as an initial endowment plus the gain from trading the strategy (φ, ψ). Of
course we don’t yet know if this is an admissible trading strategy! But this
is a clue rather than a way forward. The deeper insight is that we have to
take into account the martingale (Mt(e

−rT (ST −K)+)). We know that

Mt(e
−rT (ST −K)+) = ν0 +

∫ t

0
ρ(s)dWs

We set φs = ρsers

σSs
and ψ = Mt(e

−rT (ST −K)+)− ρs

σ
. Then

V (φ, ψ)t = φtSt + ψte
rt

=
ρte

rt

σSt

St + (Mt(e
−rT (ST −K)+)− ρ

σ
)ert

= Mt(e
−rT (ST −K)+)ert.

Let Nt = Mt(e
−rT (ST −K)+), we can use the product rule to write

Nte
rt = ν0 +

∫ t

0
Nsre

rsds+
∫ t

0
ersdNs

= ν0 +
∫ t

0
Nsre

rsds+
∫ t

0
ersρsdWs

= ν0 +
∫ t

0
(Ns −

ρs

σ
)rersds+

∫ t

0

ρsre
rs

σ
ds+

∫ t

0
ersρsdWs

= ν0 +
∫ t

0
(Ns −

ρs

σ
)rersds+

∫ t

0

ρsre
rsSs

Ssσ
ds+

∫ t

0
ersρs

σSs

σSs

dWs
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= ν0 +
∫ t

0
ψsdBs +

∫ t

0
φsrSsds+

∫ t

0
φsSsσdWs

= ν0 +
∫ t

0
ψsdBs +

∫ t

0
φsdSs

So our portfolio is self-financing and because the portfolio tracks ertNt it is
almost surely non-negative and hence admissible.. From this we get imme-
diately that

(ST −K)+ = ν0 +
∫ T

0
ψsdBs +

∫ T

0
φsdSs

which displays the option value as the value of the self-financing portfolio
(φ, ψ) at time T . But the equations above tell us more. Write,

Vt = ν0 +
∫ t

0
ψsdBs +

∫ t

0
φsdSs,

the value process of the strategy (φ, ψ). Then we have

e−rtVt = Nt.

So the discounted value of this portfolio is the martingale (Nt) and, in par-
ticular, its time zero value is

ν = V0 = N0 = M0(e
−rT (ST −K)+) = E(e−rT (ST −K)+).

Because this portfolio replicates the final value of the option there is a stan-
dard arbitrage argument 4 which concludes that the initial value of the port-
folio and the option must coincide. One could summarise the analysis above
by saying that the martingale representation theorem provides the trading
strategy completely (ghastly pun!) including the initial capital required.

Loose ends: The discounted portfolio value is a martingale, but on the
face of it doesn’t look like a martingale because it has a drift term. But
refer back to our characterisation of self-financing portfolios. A portfolio is
self financing if and only if its discounted value is an initial amount plus the
integral of the stock strategy with respect to the discounted stock value. But
in this specific case the discounted stock value is

S̃ = e−rtSt = S0e
σWt−σ2

2
t

4It is a common practice to make the following argument at this stage:
The cost at time zero of the option cannot depart from that of the trading strategy, (φ, ψ),
described above. For if it did, then one could sell (short) the greater and buy the lesser to
lock in a risk-less profit, one’s obligations being met at time T by the lesser instrument.
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You can use Ito’s Lemma to prove this is a(n) (exponential) martingale.
Since it is a martingale the stochastic integral with respect to S̃ is also a
martingale. Another observation is that the actual option value played no
part whatsoever in this analysis. We could have replaced (ST−K)+ with any
non-negative FT measurable L2 random variable. Finally, let us refer back
to our equations at the head of page 13. We pick up the chain of equalities
and part way through rewrite them:

Vt = Nte
rt..........

= ν0 +
∫ t

0
(Ns −

ρs

σ
)rersds+

∫ t

0

ρsre
rs

σ
ds+

∫ t

0
ersρsdWs

= ν0 +
∫ t

0
(Nse

rs − ersρs

σ

Ss

Ss

)rds+
∫ t

0

ρsre
rsSs

Ssσ
ds+

∫ t

0
ersρs

σSs

σSs

dWs

= ν0 +
∫ t

0
(Vs − φsSs)rds+

∫ t

0
φsdSs

So here we have our self-financing portfolio displayed in dynamic form show-
ing that at time s it achieves Vs by holding φ items of S leveraged by Vs−φsSs

bonds. So ψ is determined by V and the current stock holding φS. Of course,
as we have seen, the discounted value of V may be expressed as a constant
plus the integral of φ with respect to the discounted value of S. So ψ is
‘determined by’ φ and S (and r).

In the specific case examined above we first used the martingale repre-
sentation theorem and from this obtained a self-financing portfolio. If you
try to prosecute this argument on a stock with drift µ 6= r a difficulty arises.
To get the portfolio to track ertNt you are forced into the choices we made
for φ and ψ. But then this portfolio is not self financing. The argument goes
awry at line three of the equations at the top of page 13 and thereafter. How
can we remedy this? The answer is provided by Girsanov’s Theorem.
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While this is basically true I want to examine the argument in some
detail. The problem I am trying to address here is how the mathematics
and the finance interact. For example, one justification for the argument
above is; if on any path of S the values of the option and the portfolio differ
then by short selling one and buying the other an arbitrage opportunity
occurs. This argument makes especially good sense if we imagine that we
are watching the particular price evolutions unfold and we act in the way
described. Of course this does not prove5 that the assumption of no-arbitrage
entails the agreement of the option price and the portfolio value. Recall that
an arbitrage opportunity is an admissible trading strategy, Φ, such that the
portfolio value, Vt(Φ), satisfies

V0(Φ) = 0 but that E(VT (Φ)) > 0

The argument rehearsed above seems to allow the existence of arbitrage
because of a state of affairs on a single path of S at a single moment of
time, t. But this does not lead to the mathematical expression for arbitrage
above. This is because what happens on one particular path refers to the
singleton, {ω} which is a set of zero P measure and is therefore irrelevant.
What this demonstrates is that one cannot pass seamlessly from the financial
arguments to the mathematics.

Arbitrage

Before we proceed further let us consider whether or not an arbitrage oppor-
tunity can exist in our present situation. First of all our discounted stock
price is a martingale under the measure P . Note, also, that an admissible
(self-financing portfolio), Φ = (φ, ψ) must satisfy

Vt(Φ) = V0(Φ) +
∫ t

0
φ(s)dSs

for t ∈ [0, T ]. So our discounted admissible portfolio is a martingale under
P too because it is a constant (random variable) plus a stochastic integral
with respect to S. It follows that E(VT (Φ)) = E(V0(Φ)) = V0(Φ). So the

5It is worth pointing out here that up to this point we know very little! For example
we have no reason to believe (yet) that the value of the portfolio and that of the option
should coincide at every time t.
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terminal expectation and the initial value must agree6. It follows that we
cannot have the initial value zero while the terminal expectation is positive,
that is, we cannot have arbitrage. But notice here that this refers only to
the model consisting of a stock and a bond. However, since the option payoff
is replicable by a portfolio of stock and bond then any portfolio consisting
of bond, stock and option is equivalent to a portfolio of stock and bond so
long as the portfolio which replicates the payoff of the option also replicates
the option value throughout [0, T ]. Since admissible ‘stock-bond’ portfolios
are free of arbitrage this would mean that portfolios including options will
also be free of arbitrage.

We will return to this point later but first we note that we can say more
about the relationship between Vt and Ct if we assume that the extended
model, consisting of the option, the stock and the bond is free from arbitrage.
Indeed let the value of the option at time t be C(t). Suppose also that at
some time t ∈ [0, T ) we have C(t)− Vt(Φ) is not zero P almost surely. Then
at least one of (C(t)−Vt(Φ))+ and (C(t)−Vt(Φ))− must have strictly positive
expectation. For the sake of argument consider the case (C(t)−Vt(Φ))+ has
strictly positive expectation. Let Et be the Ft set where (C(t) − Vt(Φ))+ is
non-zero. Now we define a trading strategy: If s < t then we hold no stocks
and no bonds. At time t we hold nothing if ω ∈ Ω \ Et while if ω ∈ Et

we sell the option7, buy the portfolio and, further, put C(t)− Vt(Φ)(ω) into
the bond. The portfolio is managed in a self-financing manner to replicate
the value of the option at time T on the set Et. The portfolio meets ones
obligations while the there remains the random amount

(C(t)− Vt(Φ)IEte
r(T−t)

Which has expectation

E((C(t)− Vt(Φ)IEte
r(T−t)) = er(T−t)E((C(t)− Vt(Φ))+) > 0.

This shows that the option value and the portfolio value must agree P al-
most surely at each time, t ∈ [0, T ]. Now we know that our portfolio has P
almost surely continuous paths and if we assume the same of the option then
we can convert the property that Vt and Ct should agree P almost surely at

6Notice that this expectation being a number depends upon the time zero σ-field being
simply {∅,Ω}

7In short, we write an option on Et and invest the proceeds in the portfolio with the
remainder into the bond

16



each time t into the condition that their paths will agree for P almost every
ω ∈ Ω. In other words, (Ct) and (Vt) are, up to indistinguishability, the same
stochastic process.
So far then we have that there can be no arbitrage in the stock and bond
model. If the stock, bond and option model has no arbitrage then the repli-
cating portfolio and the option value must ‘agree’ and hence the time zero
value of the replicating portfolio must agree with the option price at that
time. But this evades the mathematical question; is the model consisting of
stock, bond and an option on the stock, free from arbitrage? Notice that the
problem here is that (previously) the price of the option has been inferred
from a combination of no-arbitrage and the existence of a portfolio which
replicates its payoff at time T . So is ‘no-arbitrage’ an extra assumption
which we bolt on to our mathematical theory? If so, we need to be sure that
it is mathematically consistent8! In order to keep to our theme we shall steer
around this point and not discuss it. We shall assume hereafter that there
is no portfolio consisting of finitely many assets, stock, bond, and derived
securities such as options, which when managed in an admissible fashion can
generate an arbitrage opportunity as we move on past our special case.

8That is, its assumption does not lead to contradictions
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3 A more general case

If we look back at our special case. We can identify several features of the
situation which made the problem tractable.

1. The discounted stock price was a martingale under the measure P .

2. The rate of return of S, the drift, was equal to r the risk-free rate.

3. The martingale representation theorem showed us how to construct a
replicating portfolio for any (L2) contingent claim.

4. The absence of arbitrage determined the value of the claim at each
time, t ∈ [0, T ].

If we consider the case where our stock price, S, has a drift term then we
cannot apply the previous analysis because our stock price is no longer a
martingale under P . However, by using Girsanov’s change of measure theo-
rem we can ‘introduce a probability measure under which the (discounted)
stock price is a martingale and then run an analysis which parallels that of
the previous section to obtain both a price and a replicating strategy for our
option.

We will work with discounted asset prices now (there is a practical and
a theoretical advantage to this). So let Z denote the discounted stock price.
It is easy to see that 9

Zt =
St

B(t)
= Z0 +

∫ t

0
(µ− r)Zsds+

∫ t

0
σZsdWs.

Just as previously, we are interested in forming a portfolio, (ψ(t), φ(t)), which
replicates the option value. But as we are working with discounted values
we look for a portfolio such that

ψ(T ) + φ(T )ZT =
(ST −K)+

B(T )
.

For each t ∈ [0, T ], we let V ∗(t) = ψ(t) + φ(t)Zt. This is the discounted
portfolio value (function, for the trading strategy (ψ, φ)). In order that the

9Use the formula for the product of semimartingales or Ito’s Lemma and the function
f(t, x) = e−rtx.
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trading strategy be self-financing we also require that at each time, t, 10,

V ∗(t) = V0 +
∫ t

0
φ(s)dZs.

So, if the strategy φ is given then ψ is obtained by setting

ψ(t) = V0 +
∫ t

0
φ(s)dZs − φ(t)Zt.

This calculates ψ in terms of the current observables; the initial endowment,
the value of the current (discounted) stock holding and the gain due to trad-
ing with φ in the discounted stock, Z. Consider again for the moment the
stochastic equation for the discounted stock price;

Zt =
St

B(t)
= Z0 +

∫ t

0
(µ− r)Zsds+

∫ t

0
σZsdWs.

We can rewrite this as

Zt =
St

B(t)
= Z0 +

∫ t

0
Zsσd(

(µ− r)

σ
s+Ws).

This is not just a piece of notational convenience, the integral of (Zs) with
respect to µ−r

σ
s+Ws makes perfectly good sense; see the notes on integration

with respect to semi-martingales. However, we have written this equation
in this way for a good reason which we hope now to make clear. Girsanov’s
theorem tells us that if we introduce the exponential martingale,

ηt = e
∫ t

0

µ−r
σ

dWs− 1
2

∫ t

0
(µ−r

σ
)2ds

for t ∈ [0, T ], then the set function for E ∈ FT given by

Q(E) =
∫

E
ηTdP

is a probability measure equivalent to P under which (Wt + µ−r
σ
t) is a mar-

tingale. Let us verify some of these details before we move on.

10If you are unfamiliar with working with discounted quantities I have some hand written
notes which deal with converting the non-discounted formulation into discounted form and
vice-versa.
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Lemma 1 The exponential, ηt, satisfies the stochastic equation

ηt = 1 +
∫ t

0
ηs(

µ− r

σ
)dWs

Proof 1 Apply Ito’s Lemma to the function ex and the semimartingale

µ− r

σ
Wt −

1

2
(
µ− r

σ
)2t.

This yields the equation given.

From this lemma we see immediately that (ηt) is indeed a martingale. But
by its definition it is strictly positive and in particular one can check that
ηT is integrable and P almost surely positive. From the theory of the ab-
stract Lebesgue integral and the fact that stochastic integrals with respect
to martingales have zero expectation, it follows that the set function, Q(E),
for E ∈ FT , is a probability measure on FT . Moreover if P (E) = 0 then
Q(E) = 0. On the other hand if Q(E) = 0 then the random variable IEηT

must be zero P almost surely while at the same time ηT is strictly positive,
P almost surely. So E must be a set of P measure zero ( if it were not the
integral of IEηT would be strictly positive). So Q is a probability measure
on (Ω,FT , P ) equivalent to P . To see that (Wt +

µ−r
σ
t) is a martingale under

Q you need to retrace some of the steps of the proof of Girsanov’s theorem.
See the proof of Girsanov’s theorem in your notes for this. Moving on, we
now see the reason for writing our discounted stock value as

Zt =
St

B(t)
= Z0 +

∫ t

0
Zsσd(

(µ− r)

σ
s+Ws).

It is now clear that Z is expressed as a stochastic integral with respect to a
Q Brownian motion! So, the discounted stock price follows a martingale so
far as Q is concerned. Indeed if we write

W ∗
t = Wt +

µ− r

σ
t

then W ∗ is a Q Brownian motion and

Zt = Z0 +
∫ t

0
ZsσdW

∗
s
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which can be solved to give

Zt = Z0e
σW ∗

t −
σ2

2
t.

And the stochastic equation for S is then

St = S0 +
∫ t

0
rSsds+

∫ t

0
σSsdW

∗
s .

This shows that under the martingale measure, Q, the stock follows a (Q)
logarithmically normal price evolution with mean rate of return equal to the
risk-free rate, r.

We now consider whether or not our option is an attainable claim. The
answer is in the affirmative. Recall that a claim is attainable if and only if
there is a self financing admissible portfolio, Φ = (ψ, φ), such that

V ∗
T (Φ) =

(ST −K)+

B(T )
.

Now, so far as the measure Q is concerned,

ST = S0e
σW ∗

T +(r−σ2

2
)T

and W ∗ is a Q Brownian motion. A computation (left to the reader) shows

that ST lies in L2(Ω,FT , Q) and that, therefore ST −K and (ST−K)+

B(T )
lies

in L2(Ω,FT , Q) 11. We now apply the martingale representation theorem
for Q Brownian Martingales. There is a constant, ν0, and a progressively
measurable process ρ with

E(
∫ T

0
ρ2

sds) <∞

and
(ST −K)+

B(T )
= ν0 +

∫ T

0
ρsdW

∗
s .

Arguing much as before we write∫ T

0
ρsdW

∗
s =

∫ T

0

ρs

σZs

σZsdW
∗
s

11It is quite straightforward to show that Q{ST ≤ α} = Q{W ∗
T ≤ h(α)} for some

function, h of α This gives you an integral which is a function of α. Differentiate to get
the Q density for ST and verify that it has finite second moment
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and rename ρs

σZs
to be φs. We have seen above how to create the (discounted)

self-financing portfolio that attains (ST−K)+

B(T )
. It only remains to observe that

the time zero price of the option must therefore be

ν0 = EQ(
(ST −K)+

B(T )
,

while for t ∈ [0, T ] the time t price of the option, Ct, say, is identical with
the value of the replicating portfolio. As we have seen, the value of the
discounted portfolio, V ∗

t is a Q martingale so that

Ct = Vt(Φ) = B(t)V ∗
t (Φ) = B(t)EQ

t (V ∗
T (Φ)) = B(t)EQ

t (
(ST −K)+

B(T )
).

Let G = {ω : ST (ω) > K}. Then (ST −K)+ = (ST −K)IG. We note also
that

(ST −K)+IG = (Ste
σ(W ∗

T−W ∗
t )+(r−σ2

2
)(T−t))IG −KIG

and that

EQ
t ((Ste

σ(W ∗
T−W ∗

t )+(r−σ2

2
)(T−t))IG −KIG) = StE

Q
t (eσ(W ∗

T−W ∗
t )+(r−σ2

2
)(T−t))IG)

− EQ
t (KIG). (10)

First of all we will compute the time zero price of the option and then argue
further to get the time t price. So we consider first of all

B(0)EQ
0 (

KIG
B(T )

) = Ke−rTQ({ST > K})

= Ke−rTQ{−σW ∗
T < log(

S0

K
) + (r − σ2

2
)T}

= Ke−rTQ{−W
∗
T√
T

<
log(S0

K
) + (r − σ2

2
)T

σ
√
T

}

= Ke−rTN(d(S0, T ))

Observe that
−W ∗

T√
T

is a standard normal random variable 12 and here we have

written N(x) for the normal distribution function while

d(x, t) =
log( x

K
) + (r − σ2

2
)t

σ
√
t

.

12Because −W ∗ is a Brownian motion under Q
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We turn now to consider the term

B(0)EQ
0 (

ST

B(T )
IG) = EQ(ZT IG).

We are going to evaluate this by means of another change of measure, this
idea has been used often in mathematical finance and it amounts to viewing
the situation in a particular way - more of which later. Let R denote the
measure on FT given by

R(H) =
∫
Ω
eσW ∗

T−
σ2

2
T IHdQ

Now the process, (W 0 = W ∗
t − σt), is a standard Brownian Motion with

respect to the measure R. This follows directly from Girsanov’s theorem.
Moreover, rewriting

ZT = Z0e
σW ∗

T−
σ2

2
T

in terms of W 0 gives

ZT = S0e
σW 0

T +σ2

2
T .

We can now write

EQ(ZT IG) = S0R({ZT >
K

B(T )
}

= S0R{−σW 0
T < log(

S0

K
) + (r +

σ2

2
)T}

Following much the same argument as we employed above for the other term
we find that

EQ(ZT IG) = S0N(d(S0, T ) + σ
√
T ).

So our formula for the valuation of the call at time 0 is

C0 = S0N(d(S0, T ))− e−rTKN(d(S0, T ) + σ
√
T ).

The call value is expressed in terms of the time to expiry, the current value
of the stock and functions of these in combination with the risk-free rate and
stock volatility.

This gives the valuation for the call at time zero. If we consider what
happens at time t ∈ (0, T ] when S takes a specific value, x, say, then our
formula above may be modified to give the valuation

C(x)t = xN(d(x, T − t))− e−r(T−t)KN(d(x, T − t) + σ
√
T − t).
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It is a short step to see that this amounts to

Ct = StN(d(St, T − t))− e−r(T−t)KN(d(St, T − t) + σ
√
T − t).

Of course this is not a rigorous mathematical argument. In order to provide
that we need to return to equation 10 above. Recall that we had

EQ
t ((Ste

σ(W ∗
T−W ∗

t )+(r−σ2

2
)(T−t))IG −KIG) = StE

Q
t (eσ(W ∗

T−W ∗
t )+(r−σ2

2
)(T−t))IG)

− EQ
t (KIG).

(11)

In order to deal with these terms we must bring in some results that we
did not discuss in the course. I shall deal with these matters in subsequent
sections of these notes which are in preparation. I hope to let you have them
soon.

A Riskless Portfolio

This section is included in order to highlight the difficulties discussed in our
first section. We investigate the possibility of holding a risk-free portfolio
consisting of stock and the option. The argument presented in the annex,
‘The Numeraire’ shows that any risk-free portfolio, that is, a portfolio whose
wealth process is a process of finite variation, must follow the same price
evolution as the ‘numeraire’, in our case that of the bond B. So let us assume,
as we have before, that the price of our option is given by some suitably
smooth function ν(t, x) defined on [0, T ] × (0,∞) 13 such that ν(T, x) =
(x−k)+. We have assumed then that at time t ∈ [0, T ] we have Ct = ν(t, St).
We are going to adopt a trading strategy that consists of having sold one
option we hedge by buying stock. So let φ denote the stock amounts and ψ
the amount of option held. Denoting the strategy by, Φ = (φ, ψ), we now
specify Φ = (∂ν

∂x
(t, St),−1). This portfolio has value Vt, at time t, given by

Vt =
∂ν

∂x
(t, St)St − Ct

using our assumption about the option value

Vt =
∂ν

∂x
(t, St)St − ν(t, St).

13What we hope to do is to show that this function ν is identical with that defined in
our first section

24



Assuming that the trading strategy Φ is self-financing then

Vt = V0 +
∫ t

0

∂ν

∂x
(t, St)dSt +

∫ t

0
(−1)dν(t, St).

Now Ito’s formula tells us how to integrate with respect to ν(t, St). Indeed

∫ t

0
(−1)dν(s, Ss) =

∫ t

0
(−1)(µSs

∂ν

∂x
(s, Ss) +

1

2
σ2S2

s

∂2ν

∂x2
(s, Ss) +

∂ν

∂t
(s, Ss))ds

+
∫ t

0
(−1)σSs

∂ν

∂t
(s, Ss)dWs (12)

putting this into our expression for V and writing the integral with respect
to St fully gives us

Vt = V0 +
∫ t

0
(−1)(

1

2
σ2S2

s

∂2ν

∂x2
(s, Ss) +

∂ν

∂t
(s, Ss))ds.

So our portfolio is risk-less! It follows from the argument presented in the
annex, ‘The Numeraire’, that V must also satisfy the equation

Vt + V0 +
∫ t

0
rVsds.

Now we can substitute for Vs directly in this equation and then equate this
with the expression for V that we obtained immediately prior to this one.
This gives∫ t

0
rSs

∂ν

∂x
(s, Ss) +

1

2
σ2S2

s

∂2ν

∂x2
(s, Ss) +

∂ν

∂t
(s, Ss)− rν(s, Ss)ds = 0

for every t ∈ [0, T ]. We are back upon familiar ground. From the arguments
employed in our first section we deduce that ν must satisfy the Black-Scholes
p.d.e. ;

rx
∂ν

∂x
(t, x) +

1

2
σ2x2∂

2ν

∂x2
(t, x) +

∂ν

∂t
(t, x)− rν(t, x) = 0.

This deduction depends upon our assumption that the portfolio is self-financing.
However, this proves not to be true! Recall that

Vt =
∂ν

∂x
(t, St)St − ν(t, St)
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Using Ito’s lemma on each part of the right side of this expression gives

∂ν

∂x
(t, St) =

∂ν

∂x
(0, S0) +

∫ t

0
(µSs

∂2ν

∂x2
(s, Ss) +

1

2
σ2S2

s

∂3ν

∂x3
(s, Ss)

+
∂2ν

∂t∂x
(s, Ss))ds+

∫ t

0
σSs

∂2ν

∂x2
(s, Ss)dWs

and

ν(t, St) = ν(0, S0) +
∫ t

0
(µSs

∂ν

∂x
(s, Ss) +

1

2
σ2S2

s

∂2ν

∂x2
(s, Ss) +

∂ν

∂t
(s, Ss))ds

+
∫ t

0
σSs

∂ν

∂x
(s, Ss)dWs.

We can compute the product St
∂ν
∂x

(t, St) explicitly using the formula for
the product of semi-martingales, however it will be a little more tidy if we
don’t calculate this product explicitly 14. Now we can write two forms for V .
First of all, if the strategy φ is self-financing then

Vt = V0 +
∫ t

0

∂ν

∂x
(s, Ss)dSs +

∫ t

0
(−1)dνs

= V0 +
∫ t

0

∂ν

∂x
(s, Ss)dSs + (ν0 − νt)

=
∂ν

∂x
(0, S0)S0 +

∫ t

0

∂ν

∂x
(s, Ss)dSs − νt

while at the same time, using the product of semi-martingales formula gives

Vt =
∂ν

∂x
(0, S0)S0 +

∫ t

0

∂ν

∂x
(s, Ss)dSs +

∫ t

0
Ssd(

∂ν

∂x
)s+ <

∂ν

∂x
, S >t −νt.

For these two expressions for V to be equal we must have∫ t

0
Ssd(

∂ν

∂x
)s+ <

∂ν

∂x
, S >t= 0.

Using our expression for ∂ν
∂x

derived (above) from Ito’s lemma we get∫ t

0
Ssd(

∂ν

∂x
)s =

∫ t

0
(µS2

s

∂2ν

∂x2
(s, Ss) +

1

2
σ2S3

s

∂3ν

∂x3
(s, Ss)

+ Ss
∂2ν

∂t∂x
(s, Ss))ds+

∫ t

0
σS2

s

∂2ν

∂x2
(s, Ss)dWs (13)

14There is a large amount of hindsight operating here.
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and using the bilinearity of the cross variation gives

<
∂ν

∂x
, S >=

∫ t

0
σ2S2

s

∂2ν

∂x2
ds.

Concentrate your attention on the term

µS2
s

∂2ν

∂x2
(s, Ss) +

1

2
σ2S3

s

∂3ν

∂x3
(s, Ss) + Ss

∂2ν

∂t∂x
(s, Ss).

We are going to obtain a different form for this term. We have already shown
that (assuming our portfolio is self-financing) our function ν must satisfy the
Black-Scholes p.d.e. . Recall that this means

rx
∂ν

∂x
(t, x) +

1

2
σ2x2∂

2ν

∂x2
(t, x) +

∂ν

∂t
(t, x)− rν(t, x) = 0.

Now differentiate this equation with respect to x. Assuming that the mixed
partial derivatives are continuous the order of differentiation is immaterial.
The result is,

rx
∂2ν

∂x2
(t, x) +

1

2
σ22x

∂2ν

∂x2
(t, x) +

∂2ν

∂x∂t
(t, x) +

1

2
σ2x2∂

3ν

∂x3
(t, x) = 0.

Now by reaaranging this and multiplying by x we get

rx2∂
2ν

∂x2
(t, x)+σ2x2∂

2ν

∂x2
(t, x)+x

∂2ν

∂x∂t
(t, x)+

1

2
σ2x3∂

3ν

∂x3
(t, x) = −σ2x2∂

2ν

∂x2
(t, x).

Adding in some (carefully chosen) terms we get that

µx2∂
2ν

∂x2
(t, x)+x

∂2ν

∂x∂t
(t, x)+

1

2
σ2x3∂

3ν

∂x3
(t, x) = (µ−r)x2∂

2ν

∂x2
(t, x)−σ2x2∂

2ν

∂x2
(t, x).

Now substitute Ss for x and s for t in the arguments of the functions and we
see that we have arrived at the different form for the terms

µS2
s

∂2ν

∂x2
(s, Ss) +

1

2
σ2S3

s

∂3ν

∂x3
(s, Ss) + Ss

∂2ν

∂t∂x
(s, Ss).

Substituting for these terms in equation 13 and combining with the equation
for the cross variation following equation 13 leads to cancellation of the cross
variation term and leaves us with∫ t

0
σS2

s

∂2ν

∂x2
(s, Ss)d(Ws +

(µ− r)

σ
s) = 0.

Now under the equivalent martingale measure, Q, the process (Wt + (µ−r)
σ
t)

is a Brownian Motion. For the integral in the last equation to be zero would
have to be true that the second partial derivative of ν with respect to x is zero.
This is not true! We must conclude that our portfolio is not self-financing.
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4 Utility Functions

I have to give a brief summary of the relevant features of Utility Functions
before moving to a further derivation of the Black-Scholes formula. First
of all, imagine that one has two investment opportunities, A and B, with
exactly the same initial investment X0. If the outcome of each of A and
B is certain, and we prefer more wealth than less, then it is easy to distin-
guish between the alternatives; we simply choose the larger of the two. But
what if the outcomes are random? In this case the outcomes are described
by random variables which we denote by A and B. Since these are simply
functions defined on some probability space we cannot assert that one will be
larger than the other 15. For one state of the world, that is, ω1 ∈ Omega, we
might have the outcome A(ω1) > B(ω1) while for ω2 ∈ Ω with ω2 6= ω1 it is
perfectly possible to have, B(ω2) > A(ω2). So how can we rank the outcome
of these two investment possibilities? This question has been analysed at a
fundamental level and the answer arrived at is that investor will use Utility
Functions to rank the outcomes of (random) investment processes. A utility
function is a real valued function of a real variable, U , say, which satisfies
certain properties. First among these is that U be an increasing and con-
tinuous function. The way in which a utility function is used to distinguish
between A and B is to compare the values of E(U(A)) and E(U(B)), where
E denotes the mathematical expectation. In principle, any increasing and
continuous function can be a utility function. Each investor must determine
their utility function from their disposition toward risk. Investment Com-
panies use questionnaires to determine an investors utility function. They
can then advise investors in a systematic manner. We will pass over this
important area of research and practice but first a few examples of utility
functions.

1. Exponential
The function

U(x) = −e−αx

where α is a strictly positive constant is quite often used. The fact that
this utility takes negative values is irrelavant.

15Because there is only a partial order on functions rather than the total order that
pertains to real numbers
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2. Logarithmic
U(x) = log(x)

Note that we restrict x to be strictly positive. Observe that this func-
tion is “very steep” near to the number 0 so it separates outcomes with
small positive values radically. Also, if an outcome may be expressed
in the following way

A = 0IE +XIΩ \ E

where E has positive probability then

U(A) = log(0)IE + log(X)IΩ\E

and we would have to set E(log(A)) = −∞. So that this utility pe-
nalises the possibility of a zero outcome very strongly.

3. Power
U(x) = axa

for some non-zero constant, a ≤ 1.

4.1 Portfolio choice using Utility Functions

Consider the case of an investor with utility function U , initial wealth W
and a choice from the n (basic) securities, d1, d2, . . . , dn. If X denotes the
(random) final wealth arising from holding the security dk in the quantity θk

for 1 ≤ k ≤ n then we may define this investors investment problem by

maximise E(U(X))

subject to
n∑
1

θkdk = X

and X > 0
n∑
1

θkdk(0) ≤ W

(14)

Here dk(0) denotes the price of the security dk at time 0 whereas dk is its
random value at the end of the investment period. There is a theorem, which
states that in the absence of arbitrage, if U tends to ∞ as x −→∞ and there
is at least one portfolio (choice of the θ’s) which makes X strictly positive,
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then this problem has a solution. Moreover, and this is not difficult to prove,
one has the equality

n∑
1

θ∗kdk = W

when θ∗ is the portfolio that solves the problem16. In this case one can
analyse for the specific amounts θk as follows. The problem is to maximise

E(U(
n∑
1

θkdk))

subject to
n∑
1

θ∗kdk(0) = W.

One can use the method of Lagrange multipliers: Let

L = E(U(
n∑
1

θkdk)− λ(
n∑
1

θ∗kdk −W ).

In order to find the values of θk that maximise this function we must set
each of the partial derivatives of L with respect to θk equal to zero. Letting
X∗ =

∑n
1 θ

∗
kdK it is easy to see that this gives the set of equations

E(U ′(X∗)dk) = λdk(0)

which along with the ‘budget constraint’

n∑
1

θ∗kdk(0) = W

gives n + 1 equations in the n + 1 unknowns d1, d2, . . . , dn, λ. It turns out
that these simple equations are quite important for Investment Theory. In
particular, if there is a risk-free asset in our portfolio whose initial value is
(or can be assumed to be ) 1 and whose return for the period considered is
R the new can solve one of our k equations above to get

λ = E(U ′(X∗)R.

16If one had strict inequality one could add a fraction of θ∗ to improve the solution,
contradiction
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Putting this value for λ back into the other equations gives

dk(0) =
E(U ′(X∗)dk)

RE(U ′(X∗))
.

So we see a relationship between the value of the optimal portfolio, the
derivative of our utility function , the risk-free rate, the final (random) value
of the k − th security and the initial price of that security. It is in turning
this relationship on its head and seeing it as a way of determining prices that
leads to some interesting ideas. Let’s look at a special case.

4.2 The Log Optimal Portfolio

Let us take as our utility function, U(x) = log(x). The optimal portfolio
for this case is called the log optimal portfolio. Suppose that our initial
budget, W , is equal to 1. Let X∗ denote the final wealth of the portfolio
which maximises the expected logarithm of final wealth. Since W = 1 we
can regard X∗ as the log optimal return. From our equations above

E(U ′(X∗)dk) = E(
dk

X∗ ) = λdk(0).

Using linearity we see that

n∑
1

E(
θkdk

X∗ ) =
n∑
1

λθkdk(0).

but since E() is linear and the initial budget is 1 then this says that

E(
X∗

X∗ ) = λ.

Or that λ = 1. As a consequence we get

dk(0) = E(
dk

X∗ )

for each k. This gives us an expression for the price of each of our basic assets
in terms of the expectation of its payoff and the log optimal return. Since the
price of a linear combination of the basic assets is simply the corresponding
linear combination of the prices, this formula allows us to price any portfolio
made up from our basic assets.
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4.3 Portfolio Growth

Consider the following general formulation of an investment situation. One
starts (at time 0) with an amount, X0, which is transformed into the random
amount, X1 = R1X0, at time 1. Indeed at time k the wealth accrued is given
by

Xk = RkXk−1.

Here the random variable, Rk, denotes the (random) return over the time
period from k − 1 to k, and Xk−1 is the (random) wealth at time k − 1.
For our purposes we assume that the discrete time process, (Rk), consists
of mutually independent and identically distributed random variables. It is
easy to see that

Xk = RkRk−1Rk−2 . . . R2R1X0.

for a general k (with suitable interpretation of the formula for small values
of k). We can rewrite this last relation as

logXk = logX0 +
k∑

i=1

logRi

and from this follows immediately

log(
Xk

X0

)
1
k =

1

k

k∑
i=1

logRk.

Now you may be wondering why, at this point, have I introduced a k − th
root? Bear with me! The right side of the last equation has been the subject
of much attention from the mathematics community down the years. Should
the random variables Rk be integrable the the law of large numbers states
that

1

k

k∑
i=1

logRk −→ E(logR1)

almost surely, that is, the average of the Rk’s converges to the common mean
of the Rk’s. Writing m = E(log(R1)) and taking in to account our earlier
equations we see that

Xk −→ X0e
km.

as k −→∞. This is stating that for a large number of time periods the wealth
grows (approximately) exponentially with rate m. So if one is investing
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for the long term and one wants to maximise growth then one should seek
the largest value of m that one can achieve. But since m = E(log(R1))
this amounts to maximising the expectation of the logarithm of R1. The
reader will recognise that we are close to associating a Utility Function with
this wealth process. Indeed, if we add logX0 to m then we get logX1 and
maximising E(logX1) is equivalent to maximising E(log(R1)). This reduces
the multiperiod problem to a single period problem17. To maximise long
term growth the investor must determine the (log) optimal strategy for the
first time period and then apply this repeatedly.

4.4 Portfolios with several assets

We consider a portfolio consisting of a risk - free asset, S0 18, and n ≥ 1
stocks, Si, 1 ≤ i ≤ n. The stocks will follow logarithmic Brownian Motions;

Si(t) = Si(0) +
∫ t

0
Si(s)µids+

∫ t

0
Si(s)dZi(s)

here Zi, for i = 1, 2, . . . , n is a Brownian Motion with Cov(Zi(t), Zj(t)) = σijt
and the µi’s are constants. The nxn matrix [σij] is assumed to be non-
singular. If we form a portfolio, V , of these n + 1 assets holding asset an
amount, ψi of the asset i, until time t, then value of the portfolio at any time,
t, is

Vt =
n∑

i=0

ψiS
i(t).

Now we can express the quantities ψi in a special way; Let

αi =
ψiS

i(0)

V0

.

Then αi is simply the proportion of the initial value of the portfolio invested
in the asset Si. We refer to these numbers as the weights of the assets,
Si, 0 ≤ i ≤ n. In terms of these weights the value of the portfolio at any
time t is

Vt =
n∑

i=0

αi
V0

Si(0)
Si(t).

17As one might expect, because each of the Rk’s is probabilistically speaking identical
with all the others bar that they are independent.

18It has the usual dynamics
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One can consider questions about how one should choose the numbers αi in
order to achieve a particular investment goal, indeed we will do this subse-
quently. One particular reason for writing our portfolio value in this form is
that it gives a simple expression for the portfolio return over [0, t]. Indeed

Vt − V0

V0

=

∑n
i=0 αi

V0

Si(0)
Si(t)− V0

V0

=
n∑

i=0

αi
1

Si(0)
Si(t)− 1

=
n∑

i=0

αi(
Si(t)− Si(0)

Si(0)
)

So the return is the weighted sum of the returns from the individual assets.
Note that this is only true because of the specific way in which we have
defined the weights, αi. In general, a convex combination of assets has a
return which is different from the convex combination of the returns 19.

At this point the argument takes an unfortunate twist. It is argued,
incorrectly, that the process V is lognormal20. From this it is argued that
the expected logarithm of Vt

V0
has the form

n∑
i=1

αiµit−
1

2

n∑
i,j

αiαjσijt

while the variance of the same term is∑
ij

αiαjσijt

These two terms give a convenient form for the growth rate and variance of
the portfolio 21. One can now consider the problem of choosing the weights,
αi, to maximise growth subject to constraints (perhaps). We shall leave this
topic now. I hope to produce a rigorous argument along the lines traced out
above and to use the log optimal portfolio to give a derivation of the Black-
Scholes formula. I expect this to be finished in the autumn of 1999. Please,
please, inform me of typos’, ommissions, errors, bad type setting and so on22.
I am including an annex on numeraires as preparation for the next sections.
Some of you will have seen this already.

19Try the functions, x and x2 over the interval [1, 2] in the proportions 1
4 and 3

4
20See Luenberger’s book, Investment Science, OUP 1997, pp 428
21Convenient but incorrect, perhaps an approximation is intended here...
22My e-mail address is on the title page

34



The Numeraire

We suppose that the ‘usual conditions’ prevail in so far as the filtration and
probability measure are concerned. In our model the numeraire, S, shall be
supposed to be a measurable adapted process such that

E(
∫ T

0
|S(t, ω)|dt) <∞

and to satisfy the stochastic equation,

St = S0 +
∫ t

0
r(s)Ssds

where is r(s) is a strictly positive measurable adapted process on [0, T ]×Ω.
We will assume further that r is a bounded continuous process and remark
here that this means that r is a predictable process. We will also assume
that S0 = 1, one can achieve this by a scaling of all assets in any case. The
first condition satisfied by S entails that∫ T

0
|S(t, ω)|dt <∞

for P -almost every ω ∈ Ω. The question of whether or not such a process
exists will be dealt with later, for now we observe that any process satisfying
the conditions above will be P -almost surely continuous because,

|St − Ss| = |
∫ t

s
r(k)Skdk| ≤

∫ t

s
|Skr(k)|dk ≤M

∫ t

s
|Sk|dk

where M is a bound for the process r(t). The result now follows because
k 7−→ |Sk(ω)| is an integrable function for P -almost every ω ∈ Ω. We now
know that, P -almost surely, the expression∫ t

0
r(s)Ssds

is differentiable with derivative, r(t)St. Accordingly it satisfies, P -almost
surely the differential equation

dSt

dt
= r(t)St
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with the boundary condition, S0 = 1. This first order linear equation may
be solved by means of an integrating factor to yeild

St = e
∫ t

0
r(s)ds,

for P -almost every ω ∈ Ω. This result applies equally well to any other
security whose price process has the same form as S. Looking at the process,

e
∫ t

0
r(s)ds,

we note that it certainly satisfies the assumptions made about S. Moreover,
any process satisfying those assumtions will be equal to this process P -almost
surely. Given that we identify processes whose paths coincide off of a P null
set, we see that our solution is unique.

The Market and Riskless Assets

We assume that our market is arbitrage free. What does this mean mathe-
matically? It amounts to this; an arbitrage opportunity is an admissible self
financing portfolio with value at time t, Vt, but in particular, V0 = 0 and
E(VT ) > 0. For an elaboration of the terminology see Harrison and Pliska.
We will define an asset to be riskless if it satisfies equations similar to that
for S. Indeed Y is riskless iff

E(
∫ T

0
|Ys|ds) <∞

and

Yt = Y0 +
∫ t

0
k(s)Ysds

for some bounded strictly positive adapted continuous process, k(s). We note
that this entails that k(s) is measurable (the ‘usual conditions’ help here).
What we aim to prove here is this;

Theorem 1 If the market has no arbitrage then for P -almost every ω ∈ Ω,
k(s, ω) = r(s, ω) for λ- almost every s ∈ [0, T ].

Proof 2 Let’s begin by considering an extreme case of this result; when both
r and k are constants one easily solves the respective equations for S and Y
to obtain, in the case of S,

St = ert.
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With a similar result for Y . Now if, say, k > r then by borrowing Y0 units of
S at time 0, purchasing Y , and waiting until, say, time T . Then our assets
are YT and our liabilities Y0e

rT . Now

YT = Y0e
kT > Y0e

rT .

So our assets are strictly greater than our liabilities and all for a zero start
up cost. This is an arbitrage opportunity, so we cannot have k > r. If
the reverse inequality prevails then one sells short Y and invests in S for a
positive time period. Once again an arbitrage opportunity appears. So all that
we are left with is k = r. In the general case, we cannot argue in this simple
manner. Even if k and r are deterministic functions, proving that k(s) > r(s)
on [0, T ] is false does not establish the reverse inequality because function f
can majorise function g for some points but the reverse can happen at other
points 23. To begin; we observe that the predictable σ-field is generated by the
collection of sets 24

(s, t]⊗B for 0 ≤ s < t ≤ T and B ∈ Fs

and
{0} ⊗ A for A ∈ F0.

Consider a set of the (first) form, (s, t] ⊗ B. We construct a self-financing
trading strategy; for ω ∈ Ω \ B we hold no assets over [0, T ]. For ω ∈ B, at
time s we borrow Ys(ω) units of S and purchase Y . At time t, for ω ∈ B,
we realise our asset, Yt(ω), and meet our liability Ys(ω)exp(

∫ t
s r(s)ds. Now,

Yt(ω)IB = Ys(ω)e
∫ t

s
k(l)dlIB

while the difference of our assets and liabilities is

Ys(ω)IB(e
∫ t

s
k(l)dl − e

∫ t

s
r(l)dl).

We could invest this portfolio in the asset S until time T . Since Ys(ω)
is strictly positive, should B have positive measure and it were true that
k(s) > r(s) , Lebesgue almost everywhere over (s, t] on the set B, except pos-
sibly for a null set of points in B , then we would have created an arbitrage

23Which is a long way of saying that the ordering on functions is not a total order
24I use the symbol ⊗ to denote cartesian product
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opportunity because the time T value of the expectation of this portfolio would
be strictly positive. By modifying our portfolio; selling Y short at time s, in-
vesting in S on B until time t. The assumption that r(s) > k(s) Lebesgue
almost everywhere over (s, t] on the set B (except possibly for a null set of
points in B) gives rise to another arbitrage opportunity. To conclude; for
every interval, (s, t] ⊆ [0, T ], and every set, including null sets and sets of
positive probability, B ∈ Fs, we cannot have r > k or k > r Lebesgue al-
most everywhere over (s, t] on B, except, possibly, for a null set of points
in B. Suppose now that A ∈ F0 and has positive probability. Can we have
r(0) > k(0) for almost every ω ∈ A? Or vice-versa? Consider the following
argument, let k(0) > r(0) and τ be the (stopping) time which for ω ∈ A is

τ(ω) = inf{t ∈ (0, T ] : k(t, ω) = r(t, ω)},

and is otherwise zero. If the set on the right side above is empty we define
τ(ω) to be T . Since k − r is a predictable process, the debut of the Borel set
{0} under k − r is a stopping time (and τ is built out of this time and the
set A). From these facts it is not difficult to show that τ is indeed a stopping
time. Since k− r is continuous and by hypothesis strictly positive on A then
τ is strictly positive on A. We define a self financing trading strategy by
stipulating that on Ω \A we hold no assets over [0, T ], while on A we borrow
against S to buy Y and hold until τ . Our assets are then

Y0e
∫ τ(ω)

0
k(s,ω)ds

while our liabilities are

Y0e
∫ τ(ω)

0
r(s,ω)ds

The difference is strictly positive P -almost surely and can be invested until
time T (the time at which we formally decide if an arbitrage opportunity has
occured). Formally, if φ denotes the holding in S and θ the holding in Y then

φt(ω) = (Y0

∫ τ

0
(k(s)− r(s))ds)IA∩{τ≤t} − IA∩{τ>t}

while
θt(ω) = IA∩{τ>t}.

Of course this portfolio, which had zero start up cost, and comprises an ad-
missible trading strategy, is an arbitrage opportunity. If the inequality between
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k and r is reversed then a short selling argument similar to that employed
above generates another arbitrage opportunity. So, for every set, A, in F0

we cannot have k > r or r > k on A except, possibly, on a null set in A for
. What we have shown here, so far, is that the collection of subsets, M, of
[0, T ] ⊗ Ω for which we cannot have k > r or r > k Lebesgue almost every-
where in time except, possibly, on a P null set in Ω, contains the generators
of the predictable σ-field. We now consider the collection M.

1. The elements of M are closed under finite intersections.

2. If E and F belong to M and E ⊆ F then F \ E is clearly in M.

3. If (En) is an increasing sequence of sets in M then
⋃
En is in M

because the union of a countable number of null sets is a null set.

4. The set [0, T ]⊗Ω lies in M by an argument identical to one employed
for (s, t]⊗B above.

It follows from the monotone class theorem thatM contains the predictable σ-
field. If we now consider the predictable set, {(t, ω) : k(t, ω) > r(t, ω)}, then
k can exceed r (Lebesgue almost everywhere) over time on this set only on an
Ω set of probability zero and the reverse inequality cannot hold on this set.
A similar remark applies to the set defined by the reverse inequality. So, we
must conclude that for P -almost every ω ∈ Ω we must have r(t, ω) = k(t, ω)
for Lebesgue almost every t ∈ [0, T ].

5 Aliter: Ian’s Proof

At the stage where we are considering a set of the form E ⊗ (s, t] , E ∈ Fs,
Ian says we should argue as follows. Consider the continuous process, k − r
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