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Computing the Schottky-Klein Prime Function
on the Schottky Double of Planar Domains
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Abstract. A numerical algorithm is presented for the computation of the
Schottky-Klein prime function on the Schottky double of multiply connected
circular domains in the plane. While there exist classical formulae for the
Schottky-Klein prime function in the form of infinite products over a Schot-
tky group, such products are not convergent for all choices of multiply con-
nected circular domains. The prime function itself, however, is a well-defined
function for any multiply connected circular domain. The present algorithm
facilitates the evaluation of this prime function when the planar domains are
such that the classical infinite product representation is either not convergent
or so slowly convergent as to be impracticable.

Keywords. Schottky-Klein prime function, Schottky double, multiply con-
nected.
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1. Introduction

The Schottky-Klein prime function is an important transcendental function with
a primary role in solving problems involving multiply connected domains. It has,
however, received almost no attention in the applied mathematics literature until
relatively recently.

The prime function is documented in Chapter 12 of H. Baker’s now classic 19th
century monograph [1] and arises again in the memoir by Hejhal [16]. In terms
of applications, it has recently been demonstrated that the prime function arises
naturally in a variety of important applied mathematical problems. For exam-
ple, Crowdy and Marshall [7] have shown how to construct a class of domains
called multiply connected quadrature domains — a class of domains that arise,
for example, in the field of fluid dynamics [5] — by expressing the conformal
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mapping z(ζ) from a circular preimage domain to these domains as a ratio of
products of Schottky-Klein prime functions, i.e.,

(1) z(ζ) = R

∏N
k=1 ω(ζ, αk)∏N
k=1 ω(ζ, βk)

where {αk | k = 1, . . . , N} are the zeros and {βk | k = 1, . . . , N} are the poles of
the mapping. Provided the zeros and poles satisfy certain conditions, (1) is one
way of representing a function that is automorphic with respect to a Schottky
group (the notion of a Schottky group will be introduced later). Indeed, the very
fact that meromorphic functions which are automorphic with respect to a Schot-
tky group can be factorized into ratios of products of this basic transcendental
function is precisely why it is dubbed the “prime function”. It is the generaliza-
tion, to higher genus Riemann surfaces, of the simple function ω(ζ, γ) = (ζ − γ)
relevant to the (genus zero) Riemann sphere. It is well-known that polynomi-
als and rational functions, which are meromorphic functions on the Riemann
sphere, can be written as products (or ratios of products) of the prime function
ω(ζ, γ) = (ζ − γ) and (1) is really a generalization of this result to higher-genus
Riemann surfaces.

Another application of the Schottky-Klein prime function arises in the solution
of a long-standing problem in classical function theory: the problem of find-
ing a generalized Schwarz-Christoffel formula to a multiply connected polygonal
region. Crowdy [4] has shown that the Schwarz-Christoffel mapping from a
bounded (M + 1)-connected circular region Dζ to a bounded (M + 1)-connected
polygonal region can be written in the form

z(ζ) = A + B

∫ ζ

SM(ζ ′)

n0∏
k=1

[ω(ζ ′, a
(0)
k )]β

(0)
k

M∏
j=1

nj∏
k=1

[ω(ζ ′, a
(j)
k )]β

(j)
k dζ ′

where ω is Schottky-Klein prime function and

SM(ζ) =


1 M = 0,
1

ζ2
M = 1,

ωζ(ζ, α)ω(ζ, ᾱ−1)− ωζ(ζ, ᾱ−1)ω(ζ, α)∏M
j=1 ω(ζ, γ

(j)
1 )ω(ζ, γ

(j)
2 )

M ≥ 2.

DeLillo, Elcrat and Pfaltzgraff [12] have also considered this important prob-
lem although from a different, but related, perspective. Further, Crowdy and
Marshall [10] have shown that there are elegant formulae, in terms of the prime
function, for the conformal mappings from multiply connected circular domains
to all the other canonical multiply connected slit domains appearing in the clas-
sical literature [18, 19].

Beyond conformal mapping theory, there are applications of the Schottky-Klein
prime function in potential theory. For example, the classical modified Green’s
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function G0(ζ, α) for Laplace’s equation in a multiply connected circular domain
can be written concisely in terms of the prime function. In [8] it is shown that

G0(ζ, α) = − log

∣∣∣∣ ω(ζ, α)

αω(ζ, ᾱ−1)

∣∣∣∣ .
This function has important applications, for example, to the fluid dynamical
problem of point vortex motion in geometrically complicated (multiply con-
nected) domains [9]. Furthermore, the standard first-type Green’s function in
the domain, as well as the harmonic measures of the domain, also have explicit
representations in terms of the prime function [11].

All this evidence points to the primary role played by the Schottky-Klein prime
function when performing analysis involving multiply connected domains. It is
therefore a matter of some considerable interest and importance to be able to
readily compute this prime function. One way to define the prime function is by
means of a classical infinite product formula recorded, for example, in Chapter 12
of Baker’s monograph on Abelian functions [1]. However, this infinite product
does not always converge; there are usually restrictions on the multiply connected
domain (or the Schottky group) required in order to ensure convergence. It
should be emphasized, however, that the prime function is a well-defined (indeed
a uniquely defined) function for any multiply connected circular domain [16]. It
is therefore a pressing matter to be able to find alternative ways to evaluate this
important function and try to divorce ourselves from a dependence on an infinite
product formula that does not always converge and, even when it does, can
converge so slowly as to render its use in applications impracticable, especially
if accuracy to a large number of digits is required.

This is the aim of the present paper. Here we present a robust numerical algo-
rithm to compute the Schottky-Klein prime function that does not require the
convergence of a product or sum over a Schottky group. Instead, the algorithm is
based on representing the prime function (and some subsidiary functions, as will
be seen) in terms of Fourier-Laurent expansions about the centres of the circles
making up the circular domain. Numerical tests of the validity of our algorithm
are presented in Section 5.

2. The Schottky-Klein prime function

Let Dζ be the multiply connected circular domain consisting of the unit disk
in the ζ-plane with M smaller circular disks excised. Let the unit circle be
denoted C0 and the boundaries of the M enclosed circular disks be denoted
{Cj | j = 1, . . . ,M}. Let the radius and centre of Cj be denoted qj and δj

respectively.

First define M Möbius maps {φj | j = 1, . . . ,M} corresponding to the conjuga-
tion map for points on the circle Cj. That is, if Cj has equation

|ζ − δj|2 = (ζ − δj)(ζ̄ − δ̄j) = qj
2
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then

ζ̄ = δ̄j +
qj

2

ζ − δj

and so

φj(ζ) ≡ δ̄j +
qj

2

ζ − δj

.

If ζ is a point on Cj then its complex conjugate is given by ζ̄ = φj(ζ).

Next, introduce the Möbius maps

θj(ζ) ≡ φj(ζ
−1) = δj +

qj
2ζ

1− δ̄jζ
.

Let C ′
j be the circle obtained by reflection of the circle Cj in the unit circle

|ζ| = 1 (i.e. the circle obtained by the transformation ζ 7→ ζ̄−1). Figure 1
shows a schematic in a quadruply connected case. It is easily verified that the
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Figure 1. Schematic illustrating the circles Cj and C ′
j in a

quadruply connected case (M = 3). Each of the three circles
{Cj | j = 1, 2, 3} is an a-cycle. The three b-cycles are also shown.

image of the circle C ′
j under the transformation θj is the circle Cj. Thus, θj
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identifies circle C ′
j with circle Cj. Since the M circles {Cj | j = 1, . . . ,M}

are non-overlapping, so are the M circles {C ′
j | j = 1, . . . ,M}. The (classical)

Schottky group Θ is defined to be the infinite free group of mappings generated
by compositions of the M basic Möbius maps {θj | j = 1, . . . ,M} and their
inverses {θ−1

j | j = 1, . . . ,M} and including the identity map. Let the radius
and centre of C ′

j be denoted q′j and δ′j respectively. It is easy to show that

q′j =
qj

||δj|2 − qj
2|

, δ′j =
δj

|δj|2 − qj
2
.

Consider the (generally unbounded) region of the plane exterior to the 2M cir-
cles {Cj, C

′
j | j = 1, . . . ,M}. Let this region be called F . F is known as the

fundamental region associated with the Schottky group generated by the Möbius
maps {θj | j = 1, . . . ,M} and their inverses. This is because the entire plane is
tesselated with copies of this fundamental region obtained by mapping F by the
elements of the Schottky group. This fundamental region can be understood as
having two “halves” — the half that is inside the unit circle but exterior to the
circles Cj is the domain Dζ , the other half is the region outside the unit circle
and exterior to the circles C ′

j.

These two halves of F , one just a reflection through the unit circle of the other,
can be viewed as a model of the two “sides” of a compact (symmetric) Riemann
surface associated with Dζ known as its Schottky double. The genus of this
compact Riemann surface is M . Indeed, Baker [1] discusses how the circles Cj

(or, equivalently, the identified circles C ′
j) can be understood, in the language of

Riemann surface theory, as M a-cycles on a genus-M Riemann surface; further,
any line joining a pair of identified points on Cj and C ′

j can be viewed as a b-cycle
(there are also M of these). The schematic in Figure 1 illustrates the a- and b-
cycles for the case shown (see Baker [1] or Farkas & Kra [13] for a definition of the
a and b-cycles associated with a compact Riemann surface). It is also well-known
[13] that any compact Riemann surface of genus M also possesses exactly M
holomorphic differentials which we shall here denote {dvj(ζ) | j = 1, . . . ,M}.
The functions {vj(ζ) | j = 1, . . . ,M} are the integrals of the first kind and each is
uniquely determined, up to an additive constant, by their periods around the a-
and b-cycles. These functions are analytic, but not single-valued, everywhere
in F . Let ak denote the k-th a-cycle (which can be taken to be the circle Ck)
and let bk denote the k-th b-cycle (which can be taken to be any line joining
identified points on Ck and C ′

k). Here we normalize the holomorphic differentials
so that ∮

ak

dvj = δjk,

∮
bk

dvj = τjk

for some set of constants τjk. Gustafsson [15] has considered the Schottky double
in his analysis of multiply connected quadrature domains.

Armed with a normalized basis of a and b-cycles, the M integrals of the first
kind and the Schottky group Θ, we have now set up all the necessary machinery
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to be able to define the Schottky-Klein prime function. The following theorem
is established in Hejhal [16]; it holds for any compact Riemann surface, not just
the Schottky double of a planar domain considered here:

Theorem. There is a unique function X(ζ, γ) defined by the properties:

(i) X(ζ, γ) is analytic everywhere in F .
(ii) For γ ∈ F , the function X(ζ, γ) has a second-order zero at each of the

points {θ(γ) | θ ∈ Θ}.
(iii) For γ ∈ F ,

(2) lim
ζ→γ

X(ζ, γ)

(ζ − γ)2
= 1.

(iv) For j = 1, . . . ,M ,

(3) X(θj(ζ), γ) = exp(−2πi(2(vj(ζ)− vj(γ)) + τjj))
dθj(ζ)

dζ
X(ζ, γ).

Hejhal [16] then defines the Klein prime function ω(ζ, γ) (or what we will call,
following Baker [1], the Schottky-Klein prime function) as the square root of this
function, i.e.,

ω(ζ, γ) = (X(ζ, γ))1/2

where the branch of the square root is chosen so that ω(ζ, γ) behaves like (ζ−γ)
as ζ → γ.

The challenge here is to find explicit representations of the M integrals of the first
kind {vj(ζ) | j = 1, . . . ,M}. Given these, the quantities τjj can be determined
and the theorem just stated used to determine X(ζ, γ), and hence ω(ζ, γ).

3. Integrals of the first kind

Let {Ωk(ζ, ζ̄) | k = 1, . . . ,M} be the M harmonic measures associated with the
circular domain Dζ . By definition, Ωk(ζ, ζ̄) is a harmonic function in Dζ and
satisfies the boundary conditions

Ωk(ζ, ζ̄) =

{
1 on Ck,

0 on Cj, j 6= k.

Let the harmonic conjugate function to Ωk(ζ, ζ̄) be Hk(ζ, ζ̄). Then the M func-
tions v̂k(ζ) defined by

v̂k(ζ) ≡ Hk(ζ, ζ̄) + iΩk(ζ, ζ̄)

are analytic (but not single-valued) functions in Dζ .

Consider now some linear combination of the functions {v̂k(ζ) | k = 1, . . . ,M}
given by

vk(ζ) =
M∑

j=1

Qkj v̂j(ζ)
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where the coefficients {Qkj} are real. Since vj is a (real) linear combination of
the functions {v̂j(ζ) | j = 1, . . . ,M} it follows immediately that

Im(vj) = 0, on C0.

Equivalently, on C0,

(4) vj(ζ
−1) = vj(ζ)

where we have used the fact that ζ̄ = ζ−1 on C0. Being a relation between
functions of ζ, (4) can be analytically continued off C0. In particular, (4) can
be used to deduce that vj(ζ) extends to an analytic function everywhere in the
fundamental region.

We now examine whether it is possible to pick the coefficients {Qkj} in order to
satisfy the normalization conditions that, for each k = 1, . . . ,M ,

(5)

∮
Cm

dvk = δkm, m = 1, . . . ,M

where δkm denotes the Kronecker delta. Observe that, on use of the single-
valuedness of Ωk and the Cauchy-Riemann relations, conditions (5) can be rewrit-
ten in the following form:

δkm =

∮
Cm

dvk =

∮
Cm

M∑
j=1

Qkj dv̂j =

∮
Cm

M∑
j=1

Qkj d(Hj + iΩj)

=

∮
Cm

M∑
j=1

Qkj
∂Hj

∂s
ds =

∮
Cm

M∑
j=1

Qkj
∂Ωj

∂n
ds

=
M∑

j=1

Qkj

∮
Cm

∂Ωj

∂n
ds = −2πQkjPjm

(6)

where the square matrix P has components

Pjm ≡ − 1

2π

∮
Cm

∂Ωj

∂n
ds, j, m = 1, . . . ,M.

It follows from (6) that

(7) −2πQ = P−1.

The matrix P is precisely the same matrix introduced at the end of Schiffer
[19, §1] who shows that it has a well-defined inverse and that it is positive definite.
It follows that the coefficients {Qkj} for which (5) is satisfied exist and are
uniquely defined by (7). As a result, the differentials {dvj | j = 1, . . . ,M} have
the required normalization with respect to the a-cycles.

With the functions {vj | j = 1, . . . ,M} now well-defined, let us now consider
the periods of these differentials around the b-cycles. The periods around the
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b-cycles are given by

(8)

∮
bm

dvj = vj(θm(ζ))− vj(ζ)

where ζ is any point chosen on C ′
m. In particular, the right hand side of (8)

must be constant for all choices of ζ on C ′
m. We must verify that the functions

{vj(ζ) | j = 1, . . . ,M} satisfy this condition. On use of the boundary properties
of {v̂j(ζ) | j = 1, . . . ,M} it also follows that, on Cm,

(9) Im(vj) = Qjm.

Equivalently, (9) can be written

vj(φm(ζ))− vj(ζ) = 2iQjm

or

(10) vj(θm(ζ−1))− vj(ζ) = 2iQjm.

Being a relation between functions of ζ, (10) can be analytically continued off Cm.
Combining (4) and (10) we then deduce that

vj(θm(ζ−1))− vj(ζ
−1) = 2iQjm

or, on taking the conjugate of this equation, that

vj(θm(ζ))− vj(ζ) = −2iQjm

It follows from (7) that we can identify the matrix τ with

τ =
i

π
P−1.

The functions {vj(ζ) | j = 1, . . . ,M} just constructed are precisely the required
integrals of the first kind on the Riemann surface. They are linear combinations
of the analytic extensions of the harmonic measures of the domain Dζ . This
observation will be crucial in the numerical construction of the Schottky-Klein
prime function.

Finally, for use later on, note that it is also easy to verify, from the identifications
between Cm and C ′

m that

(11) δjm =

∮
Cm

dvj = −
∮

C′
m

dvj.

4. Numerical algorithm

The numerical algorithm we propose to compute the Schottky-Klein prime func-
tion is a two-step algorithm. The key idea underlying the numerical construc-
tion is borrowed from Trefethen’s “ten-digit algorithm” entitled manydisks.m

which is a Matlab script designed to compute the first-type Green’s function
for Laplace’s equation in the domain exterior to a collection of circular disks
in the plane. Trefethen’s code is based on a least-squares method for solving a
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linear system for the coefficients for a Fourier-Laurent expansion of the (analytic
extension) of the Green’s function. The general ideas of this algorithm can be
readily adapted to present circumstances.

The principal mathematical observation is that any function which is analytic
and single-valued in the fundamental region associated with a multiply con-
nected circular domain Dζ — that is, in the region exterior to the 2M circles
{Cj, C

′
j | j = 1, . . . ,M} — has a Fourier-Laurent expansion of the form

A0 +
M∑

k=1

∞∑
m=1

A
(k)
m qk

m

(ζ − δk)m
+

M∑
k=1

∞∑
m=1

B
(k)
m Qk

m

(ζ − δ′k)
m

.

It is an easy exercise to show that the existence of such a representation is a simple
consequence of Cauchy’s integral formula once the Cauchy kernel is expanded,
as a geometric series, about the centres of the circles.

We now describe the two steps of the numerical algorithm to compute the
Schottky-Klein prime function.

Step 1. First, motivated by the above observations, in order to explicitly con-
struct the functions {vj(ζ) | j = 1, . . . ,M}, for each j we seek a Fourier-Laurent
representation of the form

(12) vj(ζ) =
1

2πi
log

(
ζ − δj

ζ − δ′j

)
+

M∑
k=1

∞∑
m=1

a
(j,k)
m qk

m

(ζ − δk)m
+

M∑
k=1

∞∑
m=1

b
(j,k)
m q̃k

m

(ζ − δ′k)
m

where

q̃k =

{
q′k if |q′k| < 1,

1 if |q′k| ≥ 1.

This rescaling of the Fourier-Laurent coefficients ensures numerical stability of

the algorithm. For each j, the coefficients {a(j,k)
m , b

(j,k)
m | k = 1, . . . ,M ; m = 1, . . .}

are to be determined. A possible constant term in the representation (12)
has been ignored because it turns out to be inconsequential in computing the
Schottky-Klein prime function. The logarithmic term in (12) ensures that it
automatically satisfies the a-cycle normalization conditions (11).

The crucial observation is that the unknown coefficients {a(j,k)
m , b

(j,k)
m } for each j

can be determined by requiring that the imaginary part of vj is constant on the
circles {Cm | m = 1, . . . ,M}, i.e.,

(13) Im(vj(ζ)) = γjm

where γjm are constants. These constants are not known a priori but must be
determined as part of the numerical solution.

The numerical procedure, implemented in Matlab, that we have employed is
as follows:
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(1a) truncate each sum in the representation (12) at order N1 (where N1 is chosen
to be large enough for the desired accuracy);

(1b) substitute this truncated representation into equation (13) and evaluate it
at N2 equally-spaced collocation points on each of the 2M circles {Cj, C

′
j |

j = 1, . . . ,M}. A simple count reveals that there are 4MN1 + 2M real
unknowns and the real equation (13) is to be evaluated at N2 points on
each of the 2M circles. It is clear that we must pick N2 ≥ 2N1 + 1 in order
to obtain an overdetermined linear system;

(1c) use a least-squares method to solve this overdetermined linear system for

the unknowns {a(j,k)
m , b

(j,k)
m , γkm}.

Step 2. The second step of the algorithm, now that the functions {vj} have
been determined, is to write

X(ζ, γ) = (ζ − γ)2X̂(ζ, γ)

where X(ζ, γ) is the square of the required Schottky-Klein prime function, i.e.,

X(ζ, γ) = ω2(ζ, γ)

and the function X̂(ζ, γ) has the Fourier-Laurent expansion

(14) X̂(ζ, γ) = A

(
1 +

M∑
k=1

∞∑
m=1

c
(k)
m qk

m

(ζ − δk)m
+

M∑
k=1

∞∑
m=1

d
(k)
m q̃k

m

(ζ − δ′k)
m

)
which is valid for ζ-values inside (or on the boundary) of the fundamental region

F . The coefficients {c(k)
m , d

(k)
m | k = 1, . . . ,M ; m = 1, . . .} and the constant A are

to be determined. The second step in the algorithm proceeds as follows:

(2a) Truncate the sums in (14) at the same order N1 as in step (1a) of the
algorithm.

(2b) Determine the coefficients {c(k)
m , d

(k)
m | k = 1, . . . ,M ; m = 1, . . . , N1} from

the transformation properties (3) – note that, since there are M distinct
choices of the mapping θj, there are M different transformation properties.
To do this, pick a value of j and substitute the (truncated) representation
(14) into (3) and evaluate this relation at 2N2 collocation points on the
exterior circle C ′

j. (Note that, in contrast to the choice of collocation points
in step (1b), here we must choose collocation points only on the circles
{C ′

j | j = 1, . . . ,M} and not the circles {Cj | j = 1, . . . ,M}. This is because
in order to evaluate (3) we must evaluate representation (14) not only at a
point ζ but also at θj(ζ). Only if ζ is on a circle C ′

j are both ζ and θj(ζ) in the
closure of the fundamental domain F where (14) is valid). Repeat this for
each j = 1, . . . ,M . Combining all these equations produces a linear system

in the unknown coefficients {c(k)
m , d

(k)
m | k = 1, . . . ,M ; m = 1, . . . , N1} which

can be solved using a least-squares algorithm. Note that the transformation
relations (3) are all independent of the value of A, so A is not determined
at this stage.
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(2c) With the coefficients {c(k)
m , d

(k)
m | k = 1, . . . ,M ; m = 1, . . . , N1} now known,

A can be determined by enforcing the normalization condition (2). This

just means that A must be chosen so that X̂(γ, γ) = 1.

Two remarks are in order. First, if some application of the prime function re-
quires that ω(ζ, γ) be evaluated for many different values of ζ or γ but in a fixed
domain Dζ then the first step of the algorithm should be performed only once
(it can be viewed as a “setup” step). This is because this first step only involves
the computation of the first integrals {vj(ζ) | j = 1, . . . ,M} which depend only
on the domain Dζ (and not on either ζ or γ). Second, suppose an application
involves a fixed domain Dζ and requires multiple evaluations of ω(ζ, γ) for dif-
ferent values of ζ but for a fixed value of γ. Then it is only necessary to perform
both Step 1 and Step 2 once (again, as a setup step).

5. Verification of algorithm

The first test of the algorithm is to compare the numerical values of X(ζ, γ)
obtained from the scheme above to the values given by the infinite product
formula recorded by Baker [1]. This is only sensible, of course, for choices of Dζ

such that the infinite product formula is convergent. Following Baker [1], the
Schottky-Klein prime function is defined as

(15) ω(ζ, γ) = (ζ − γ)ω̂(ζ, γ)

where

(16) ω̂(ζ, γ) ≡
∏

θi∈Θ′′

(θi(ζ)− γ)(θi(γ)− ζ)

(θi(ζ)− ζ)(θi(γ)− γ)

and where the product is over all mappings θi in the set Θ′′ which denotes
all mappings in the Schottky group Θ excluding the identity and all inverse
maps. This means that if θ1θ2 is included, say, then θ−1

2 θ−1
1 (its inverse) must be

excluded.

A natural way to truncate the infinite product in equation (16) is by the level
of the mappings. The identity map is the single level-zero map. The maps
{θk, θ

−1
k | k = 1, . . . ,M} are the 2M level-one maps. Any composition of these

level-one maps that does not reduce to the identity is a level-two map. By
extension, a composition of any three of the level-one maps that does not reduce
to a lower level map is called a level-three map, and so on.

As a random example, a triply connected domain with interior circles both of
radius 0.1 and centres at 0.5 and 0.5i were chosen. The value of X(ζ, γ) with
arbitrarily chosen values ζ = −0.5 − 0.5i and γ = 1 were computed using both
the infinite product formula (15) and (16) retaining all maps in the Schottky
group up to different levels (in fact, up to level 9) and using the new algorithm
described above. Table 1 shows the results, with truncation at different levels,
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using the infinite product while Table 2 gives the results from the numerical
algorithm for different values of the truncation parameter N1.

Truncation
level

X(−0.5− 0.5i, 1)

level 4 2.39754711380740 + 1.76164303455525i

level 5 2.39754807522356 + 1.76164374094987i

level 6 2.39754812001040 + 1.76164377385126i

level 7 2.39754812211353 + 1.76164377539660i

level 8 2.39754812221309 + 1.76164377546950i

level 9 2.39754812221900 + 1.76164377547293i

Table 1. Evaluation of X(−0.5 − 0.5i, 1) for a given triply con-
nected domain using the infinite product formula from Baker [1]
truncated at different levels.

N1 X(−0.5− 0.5i, 1)

10 2.39754812225980 + 1.76164377550332i

15 2.39754812221763 + 1.76164377547306i

20 2.39754812221763 + 1.76164377547306i

25 2.39754812221763 + 1.76164377547306i

Table 2. Evaluation of X(−0.5 − 0.5i, 1) for a given triply con-
nected domain using the new algorithm with differing values of the
truncation N1.

It is important to note from Table 2 that, with just N1 = 15 terms retained in
the Fourier-Laurent expansions, the algorithm has clearly converged to a definite
value (increasing N1 no longer affects the result to the number of digits shown).
In contrast, while even a few levels are enough to obtain several digits of accuracy
in the infinite product (probably enough for most applications), as the number of
levels in the infinite product is increased, the calculation converges to a definite
value (reassuringly, the same value given by the numerical algorithm) but the
convergence is arguably slow if accuracy to a large number of digits is required.
Moreover recall that, for an M -connected domain, there are 2M(2M − 1)p−1

elements of the Schottky group at level p and exactly half of these are needed in
the infinite product. This means that, even for just a triply connected domain
(M = 2), there are 2.38 = 13122 level-9 terms to be included in the infinite
product formula.
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It is appropriate to devise a more global test of the numerical algorithm, one
which involves computation of the prime function at multiple points in the do-
main Dζ in order to arrive at the required result. To do so, we exploit a re-
cent result of Crowdy [6] who has derived an integral formula, in terms of the
Schottky-Klein prime function, for the solution of the modified Schwarz prob-
lem in multiply connected circular domain Dζ . More specifically, suppose that
just the real part φ of some function fs(ζ) that is analytic and single-valued in
Dζ is given at all points on the boundary ∂Dζ of Dζ (the subscript highlights
the fact that fs(ζ) must be single-valued in Dζ). Then, fs(ζ) can be evaluated
everywhere inside Dζ by making use of the formulae, derived in [6], given by

fs(α) =
1

2πi

∮
C0

φ
(
d log ω(ζ, α) + d log ω(ζ−1, α−1)

)
−

M∑
j=1

1

2πi

∮
Cj

φ
(
d log ω(ζ, α) + d log ω(θj(ζ

−1), α−1)
)

+ iC

(17)

where C is some real constant. (17) is the solution of the modified Schwarz
problem in a multiply connected circular domain Dζ with the kernel functions
expressed in terms of the Schottky-Klein prime function ω(ζ, α) of the domain.
This formula can be used as a test of the accuracy of the algorithm for computing
ω(ζ, γ). First, we make an arbitrary choice of fs(ζ). The values of the real part
of fs(ζ) on the boundary circles can then be fed into the right side of (17). The
accuracy to which (17) can retrieve (known) values of fs(ζ) inside the domain Dζ

can then be tested.

Figure 2 shows a quadruply connected circular domain in which the centres of
the three interior circular disks, each of radius 0.2, were chosen arbitrarily to
be fixed at 0.5, −0.1 + 0.35i and −0.4i. The function fs(ζ) = ζ is chosen as
a test function. It is a single-valued analytic function in the domain shown in
Figure 2. First, an arbitrary value of α was picked and the real part of fs(ζ)
on the boundary circles of the domain was fed into formula (17) and the value
of the integral determined using the trapezoidal rule. The disparity between the
imaginary part of the result and the imaginary part of the original choice of α
was then computed in order to evaluate the imaginary constant C appearing
in (17). Next, the value α = 0.5 + 0.5i was chosen arbitrarily and formula (17)
again computed with this α and the value of C just computed. The result was
then compared with the value 0.5+0.5i (which is the expected result). The value
obtained from formula (17) where the prime function was evaluated using the
numerical algorithm above is 0.5000000135 + 0.4999999918i so that the absolute
error is 0.0000000135 − 0.0000000082i. To compute this, each of the Fourier-
Laurent expansions is truncated at N1 = 20 terms. N2 is taken equal to 50 while
400 points are taken on each boundary circle in a trapezoidal rule computation
of the contour integrals in (17). It is clear that, with these choices, between 8
and 9 digits of accuracy is obtained which should be ample for most applications.
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Figure 2. A quadruply connected circular domains with the cen-
tres of the interior circular discs fixed at 0.5, −0.1+0.35i and −0.4i
and each with radius 0.2.

Finally, it is worth mentioning that the solution (17) of the Schwarz problem
in multiply connected circular domains can be used to write down solutions to
problems arising in applications such as fluid dynamics. For example, it can be
used to study problems involving fluid stirrers as described in Price, Mullin &
Kobine [17] or Finn, Cox & Bryne [14].

6. Discussion

This paper has proposed a novel numerical technique for the computation of the
Schottky-Klein prime function on the Schottky double of planar multiply con-
nected circular domains. It can be used to compute the prime function when
alternative representations (such as infinite product formula (15) and (16) over
the Schottky group) are not valid. In the Introduction, a survey of many new
results involving the Schottky-Klein prime function were documented. The al-
gorithm presented here can be used to compute the prime function for use in
all those various applications whenever the infinite product formula does not
converge or is too slowly convergent for practical use.
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The use of this algorithm obviates the need to be concerned about the conver-
gence properties of other representations of the prime function as products (or
sums) over a Schottky group. Moreover, such products (and sums) must neces-
sarily be truncated if they are to be evaluated numerically. The number of maps
in the Schottky group at any given level of truncation grows exponentially with
the connectivity of the domain which means, in practice, that evaluating such
products and sums for domains of even moderately high connectivity can quickly
become expensive. The present numerical algorithm is immune to this circum-
stance; if the connectivity increases by one, it simply means there are 2N1 more
coefficients to find from the Fourier-Laurent expansion of the various functions
about the two new circle centres. This is much less expensive computationally.

The only limitation of the new method appears to be that if the domain is such
that the circles are very close together, the Fourier-Laurent expansions converge
more and more slowly. However, it seems likely that even this limitation can
potentially be overcome by using more sophisticated hybrid techniques such as
those already developed in the context of two-dimensional electrostatics problems
involving close-to-touching conductors [3]. Work on adapting such ideas to refine
our computation of the prime function in such special cases is already in progress.
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