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EXACT SOLUTIONS FOR THE EVOLUTION OF A BUBBLE IN
STOKES FLOW: A CAUCHY TRANSFORM APPROACH∗

DARREN CROWDY† AND MICHAEL SIEGEL‡

Abstract. A Cauchy transform approach to the problem of determining the free surface evolu-
tion of a single bubble in Stokes flow is developed. A number of exact solutions to a class of problems
have been derived in the literature using conformal mapping theory, and these solutions are retrieved
and further generalized using the new formulation. Certain quantities which are conserved by the
dynamics are also identified, the existence of which had not previously been pointed out. A principal
purpose of this paper is to use the new formulation to understand when it is possible to externally
specify the evolution of the bubble area in such classes of exact solution. It is found to be possible
only for certain types of far-field boundary conditions.
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1. Introduction. It is a well-known yet remarkable fact that large classes of
exact solutions can be found for unsteady two-dimensional (2-D) Stokes flow with a
free surface, both with and without surface tension. The solutions follow from the
application of powerful complex variable methods; most often these methods involve
the use of a conformal mapping z(ζ, t) to reformulate the free boundary problem as
a boundary value problem on a fixed domain in the ζ-plane (assumed in this paper
to be a unit disk). The free boundary evolution is then conveniently described by the
functional form of the map z(ζ, t).

Among the first results from the application of complex variable methods to free
boundary problems for 2-D Stokes bubbles are the steady bubble solutions of Richard-
son [18, 19]. Antanovskii [2] later constructed exact unsteady solutions in the case
when the asymptotic form of the far-field flow is given by an mth order irrotational
straining flow. Independently, Tanveer and Vasconcelos [23] derived explicit unsteady
solutions in the form of polynomial mappings in the case when the far-field flow is
purely linear, e.g., pure straining flow or simple shear flow with m = 1. They also con-
structed new exact solutions for an expanding/contracting bubble in a quiescent flow.
Antanovskii [3] also constructed explicit steady solutions in the case of nonlinear1

and rotational far-field conditions. The latter solutions were applied as a simple 2-D
model for flow in Taylor’s four roller mill. Siegel [22] later generalized these results
to include explicit unsteady solutions for certain nonlinear rotational far-field condi-
tions, including the time-dependent evolution of the solutions in [3]. Additionally,
there is a large amount of literature describing related developments for the evolution
of viscous blobs in 2-D Stokes flow (see, e.g., Howison and Richardson [14] and the
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references therein). Complex variable methods have also been applied to study the
evolution of bubbles in Hele–Shaw flow. Cummings, Howison, and King [10] provide
a comparison of the developments in Hele–Shaw flow and 2-D Stokes flows. Aside
from their intrinsic mathematical interest, these investigations have led to improved
understanding of the formation of cusp singularities in free surface flow. The exact
2-D solutions are also useful as an important component of the leading-order solution
to three-dimensional flow in slender geometries [9].

The aforementioned exact solutions for 2-D Stokes flow and Hele–Shaw flow all
take the form of rational conformal mappings which may be written as

z(ζ, t) =
a0(t) + a1(t)ζ + · · · + aN (t)ζN

ζ(1 + b1(t)ζ + · · · + bM (t)ζM )
.(1)

For convenience we have chosen b0(t) = 1 (this is always possible through a redefinition
of the other coefficients); if bi(t) ≡ 0, then the mapping reduces to a simpler polyno-
mial form. Note that the extra ζ term in the denominator of (1) is due to the mapping
of the inside of the unit disk to the exterior of the bubble. When the dynamics pre-
serves the form (1), the free boundary evolution reduces from an infinite-dimensional
dynamical system (namely, the original governing PDEs) to a finite system of ODEs
from which one can compute the N + M + 1 parameters of the conformal mapping
from given initial data and external flow.2

In essence, demonstration of the existence of a solution of the form (1) for a
given free boundary problem involves two key steps. First, it must be shown that the
form (1) is preserved in time; i.e., if z(ζ, 0) is a rational function of the form (1) for
some M,N , then, as long as the solution exists, z(ζ, t) remains a rational function
with the same M,N . In this paper we shall refer to this requirement as the closure
condition. In particular, this implies that the number and type of (pole) singularities
in the complex plane (i.e., |ζ| > 1) is invariant with time. Second, it is generally
required that solutions z(ζ, t) do not generate any flow singularities (i.e., sources or
sinks) in the finite fluid domain, although we do allow sources or sinks at infinity,
corresponding to expanding/contracting bubble area.

For the solutions described in [2, 23] the closure condition is automatically satis-
fied, i.e., without any restrictions on the map coefficients ai, bi. The governing ODEs
for the coefficients ai, bi therefore come strictly from the second requirement, which
gives N +M conditions for N +M + 1 unknowns. As a final condition, one is free to
specify the time rate of change of the bubble area or, in other words, to specify the
existence of a time-dependent source or sink fixed at infinity.

In contrast, for the solutions derived in [22] the closure condition imposes a con-
straint on the map coefficients ai, bi, in addition to the N + M constraints supplied
by the second condition above. Thus, seemingly, one is not free to arbitrarily specify
the bubble area. It therefore seems rather fortuitous that the constant area condition
employed in [22] is correct, i.e., that the dynamics actually preserves bubble area.
However, it is not at all clear from the discussion there how to ascertain if or when
this is the case.

In this paper, we provide a general discussion of when it is possible to obtain exact
solutions to a very broad class of problems which encompasses and expands the class
investigated in [2, 22, 23]. Additionally, we specify precisely when it is possible to
externally control the bubble area and, in cases for which the area is not controllable,

2Solutions to such a system of ODEs are commonly referred to as exact solutions.
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provide a simple means of ascertaining its time dependence. Our analysis involves a
different approach from the one given in [2, 22, 23], namely, that emphasis is placed
on consideration of the Cauchy transform which we define here as

1

2πi

∮
∂D(t)

z̄′

z′ − z
dz′,(2)

where ∂D(t) denotes the boundary of the fluid domain D(t). When z is inside the
bubble, the line integral (2) defines an analytic function, say C(z, t). The analytic
continuation of C(z, t) outside the bubble (and into the fluid region D(t)) contains
a great deal of information about the bubble shape. In many respects, C(z, t) is a
more natural mathematical object to consider; indeed, given the functional form of
C(z, t) at each instant it is possible to reconstruct the relevant conformal mapping.
The evolution equation for C(z, t) also has a convenient mathematical form which is
easy to analyze. In particular, using the new formulation presented here it is possible
to resolve such issues as the question of bubble area evolution, a question which often
involves formidable calculation in the usual conformal map approach. It is appropriate
to mention that the Cauchy transform has been used to great effect by many previous
authors in the study of Hele–Shaw free boundary problems [12, 20, 21, 24].

The rest of this paper is organized as follows. In section 2 we introduce the Cauchy
transform formulation for the problem of Stokes flow for a single bubble and prove its
equivalence to the usual Stokes flow formulation. We also demonstrate the existence
of certain conserved quantities which are useful in constructing exact solutions. In
section 3 we use the new formulation to retrieve the exact solutions which have been
previously presented in the literature and show how new classes of solutions may be
derived. In particular, with the new approach the closure condition is easily verified, in
contrast to the much more involved calculations that are necessary using the conformal
map approach. More importantly, we use our formulation to investigate when it is
possible to externally specify the evolution of bubble area. Some concluding remarks
are presented in section 4.

2. Mathematical formulation.

2.1. Stokes flow problem. Consider the quasi-steady evolution of a single bub-
ble in an ambient Stokes flow. The fluid inside the bubble is assumed to have zero
viscosity, implying that it is a passive fluid with spatially constant pressure, which for
convenience is set to zero. We denote the fluid region exterior to the bubble by D(t),
and the bubble is denoted by Dc(t). The flow is allowed to be singular at infinity,
although we do not consider any flow singularities (such as sources or sinks) in the
finite flow domain. Figure 1 gives a schematic. In view of the incompressibility of the
flow, it is convenient to introduce a streamfunction ψ(x, y) which satisfies

u = ∇⊥ψ.(3)

It is easily seen that

∇4ψ = 0 in D(t).(4)

We assume that surface tension acts on the bubble boundary so that the stress con-
dition is

−pnj + 2ejknk = κnj ,(5)
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Fig. 1. Schematic illustrating the bubble region Dc(t) and the fluid region D(t). There is a
singular flow field at infinity.

where κ is the surface curvature (assumed positive for a convex surface), p is the
pressure exterior to the bubble, n is a unit normal pointing outward from the bubble,
and

ejk =
1

2

(
∂uj

∂xk
+

∂uk

∂xj

)

is the rate of strain tensor. In (5) we have assumed that velocities are nondimension-
alized by σ/µ, where σ is the surface tension, lengths are nondimensionalized by R,
the undeformed bubble radius, and p is nondimensionalized by σ/R. Additionally,
time is nondimensionalized by Rµ/σ. The kinematic condition is that

u · n = Vn(6)

at each point on the interface.
The problem is now reformulated as a problem in analytic function theory fol-

lowing the formulation of Tanveer and Vasconcelos [23]. The general solution of (4)
at each instant has the form

ψ = Im[z̄f(z, t) + g(z, t)],(7)

where z = x+ iy and the overbar denotes complex conjugate. Here f(z, t) and g(z, t)
are the Goursat functions which are analytic everywhere in the fluid region D(t). In
terms of the Goursat functions, the following relations can easily be established:

p− iω = 4f ′(z, t),

u + iv = −f(z, t) + zf ′(z, t) + g′(z, t),

e11 + ie12 = zf ′′(z, t) + g′′(z, t),

(8)
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where ω is the vorticity and u, v are the x- and y-components of velocity. Defining
s to be the arclength traversed in a counterclockwise direction around the bubble
boundary z(s, t), the stress boundary condition can be written in the form

f(z, t) + zf ′(z, t) + g′(z, t) = −i
zs
2

on ∂D(t).(9)

Using the second equation of (8) and (9), the kinematic condition can be written as

Im [(zt + 2f) z̄s] = −1

2
on ∂D(t).(10)

Equations (9) and (10) are supplemented by boundary conditions on f(z, t) and g′(z, t)
at infinity. In this paper we consider far-field conditions of the form

f(z, t) = fnz
n + · · · + f0 + O

(
1

z

)
,(11)

g′(z, t) = gmzm + · · · + g0 + O

(
1

z

)
.(12)

2.2. Evolution of the Cauchy transform. Given the above formulation, it
is instructive to consider the evolution of the Cauchy transform C(z, t) introduced in
(2). The following result is central to the subsequent developments in this paper.

Theorem 2.1 (evolution of the Cauchy transform). The Stokes flow problem
described in section 2.1 is equivalent to the equation

∂C(z, t)

∂t
+

∂I(z, t)

∂z
= R(z, t)(13)

together with (10) and boundary condition (11). Here C(z, t) and I(z, t) are defined
for z ∈ Dc(t) (i.e., inside the bubble) by

C(z, t) =
1

2πi

∮
∂D(t)

z̄′

z′ − z
dz′,

I(z, t) =
1

2πi

∮
∂D(t)

−2f(z′, t)z̄′

z′ − z
dz′

(14)

and where the forcing term R(z, t) is given by

R(z, t) = 2
(
gmzm + gm−1z

m−1 + · · · + g0

)
.(15)

Remark. The viscous sintering problem, which involves the evolution of fluid drops
(rather than bubbles), has been investigated using the Cauchy transform approach
by Crowdy [5]. There, the Cauchy transform of the domain was defined by the area
integral

C(z, t) ≡ 1

π

∫ ∫
D(t)

dx′dy′

z′ − z
.(16)

In the case of a bounded fluid region, (16) is equivalent to our current definition (2),
by the complex form of Green’s theorem [1]. Note also that, in the viscous sintering
problem, the inhomogeneous term R(z, t) is absent since there are no singularities
present to drive the flow; i.e., the flow is driven purely by surface tension. For the
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Stokes bubbles considered here, the term R(z, t) represents the forcing due to the
singular behavior of the flow at infinity.

Remark. In the viscous sintering problem, [5] provides a proof of the forward
result for Theorem 2.1, i.e., that a solution to the Stokes flow problem satisfies (13)
(with R(z, t) = 0). This paper provides the first proof of the “backward” result, and
hence the equivalence of the two formulations. Although the proof here is for bubbles,
it may easily be modified to the case of fluid drops.

Proof of Theorem 2.1. We first prove the “backward” result; i.e., we assume
the existence of a solution C(z, t), f(z, t) to (10), (13) (with f(z, t) analytic in D(t)
and having far-field behavior (11)) and show that (9) is satisfied for an appropriately
defined g′(z, t) that is analytic in the fluid domain D(t) and satisfies (12). By direct
differentiation we have

∂C(z, t)

∂t
= − 1

2πi

∮
∂D(t)

z′tz̄
′dz′

(z′ − z)2
+

1

2πi

∮
∂D(t)

(z̄′dz′)t
z′ − z

.(17)

Next, the kinematic condition (10) is rewritten in the form

(z̄dz)t = ztdz̄ + z̄(dzt) + 2fdz̄ − 2f̄dz + ids.(18)

Substituting (18) into (17) gives the equation

∂C(z, t)

∂t
=

1

2πi

∮
∂D(t)

[
−z′tz̄

′dz′

(z′ − z)2
+

z′tdz̄
′ + z̄′(dz′)t
z′ − z

]

+
1

2πi

∮
∂D(t)

2f(z′, t)dz̄′ − 2f(z′, t)dz′ + ids

z′ − z
.(19)

The terms in square brackets represent a total (spatial) differential of z′tz̄
′/(z′ − z)

which is assumed to be single-valued. Therefore the first integral term is zero. After
replacing ∂C/∂t using (13), we obtain

R(z, t) +
1

2πi

∂

∂z

∮
∂D(t)

2f(z′, t)z̄′

z′ − z
dz′

− 1

2πi

∮
∂D(t)

2f(z′, t)dz̄′ − 2f(z′, t)dz′ + ids

z′ − z
= 0.(20)

But

1

2πi

∂

∂z

∮
∂D(t)

f(z′, t)z̄′

z′ − z
dz′ =

1

2πi

∮
∂D(t)

f(z′, t)z̄′

(z′ − z)2
dz′

=
1

2πi

∮
∂D(t)

fz′(z′, t)z̄′ + f(z′, t)z̄′z′

z′ − z
dz′,(21)

where the subscript z′ denotes partial differentiation, and the latter equality follows
after integration by parts. Substituting (21) into (20) then yields

R(z, t) +
1

2πi

∮
∂D(t)

(
2fz′(z′, t)z̄′ + 2f(z′, t)

)
− ids

z′ − z
= 0.(22)

It is convenient to introduce the notation

f̃(z, t) = f(z, t) − (fnz
n + · · · + f0)
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so that f̃(z, t) represents the component of f(z, t) that decays to zero as z → ∞. By
the well-known properties of Cauchy integrals, we have for z ∈ Dc(t)

1

2πi

∮
∂D(t)

f̃(z′, t)

z′ − z
dz′ = 0,(23)

1

2πi

∂

∂z

∮
∂D(t)

f̃(z′, t)

z′ − z
dz′ = 0,(24)

1

2πi

∮
∂D(t)

R(z′, t)

z′ − z
dz′ = R(z, t).(25)

Equation (22) is now modified by adding twice the conjugate of (23) and the product
of 2z̄ with (24) to it. After employing (25), the modified equation is written as

Φ(z, t) + z̄Φ′(z, t) + Ψ(z, t) = 0(26)

for z ∈ Dc(t), where

Φ(z, t) =
1

2πi

∮
∂D(t)

2f̃(z′, t)

z′ − z
dz′,(27)

Ψ(z, t) =
1

2πi

∮
∂D(t)

R(z′, t) + 2fz′(z′, t)z̄′ + 2f(z′, t)

z′ − z
dz′,

− 1

2πi

∮
∂D(t)

ids

z′ − z
.(28)

Additionally, upon taking the limit of (26) as z → τ , a point on the boundary of
Dc(t), we obtain the relation

Φ(τ, t) + τ̄Φ′(τ, t) + Ψ(τ, t) = 0.(29)

The functions Φ(z, t) and Ψ(z, t) are analytic in Dc(t), and the boundary condition
(29) is identical to the one satisfied by the Goursat functions in the plane problem of
the theory of elasticity for the region Dc(t), under the assumption that the boundary
of the region is free from the action of external forces. It follows from the theorem of
uniqueness [15] of the solution to the plane problem of elasticity that

Φ(z, t) = iαz + β,

Ψ(z, t) = −β̄,

where α is a real and β is a complex constant. But from (23), Φ(z) = 0 in Dc(t),
implying that α = β = 0. Hence

Φ(z, t) = 0, Ψ(z, t) = 0.(30)

From the second identity of (30) it is concluded that the following function may be
analytically continued to D(t):

χ(z, t) = gmzm + · · · + g0 + f(z, t) + z̄f ′(z, t) − i

2zs
.

Upon associating g′(z, t) with gmzm + · · ·+ g0 −χ(z, t), it is concluded that (10)–(13)
determine f(z, t) and g′(z, t) as analytic functions in D(t) that satisfy the boundary
condition (9) and far-field condition (12). This proves the “backward” result.



948 DARREN CROWDY AND MICHAEL SIEGEL

We next consider the “forward” problem; i.e., we show that the Stokes problem
(9)–(12) implies (13). First, take the conjugate of (9) and use the fact that zsz̄s = 1
to write the stress condition in the form

2f̄dz + 2z̄df + 2dg = ids.

This equation is combined with the kinematic condition (10) to give

(z̄dz)t = 2dg + 2d (z̄f) + z̄dzt + ztdz̄.(31)

Substituting (31) into (17) then yields the equation

∂C(z, t)

∂t
=

1

2πi

∮
∂D(t)

2g′(z′, t)dz′

z′ − z
+

2d(z̄′f)

z′ − z
+

[
− z′tz̄

′dz′

(z′ − z)2
+

z̄′(dz′)t
z′ − z

+
z′tdz̄

′

z′ − z

]
.

The terms in square brackets represent a total (spatial) differential and therefore give
zero total contribution to the integral. The first integral term on the right-hand side
is rewritten using

1

2πi

∮
∂D(t)

2g′(z′, t)

z′ − z
dz′ = 2(gmzm + · · · + g0) = R(z, t).

Finally, using integration by parts on the second integral term and rearranging, we
obtain (13), which completes the proof.

2.3. Analytic continuation inside the fluid region. The functions C(z, t),
I(z, t), and R(z, t) defined by the integrals (14) and (15) are all analytic inside the
bubble. We now consider the analytic continuations of these functions inside the fluid
domain D(t), i.e., exterior to the bubble. By the continuation principle, (13) is also
the equation relating these (analytically continued) functions inside D(t).

It is assumed that the bubble boundary ∂D(t) is an analytic curve. This implies
that there exists a (unique) function (known as the Schwarz function of the curve
[11]) analytic inside an annular domain containing the curve ∂D(t) which satisfies the
equation

z̄ = S(z, t)(32)

everywhere on the curve ∂D(t). But, by the Plemelj formulae,

S(z, t) = C(z, t) − Ci(z, t),(33)

−2f(z, t)S(z, t) = I(z, t) − Ii(z, t),(34)

2g′(z, t) = R(z, t) −Ri(z, t),(35)

where, for z ∈ D(t), the functions Ci(z, t), Ii(z, t), and Ri(z, t) are given by the
integrals

Ci(z, t) =
1

2πi

∮
∂D(t)

z̄′

z′ − z
dz′,(36)
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Ii(z, t) =
1

2πi

∮
∂D(t)

−2f(z′, t)z̄′

z′ − z
dz′,(37)

Ri(z, t) =
1

2πi

∮
∂D(t)

2g′(z′, t)

z′ − z
dz′.(38)

The formulae (33)–(35) provide expressions for the analytic continuations of C(z, t),
I(z, t), and R(z, t) into the fluid domain D(t).

2.4. Conservation of finite poles of C(z, t). The following result will be
useful in constructing exact solutions to the Stokes flow problem (10)–(13).

Let C(z, t), f(z, t) be solutions to (10)–(13). If C(z, 0) initially has a pole at a
finite point zj(0) inside the fluid domain, then (provided the solution exists) C(z, t)
continues to have a pole at the point zj(t), where zj(t) satisfies the ODE

żj(t) = −2f(zj(t), t).(39)

To derive the result, first note that the complex form of Green’s theorem [1] can
be used to write I(z, t) in the form

I(z, t) = − 1

2πi

∮
∂D(t)

2f(z′, t) − 2f(z, t)

z′ − z
z̄′dz′ − 2f(z, t)C(z, t).(40)

Define the function Σ(z, t) as

Σ(z, t) = − 1

2πi

∮
∂D(t)

2f(z′, t) − 2f(z, t)

z′ − z
z̄′dz′.(41)

The singularity of the integrand in (41) is removable, and Σ(z, t) is therefore analytic
in D(t). Thus,

I(z, t) = Σ(z, t) − 2f(z, t)C(z, t),(42)

which, when substituted into (13), yields the following PDE for the Cauchy transform:

∂C

∂t
− 2f(z, t)

∂C

∂z
− 2

∂f(z, t)

∂z
C(z, t) +

∂Σ

∂z
(z, t) = R(z, t).(43)

This equation also governs the analytic continuation of C(z, t) inside D(t). But inside
D(t), (43) has the form of a first-order linear equation for C(z, t) with coefficients that
are known a priori to be analytic in D(t). Thus, provided they exist, solutions for
C(z, t) will have the same analytic structure inside D(t) as solutions of a first-order
linear PDE with analytic coefficients. Using the well-known theory of such equations,
it is deduced that the pole singularities are preserved and move on characteristics. In
this case,

−żj(t) − 2f(zj(t), t) = 0,(44)

and the result is demonstrated.
Remark. Note that the above result says nothing about any singularities of C(z, t)

at infinity. In the present application, the coefficient function f(z, t) is singular at
infinity (and, in the language of ODEs [13], is therefore a fixed singularity of (43)).
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Moreover, depending on the far-field flow, R(z, t) may also be singular at infinity. The
behavior of C(z, t) at z → ∞ must be examined by a local analysis of (13) in each
case. Such an analysis will be seen to be crucial in determining whether C(z, t) can
consistently preserve a rational function form under evolution, i.e., satisfy the closure
condition. When this is the case, the pole at infinity does not move into the finite
complex plane. These issues are discussed further in section 3.

Remark. The results of this section are closely related to the results of section 4.5
of Cummings, Howison, and King [10], where rather different arguments are used.

2.5. Circulation theorem and conserved quantities. In the context of the
viscous sintering problem, Crowdy [5] derived a circulation theorem which provides the
existence of conserved quantities associated with certain choices of initial conditions.
This theorem can be extended to the case of a bubble in an infinite flow.

Let the curve γj be a fixed closed curve surrounding the isolated pole singularity
zj(t) ∈ D(t). Because zj(t) moves at finite speed (see (39)), γj can always be chosen
so that it continues to enclose the (moving) singularity zj(t), at least for sufficiently
short times. Consider the circulation-type quantity

∮
γj

C(z, t)dz.(45)

Because γj is assumed fixed, we have

d

dt

∮
γj

C(z, t)dz =

∮
γj

∂C(z, t)

∂t
dz =

∮
γj

(
−∂I(z, t)

∂z
+ 2g′(z, t) + Ri(z, t)

)
dz.(46)

But Ri(z, t) is analytic everywhere inside γj , as is g′(z, t) if the flow has no singularities
in the finite plane. Use of Cauchy’s theorem then implies that

d

dt

∮
γj

C(z, t)dz = − [I(z, t)]γj
,(47)

where the square bracket denotes the change in I(z, t) around the contour γj . But,
by (33) and (34), while I(z, t) has a simple pole at zj(t), it is single-valued so that
the right-hand side of (47) vanishes. This implies that

∮
γj

C(z, t)dz = Aj(t), j = 1, . . . , N,(48)

are constants of the motion, i.e.,

Aj(t) = Aj(0).(49)

Note that in (48) we have used the fact that the simple pole of C(z, t) at zj(t) is
preserved in time.

The existence of the above conserved quantities has not been pointed out in any
previous studies of bubbles in ambient Stokes flows. It is, however, closely related
to a similar result that has been observed in the context of evolving viscous blobs
[5, 17, 6].
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3. Exact solutions. The advantage of considering the Cauchy transform C(z, t)
is that its evolution equation is particularly simple. In certain situations, it will be
seen that C(z, t) can retain a rational function form under evolution. In this case, the
corresponding solutions will be called exact in the sense that the evolution depends
on just a finite set of time-evolving parameters. As an example of the simplicity of
the evolution equations, suppose C(z, 0) is rational with a finite distribution of simple
pole singularities. Suppose too that it is known that C(z, t) preserves this functional
form under evolution. Then, if C(z, 0) has the form

C(z, 0) =
N∑
j=1

Aj(0)

z − zj(0)
,(50)

then, by the results above, C(z, t) has the form

C(z, t) =

N∑
j=1

Aj(0)

z − zj(t)
,(51)

where

żj(t) = −2f(zj(t), t), j = 1, . . . , N.(52)

With the singularities under control at all regular points of the evolution equation
(13), the question of whether C(z, t) can consistently preserve a given rational function
form must be determined by a local analysis of (13) at the fixed singularity at infinity.
This will be illustrated in the context of the examples considered in section 3.1.

Even supposing that C(z, t) indeed evolves as a rational function, it still remains
to reconstruct the corresponding time-evolving domain from knowledge of the Cauchy
transform. This can be done using conformal maps, but it is important to observe that
in the case of unbounded domains such as here, knowledge of the Cauchy transform
does not uniquely determine the unbounded domain. Rather, it determines it only up
to a real degree of freedom which can be associated with the freedom to specify the
bubble area. The appendix provides a discussion of this point in terms of the inverse
problem of 2-D potential theory.

None of the authors Antanovskii [2], Siegel [22], or Tanveer and Vasconcelos [23]
use the above formulation but instead make direct use of a conformal map formulation
in a parametric ζ-plane. It is instructive to retrieve the conformal mapping solutions of
[2, 22, 23] using the above perspective. In this way, certain advantages of the Cauchy
transform formulation will become apparent. In particular, we gain important insight
into the bubble area evolution in each case and see exactly when it is possible to
specify it externally.

We note that, in the process of retrieving the conformal mapping solutions of [2,
22, 23], the values of f(zj(t), t) are computed with the aid of the conformal map. One
can bypass the introduction of a conformal map and compute f from the kinematic
condition (10) by using an alternative representation of the boundary (e.g., algebraic
curves; see [8]). Although this may require the use of a boundary integral numerical
calculation, one still has the advantage of a finite/exact representation of the interface,
since the preserved rational function form of the Cauchy transform implies that the
shape can be described by a small finite number of parameters.
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3.1. Exact solutions of Tanveer and Vasconcelos [23].

3.1.1. The Cauchy transform. Tanveer and Vasconcelos assume that the far-
field form of f(z, t) and g′(z, t) are of the form

f(z, t) ∼ f1z + O(1),(53)

g′(z, t) ∼ g1z + O(1).(54)

Specifically, in the notation of Tanveer and Vasconcelos [23],

f1 =
1

4

(
p∞(t)

µ
− iω0

)
(55)

and

g1 =
1

2
(α0 − iβ0) .(56)

p∞(t) and ω0 are the fluid pressure and vorticity in the far-field, respectively, while
α0 and β0 characterize the strain rates of a linear straining flow at infinity.

As an illustrative example, we take the first case considered by Tanveer and
Vasconcelos [23], that is, a bubble in a shear flow of the form

u = (Γy, 0).(57)

This corresponds to the far-field values α0 = 0 and β0 = −ω0 = Γ in the notation of
(55) and (56), or equivalently

f1 =
iΓ

4
, g1 = − iΓ

2
(58)

in the notation of (53) and (54).

Tanveer and Vasconcelos [23] show the existence of exact solutions that are poly-
nomial maps, i.e., of the form (1) with bi = 0. To retrieve these, let us seek solutions
in which C(z, t) has the rational function form

C(z, t) = A(t)z;(59)

that is, the only singularity of C(z, t) in the fluid region is a single simple pole singu-
larity at infinity. It is necessary to check that this is a consistent solution of (13). To
do this, we analyze (13) in the neighborhood of infinity and find that we require

∂

∂t
(A(t)z) +

∂

∂z
(−2f1z(A(t)z)) + o(z) = 2g1z + o(z).(60)

This is consistent, provided A(t) satisfies

Ȧ(t) − 4f1A(t) = 2g1,(61)

where this equation comes from equating coefficients of z in (60).
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3.1.2. Conformal mapping. We now consider the conformal maps for which
the corresponding Cauchy transform C(z, t) has the form (16). Consider, for example,
the mapping from the unit ζ-disc given by

z(ζ, t) =
a

ζ
+ bζ,(62)

where a and b are functions of time and where a can be assumed real (using a rotational
degree of freedom of the Riemann mapping theorem). Note that, on the unit ζ-circle,

z̄ = aζ +
b̄

ζ
.(63)

From (62) we have that

1

ζ
=

z

a
− b

a
ζ.(64)

Using (64) in (63) we obtain

z̄ =
b̄

a
z +

(
a− |b|2

a

)
ζ,(65)

which is valid on the unit ζ-circle. By comparison with (33) we make the identifications

C(z, t) =
b̄

a
z, Ci(z, t) = −

(
a− |b|2

a

)
ζ(z, t),(66)

where we have also used the fact that Ci(z, t) decays at infinity. This shows that all
conformal maps of the form (62) have corresponding Cauchy transforms of the form
(16) with

A =
b̄

a
.(67)

Note that a and b can be multiplied by any real constant (corresponding to changing
the area of the elliptical bubble) and the Cauchy transform (16) remains unchanged.
A degree of freedom is therefore available, and this is used up, following Tanveer and
Vasconcelos [23], by specifying the area of the bubble to be fixed in time, i.e.,

a2 − |b|2 = R2,(68)

where R is constant. (Alternatively, one can specify the bubble area to be an arbitrary
function of time, corresponding to the presence of a source or sink at infinity.) This
gives one equation relating a and b as derived by Tanveer and Vasconcelos [23]. The
second equation obtained by them is

d(ab)

dt
= −(2I0 + iΓ)ab + iΓa2,(69)

where I0 = I(0, t) and

I(ζ, t) =
1

4πi

∮
|ζ′|=1

dζ ′

ζ ′

[
ζ + ζ ′

ζ ′ − ζ

]
1

|zζ(ζ ′, t)|
.(70)
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This equation must, of course, be equivalent to (61). To see this, note that upon
applying the Poisson integral formula [1] to the kinematic condition it can be shown
that

zt(ζ, t) + 2f(z(ζ, t), t) = ζ

[
I(ζ, t) +

iω0

2

]
zζ(ζ, t)(71)

(see Tanveer and Vasconcelos [23]). Substituting the conformal map (62) into this
equation and equating powers of ζ−1 provides

ȧ + 2f1a = −a

(
I0 +

iω0

2

)
.(72)

Eliminating f1 in (61) using (72), as well as using (67) and (58), gives the required
(69).

3.2. Exact solutions of Antanovskii [2]. Antanovskii [2] assumes the far-field
asymptotic form of f(z, t) and g′(z, t) to be

f(z, t) ∼ f1z + O(1/z),(73)

g′(z, t) ∼ gmzm + O(1/z),(74)

where m ≥ 1 is some positive integer and f1 is some real time-dependent function
that is independent of z. This gives rise to a situation in which the far-field flow is
irrotational and given by an mth order straining flow.

Anticipating the form of the singularity in C(z, t) at infinity in order to satisfy
the closure condition, we seek solutions in which C(z, t) is an mth order polynomial,
i.e.,

C(z, t) = Amzm + Am−1z
m−1 + · · · + A1z.(75)

Analyzing the singularity of (13) at infinity gives the equations

Ȧm − 2(m + 1)f1Am = 2gm,

Ȧm−1 − 2mf1Am−1 = 0,

Ȧm−2 − 2(m− 1)f1Am−2 = 0,

. . .

Ȧ1 − 2f1A1 = 0.

(76)

First, it is immediately clear that if Am−1(0) = Am−2(0) = · · · = A1(0) = 0, then
Am−1(t) = Am−2(t) = · · · = A1(t) = 0. It therefore remains only to satisfy the
equation for Am, viz.,

Ȧm − 2(m + 1)f1Am = 2gm.(77)

3.2.1. Conformal mapping. Now consider the class of conformal maps given
by

z(ζ, t) =
a

ζ
+ bζm,(78)
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where a is again assumed to be real. On the unit ζ-circle we have

z(ζ−1, t) = aζ +
b̄

ζm
.(79)

But from (78),

1

ζ
=

z

a
− b

a
ζm,(80)

which, when substituted into (79), gives

S(z(ζ)) = z(ζ−1, t) = aζ + b̄

(
z

a
− b

a
ζm

)m

(81)

from which, by comparison with (33), we deduce that

C(z, t) =
b̄

am
zm.(82)

Thus, all maps of the form (78) yield Cauchy transforms of the form C(z, t) = Amzm

with

Am =
b̄

am
.(83)

Note again that b and a can be multiplied by a real number without changing C(z, t),
while the only equation to be satisfied is (77). Thus, the relevant evolution equations
for the two parameters a and b are (77) along with an area evolution equation which
may be arbitrarily specified. These can be shown to be equivalent to those given in
equation (37) of Antanovskii [2].

3.3. Exact solutions of Siegel [22].

3.3.1. The Cauchy transform. Siegel [22] assumes the far-field asymptotic
form of f(z, t) and g′(z, t) to be

f(z, t) ∼ f3z
3 + f1z + O(1/z),(84)

g′(z, t) ∼ g1z + O(1/z).(85)

f3 and g1 are externally specifiable and will be taken to be constant in time (g1 gives
a measure of an imposed irrotational straining flow at infinity, while f3 produces a
rotational far-field component). Such boundary conditions in which f(z) is a nonlinear
function of z in the far field will be referred to as nonlinear far field conditions. Siegel
[22] makes the choices

g1 = 1, f3 =
ε

2
.(86)

Antanovskii [3] derived exact steady solution for the bubble shape subject to the above
far-field conditions. The analysis of Siegel [22] essentially generalizes the results of
Antanovskii [3] to the case where the bubble evolves in a quasi-steady, time-dependent
manner.
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Suppose we seek solutions to (13) in which C(z, t) evolves as

C(z, t) =

N∑
j=1

Aj(t)

z − zj(t)
(87)

for all times. It is clear that

C(z, t) ∼ B(t)

z
as z → ∞,(88)

where

B(t) =

N∑
j=1

Aj(t).(89)

By the circulation theorem, all the quantities {Aj(t)} are constants of the motion.
This implies, by (89), that B(t) is also a constant of the motion. Moreover, all the
poles {zj(t)} move according to (52). The Cauchy transform is determined at each
instant by these equations.

As mentioned earlier, it is important to verify that the solution (87) is a consistent
solution of (13) at the fixed singularity at the point at infinity. To see this, note from
(36) that

Ci(z, t) ∼ − 1

2πi

(∮
∂D(t)

z̄′dz′

)
1

z
+ O(1/z2),(90)

while, from (37),

Ii(z, t) ∼ O
(

1

z

)
(91)

as z → ∞. But the area of the bubble (denoted A) is precisely

A =
1

2i

∮
∂D(t)

z̄′dz′.(92)

Therefore, using (33) and (88),

S(z) =
B(t) + A/π

z
+ O

(
1

z2

)
(93)

as z → ∞. Inside the fluid domain D(t), (13) takes the form

∂C(z, t)

∂t
+

∂

∂z
[−2f(z, t)S(z, t) + Ii(z, t)] = 2g′(z, t) + Ri(z, t).(94)

A local analysis of this equation as z → ∞ therefore implies that

∂

∂z

(
−2f3z

3

(
B

z
+

A/π

z

))
+ O(1/z) = 2g1z + O(1/z)(95)

so that, equating coefficients of the singularity at O(z), we have

−2(A/π + B)f3 = g1.(96)
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This is a necessary condition if the solution (87) is to be a consistent solution of (13).
It is crucial to note that if C(z, t) is determined at each instant, then, in contrast

to the previous examples of Tanveer and Vasconcelos [23] and Antanovskii [2], (96)
represents an additional constraint on the free boundary evolution. In this case, there
is no freedom to externally specify the bubble area evolution. Rather, it is determined
implicitly by the exact solution itself. Since A has been shown to be a constant of the
motion, (96) implies that, for solutions of the form (87), the area A of the bubble is
necessarily fixed in time if f3 and g1 are constant (independent of time), which has
been assumed to be the case, i.e.,

A = −π

(
B +

g1

2f3

)
.(97)

The initial area of the bubble therefore dictates the value of B.
In summary, solutions of (13) in which C(z, t) is rational with a finite set of

simple pole singularities (and for which f(z, t) and g′(z, t) have the far-field form (53)
and (54)) are admitted, and, in these solutions, the bubble area remains constant.
If we seek solutions in which the bubble area is not fixed in time (but varies, for
example, at some externally specified rate Q), the solutions will not be such that the
Cauchy transform has the far-field behavior (88) for all times t > 0. In that case, the
functional form of the Cauchy transform will not be of the proposed simple rational
character and will not lend itself to exact solutions.

3.3.2. Conformal maps. The corresponding conformal maps from a unit ζ-
disk to fluid domains whose Cauchy transforms have a finite distribution of simple
pole singularities with the far-field behavior (88) are given by rational functions of
the form

z(ζ, t) =
C

ζ

(∏N
j=1(ζ − ηj(t))∏N
j=1(ζ − ζj(t))

)
,(98)

where C can be assumed real (to use up the rotational degree of freedom in the
Riemann mapping theorem). It follows that

z(ζ−1, t) = Cζ

(∏N
j=1(1 − ζη̄j(t))∏N
j=1(1 − ζζ̄j(t))

)
.(99)

It is clear that because S(z, t) = z̄, this class of domains is such that the far-field
asymptotic form of C(z, t) is of the form in (88). It is also clear that

zj(t) = z(ζj , t)(100)

so that the N equations (39) can be viewed as providing evolution equations for
the parameters {ζj(t)|j = 1, . . . , N}. The N constants of motion derived from the
circulation theorem (by taking a contour γj around each distinct pole zj(t)) provide N
additional equations for the parameters {ηj(t)|j = 1, . . . , N}. Finally, the parameter
C is determined by condition (96). Equivalently, one could determine C by ensuring
that the bubble area is conserved under evolution.

Siegel [22] considers one of the above solutions in detail. This solution has a
mapping given by the special choice

z(ζ, t) =
1

ζ

γ0 + γ1ζ
2

1 − γ2ζ2
.(101)
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It is straightforward to see that this map corresponds to domains with the Cauchy
transform

C(z, t) =
E(t)

z − z0(t)
+

E(t)

z + z0(t)
,(102)

where

z0(t) = z(
√
γ2, t).(103)

In this case,

C(z, t) ∼ 2E(t)

z
as z → ∞.(104)

The relevant equations of motion for this solution are

ż0(t) = −2f(z0(t), t),(105)

E(t) = E(0),(106)

−
(
A
π

+ 2E

)
=

g1

2f3
,(107)

where the last equation is just (96). Equations (105) and (106) determine C(z, t) at
each instant, while (107) additionally constrains the bubble area to be fixed in time.
This additional constraint is absent in the solutions of [23] and [2].

The three equations obtained by Siegel [22] are

γ̇2 = −2γ2

[
I(
√
γ2, t) − ε

γ2
0

γ2

]
,(108)

γ1 =
γ2

εγ0
,(109)

γ0 =

[
2(1 + γ2

1)

c1 + (c21 − c2)1/2

]1/2

,(110)

where condition (110) derives from the fact that the bubble area is taken to be constant
and equal to π. c1 and c2 are defined as

c1 = 1 − εγ2
1

(
2(1 − ε) + εγ2

1

)
and c2 = 4ε2γ2

1(1 + γ2
1)

[
3 + ε(2 + ε)γ2

1

]
,(111)

while

I(ζ, t) =
1

2πi

∮
|ζ′|=1

dζ ′

ζ ′

[
ζ ′ + ζ

ζ ′ − ζ

]{
1

|zζ |
+ Re

[
εγ2

0

ζ2

]}
.(112)

We now indicate how (105)–(107) are equivalent to (108)–(110). First we use the fact,
as derived by Siegel [22], that

zt(ζ, t) + 2f(z(ζ, t), t) = ζzζ(ζ, t)

(
−εγ2

0

ζ2
+ I(ζ, t)

)
(113)
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to eliminate f(z0(t), t) from (105). This reproduces exactly (108). Next recall from
(93) that as z → ∞,

S(z) ∼
(

2E +
A
π

)
1

z
.(114)

But

S(z(ζ, t)) = z(ζ, t) = = ζ

(
γ0ζ

2 + γ1

ζ2 − γ2

)

∼ −γ1

γ2
ζ as ζ → 0

∼ −
(
γ1γ0

γ2

)
1

z
as z → ∞,

(115)

where we have used that fact that ζ ∼ γ0

z as z → ∞. Together, (114), (115), (86),
and (107) yield Siegel’s second equation (109). Finally, the equation for S(z(ζ, t), t)
in (115) also yields the following equation for E(t) in terms of the conformal mapping
parameters, viz.,

E(t) =
γ0γ2 + γ1

2
zζ(

√
γ2, t) =

γ0γ2 + γ1

2γ2(1 − γ2
2)2

(
γ1γ2 + γ1γ

3
2 − γ0 + 3γ0γ

2
2

)
.(116)

Using (116), (86), and the fact that A = π in (107) combine, after some further
algebra, to retrieve Siegel’s final equation (110).

Remark. The Cauchy transform formulation is crucial in proving that the bubble
area is conserved for all maps of the form (98). This is because the bubble area A
appears explicitly in the form of the far-field asymptotics of C(z, t). To establish
this general result using the direct conformal mapping approach of [23, 22] would be
exceedingly difficult.

Remark. If the conformal map z(ζ, t) of the form (98) has N poles, the Cauchy
transform formulation also immediately implies the existence of precisely N conserved
quantities, one associated with each of the N poles.

3.4. A final example. We now give an example to show that the previous result
is rather special and that, for general nonlinear flow conditions at infinity, while exact
solutions to the problem exist, it is not generally possible to externally specify the
bubble area evolution in these solutions.

A natural generalization of the far-field conditions considered in the previous three
subsections is

f(z, t) ∼ f3z
3 + f1z + O(z−1),(117)

g′(z, t) ∼ g3z
3 + g1z + O(z−1).(118)

These far-field conditions are again nonlinear and are exactly those considered by
Antanovskii [4] in his studies of the formation of cusped bubbles, although his analysis
is restricted to the derivation of classes of exact steady solutions. The special case
g3 = 0 reduces to the far-field conditions considered in Antanovskii [3] and Siegel [22]
(as well as in section 3.3). For this reason, one might expect the bubble area to again
be constant under evolution. However, this is not the case, as will now be shown.
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Suppose that we seek exact solutions in which C(z, t) has the rational function
form

C(z, t) = A0(t)z +

N∑
k=1

Ak(t)

z − zk(t)
(119)

for all times. As z → ∞,

C(z, t) ∼ A0(t)z +

(
N∑

k=1

Ak(t)

)
1

z
+ . . . ,(120)

and this far-field form is forced by (13), as will be shown. First, it is known immedi-
ately that the points {zk(t)|k = 1, 2, . . . , N} must satisfy

żk(t) = −2f(zk(t), t), k = 1, . . . , N,(121)

while the circulation theorem implies that

Ak(t) = Ak(0), k = 1, . . . , N.(122)

It remains to determine the evolution of A0(t), as well as to ensure that (119) is a
consistent solution of (13) at z → ∞. Analyzing (13) as z → ∞, at O(z3) we get

−8f3A0(t) = 2g3,(123)

which implies that A0(t) must also be constant. C(z, t) is now completely determined,
but we expect to be able to specify another degree of freedom associated with the
bubble area A. But at O(z), we get another equation having the form

−4 (f1A0 + f3A) = 2g1.(124)

Equation (124) is a further constraint on the solution and can be thought of as an
equation governing the bubble area A. It is clear from (124) that the bubble area is
not constant this time. Rather, how the bubble area evolves is governed by the exact
solution itself. To see this, recall that f1 (which is related to the far-field pressure
evaluated in the near field of the bubble) is a time-evolving quantity whose evolution
is governed by (113) and is not externally controllable.

Note that if g3 is taken equal to zero (so that the far-field conditions of Siegel
[22] are retrieved), then necessarily A0(t) = 0 (by (123)), and then A turns out to be
constant (by (124)).

4. Conclusion. We have introduced a Cauchy transform formulation of the
problem of Stokes flow for a single bubble and proven its equivalence to the usual
formulation of free surface Stokes flow. The new formulation has been used to de-
rive a very broad class of exact solutions (namely, the class for which the Cauchy
transform takes the form of a rational function), generalizing the set of solutions
which have heretofore appeared in the literature. Indeed, it is surmised that the class
of solutions discussed here is maximal, i.e., that it includes all cases for which the
evolution is reducible to a finite-dimensional system of ODEs. We use our formu-
lation to investigate when it is possible to externally specify the evolution of bub-
ble area. This issue is extremely difficult to address using other approaches. In
general, it is found that when the Goursat function f(z) has a nonlinear far-field
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behavior it is not possible to find exact solutions and specify the bubble area evo-
lution. Instead the bubble area in such cases is determined by the exact solution.
In the case of pure linear strain (so that g′(z) ∼ g1z as z → ∞) it happens that
the bubble area is constant, and this situation corresponds to a physically interesting
case. However, this occurrence is somewhat coincidental.

Concerning generalizations, it is possible to extend the present formulation to
the case of a more general compressible bubble with an externally specified equation
of state relating its internal pressure (say, pB(t)) to its area. Pozrikidis [16] has
considered such problems using numerical boundary integral methods, while Crowdy
[7] has generalized the solutions of Tanveer and Vasconcelos [23] to this case.

Appendix. Inverse problem of potential theory. In this appendix we
explain why, in the case of a simply connected unbounded domain, knowledge of
C(z, t) determines the domain D(t) up to a single real degree of freedom associated
with specification of the bubble area.

Consider a smooth family of bounded, time-evolving, simply connected planar
domains D(t) in some time interval t ∈ [0, T ). Define the harmonic moments of these
domains to be the integrals of a basis of all functions harmonic in D(t) at time t.
Suppose all the moments of D(t) for t ∈ [0, T ) are known. It is a well-known result of
the inverse problem of 2-D potential theory that the domains D(t) can be uniquely
reconstructed from knowledge of all these harmonic moments. Varchenko and Etingof
[24] discuss this result in detail. For a bounded domain, if the Cauchy transform is
defined as

C(z, t) =
1

π

∫ ∫
D(t)

dx′dy′

z′ − z
=

1

2πi

∮
∂D(t)

z̄′dz′

z′ − z
,(125)

then it is a generating function for the harmonic moments because, Laurent expanding
for large |z|,

C(z, t) =
∞∑

n=0

Mn

zn+1
,(126)

where

Mn =
1

π

∫ ∫
D(t)

z′
ndx′dy′

.(127)

The harmonic functions {
Re

[
zn

]
, Im

[
zn

]∣∣∣∣n = 0, 1, 2, . . .

}
(128)

span the space of functions harmonic in D(t). The real and imaginary parts of the
set of complex moments (127) generate all the harmonic moments of D(t).

Exactly the same result pertains to the case of unbounded domains D(t), except
that if the moments are defined in terms of area integrals over D(t), some of them
do not exist, owing to the unboundedness of the domain. This is the reason for our
choice of defining the Cauchy transform, from the outset, as the line integral

1

2πi

∮
∂D

z̄′dz′

z′ − z
.(129)
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If z ∈ Dc, the Cauchy transform defines an analytic function C(z, t), say. Assume Dc

contains the origin. Then C(z, t) has a Taylor expansion

C(z, t) =

∞∑
n=0

Mnz
n,(130)

where

Mn =
1

2πi

∮
∂D

z̄′dz′

z′n+1 .(131)

Suppose now that C(z, t) is known. This is equivalent to knowledge of the mo-
ments Mn, n = 0, 1, . . . , from which it is possible to infer the values of the harmonic
moments associated with the set of functions{

Re

[
1

zn+1

]
, Im

[
1

zn+1

]∣∣∣∣n = 0, 1, , . . .

}
.(132)

This is a subspace of codimension one in the space of functions harmonic in D(t)
because it excludes the constant function 1, which is also harmonic in D(t). Thus,
knowledge of C(z, t) is not quite enough to determine all harmonic moments—just
one more moment is needed. Generalizing the set (131), the “moment” corresponding
to the constant function 1 is

1

2πi

∮
∂D

z̄′dz′,(133)

which is proportional to the area of the bubble. Thus, in the case of an unbounded
simply connected domain D(t), the Cauchy transform C(z, t) determines the domain
up to a single real degree of freedom associated with the area of the complement of
D(t) (here, the area of the bubble).
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