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New analytical techniques for studying the motion of a point vortex in fluid domains
bounded by straight walls having an arbitrary number of gaps are presented. By
exploiting explicit formulae for the Kirchhoff-Routh path function in multiply
connected circular domains, combined with a novel construction of conformal
mappings from such circular domains to multiply connected slit domains, the
governing Hamiltonians for the motion of a point vortex in a number of physically
interesting fluid regions involving walls with gaps are derived. The vortex trajectories
in several illustrative cases are computed. These examples include finding the vortex
paths around a chain of islands sitting off an infinite coastline, around islands in an
unbounded ocean and around a sequence of islands situated between two headlands.

1. Introduction

In a recent paper, Johnson & McDonald (2004b) have studied the problem of
vortex motion near a wall punctured by a single gap. With no gap present, it is
a well-known result of classical fluid dynamics that a point vortex near an infinite
straight wall travels at constant speed parallel to the wall. This result is most easily
understood by considering the celebrated ‘method of images’ (Milne-Thomson 1972)
in which the streamline condition on the wall is enforced by placing an ‘image’ point
vortex of opposite circulation at the reflected point in the wall. When a gap is present,
Johnson & McDonald (2004b) find that, if the point vortex starts off far from the
gap at a distance of less than half the gap width from the wall, it will travel along the
wall until it eventually penetrates the gap; otherwise, its trajectory will dip towards
the gap but will not go through it.

In a natural extension of this single-gap problem, Johnson & McDonald (2005)
have also examined the more general case of vortex motion near an impenetrable
barrier with multiple gaps. They analyse the case of point-vortex motion near a
wall with two gaps in detail and are able to produce a formula for the governing
Hamiltonian in analytical form. This is done by combining the method of Schwarz—
Christoffel mapping with elements of elliptic function theory. In addition to the
analytical treatment of the point-vortex problem, Johnson & McDonald (2005) go
on to combine conformal mapping methods with well-developed contour dynamics
codes to accurately compute the numerical solution for the motion of vortex patches
in the same fluid domain. Such flow scenarios are of interest since they occur in a
wide range of geophysical situations such as the interaction of Mediterranean salt
lenses (‘Meddies’) with seamounts in the Canary basin (Dewar 2002), or the collision
of North Brazil Current rings with the islands of the Caribbean (Simmons & Nof
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2002), as well as in a variety of other geophysical applications (DiGiacomo & Holt
2001; Nof 1995; Simmons & Nof 2000). The problem of vortex motion in multiply
connected fluid domains is therefore of great interest.

On this subject, Crowdy & Marshall (2005a) have presented a new analytical frame-
work for finding the Kirchhoff-Routh path functions, or Hamiltonians, governing the
motion of N vortices in general multiply connected domains in the special case
when all the circulations around the impenetrable obstacles (or ‘islands’) are zero.
In this special case, they find explicit analytical formulae for the path functions
for point-vortex motion in the canonical class of bounded circular domains (defined
in the next section) of arbitrary finite connectivity. The analysis makes use of a
special transcendental function denoted w(¢, ). When combined with transformation
properties of the path functions under conformal mapping as first unveiled by Lin
(1941) in the multiply connected case, the general formalism developed by Crowdy
& Marshall (2005a4) can be used to study flow domains of interest in applications.
Indeed, Crowdy & Marshall (2005b) have used the new formalism to study point-
vortex motion around an arbitrary finite number of circular islands, thereby extending
an earlier analysis of Johnson & McDonald (2004a) who studied the case of two
circular islands. The treatment of circular islands turns out to be particularly tractable
because the conformal mapping from the bounded circular domains considered by
Crowdy & Marshall (2005a) to the unbounded fluid domains exterior to a collection
of circular islands has a simple analytical form (it is just a Mobius map).

The purpose of this paper is to show how to extend the general formalism presented
by Crowdy & Marshall (20054) to find an analytical framework in which to study the
problem of point-vortex motion in multiply connected domains bounded by straight
walls with multiple gaps (we shall refer to such domains as multiply connected
slit domains). To do so requires the derivation of explicit formulae for conformal
mappings from the bounded circular domains considered by Crowdy & Marshall
(2005a) to these multiply connected slit domains. The key result here is to show
that the required conformal mappings can be constructed using exactly the same
transcendental function w(Z, y) used by Crowdy & Marshall (2005a) to construct the
point-vortex Hamiltonians. This is a surprising result. Having found the formulae for
such conformal mappings, the vortex trajectories in various flow domains of physical
interest are presented in the single-vortex case.

In this way, the present paper complements and extends the recent work of Johnson
& McDonald (20045) and Johnson & McDonald (2005). An important result of the
latter work is that the motion of the centroid of a finite-area vortex patch that is
close to circular is, in many instances, close to that of a point vortex of the same
total circulation, even in the presence of boundary effects. This provides further
motivation for the present study since it is evidence of the usefulness of being able
to readily compute trajectories, within the point-vortex approximation, of vortices in
geometrically complicated domains.

2. Mathematical formulation

Let D, be a bounded circular domain with the outer boundary given by [¢]|=1.
A circular domain is defined to be a domain whose boundaries are all circles.
Henceforth, the circle |¢] =1 will be denoted Cy. Let M be a non-negative integer
and let the boundaries of M enclosed circular disks be denoted {C;|j=1,..., M}.
M =0 corresponds to the simply connected case where there are no enclosed circular
disks. Let the radius of circle C; be ¢g; € R and let its centre be at { =4; € C.
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Point vortex

FIGURE 1. Schematic illustrating the circular pre-image domain D, consisting of the unit
¢-circle with M smaller circular disks excised. The boundaries of the interior circular disks
are denoted {C;|j =1, ..., M}. Their centres and radii are denoted {§;,¢;|j=1,..., M}. The
point vortex is taken to be at the point { =«.

Such a domain is (M + 1)-connected. Figure 1 illustrates an example of a quadruply
connected circular domain.

Let W(¢, @) be the complex potential associated with an incompressible flow in
D, which is irrotational except for a single point-vortex singularity at { =a. Assume
also that all the circulations around the M enclosed circular islands are zero. W(¢, «)
must be analytic (but not necessarily single-valued) everywhere in D, except for a
logarithmic singularity at ¢ =« corresponding to the point vortex. It must also be
such that

Im[W(,a)] =0 on Cy, (2.1)
and
Im[W(¢,a)] =B;(t) onC;, j=1,...,M, (2.2)
where the functions §;(¢) depend possibly on time, but not space. Conditions (2.1)
and (2.2) ensure that all flow boundaries are streamlines. The choice (2.1) provides a
normalization which uniquely determines W (¢, «). The functions {B;(¢)|j =1, ..., M}
are determined (essentially through Kelvin’s circulation theorem) by the zero-
circulation conditions around the islands.

It is demonstrated in Crowdy & Marshall (2005a) that an explicit formula for the

complex potential W(¢, o) satisfying all the conditions above is

_ w(g o e
(e @) =gy loe (w(é“, &-1)w(;—1,a))

where w and w are two transcendental functions defined in Crowdy & Marshall
(2005a) by a pair of infinite products and dependent only on the parameters
{q;.8;lj=1,..., M} determining the circular domain D,. Equation (2.3) is the
complex potential corresponding to a point vortex of unit circulation. Let ¥ be

(2.3)
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the streamfunction associated with the flow. Then

o, o o)
o, a ao(c™!, @)

Now let H®)(a, @) denote the Hamiltonian (or Kirchhoff-Routh path function) for
the motion of the vortex in D,. It is shown in Crowdy & Marshall (2005a) that a
formula for H®)(«, @) is

1
v =Im[W(, o)] = ~in log‘ . (2.4)

1 o(e, )@ (ot o)

; (25)

a? o, a Ho(a !, @)

where the functions o' and @ are also defined in Crowdy & Marshall (2005a).
Equation (2.5) gives an explicit formula for the Hamiltonian of a single vortex in D;.
In order to find the Hamiltonian for motion in domains that are more complicated
than the bounded circular domains of figure 1, it is useful to employ a result of Lin
(1941) showing how the Hamiltonian H¢)(«, &) transforms under arbitrary conformal
mapping of the domain D,. Indeed, if D, maps to a domain D, by means of a
one-to-one conformal map z=z(¢), then the Hamiltonian H%(z,,Z,) in the image
domain D, is
) _ o r? dz(@)
(2) — g©)
H%(z4,74) = HY(a, @) + an log ac
where z, =z(a) and where superscripts on H annotate the respective complex planes
in which H is the relevant Hamiltonian. Explicitly, by combining (2.5) and (2.6), this
takes the form

(2.6)

H(Z)(Zaa ZO!) =

2 o 1 (e, a)o (e, o) (dz(a)>_2 (2.7)

81 C|e? w,a Ve, @) \ d¢

where it should be recalled that the one-to-one conformal mapping z=1z(¢) is
invertible so that, in principle, { can be written as a function of z, ie. ¢ =¢(z),
or as is more relevant for the formula (2.7), a = a(z,).

If the vortex is moving in an unbounded domain where the circulations around
all islands are required to be zero, (2.7) must be altered slightly. First, let z(Z) be
the conformal mapping from D, to the unbounded flow region D.. In order that the
image domain is unbounded, there must be a point in D,, denoted ¢, such that z(¢)
has a simple pole there. In Crowdy & Marshall (2005b) it is shown that the general
form of the Hamiltonian (in a conformally mapped z-plane) for vortex motion in this
case is

~ r? o'(a, )@ (@, e (e, )@ (a !, T) [ dz(a))
(2) - %
H e ) = =g o ola, @ (e, @) (a, wwz(al,iml)( d¢ > ‘ 28

where, again, z, = z(x).

3. Conformal mapping to slit domains

To study the motion of a vortex through gaps in walls it is clearly necessary to find
conformal mappings z(¢) from a circular domain D, to the physical flow region of
interest for use in (2.7) and (2.8). The surprising fact is that conformal mappings to
such slit domains can be constructed using the same special function w(¢, y) already
used in (2.7) and (2.8). Thus, the special function w enters the present analysis in two
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distinct ways: both in the construction of H) in the ¢-plane and in the construction
of the map z(¢) taking D, to D,.

The key conformal mapping to be exploited in all the subsequent examples is given
by the simple form

«(¢) = R2E1) (3.1)
(,l)(é', )/2)

where R € € is a complex constant and y; and y;, are taken to be two distinct points
on the unit ¢-circle. The map (3.1) has some fortuituous properties. First, it maps
=y to z=0 and ¢ =y, to z=o0 in the physical plane. It can further be shown
that it takes the unit ¢-circle to an infinite straight line passing through the origin. It
also maps each of the interior circles {C;|j=1,..., M} to a finite-length radial slit
on rays emanating from the origin z=0. Appendix A features some details, based
on the transformation properties of the special function w(¢, y) given in Crowdy &
Marshall (2005a), of how these properties of (3.1) can be demonstrated. The map
(3.1) will be a basic tool in the construction of all the conformal mappings needed in
the examples to follow.

4. Examples

We will now exploit (3.1) to present examples of the motion of a point vortex around
various geometrical arrangements of straight walls having gaps. In the geophysical
context of oceanic eddy motion, infinite walls have an interpretation as coastlines,
or headlands, while finite-length walls can be interpreted as modelling long, extended
islands.

We restrict attention to the motion of a single point vortex (although the formulae
for the Kirchhoff—-Routh path functions derived by Crowdy & Marshall (2005a) apply
more generally to the multi-vortex problem). It will always be assumed that the point
vortex approaches the island clusters from infinity and that there are no imposed
background flows. Therefore, the flow around the islands is initially trivial and all
round-island circulations are initially zero. By Kelvin’s circulation theorem, these
circulations remain zero at later times — a circumstance automatically encoded in the
formulae for the Hamiltonians just discussed. The motion is completely integrable —
the contours of the (conserved) Hamiltonian give the point-vortex trajectories. In the
following examples, explicit formulae for the Hamiltonian are first constructed and
the trajectories found by plotting its level lines. As in Crowdy & Marshall (200556), the
infinite products defining the function w(Z, y) were truncated at level three (keeping
all maps up to level three and omitting all higher level maps). To check the accuracy
of the truncation, several of the calculations are performed at a higher level of
truncation to ensure that the results are acceptably close.

4.1. Walls off an infinite coastline

The problem of the North Brazil current rings travelling along the Brazilian coastline
to eventually negotiate the island cluster known as the Lesser Antilles motivates
consideration of the situation in which a collection of finite-length walls are situated
off an infinite coastline. Simmons & Nof (2002) consider models of precisely this
kind (but with different governing equations). We take the imaginary axis in the
z-plane to represent the coastline and consider various distributions of finite-length
walls off this coastline in the right-half-plane. This is the domain D,. Given a
distribution of M finite-length walls in D,, the geometrical arrangement of the M
circles {C;|j =1, ..., M} characterizing the pre-image domain D, must be determined.
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FiGURE 2. Distribution of trajectories for a single vortex in the presence of a unit-length slit
situated at unit distance from a coastline.

The conformal mappings from circular domains to slit domains of this type are given
by mappings of the form (3.1). Making the choices

Y= 15 Y2 = _15 R = _17 (41)

then ¢ =1 maps to z =0, { = —1 maps to z =oo while the rest of the unit ¢-circle maps
to the whole of the imaginary z-axis (i.e. the infinite coastline) with interior points
of D, mapping to points in the right-half-z-plane. For a sequence of M finite walls
aligned along the positive real axis in the physical plane, the sequence of pre-image
circles {C;|j =1, ..., M} corresponding to these walls will all be centred on the real
¢-axis. The centres and radii of these pre-image circles are determined by the choices
of the end-point positions of the slits in D,. Let a; and b; >a; be the (specified)
end points of the slit on the positive real z-axis corresponding to the image of the
circle C;. Then the system of 2M equations to be solved for the 2M real parameters
{q;.8;lj=1,..., M} is given by

Z((Sj—i-qj):aj and Z((Sj—qj')=bj, ]=1,,M (42)

These nonlinear equations are readily solved using Newton’s method.

Figure 2 shows the distribution of trajectories for point-vortex motion around a
single unit-length island situated unit distance off an infinite coastline. In this case the
flow domain is doubly connected so, without loss of generality, the domain D, can
be taken to be the annulus p < |¢| <1 (so that we have taken §; =0 and g; = p). As
shown explicitly by Crowdy & Marshall (2005b), in such a case, the function w(¢, y)
is given by

o, y)=—yC P/, p) (43)
where

P(z.p)=1—0) ] —p*0)1 —p*c™) (4.4)

k=1
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FIGURE 3. Graph of p, s; and d; against length of slit for the case of a single slit sitting off
an infinite coastline. p is the radius of the inner circle of the annulus D,, s; is the distance
of the separatrix trajectory from the coastline far up-coast of the island and d; is the point
between the coastline and the island at which the two parts of the separatrix trajectory cross
each other.

and C = [],_,(1 — p*), so that the first transformation in the sequence (4.10) below
is

__ Pp)
6(g) = RP(—C,P)'

When far away from the island, the vortex travels along trajectories that are nearly
parallel to the coastline since the vortex has yet to feel the influence of the island and
simply evolves under the effects of its ‘image’ reflected in the coastline. As the vortex
gets closer to the island, there are two possible eventualities: either it passes through
the gap between the island and the coastline or it diverts around the island avoiding
the gap altogether. Let s; denote the distance from the coastline (far up-coast of the
island) of the separatrix trajectory which divides the two possible sets of trajectories.
A quantity of practical interest is how this critical distance s; from the coastline
depends on the island’s length and position. Such quantities are readily computed
using the formulation above. For example, let us fix one end of the island to be at
unit distance from the coastline and consider islands of differing lengths. Figure 3
shows graphs of the following quantities as functions of the length of the island: the
value of s; just defined, the position d; (between 0 and 1) on the real axis at which
two parts of the separatrix trajectory cross each other and the parameter p.

To illustrate the flexibility of the methods, figure 4 shows the case of two unit-length
islands; the one nearest to the coastline is unit distance from it and is separated from
the second island by distance 2.5. In this example there are now two circles, C; and
C,, inside the unit ¢-disk because D, is now triply connected.

There is no restriction on how many offshore islands can be studied using this
approach. Figure 5 shows just the critical trajectories for the case of three, four and

(4.5)
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FIGURE 4. Trajectories for a single vortex in the presence of two unit-length slits separated by
distance d = 2.5. The slit nearest to the coastline is unit distance from it. The far-field distances
of the critical trajectories from the coastline are 0.64 and 3.41.

five unit-length islands off a coastline, again separated from the coastline, and from
each other, by unit distance. Such trajectories are obtained simply by adding more pre-
image circles in the circular pre-image domain D, and solving a system of nonlinear
equations to ascertain the relevant centres and radii of the circles {C;|j=1,..., M}.

The offshore islands need not necessarily lie along the real axis. Figure 6 shows the
distribution of trajectories around two unit-length islands off a coastline each making
an angle of m/6 to the positive real axis. Again, one makes use of the general mapping
formula (3.1) — it is simply required to solve a small system of nonlinear equations
for the centres and radii of the two pre-image circles C; and C, corresponding to the
two offshore islands.

When the slit images of all the inner circles are aligned along the positive real z-axis
it can be argued, on grounds of symmetry, that the pre-image circles must similarly
be centred on the real axis in the ¢-plane so that the equations to be solved are
precisely those given in (4.2). However, when the slit images are not aligned with the
positive real axis it is no longer known a priori which two points on any pre-image
circle map to the end points of the slit in the z-plane. Let the end points of the slit
in the z-plane be

e, be?, (4.6)
where the real parameters a;, b; and ¢; are specified. Let the two pre-image points
on C; corresponding to the end points of the slit be

8] —i—qjei’/, Sj —}—qjei‘vf, (47)

where r; and s; are real parameters. The latter parameters must be found as part
of the solution. The required additional equations are provided by the fact that, at
these pre-image points, the derivative of the conformal mapping must vanish since
the argument of the image undergoes a change of 2w as ¢ passes through them. Thus,
the equations to be solved in this case for the parameters {g;,8;|j=1,..., M}, as
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FiGure 5. Critical trajectories for a single vortex in the presence of three, four and five
unit-length slits separated by distance d =1 sitting off an infinite coastline. The far-field

distances from the coastline of the critical trajectories are 0.64, 1.89 and 3.29 (3 slits), 0.64, 1.88,
3.25 and 4.70 (4 slits) and 0.64, 1.88, 3.25,4.70 and 6.12 (5 slits).

well as the subsidiary parameters {r;,s;|j=1,..., M}, are
ir; dZ ir;
12(8; + g, = aj, E(S.i +4q,e")| =0,
0 (4.8)
|Z(5_,‘ + q.,-e”f)| = bj, E(Sl + q_,-e”‘f) = O,

together with the real equation
¢; = arg[—1] + %arg[ — B;(1, —1)} (4.9)

which derives from a general formula, in terms of the conformal mapping parameters
appearing in (3.1), for the angle made by the slit (corresponding to the image of
C;) with the positive real z-axis. See Appendix A for further details of this general
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FIGURE 6. Trajectories for two slits of unit length making angles of +r/6 with
the horizontal axis.

formula. Note that (4.8) and (4.9) represent five real equations for the five real
unknowns, i.e. Re[§;], Im[§;], g;, r; and s;.

4.2. Flow past a flat plate above a wall

Elcrat, Hu & Miller (1997) have exploited the doubly connected Schwarz—Christoffel
formula to study the flow past objects, such as an inclined flat plate, in an infinite
channel (modelling a wind tunnel) including examples where the upper wall of the
channel is far from the object. Such a configuration is a special case of the situation
just considered. Figure 7 shows the critical vortex trajectories around a unit-length
flat plate inclined at various angles to the lower wall (i.e. this was the ‘coastline’ in
the examples of the previous section, but we have now rotated the figures so that this
infinite boundary is horizontal in order to more closely resemble the lower wall of a
wind tunnel). In figure 7, the end of the finite-length slit closest to the wall is taken to
be at €™ where 6 is taken to have the values 47t/10, 31/10, 21t/10 and ©t/10. The
slit mappings developed here can be considered as special cases of doubly connected
Schwarz—Christoffel mappings but they do not require the usual Schwarz—Christoffel
mapping formulae given in Elcrat et al. (1997) for their construction. Johnson &
McDonald (2005) also make use of Schwarz—Christoffel mapping in their studies of
point vortex motion past an infinite wall with two gaps. It should also be pointed out
that, since this flow region is doubly connected, in principle it is possible to include
the effects of background flows and non-zero circulation around the flat plate as in
Elcrat et al. (1997).
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FiGUre 7. Critical trajectories for a finite flat plate making angles of 4r/10, 37/10, 2%/10
and n/10 with a wall.

4.3. Walls in an unbounded ocean

Now consider the case where the walls are not of infinite length but where several
finite-length walls are placed in a line, with gaps between them, in an unbounded
ocean. A conformal map from a circular region D, must be found. Its construction
is given by a composition of conformal mappings which includes the new mapping
(3.1). The sequence of mappings is

_ p 0 1)
61(¢) = Rw(;, —1
_1=4
§2(§1) - 1+ é’] ’ (410)

i1,
5(& =1\5 &,

where R is now assumed to be real (and, in fact, negative) and all the circles
{C;lj=1,..., M} are taken to be centred on the real {-axis. A schematic illustrating
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FiGURE 8. Schematic showing the composition of conformal mappings (4.10) to two slits in
an unbounded ¢3-plane.

this composition of mappings in the special case of a doubly connected region is
shown in figure 8. D, can be taken to be the annulus p < |¢| < 1. The first mapping
takes this annular region to the right-half-plane cut by a finite slit along the real
{1-axis, exactly as in §4.1. The second Mobius mapping takes this region back to
the unit ¢,-circle similarly cut inside by a finite slit along the real axis. The third
Joukowski mapping maps the interior of the unit ¢,-circle to the whole of the ¢3-plane
exterior to two finite slits along the real ¢3-axis. Note that if the pre-image region
contains additional circles (centred on the real ¢-axis) then the same sequence of
mappings (modified only by use of the relevant choice of w in the mapping ¢(¢))
will produce additional finite slits along the real ¢3;-axis. Note that the sequence of
mappings (4.10) always maps the unit circle to a finite slit between +1/2 on the real
¢s3-axis. The ¢3-plane can be taken to correspond to the required physical z-plane.

For example, consider the case of two such walls. The unbounded fluid region
exterior to the two slits is a doubly connected region. The image of the unit circle is
the slit between +1/2 on the real z-axis and the values of the two real parameters R
and p can be chosen in order to specify the end points of the second slit corresponding
to the image of |¢|=p.

Since this is an unbounded flow it is necessary to use formula (2.8) for the
Hamiltonians. This means that the circulation around each of the islands is zero. It
is straightforward to identify the interior point {,, mapping to z =o0 by inverting the
sequence of mappings (4.10). With ¢,, known, the form of the Hamiltonian (2.8) is
then used to compute the trajectories.

Figure 9 shows typical point-vortex trajectories around two equal-length islands,
separated by unit distance, in an unbounded ocean. R and p are chosen so that
the end points of the island corresponding to |{|=p are at —3/2 and —5/2. It is
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FIGURE 9. Vortex trajectories around two unit-length slits, separated by unit distance, in an
unbounded ocean.

clear that there are separatrix streamlines between regions of closed streamlines that
encircle each island individually and regions of closed streamlines encircling both
islands. Similar vortex trajectories for greater numbers of islands can be computed
in a similar way by changing the number of pre-image circles {C;|j =1,..., M} and
using the appropriate function w(¢, y) in (4.10).

4.4. Two headlands with intermediate islands

Johnson & McDonald (2005) have discussed the general problem of vortex motion
around a chain of islands sitting between two headlands. In Johnson & McDonald
(2004b) the problem of point-vortex motion through a single gap in an infinite straight
wall is solved explicitly while the generalization to two gaps is solved in Johnson &
McDonald (2005). We now show how to solve the general case of any number of
gaps.

It is necessary to find a conformal mapping from D, to the fluid region exterior
to an infinite wall with a number of gaps. Again, this follows from the composition
of mappings (4.10) but with an additional Mo6bius mapping (of the final 3-plane)
having a simple pole on the slit between +1/2. This maps the unit ¢-circle to
two headlands (both going off to infinity) with two finite end points on the real
axis.

It is natural to consider first the case of a symmetrically disposed chain of islands
between the two headlands. It is possible to verify that provided we choose

R=—1 (4.11)

in the sequence (4.10) and take the circles {C;|j=1,..., M} to be reflectionally
symmetric about both the real and imaginary ¢-axes then any two points ¢ = +a will
map to two equal and opposite points in the £3-plane, i.e.

&3(—a) = —t3(a). (4.12)

Thus the final image of the sequence (4.10) is a distribution of slits on the real ¢3-axis
which are symmetrically disposed with respect to the origin ¢3 =0. To ensure that the
image of the unit circle (on which 1 =0) corresponds to the two headlands, consider
an additional Mobius mapping of the ¢3-plane given by

() = 2; (4.13)

The slit corresponding to the unit ¢-circle now maps to two (symmetric) headlands
going through the point at infinity with end points at +1 and corresponds to a
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FiGURE 10. An infinite wall with two equal gaps of length 0.2,0.4,0.8 and 1.4. The edges
of the infinite walls are at +1. This figure should be compared with figure 7 of Johnson &
McDonald (2005).

boundary on which ¢ =0. As discussed by Johnson & McDonald (2005), the fact
that the two headlands have the same value of i corresponds to there being no
net flux between the two sides of the domain separated by the punctured wall, a
situation that is certainly satisfied if both sides of the punctured wall are closed
basins. The images of all the other interior circles are symmetrically disposed slits
between the two headlands. The final composed form of the mapping takes the simple
form

wz(gv _1) - wz(gv 1)

= . 4.14
= e DT e D (1
In figure 10 we take the wall with a gap between —1 <x < 1, as considered by

Johnson & McDonald (20040), and examine the effect of ‘growing’ another segment
of wall at the centre of the gap at x =0. We consider here the case of a wall with two
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FIGURE 11. Critical trajectories for vortex motion around an infinite wall with three gaps. If
the vortex is closer than unit distance from the wall, it travels through the first gap, if it is
between unit distance and distance 1.8 from the wall it travels through the middle gap. If it is
further than 1.8 from the wall, it travels through neither gap. The walls between the headlands
are taken to be between —1.5 and —0.5 and between 0.5 and 1.5. The headlands extend up to
—2.5 and 2.5.

symmetric gaps. The function w(¢, y) is again given by (4.3) so that the first mapping
21(¢) is again given by (4.5).

When the new segment of wall is small, the critical trajectories tend to y=1 as
x — +oo. This is consistent with the results of Johnson & McDonald (2004b) where
it is shown that vortices that start off less than half the gap width from the wall
penetrate the gap. As the added segment of wall grows larger, the far-field height of
the critical trajectory decreases. As might be expected, when the added segment of
wall is almost filling the original gap so that the two gaps are now very small and
well-separated, the critical trajectories have moved very close to the wall. As the gaps
vanish, the trajectories degenerate to straight lines parallel to the wall.

Johnson & McDonald (2005) include graphs showing the through-gap flux as a
function of the length of the intermediate island. It is not necessary to reproduce such
graphs here, only to mention that explicit analytical formulae exist for the inter-island
fluxes within the present formulation and these are recorded, for completeness, in
Appendix B.

There is no difficulty in adding more gaps. Figure 11 shows the critical vortex
trajectories in the case of a wall with three symmetric gaps. The fluid domain is now
triply connected and the circular pre-image domain is the unit circle with two smaller
circular disks excised. There are now two distinct critical trajectories. If the vortex far
away from the gaps is within approximately unit distance from the wall it will travel
through the first gap in the wall and return whence it came (but on the other side of
the wall); if it is farther from the wall, but closer than a distance of approximately 1.8,
it will travel through the central gap in the wall and also return whence it came. If it is
any farther from the wall it will not penetrate any of the gaps. It by-passes all of them
and eventually returns to the trajectory it would have followed in the absence of any
gaps.

Finally, if a non-symmetric distribution of walls between the headlands is of interest,
one proceeds in the same manner as above but now the distribution of pre-image
circles {C;|j=1,..., M} will not necessarily be reflectionally symmetric about both
real and imaginary ¢-axes. All circles should, nevertheless, still be centred on the real
axis. Their centres and radii are found by solving a system of equations analogous to
(4.2).
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5. Discussion

This paper has demonstrated the efficacy and flexibility of a new analytical method
for calculating the motion of a point vortex in fluid domains bounded by straight
walls with multiple gaps. By combining analytical expressions for the Kirchhoff—
Routh path function in multiply connected circular pre-image domains D, with a
transformation property of this function under conformal mapping to a multiply
connected slit domain D,, the single-vortex motion around a variety of different
island configurations has been considered. The conformal mappings have themselves
been constructed by strategic use of the conformal mapping (3.1).

The formulation presented above is very general and allows a large variety of
interesting flow domains to be treated. However, there are a number of physical
features still to be incorporated into the analytical formulation and these matters
are currently under investigation. First, it is important to be able to incorporate
background flows (e.g. uniform flows at infinity). The difficulty is then to find the
complex potential, Wz(z) say, having the appropriate singularity at physical infinity
and satisfying all the streamline conditions on the various boundaries. It is also
desirable to be able to include the case where the round-island circulations are not
necessarily zero but fixed (by Kelvin’s circulation theorem) to be some non-zero
value throughout the motion. A generalized formulation is needed to incorporate
this case. It should be noted that, in the doubly connected case, the incorporation of
background flows and non-zero round-island circulations has already been performed
(see e.g. Johnson & McDonald 2004a).

Another extension is to distributed vorticity. While attention has been restricted here
to the motion of a single point vortex, the formulation also provides explicit formulae
for the Hamiltonians relevant to the general N-vortex problem in the same domains.
Thus, one idea for modelling distributed vorticity is to use the ‘vortex cluster’ model
in which a collection of point vortices is chosen to model a vortical region. Dewar
(2002) has employed this idea in modelling geophysical flows. Another model is that
of a uniform vortex patch. While the preceding formulae for the Hamiltonians are no
longer relevant to this case, certain aspects of the conformal mapping ideas may be
of use: Johnson & McDonald (2004b) and Johnson & McDonald (2005) have shown
how the well-developed numerical codes of contour dynamics (e.g. Dritschel 1988) can
be strategically combined with elements of conformal mapping theory to accurately
compute the motion of vortex patches around topography. So far, these only seem
to have been applied to simply and doubly connected regions. However, the methods
involve finding an irrotational correction to a vortical flow computed using the
usual free-space Green’s function (on use of regular contour dynamics codes). These
irrotational corrections can be conveniently computed using conformal mappings
from circular pre-image regions to the flow domain of interest and by making use of
fast Fourier transforms. We fully expect that such methods can similarly be employed
to higher connected regions using conformal mapping techniques from the multiply
connected circular domains in this paper. Wegmann (2001) has shown, for example,
the efficacy of a method of ‘successive conjugation’ in solving very general classes of
Riemann—Hilbert problems on such multiply connected circular domains of the type
considered here.

The efficacy of our method has been demonstrated by a series of examples. It
should be pointed out, however, that we have proceeded under the assumption that
the infinite products defining the functions w and w converge. In fact, these products
do not converge for all choices of the parameters {g;,8,;[j=1,..., M} — broadly
speaking, their convergence depends on the distribution of circles {C;|j=1,..., M}
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in the pre-image plane. If the circles are ‘well-separated’ (in a sense that will be left
imprecise here) then good convergence is assured. There is a large region of the
parameter space {q;,8;|j=1,..., M} where the convergence is completely adequate
for practical purposes, as we have demonstrated by example. This region of parameter
space is large enough to capture all of the physically interesting fluid domains
investigated herein.

J. S. M. acknowledges the support of an EPSRC studentship. The authors thank
Dr N. Robb McDonald for providing a preprint of Johnson & McDonald (2005).

Appendix A. Properties of the function (3.1)

Full details of the properties of the function w(¢, y) can be found in Crowdy &
Marshall (2005a4) and, in what follows, we adopt the notation used there. These
properties can be used to demonstrate that the function (3.1) behaves in the manner
described in § 3. In this Appendix, we briefly indicate how this can be done (without
giving full details of the manipulations involved) and present the final form of some
useful formulae (from Crowdy & Marshall 2005a) needed in the present paper.

First, the function w(¢, y) has a simple zero when ¢ = y. This immediately implies
that (3.1) has a simple zero at { =y; and a simple pole at ¢ =1y,. Next, it can
be shown using transformation properties of w(¢, y) given in Crowdy & Marshall
(2005a) that (3.1) has constant argument on all the circles {C;|j =0, 1, ..., M} (this
can be done by considering the complex conjugate of (3.1) for values of ¢ on the
circles {C;|j=0,1,..., M} and showing that they are inversely proportional to (3.1)
on these circles). Since (3.1) has a pole and a zero on the unit circle, the image of
the unit circle under this map is therefore an infinite straight line going through the
origin and infinity while the image of each interior circle {C;|j =1, ..., M} is a finite
radial segment. An explicit formula for the angles made by the straight line image of
the unit circle to the positive real axis can be shown (again, using the transformation
properties of w(¢, y)) to be

1 1
arg[R] — Earg [;ﬁﬂ and arg[R] — iarg Bﬂ + 7 (A1)

(where these differ simply by ). The angle to the positive real axis made by the finite
slit image of circle C; is

1
arg[R] + sarg [”ﬁ,-(yl, Vz)] (A2)
V2
where
Bi(v1. ) H = b = 64D (A3)

(1 —9k(A ))()’2 0k (B;))

As explained in Crowdy & Marshall (2005a), the product defining B; is taken over all
Moébius mappings 6, which do not have a (positive or negative) power of 6; on the
right-hand end while A; and B; are the two fixed points of the mapping 6; so that
they are the two roots of the quadratlc equation £ =6,(¢). It is then poss1ble to write

0.(¢c)— B: =

J({) ] — I,LjelK,’ é‘ ]

0;(¢)— A, {—A;
where wu;, x; are real. The two roots A; and B; are distinguished by the fact that
| <1.

(A4)
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Appendix B. Inter-island fluxes

A useful result, derived in detail in Crowdy & Marshall (20054a), is a formula for
the inter-island fluxes. Let #;; denote the flux between the islands corresponding to
circles C; and C;. Then, when the point vortex is at position { =«, this inter-island
flux is given by the formula

1 Bia, a™")
Fij=——log—"F"— B1
1T T4 % B@ o) (BD)
where f; is given in (A 3) and it is understood that 8y =1 while if i (or j) is between
1 and M an expression for g; (or B;) follows from (A 3).
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