
INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 38 (2005) 10917–10934 doi:10.1088/0305-4470/38/50/004

Genus-N algebraic reductions of the Benney hierarchy
within a Schottky model

Darren Crowdy

Department of Mathematics, Imperial College of Science, Technology and Medicine,
180 Queen’s Gate, London SW7 2AZ, UK

E-mail: d.crowdy@imperial.ac.uk

Received 20 July 2005, in final form 23 October 2005
Published 30 November 2005
Online at stacks.iop.org/JPhysA/38/10917

Abstract
By exploiting a new theoretical connection between reductions of the Benney
hierarchy and the Dirichlet problem for Laplace’s equation, the solution to
a spectral problem associated with N-parameter algebraic reductions of the
Benney hierarchy is found explicitly. The solutions can be written in terms
of the modified Green’s function associated with reflectionally symmetric,
N-connected planar domains whose ‘holes’ are all centred on the symmetry
axis. Explicit formulae for the modified Green’s function in a canonical class
of circular domains are constructed using a Schottky model of the Schottky
double of these domains. Uniformizations of the spectral problem associated
with two different types of reductions then follow from these formulae.

PACS numbers: 02.30.Ik, 02.30.Jr, 02.30.Zz

1. Introduction

It is now known that there are important theoretical connections between integrability and
integrable hierarchies and the Dirichlet problem for Laplace’s equation in two-dimensional
planar domains [30, 31, 33]. Consequently, the first-type Green’s function for the Dirichlet
boundary value problem for Laplace’s equation in planar domains now has an important role
in the mathematics of the dispersionless Toda hierarchy and the universal Whitham hierarchy.

The present author [3] has recently pointed out the significance of the Dirichlet boundary
value problem (and its associated Green’s functions) for another integrable hierarchy, namely
the Benney hierarchy (or Benney moment equations) [1]. Since Gibbons and Tsarev [24]
showed how a class of finite reductions of the Benney moment equations can be described
in terms of conformal slit mappings, much effort has been invested in explicitly constructing
such solutions. The elliptic case was studied in detail by Yu and Gibbons [25], while Baldwin
and Gibbons [26, 27] have recently made progress on the hyperelliptic case. In all cases, the
uniformization of two spectral functions associated with the finite reductions is performed on
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the Jacobi variety of the associated algebraic curve and the final results are expressed in terms
of Riemann theta functions (or, equivalently, Kleinian sigma functions).

The new contribution of [3] is to show that a natural way to uniformize two spectral
functions arising in these reductions is to use the Schottky double associated with reflectionally
symmetric, N-connected planar domains, the holes of which are centred on the axis of
symmetry. In such a domain, a mathematical object known as a modified Green’s function
can be defined. It satisfies a boundary value problem that is dual to that satisfied by the usual
first-type Green’s function in the domain. Formulae for two special types of N-parameter
reductions of the Benney hierarchy can be written in terms of the analytic extension of this
modified Green’s function.

The general formulae derived in [3] are significant because both the first-type Green’s
function and the modified Green’s function associated with a given planar domain can be
written in terms of the prime form on its Schottky double. Explicit formulae for the Green’s
function are given, for example, in [32] where they are represented using Riemann theta
functions. Analogous formulae exist for the modified Green’s function. It should be clear that
any such formulae, together with the new formulae derived in [3] expressing the reductions
of the Benney hierarchy in terms of the modified Green’s function, can be combined to give
explicit general formulae for the required uniformizations of the spectral functions.

This paper carries out this programme in practice. Here, instead of performing the analysis
on the Jacobi variety of the associated algebraic curves, we elect to employ a Schottky model
of the Schottky double associated with a suitable N-connected domain. This model realizes the
compact Riemann surface as a quotient space of the extended complex plane under the action
of a classical Schottky group with 2(N − 1) generators (for an N-connected domain). The
generators are Möbius maps identifying pairs of circles in the plane. The domains considered
here are all circular domains—that is, domains whose boundary components are all circular.
Explicit formulae for the modified Green’s function associated with these N-connected circular
domains are found in terms of a special transcendental function, the Schottky–Klein prime
function [10], associated with a Schottky group generated by a set of Möbius maps taking the
enclosed circular boundaries to their reflections in the outer circular boundary of the domain.

Belokolos et al [13] discuss Schottky uniformizations of algebraic curves in respect of
other well-known integrable systems of equations. The work here exhibits a novel application
of the Schottky uniformization to reductions of the Benney hierarchy. The modified Green’s
function plays a pivotal role in producing the formulae.

2. The Benney hierarchy

The Benney equations [1] are

ut + uux −
(∫ y

0
ux(x, y ′, t) dy ′

)
uy + hx = 0,

ht + uhx +

(∫ h

0
ux(x, y ′, t) dy ′

)
uy = 0.

(1)

Benney showed that if moments An(x, t) are defined by

An(x, t) =
∫ h

0
un dy, (2)

then they satisfy the infinite set of equations

∂An

∂t
+

∂An+1

∂x
+ nAn−1

∂A0

∂x
= 0, n = 1, 2, . . . , (3)
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which are the Benney moment equations. An identical set of moment equations can be derived
from a Vlasov equation

∂f

∂t2
+ p

∂f

∂x
− ∂A0

∂x

∂f

∂p
= 0, (4)

where f (x, p, t) is some distribution function and the moments are now defined as

An =
∫ ∞

−∞
pnf dp. (5)

Benney [1] showed that the moment equations have an infinite number of conserved densities
which are polynomial in the moments {An|n = 0, 1, . . .}.

The best way to see this is to consider the generating function of the moments defined by

λR(x, p, t) = p +
∞∑

n=0

An(x, t)

pn+1
, (6)

which is the asymptotic series as p → ∞ of

p + P
∫ ∞

−∞

f (x, p′, t)
p − p′ dp′. (7)

The notation P
∫

denotes the principal-value integral. Gibbons and Tsarev [24] have found
a method for constructing a family of solutions to the above equations. Their method is to
define

λ(p) = p +
∫

�

f (x, p′, t)
p − p′ dp′, (8)

where � is an indented contour passing below the point p on the real p′-axis. This
function has the same large-p asymptotics as the function defined in (7) but, importantly,
it can be analytically continued into the upper-half p-plane. Gibbons and Tsarev [24] have
shown that N-parameter reductions of the integral equation (8) correspond to conformal slit
mappings from an upper-half p-plane to an upper-half λ-plane having a collection of N non-
intersecting slits emanating from fixed points on the real λ-axis into the upper-half λ-plane.
Let {cj |j = 1, . . . , N} be some fixed choice of Jordan arcs into the upper-half λ-plane from
some set of fixed points

{
λ

(j)

0

∣∣j = 1, . . . , N
}

on the real λ-axis. The N-parameter reductions
correspond to conformal mappings from the upper-half p-plane to a collection of N slits taken
along these arcs and having end-points at some set of points {λ̂j |j = 1, . . . , N} on these arcs.
These points are the Riemann invariants of the system and they have characteristic speeds
p̂i = p(λ̂i). In this way, construction of analytical forms for λ(p) corresponds to being able
to construct analytical formulae for such slit maps. It is this construction that will be the focus
of the remainder of this paper.

3. Two types of N-parameter reduction

We now summarize the key formulae derived in [3]. Two types of N-parameter reduction
were considered, each corresponding to a different class of arcs {cj |j = 1, . . . , N} discussed
in section 2.

Consider an arbitrary bounded N-connected domain Dz in a complex z-plane assumed to
be reflectionally symmetric about the real z-axis. It is also taken that any holes in the domain
are centred on the real z-axis. Let G0(z; zα) be the modified Green’s function associated
with Dz and with logarithmic singularity at zα . A precise definition of the modified Green’s
function is given in [3]: it is the (unique, real) function having a single logarithmic singularity
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at a point zα inside Dz that is constant on all the boundaries of Dz and satisfies the additional
conditions that the integrals, with respect to arc length, of its normal derivatives around the
boundary of Dz are all zero. Since G0(z; zα) is a harmonic function of z in Dz (except for
the single logarithmic singularity at z = zα), we define G̃0(z; zα) to be its analytic extension,
obtained by adding to G0(z; zα) its harmonic conjugate function H0(z; zα), i.e.,

G̃0(z; zα) = G0(z; zα) + iH0(z; zα). (9)

For the first-type reductions, the formulae are

p(z) =
[

∂

∂z̄α

− ∂

∂zα

]
G̃0(z; zα), λ(z) = −

[
∂

∂z̄α

+
∂

∂zα

]
G̃0(z; zα) + C. (10)

In this case, the arcs in the λ-plane correspond to vertical straight line segments. The above
formulae can also be multiplied by a real constant. For the second type, the formulae are

p(z) =
[

∂

∂z̄α

− ∂

∂zα

]
G̃0(z; zα),

λ(z) = A exp[G̃0(z; zβ) − G̃0(z; zα)] + C.

(11)

This time, the arcs are a set of concentric circular arcs. In (10) and (11), zα and zβ are points
on the real z-axis inside Dz. Real constants A and C are chosen to ensure that

λ ∼ p + O(p−1), as z → zα. (12)

The importance of (10) and (11) is that formulae for the required spectral functions p(z) and
λ(z) follow directly from knowledge of the modified Green’s function G0(z; zα). It is the
latter functions which we will now construct in the N > 2 case.

4. Circular domains and Schottky groups

The boundary value problem satisfied by the modified Green’s function is conformally
invariant. It is therefore enough to consider the solutions associated with a canonical class
of reflectionally symmetric planar domains: a conformally equivalent choice of domain just
corresponds to reparametrizations of the uniformizing variable. Therefore, consider a multiply
connected, reflectionally symmetric circular domain with all its holes centred on the real axis.
This is a finitely connected bounded domain all of whose boundary components are circles.
Since we have now fixed a special class of domains, henceforth the notation Dζ will be used
to denote such a domain in a complex ζ -plane. Specifically, let Dζ be the unit ζ -disc with
N −1 smaller circular discs excised, all centred on the real ζ -axis. Let the circular boundaries
of these smaller discs be denoted by {Cj |j = 1, . . . , N − 1} and denote the outer unit circle
|ζ | = 1 by C0. A definition sketch illustrating a quadruply connected circular domain is shown
in figure 1. To uniquely specify such an N-connected domain Dζ , only the centres and radii of
the N enclosed circular boundaries are needed. Let the real numbers {δj |j = 1, . . . , N − 1}
be their centres and let {qj |j = 1, . . . , N −1} be their radii. For convenience, let M = N −1.

To proceed with the construction, first define M Möbius maps {φj |j = 1, . . . ,M}
corresponding to the conjugation map for points on the circle Cj . That is, if Cj has equation

|ζ − δj |2 = (ζ − δj )(ζ̄ − δj ) = q2
j , (13)

then

ζ̄ = δj +
q2

j

ζ − δj

, (14)
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Figure 1. A typical quadruply connected reflectionally symmetric circular domain consisting of
the unit ζ -disc with three enclosed circular holes centred on the real axis.

and so

φj (ζ ) ≡ δj +
q2

j

ζ − δj

. (15)

If ζ is a point on Cj , its complex conjugate is ζ̄ = φj (ζ ). We will also define the map
φ0(ζ ) = 1/ζ .

Next, introduce the Möbius maps

θj (ζ ) ≡ φj (ζ
−1) = δj +

q2
j ζ

1 − δj ζ
. (16)

Let C ′
j be the circle obtained by reflection of the circle Cj in the unit circle |ζ | = 1 (i.e.,

the circle obtained by the transformation ζ �→ 1
ζ̄

). It is easy to verify that the image of
C ′

j under the transformation θj is Cj . Thus, by virtue of these maps, we are equipped
with a holomorphic identification between points on the circles Cj and C ′

j . Since the M
circles {Cj } are non-overlapping, so are {C ′

j }. The (classical) Schottky group 
 is defined to
be the infinite free group of mappings generated by compositions of the 2M basic Möbius
maps {θj |j = 1, . . . ,M} and their inverses

{
θ−1
j

∣∣j = 1, . . . ,M
}

and including the identity
map. Beardon [11] gives a general discussion of such groups. An accessible discussion of
Schottky groups and their mathematical properties can also be found in a recent monograph
by Mumford, Series and Wright [18].

Consider the (generally unbounded) region of the plane exterior to the 2M circles {Cj }
and {C ′

j }. This region is a fundamental region associated with the Schottky group generated
by the Möbius maps {θj |j = 1, . . . ,M} and their inverses. This fundamental region can be
understood as having two ‘halves’—the half that is inside the unit circle but exterior to the



10922 D Crowdy

−4 −3 −2 −1 0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5

C
0

C
1

C
2

C
3 C

1
’

C
2
’

C
3
’

Figure 2. Schematic of the fundamental region associated with the reflectionally symmetric
quadruply connected circular domain shown in figure 1. There are six Schottky circles C1, C

′
1,

C2, C
′
2, C3 and C′

3. The unbounded region exterior to all six circles is a fundamental region of the
group.

circles Cj is the region we are calling Dζ , the region outside the unit circle and exterior to
the circles C ′

j is the other half. A schematic illustrating this fundamental region and the
Schottky circles associated with the quadruply connected domain of figure 1 is shown in
figure 2.

There are two important properties of these Möbius maps that can easily be established.
The first is that

θ−1
j (ζ ) = 1

φj (ζ )
, ∀ζ. (17)

This can be verified using definitions (15) and (16) (or, alternatively, by considering the
geometrical effect of each map). The second property, following from the first, is that

θ−1
j (ζ−1) = 1

φj (ζ−1)
= 1

φ̄j (ζ̄−1)
= 1

θj (ζ̄ )
= 1

θ̄j (ζ )
, ∀ζ. (18)

Some special infinite subsets of mappings in a given Schottky group will be needed in what
follows. A special notation is now introduced. This notation is not standard but is introduced
here to clarify the presentation. The full Schottky group is denoted by 
. The notation i
j

is used to denote all mappings in the full group which do not have a power of θi or θ−1
i on

the left-hand end or a power of θj or θ−1
j on the right-hand end. As a special case of this,

the notation 
j simply means all mappings in the group which do not have any positive or
negative power of θj on the right-hand end (but with no stipulation about what appears on
the left-hand end). Similarly, j
 means all mappings which do not have any positive or
negative power of θj on the left-hand end (but with no stipulation about what appears on the
right-hand end). In addition, the single prime notation will be used to denote a subset where
the identity is excluded from the set; thus, 
′

1 denotes all mappings, excluding the identity and
all transformations with a positive or negative power of θ1 on the right-hand end. The double
prime notation will be used to denote a subset where the identity and all inverse mappings
are excluded from the set. This means, for example, that if θ1θ2 is included in the set, the
mapping θ−1

2 θ−1
1 must be excluded. Thus, 
′′ means all mappings excluding the identity and

all inverses. Similarly, the notation 1

′′
2 denotes all mappings, excluding inverses and the

identity, which do not have any power of θ1 or θ−1
1 on the left-hand end or any power of θ2 or

θ−1
2 on the right-hand end. In the same way, 
′′

j denotes all mappings, excluding the identity
and all inverses, which do not have any positive or negative power of θj on the right-hand end.
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5. The Schottky–Klein prime function

Following Baker [10], the Schottky–Klein prime function is defined as

ω(ζ, γ ) = (ζ − γ )ω′(ζ, γ ), (19)

where the function ω′(ζ, γ ) is given by

ω′(ζ, γ ) =
∏

θi∈
′′

(θi(ζ ) − γ )(θi(γ ) − ζ )

(θi(ζ ) − ζ )(θi(γ ) − γ )
(20)

and where the product is over all mappings θi in the set 
′′. ω′ can also be written as

ω′(ζ, γ ) =
∏

θi∈
′′
{ζ, θi(ζ ), γ, θi(γ )}, (21)

where the brace notation denotes a cross ratio of the four arguments. This will be useful later.
The function ω(ζ, γ ) is single valued on the whole ζ -plane, has a simple zero at γ and at all
points equivalent to γ under the mappings of the group 
. The prime notation is not used
here to denote differentiation.

We proceed under the assumption that the choice of Schottky circles is such that the
infinite product defining the prime function converges. The general question of convergence
is a complicated matter. Baker [10] discusses some general criteria for convergence. Note
that since the problem here demands that Dz be reflectionally symmetric about the real axis
with all its holes centred thereon, the relevant Schottky groups turn out to be of the Fuchsian
kind with an invariant circle. It is known that the Poincaré θ2 series associated with such
groups are convergent [12], while Burnside [14, 15] has shown how expression (19) for the
prime function can be derived from such series. It should also be mentioned that, in cases
involving Schottky groups of this kind, Crowdy and Marshall [4] have performed numerical
comparisons of the uniformizations of certain algebraic curves using both the Schottky–Klein
prime function and higher dimensional Poincaré theta series (see, in particular, the appendix
of [4]). Numerically, excellent agreement is found between the two distinct uniformizations
of a given algebraic curve. All this reassures us that the assumption of convergence of the
infinite product is a reasonable one.

The Schottky–Klein prime function has some important transformation properties. One
such property is that it is anti-symmetric in its arguments, i.e.,

ω(ζ, γ ) = −ω(γ, ζ ). (22)

This is clear from inspection of (19) and (20). A second important property is given by

ω(θj (ζ ), γ1)

ω(θj (ζ ), γ2)
= βj (γ1, γ2)

ω(ζ, γ1)

ω(ζ, γ2)
, (23)

where θj is any one of the basic maps of the Schottky group. A detailed derivation of this
result is given in chapter 12 of [10]. A formula for βj (γ1, γ2) is

βj (γ1, γ2) =
∏

θk∈
j

(γ1 − θk(Bj ))(γ2 − θk(Aj ))

(γ1 − θk(Aj ))(γ2 − θk(Bj ))
, (24)

where Aj and Bj are the two fixed points of the mapping θj satisfying

θj (Aj ) = Aj , θj (Bj ) = Bj . (25)

They are therefore the two solutions of a quadratic equation. It follows that

θj (ζ ) − Bj

θj (ζ ) − Aj

= µj eiκj
ζ − Bj

ζ − Aj

(26)
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for some real parameters µj and κj . The roots Aj and Bj are ordered such that |µj | < 1 in
(26). Note the property that

βj (γ1, γ2) = 1

βj (γ2, γ1)
. (27)

A third property of ω(ζ, γ ) which will also be useful later is that, for the class of Schottky
groups introduced earlier,

ω̄(ζ−1, γ −1) = − 1

ζγ
ω(ζ, γ ), (28)

where the conjugate function ω(ζ, γ ) is defined by

ω(ζ, γ ) = ω(ζ̄ , γ̄ ). (29)

A detailed derivation of (28) is given in [5].

6. Explicit solution for Gj

Given a circular domain Dζ , the associated Schottky–Klein prime function ω(ζ, γ ) can be
constructed. Let the singularity of the modified Green’s function Gj(ζ ;α) in Dζ be at α and
let it satisfy the conditions

Gj(ζ ;α) = 0, on Cj ,

Gj (ζ ;α) = γjk(α), on Ck, k 	= j,∫
Ck

∂Gj (ζ ;α)

∂n
ds = 0, k 	= j,

(30)

where the set of parameters {γjk(α)} depends only on α, s denotes the arc length, while
∂/∂n denotes the normal derivative. Koebe [17] showed that the function satisfying these
requirements is unique.

It will now be argued that an explicit expression for the required function is

Gj(ζ ;α) = 1

2
log

∣∣∣∣∣
ω(ζ, α)ω(φj (ζ ), φj (α))

ω(ζ, φj (ᾱ))ω(φj (ζ ), α)

∣∣∣∣∣ . (31)

Note that since, on Cj ,

ζ̄ = φj (ζ ), (32)

the antiholomorphic involution taking a point α to its corresponding point on the Schottky
double is

α = φj (ᾱ). (33)

Equation (31) therefore has logarithmic singularities at α and at its reflected point, φj (ᾱ), on
the double.

First, define the M + 1 functions

Rj(ζ ;α) = ω(ζ, α)ω(φj (ζ ), φj (α))

ω(ζ, φj (ᾱ))ω(φj (ζ ), ᾱ)
, (34)

where j = 0, 1, . . . , M , so that

Gj(ζ ;α) = 1
2 log|Rj(ζ ;α)|. (35)

This means that Gj(ζ ;α) has a single isolated logarithmic singularity in Dζ at ζ = α, as
required. Since the zero of Rj at ζ = α is second order, locally Gj(ζ ;α) has the expansion

Gj(ζ ;α) = log|ζ − α| + O(1), (36)

again as required.
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It remains to verify that (31) satisfies the required boundary conditions on all the circles
{Cj |j = 0, 1, . . . ,M}. It can be shown that, on circle Ck ,

|Rj(ζ ;α)| =
∣∣∣∣∣
βj (φj (ᾱ), α)

βk(φj (ᾱ), α)

∣∣∣∣∣ . (37)

As shown in the appendix, this formula holds for all integers j and k (between 0 and M) provided
we adopt the convention that β0(ζ, α) ≡ 1. It is immediate that, on Cj , |Rj(ζ, α)| = 1, so
Gj(ζ, α) = 0 there. On Ck with k 	= j , we have

Gj(ζ ;α) = 1

2
log

∣∣∣∣∣
βj (φj (ᾱ), α)

βk(φj (ᾱ), α)

∣∣∣∣∣ , (38)

which gives explicit formulae for the constants {γjk(α)} defined in (30).
It is clear that the analytic extension G̃j (ζ ;α) is given by

G̃j (ζ ;α) = 1
2 log Rj(ζ ;α). (39)

Define the fundamental region associated with the function G̃j to be the domain Dζ and its
image under reflection in the j th circle. In this fundamental region, G̃j (ζ, α) has precisely two
logarithmic singularities of equal and opposite strength: one at α and another at the reflected
point φj (ᾱ). A natural way to define a branch of G̃j is therefore to join by a branch cut each
such pair of logarithmic singularities in each copy of this fundamental region. It can then be
argued that

Im

[∮
Ck

d[G̃j (ζ ;α)]

]
= 0 (40)

unless k = j which, after a few manipulations, can be shown to be equivalent to the condition
that the quantities

∮
Ck

∂Gj

∂n
ds (41)

will be non-zero only for k = j .
Since we have identified a function satisfying all the conditions required of a modified

Green’s function, we now exploit the result of Koebe [17] which says that the latter function is
unique. It follows that the functions {Gj(ζ ;α)} we have constructed are indeed the required
set of modified Green’s functions.

Although, for completeness, we have reported formulae for all the modified Green’s
functions {Gj |j = 0, 1, . . . , N − 1}, only G0(ζ ;α) will be used in the analysis of the spectral
problem for the Benney reductions. If preferred, any other choice of modified Green’s function
could also be used.

7. The elliptic reduction

Consider first the case of a doubly connected reflectionally symmetric circular domain Dζ .
Any doubly connected domain is conformally equivalent to an annular region q < |ζ | < 1 for
some value of the conformal modulus q [22]. Dζ is therefore taken to be this annular domain.
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7.1. First-type reduction

The first-type reduction is the same as that previously analysed by Yu and Gibbons [25]. This
provides an instructive check on the preceding formulation. In this case, δ1 = 0 and q1 = q,
so that

φ1(ζ ) = q2

ζ
, θ1(ζ ) = q2ζ. (42)

The Schottky group is generated by θ1 and its inverse: it is sometimes called the loxodromic
group. Its elements are{

θ
j

1

∣∣j ∈ Z
}
. (43)

From (19), the associated Schottky–Klein prime function can be shown to be

ω(ζ, γ ) = − γ

D2
P(ζγ −1), (44)

where

P(ζ ) ≡ (1 − ζ )

∞∏
k=1

(1 − q2kζ )(1 − q2kζ−1) (45)

and

D ≡
∞∏

k=1

(1 − q2k). (46)

The modified Green’s function G0(ζ ;α) for this domain is

G0(ζ ;α) = log

∣∣∣∣|α|P(ζα−1)

P (ζ ᾱ)

∣∣∣∣ , (47)

where α is a point inside Dζ . It follows that the analytic extension of this function is

G̃0(ζ ;α) = log

(
|α|P(ζα−1)

P (ζ ᾱ)

)
. (48)

This is the function used in [3].
Given (47), expressions for p(ζ ) and λ(ζ ) follow from the general formulae

p(ζ ) =
[

∂

∂ᾱ
− ∂

∂α

]
G̃0(ζ ;α), λ(ζ ) = −

[
∂

∂ᾱ
+

∂

∂α

]
G̃0(ζ ;α) + C (49)

and letting α be real. Since
∂G̃0

∂α
= 1

2α
− 1

α2

ζPζ (ζα−1)

P (ζα−1)
,

∂G̃0

∂ᾱ
= 1

2ᾱ
− ζPζ (ζ ᾱ)

P (ζ ᾱ)
, (50)

where Pζ (ζ ) denotes the derivative of P(ζ ) with respect to ζ , it follows that

p(ζ ) = 1

α
(K(ζα−1) − K(ζα)), λ(ζ ) = 1

α
(K(ζα−1) + K(ζα) − 1) + C. (51)

The function K(ζ) is defined as

K(ζ) ≡ ζPζ (ζ )

P (ζ )
. (52)

Formulae (51) give explicit expressions of the functions p and λ in terms of the uniformizing
parameter ζ . The constant C is chosen to ensure that

λ ∼ p + O(p−1), as ζ → α. (53)

Straightforward algebra produces the result

C = 1

α
(1 − 2K(α2)). (54)

It was verified in [3] that these formulae are equivalent to those derived by Yu and
Gibbons [25].
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7.2. Second-type reduction

For the second-type reductions, on use of (48) in (11) it follows that

p(ζ ) = 1

α
(K(ζα−1) − K(ζα)), λ(ζ ) = Ã

P (ζβ−1)P (ζα)

P (ζβ)P (ζα−1)
+ C̃ (55)

for some real constants Ã and C̃ chosen so that

λ ∼ p + O(p−1). (56)

Defining P ′(ζ ) to be

P ′(ζ ) =
∞∏

k=1

(1 − q2kζ )(1 − q2kζ−1) (57)

so that

P(ζ ) = (1 − ζ )P ′(ζ ), (58)

an expansion of (55) gives

Ã = − P(αβ)P ′(1)

αP (αβ−1)P (α2)
,

C̃ = 1

α
(1 − K(α2)) + αÃ

d

dζ

(
P(ζβ−1)P (ζα)

P (ζβ)P ′(ζα−1)

) ∣∣∣∣
ζ=α

.

(59)

8. Higher genus reductions

To demonstrate the efficacy of our construction, and how amenable the formulae are to
numerical computation, some higher genus examples are now presented. To do this, we
consider reflectionally symmetric circular domains of connectivity greater than 2. It follows
from section 6 that

G̃0(ζ ;α) = 1

2
log

(
ω(ζ, α)ω(ζ−1, α−1)

ω(ζ, ᾱ−1)ω(ζ−1, ᾱ)

)
. (60)

On use of (28), (60) simplifies to

G̃0(ζ ;α) = log

(
ω(ζ, α)

|α|ω(ζ, ᾱ−1)

)
. (61)

For convenience, we introduce the abbreviated notation

ωα(ζ, α) ≡ ∂

∂α
ω(ζ, α), ω′

α(ζ, α) ≡ ∂

∂α
ω′(ζ, α), (62)

denoting derivatives of ω(ζ, α) and ω′(ζ, α) with respect to their second arguments. It follows
that

∂G̃0

∂α
= − 1

2α
+

ωα(ζ, α)

ω(ζ, α)
,

∂G̃0

∂ᾱ
= − 1

2ᾱ
+

1

ᾱ2

ωα(ζ, ᾱ−1)

ω(ζ, ᾱ−1)
. (63)
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Figure 3. An illustration of the first type of reduction in the genus-2 case. The figures show
the images of the annulus under the conformal mappings (64) with parameter values α = −0.1,

q1 = q2 = 0.05 and δ1 = −δ2 = 1/3.

8.1. First-type reductions

On use of (10) and (61), it follows that the solutions for p(ζ ) and λ(ζ ) for the first type of
reduction are given by

p(ζ ) = − 1

α

(
α

ωα(ζ, α)

ω(ζ, α)
− 1

α

ωα(ζ, α−1)

ω(ζ, α−1)

)
,

λ(ζ ) = − 1

α

(
α

ωα(ζ, α)

ω(ζ, α)
+

1

α

ωα(ζ, α−1)

ω(ζ, α−1)
− 1

)
+ C,

(64)

where we have now taken ᾱ = α. Some algebra, from local expansions of the above functions
about ζ = α, reveals that the real constant C is

C = 1

α

(
2ωα(α, α−1)

αω(α, α−1)
− 1

)
. (65)

To illustrate these uniformizations, and to show how readily the formulae derived here can
be computed in practice, the images of the circular domain Dζ under the mappings p(ζ ) and
λ(ζ ) for typical parameter values in the genus-2 case are shown in figure 3. Similar plots are
shown for the genus-3 case in figure 4.
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Figure 4. An illustration of the first type of reduction in the genus-3 case. The figures
show the images of the annulus under the conformal mappings (66) with parameter values
α = −0.15, q1 = q2 = q3 = 0.05, δ1 = 0.4, δ2 = 0.15 and δ3 = −1/3.

8.2. Second-type reductions

On use of (11) and (61), the solutions for p(ζ ) and λ(ζ ) for the second type of reduction are
given by

p(ζ ) = − 1

α

(
α

ωα(ζ, α)

ω(ζ, α)
− 1

α

ωα(ζ, α−1)

ω(ζ, α−1)

)
,

λ(ζ ) = Ã

(
ω(ζ, β)ω(ζ, α−1)

ω(ζ, α)ω(ζ, β−1)

)
+ C̃,

(66)

where Ã and C̃ are real constants and we have taken ᾱ = α and β̄ = β. Some algebra, from
local expansions of the above functions about ζ = α, reveals that

Ã = ω′(α, α)ω(α, β−1)

ω(α, β)ω(α, α−1)
,

C̃ = −ω′
α(α, α)

ω′(α, α)
+

1

α2

ωα(α, α−1)

ω(α, α−1)
− Ã

d

dζ

(
ω(ζ, β)ω(ζ, α−1)

ω′(ζ, α)ω(ζ, β−1)

) ∣∣∣∣
ζ=α

.

(67)

Figure 5 shows the images of Dζ under the conformal mappings p(ζ ) and λ(ζ ) for some
typical parameter values in the genus-2 case. Figure 6 shows a typical genus-3 case.

Finally, we mention how the above diagrams were constructed. It is necessary, for a
numerical implementation, to truncate the infinite product defining the prime function (19).
This is done in a natural way by including all maps in the set 
′′ up to some chosen level. For
example, the level-2 maps are all those mappings consisting of all compositions of any two
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Figure 5. An illustration of the second type of reduction in the genus-2 case. The figures
show the images of the annulus under the conformal mappings (64) with parameter values
α = −0.15, β = 0.8, q1 = q2 = 0.05, δ1 = 0.15 and δ2 = −1/3.

of the generating maps that do not reduce to the identity. The diagrams here were prepared
by truncating the product at level 4 (i.e. by using all maps up to and including the level-3
maps). It is clear that, provided the moduli of the group are such that the prime function
converges, the Schottky uniformization illustrated above provides a useful and practicable
tool in uniformizing the spectral problem. Furthermore, in terms of it, the modified Green’s
function (61) takes an attractively simple functional form.

9. Discussion

The first reduction type considered here provides a reappraisal of those reductions already
constructed in [25–27]. In the genus-2 case, for example, Baldwin and Gibbons [27] find
formulae for p and λ by considering the associated hyperelliptic curve and inverting a second-
kind Abelian integral on its 
-divisor [26]. In the higher genus case, the same construction
is performed on a stratum of the Jacobi variety of the relevant hyperelliptic curves [27]. The
present work is an alternative to these constructions and yields different, but related, formulae.
An attractive feature of our construction is that many of the conditions that must be explicitly
imposed during the construction given in [25–27] are implicitly and automatically enforced
by the general formulae (10) and (11) expressed in terms of modified Green’s functions.

Of course, while we have elected to use the Schottky model to construct the modified
Green’s functions, other constructions/representations of these functions can be used in
conjunction with formulae (10) and (11). A representation of the modified Green’s function in
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Figure 6. An illustration of the second type of reduction in the genus-3 case. The figures
show the images of the annulus under the conformal mappings (66) with parameter values
α = −0.15, β = 0.6, q1 = q2 = q3 = 0.05, δ1 = 0.4, δ2 = 0.15 and δ3 = −1/3.

terms of the prime form on the Schottky double expressed using Riemann theta functions [32]
is an obvious alternative. Presumably then, (10) will reproduce the formulae, derived using
very different arguments, of Baldwin and Gibbons [27] in the genus-N hyperelliptic case (the
first-type reductions of this paper). It would be of interest to confirm this.

The new formulation here also suggests a reappraisal of reductions of the Benney hierarchy
as a special class of flows in the extended moduli space of analytic curves. This mirrors recent
work in [30, 31] where an identification between exact solutions of the equations governing
Laplacian growth are reinterpreted as special reductions, known as ‘algebraic orbits’, of the
universal Whitham hierarchy. In the latter case, the flows are generated by certain meromorphic
differentials defined on the Schottky double of a multiply connected planar domain (the
associated domains are known as quadrature domains [4, 9]). Here, with respect to the two
reduction types of the Benney hierarchy just considered, the generating differentials dp and dλ

are both second-kind Abelian differentials with two second-order poles (of vanishing residue),
one on each half of the Schottky double of the planar domain Dζ .

It is interesting that it was the association with conformal mappings and the dispersionless
Toda hierarchy [28, 29] that first led to the association of the Dirichlet problem with the
universal Whitham hierarchy [30–32]. Here it is again conformal mappings that have been the
signpost to a theoretical connection between the Benney hierarchy with the Dirichlet problem
in planar domains.

With such a convenient representation of the solutions to the spectral problem at hand, it is
natural now to investigate whether it can be used to facilitate the calculation of the dynamical
evolution of the system. Work on this interesting problem is currently in progress.
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Appendix. Properties of Gj on the boundary circles

In this appendix, properties of the Schottky–Klein prime function are used to establish the
properties of the functions Gj(ζ ;α) given in (31).

First, consider the complex conjugate of Rj(ζ ;α) as defined in (34) for ζ on Cj . There,

Rj(ζ ;α) = ω(ζ̄ , ᾱ)ω(φj (ζ̄ ), φj (ᾱ))

ω(ζ̄ , φj (α))ω(φj (ζ̄ ), α)
. (A.1)

But, for ζ on Cj ,

ζ̄ = φj (ζ ), (A.2)

which implies that, on Cj ,

ζ = φj (φj (ζ )), (A.3)

so that

Rj(ζ ;α) = ω(φj (ζ ), ᾱ)ω(ζ, φj (ᾱ))

ω(φj (ζ ), φj (α))ω(ζ, α)
= 1

Rj(ζ ;α)
. (A.4)

This confirms that

|Rj(ζ ;α)| = 1, on Cj . (A.5)

Consider next points ζ on C0. There,

Rj(ζ ;α) = ω(ζ−1, ᾱ)ω(φj (ζ
−1), φj (ᾱ))

ω(ζ−1, φj (α))ω(φj (ζ
−1), α)

= ω(ζ−1, ᾱ)ω(θj (ζ ), φj (ᾱ))

ω(ζ−1, φj (α))ω(θj (ζ ), α)
, (A.6)

where we have used the fact that ζ̄ = ζ−1 for ζ on C0 and the identity φj (ζ
−1) = θj (ζ ).

But

ω(θj (ζ ), φj (ᾱ))

ω(θj (ζ ), α)
= βj (φj (ᾱ), α)

ω(ζ, φj (ᾱ))

ω(ζ, α)
, (A.7)

where we have used (23), and

ω(θj (ζ
−1), ᾱ)

ω(θj (ζ−1), φj (α))
= βj (ᾱ, φj (α))

ω(ζ−1, ᾱ)

ω(ζ−1, φj (α))
, (A.8)

which implies that

ω(ζ−1, ᾱ)

ω(ζ−1, φj (α))
= 1

βj (ᾱ, φj (α))

ω(φj (ζ ), ᾱ)

ω(φj (ζ ), φj (α))
. (A.9)

On use of (A.7) and (A.9) in (A.6), we get

Rj(ζ ;α) = βj (φj (ᾱ), α)

βj (ᾱ, φj (α))

1

Rj(ζ ;α)
(A.10)
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or

|Rj(ζ ;α)| = |βj (φj (ᾱ), α)|. (A.11)

Finally, consider points ζ on Ck where k 	= j . There,

Rj(ζ ;α) = ω(φk(ζ ), ᾱ)ω(φj (φk(ζ )), φj (ᾱ))

ω(φk(ζ ), φj (α))ω(φj (φk(ζ )), α)

= ω(θk(ζ
−1), ᾱ)

ω(θk(ζ−1), φj (α))

ω(θj ((φk(ζ ))−1), φj (ᾱ))

ω(θj ((φk(ζ ))−1), α)

= βj (φj (ᾱ), α))βk(ᾱ, φj (α))
ω(ζ−1, ᾱ)

ω(ζ−1, φj (α))

ω((φk(ζ ))−1, φj (ᾱ))

ω((φk(ζ ))−1, α)

= βj (φj (ᾱ), α))βk(ᾱ, φj (α))
ω(ζ−1, ᾱ)

ω(ζ−1, φj (α))

ω
(
θ−1
k (ζ ), φj (ᾱ)

)
ω

(
θ−1
k (ζ ), α

) , (A.12)

where, in the last equation, we have made use of (17). But,

ω(ζ, φj (ᾱ))

ω(ζ, α)
= βk(φj (ᾱ), α)

ω
(
θ−1
k (ζ ), φj (ᾱ)

)
ω(θ−1

k (ζ ), α)
. (A.13)

On use of (A.9) and (A.13) in (A.12),

Rj(ζ ;α) = βj (φj (ᾱ), α)βk(ᾱ, φj (α))

βj (ᾱ, φj (α))βk(φj (ᾱ), α)

1

Rj(ζ ;α)
(A.14)

or

|Rj(ζ ;α)| =
∣∣∣∣∣
βj (φj (ᾱ), α)

βk(φj (ᾱ), α)

∣∣∣∣∣ . (A.15)

To summarize all the above results, we conclude that

|Rj(ζ ;α)| =
∣∣∣∣∣
βj (φj (ᾱ), α)

βk(φj (ᾱ), α)

∣∣∣∣∣ , on Ck. (A.16)

Formula (A.16) holds for all j and k provided we adopt the convention that β0(ζ, α) ≡ 1.
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