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Green’s functions for Laplace’s equation in multiply connected domains
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Analytical formulae for the first-type Green’s function for Laplace’s equation in multiply connected cir-
cular domains are presented. The method is constructive and relies on the use of a special function known
as the Schottky–Klein prime function associated with multiply connected circular domains. It is shown
that all the important functions of potential theory, including the first-type Green’s function, the modified
Green’s functions and the harmonic measures of a domain, can be written in terms of this prime function.
A broad range of representative examples are given to demonstrate the efficacy of the method as well as
a quantitative comparison, in special cases, with the results obtained using other independent methods.
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1. Introduction

Of interest in this paper is the practical construction of a function well-known to every undergraduate in
engineering, the physical sciences and applied mathematics: the first-type Green’s function for Laplace’s
equation. It arises in areas of physics such as electrostatics, gravitation, fluid dynamics and transport
theory all the way through to digital filter design and the more mathematical areas of potential theory,
numerical analysis and approximation theory. Basically, the first-type Green’s function is a function that
is harmonic everywhere in the given domain except for an isolated unit-strength singularity and which
vanishes on all the domain boundaries.

The challenge embraced in this paper is the following: to find an effective constructive technique,
based on analytical formulae dependent on a special transcendental function known as the ‘Schottky–
Klein prime function’ (Baker, 1995; Hejhal, 1972), for the Green’s function in multiply connected cir-
cular domains.

There are several results concerning the construction of the first-type Green’s function in multiply
connected domains but the approach presented here, based on the use of the Schottky–Klein prime
function, appears to be new. Mityushev & Rogosin (2000) describe a construction of the (complex)
Green’s function in arbitrary multiply connected circular domains consisting of the unbounded region
exterior to a finite collection of circular discs. They employ the theory of functional equations and the
method of successive approximations to construct representations of the Green’s function (and find the
solution of the Schwarz problem) in such multiply connected domains. They also survey a number
of other constructions and the reader should consult their monograph (Mityushev & Rogosin, 2000)
for additional background and references. Recently, by strategic use of Schwarz–Christoffel mappings,
Embree & Trefethen (1999) have shown how to construct first-type Green’s functions for the restricted
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class of multiply connected polygonal domains that are reflectionally symmetric with respect to some
specified axis of symmetry.

Our method is based on the fact that the well-known functions of potential theory (the first-type
Green’s function, modified Green’s functions and harmonic measures) have underlying connections
with the theory of conformal mapping of multiply connected domains. Both Nehari (1952) and Schiffer
give treatments of these theoretical connections from different, but related, perspectives. Schiffer bases
his presentation from the outset on the existence and properties of the first-type Green’s function and
systematically develops important connections with conformal mapping theory. Nehari (1952) proceeds
in the reverse direction. His point of departure is the theory of conformal mapping of multiply connected
domains and he works towards the construction of the first-type Green’s function. Both authors rely
heavily on seminal contributions to the theory of conformal mapping of multiply connected domains
made by Koebe (1914). Julia (1934) treats similar material and gives explicit formulae for the important
functions from potential theory. His perspective is, however, different to that considered here and we
return to this point in Section 12.

Although our construction is for multiply connected circular domains, the results are also relevant
to a general (i.e. not necessarily circular) multiply connected domain. This is because circular domains
constitute a set of canonical multiply connected domains (Goluzin, 1969; Nehari, 1952) so that any
given domain is conformally equivalent to ‘some’ circular domain of the kind considered here. Second,
the boundary-value problem for finding the first-type Green’s function is a conformally invariant one;
so once the Green’s function is known in some canonical set of multiply connected domains, it is, in
principle, determined in all conformally equivalent domains via conformal mapping.

2. Modified Green’s functions

Let D be an arbitrary bounded and M-connected planar domain. Suppose D is bounded by M + 1
smooth Jordan curves called {C j | j = 0, 1, . . . , M}. C0 is taken as the outermost boundary so that
{Ck |k = 1, . . . , M} denote the M enclosed boundaries (or the boundaries of the M ‘holes’ in the
domain). Let ζ and α be complex variables denoting two distinct points in D. The ‘modified Green’s
function’ is defined as the function G0(ζ ; α) satisfying the following properties:

(i) The function

G0(ζ ; α) + 1

2π
log |ζ − α| (1)

is harmonic, with respect to (ζx , ζy) where ζ = ζx + iζy , throughout the region D including the
point α.

(ii) If ∂G0/∂n is the normal derivative of G0 on a boundary curve, then

G0(ζ ; α) = 0 on C0,

G0(ζ ; α) = γ0k(α) on Ck, k = 1, . . . , M,∮
Ck

∂G0

∂n
ds = 0, k = 1, . . . , M, (2)

where ds denotes the arclength and the elements of the set {γ0k(α)|k = 1, . . . , M} are some
functions of α but not ζ .
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The function G0(ζ ; α) defined by conditions (i) and (ii) above exists uniquely (Koebe, 1914) and
satisfies the reciprocity condition

G0(ζ ; α) = G0(α; ζ ). (3)

It is clear from the definition that the boundary C0 has a special significance with respect to the function
G0(ζ ; α) defined above. It is the boundary on which G0(ζ ; α) is normalized to vanish and is the only
choice of boundary for D for which the quantity∮

C0

∂G0

∂n
ds (4)

does not vanish. The subscript on G0 has been chosen to reflect this special significance of C0. But it
should be clear that there are M alternative modified Green’s functions that can also be defined analo-
gously: one simply makes the boundary component C j the one which has the special significance af-
forded to C0 in the definition of G0. Extending the subscript notation, these additional modified Green’s
functions will be denoted {G j (ζ ; α)| j = 1, . . . , M}. G j (ζ ; α) will have a logarithmic singularity at α
and satisfy the modified boundary conditions

G j (ζ ; α) = 0 on C j ,

G j (ζ ; α) = γ jk(α) on Ck, k �= j,∮
Ck

∂G j

∂n
ds = 0, k �= j, (5)

where the elements of the set {γ jk(α)| j = 1, . . . , M ; k = 1, . . . , M} are functions of α but not ζ .

3. The first-type Green’s function

The first-type Green’s function, here denoted G(ζ ; α), is defined differently. It is the real-valued func-
tion, defined with respect to a given point α in the domain D, satisfying the following conditions:

(i) The function

G(ζ ; α) + 1

2π
log |ζ − α| (6)

is harmonic throughout the region D including at the point α.

(ii) G(ζ, α) is such that

G(ζ ; α) = 0 on Ck, k = 0, 1, . . . , M. (7)

Note that the quantities ∮
Ck

∂G
∂n

ds, k = 0, 1, . . . , M, (8)

will then generally be nonzero.
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FIG. 1. Schematic of a typical multiply connected bounded circular region consisting of the unit disc with some interior circular
discs excised. The case shown is quadruply connected. The centres of the enclosed circular discs are {δ j | j = 1, . . . , M} and their
radii are {q j | j = 1, . . . , M}.

4. Circular domains

Our aim is to construct G(ζ ; α) in multiply connected circular domains. Henceforth, Dζ will denote such
a circular domain in the ζ -plane. Specifically, let Dζ be the interior of the unit ζ -disc with M smaller
circular discs excised. M = 0 is the simply connected case. Consistent with the notations of Sections 2
and 3, the boundaries of the smaller excised circular discs will be denoted {C j | j = 1, . . . , M}. C0 will
denote the outer unit circle |ζ | = 1.

To uniquely specify an M-connected Dζ , the centres and radii of {C j | j = 1, . . . , M} are needed.
Let {δ j ∈ C| j = 1, . . . , M} be the centres of these circles and let {q j ∈ R| j = 1, . . . , M} be their radii.
A definition sketch of a quadruply connected case is shown in Fig. 1.

5. Schottky groups

To proceed, first define M Möbius maps {φ j | j = 1, . . . , M} corresponding to the conjugation map for
points on the circle C j . That is, if C j has equation

|ζ − δ j |2 = (ζ − δ j )(ζ̄ − δ̄ j ) = q2
j , (9)

then

ζ̄ = δ̄ j + q2
j

ζ − δ j
(10)
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and so

φ j (ζ ) ≡ δ̄ j + q2
j

ζ − δ j
. (11)

If ζ is a point on C j , its complex conjugate is ζ̄ = φ j (ζ ). We will also define

φ0(ζ ) = ζ−1. (12)

Next, introduce the Möbius maps

θ j (ζ ) ≡ φ j (ζ
−1) = δ j + q2

j ζ

1 − δ̄ jζ
. (13)

Let C ′
j be the circle obtained by the reflection of C j in the unit circle C0, i.e. the circle obtained by

the transformation ζ �→ ζ̄−1. It is easy to verify that the image of the circle C ′
j under the transform-

ation θ j (ζ ) is C j . Since the M circles {C j | j = 1, . . . , M} are nonoverlapping, so are the M circles
{C ′

j | j = 1, . . . , M}. The classical ‘Schottky group’ Θ is defined to be the infinite free group of map-
pings generated by compositions of the 2M basic Möbius maps {θ j | j = 1, . . . , M} and their inverses
{θ−1

j | j = 1, . . . , M}, including the identity map. Beardon (1984) gives a general discussion of such
groups.

Consider the (generally unbounded) region of the plane exterior to the 2M circles {C j | j = 1, . . . , M}
and {C ′

j | j = 1, . . . , M}. A schematic is shown in Fig. 2. This region is known as the ‘fundamental
region’ associated with the Schottky group generated by the Möbius maps {θ j | j = 1, . . . , M} and their
inverses. This fundamental region can be understood as having two ‘halves’—the half that is inside the
unit circle but exterior to the circles {C j | j = 1, . . . , M} is Dζ , the region that is outside the unit circle
and exterior to the circles {C ′

j | j = 1, . . . , M} is the ‘other’ half. The reason it is called fundamental
is that the rest of the ζ -plane is a tessellation of an infinite number of ‘equivalent’ regions which are
obtained by transformation of the fundamental region under the elements of the Schottky group. Any
point in the ζ -plane that can be reached by an element of the group Θ acting on a point inside F is
known as a ‘regular point’ of the group.

The Möbius maps introduced above have two important properties that can easily be established.
The first is that

θ−1
j (ζ ) = 1

φ j (ζ )
, ∀ ζ. (14)

This can be verified using the definitions (11) and (13) (or, alternatively, by considering the geometrical
effect of each map). The second property, which follows from the first, is that

θ−1
j (ζ−1) = 1

φ j (ζ−1)
= 1

φ̄ j (ζ̄−1)
= 1

θ j (ζ̄ )
= 1

θ̄ j (ζ )
, ∀ ζ. (15)

Some special infinite subsets of mappings in a given Schottky group will be needed in what follows.
A special notation is now introduced. This notation is not standard but is introduced here to clarify the
presentation. The full Schottky group is denoted Θ . The notation iΘ j is used to denote all mappings in
the full group which do not have a power of θi or θ−1

i on the left-hand end or a power of θ j or θ−1
j on

the right-hand end. As a special case of this, the notation Θ j simply means all mappings in the group
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FIG. 2. Schematic of a typical fundamental region exterior to the set of circles C1, C ′
1, C2, C ′

2, C3 and C ′
3.

which do not have any positive or negative power of θ j at the right-hand end (but with no stipulation
about what appears on the left-hand end). Similarly, jΘ means all mappings which do not have any
positive or negative power of θ j at the left-hand end (but with no stipulation about what appears on the
right-hand end). In addition, the single-prime notation will be used to denote a subset where the identity
is excluded from the set; thus Θ ′

1 denotes all mappings, excluding the identity and all transformations
with a positive or negative power of θ1 at the right-hand end. The double-prime notation will be used
to denote a subset where the identity and all inverse mappings are excluded from the set. This means,
e.g. that if θ1θ

−1
2 is included in the set, the inverse mapping θ2θ

−1
1 must be excluded. Thus, Θ ′′ means

all mappings excluding the identity and all inverses. Similarly, the notation 1Θ
′′
2 denotes all mappings,

excluding inverses and the identity, which do not have any power of θ1 or θ−1
1 on the left-hand end or

any power of θ2 or θ−1
2 on the right-hand end. In the same way, Θ ′′

j denotes all mappings, excluding the
identity and all inverses, which do not have any positive or negative power of θ j at the right-hand end.

6. The Schottky–Klein prime function

In this section, we introduce an important transcendental function—the Schottky–Klein prime
function—in terms of which the analytical formulae for G(ζ ; α) will be expressed.

It is important to emphasize that this function is a well-defined (and uniquely defined) function that
can be associated with any given multiply connected domain. How to compute it effectively is another
matter. Since our emphasis here is on analytical formulae, we present our results in terms of a classical
infinite product formula over the elements of the Schottky group introduced in Section 5. This product
does not converge for all Schottky groups (although there are a number of known sufficiency conditions
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(Baker, 1995) on the group that guarantee the convergence of the product). However, it is crucial to
point out that our final formulae expressed in terms of the prime function remain valid even when the
infinite product representation of the prime function does not converge. Crowdy & Marshall (2007)
have recently presented a novel numerical scheme for the computation of the Schottky–Klein prime
function which does not rely on a product (or sum) over elements of a Schottky group. The new scheme
is based on understanding the prime function from the point of view of Riemann surface theory (there
is a compact Riemann surface, known as the Schottky double, that can be associated with any multiply
connected planar domain (Hejhal, 1972)). This alternative algorithm can be used to compute the prime
function when the infinite product used in this paper does not converge (or is too slowly convergent to
be useful in practice).

Following Baker (1995), the Schottky–Klein prime function is defined as

ω(ζ, γ ) = (ζ − γ )ω′(ζ, γ ), (16)

where the function ω′(ζ, γ ) is given by

ω′(ζ, γ ) =
∏

θi ∈Θ ′′

(θi (ζ ) − γ )(θi (γ ) − ζ )

(θi (ζ ) − ζ )(θi (γ ) − γ )
(17)

and where the product is over all mappings θi in the set Θ ′′. ω′ can also be written as

ω′(ζ, γ ) =
∏

θi ∈Θ ′′
{ζ, θi (ζ ), γ, θi (γ )}, (18)

where the brace notation denotes a cross-ratio of the four arguments. This will be useful later. The
function ω(ζ, γ ) is single valued on the whole ζ -plane, has a zero at γ and all points equivalent to γ
under the mappings of the group Θ . The prime notation is not used here to denote differentiation.

The Schottky–Klein prime function has some important transformation properties. One such prop-
erty is that it is antisymmetric in its arguments, i.e.

ω(ζ, γ ) = −ω(γ, ζ ). (19)

This is clear from the inspection of (16) and (17). A second important property is given by

ω(θ j (ζ ), γ1)

ω(θ j (ζ ), γ2)
= β j (γ1, γ2)

ω(ζ, γ1)

ω(ζ, γ2)
, (20)

where θ j is any one of the basic maps of the Schottky group. A detailed derivation of this result is given
in Chapter 12 of Baker (1995). A formula for β j (γ1, γ2) is

β j (γ1, γ2) =
∏

θk∈Θ j

(γ1 − θk(B j ))(γ2 − θk(A j ))

(γ1 − θk(A j ))(γ2 − θk(B j ))
, (21)

where A j and B j are the two fixed points of the mapping θ j satisfying

θ j (A j ) = A j , θ j (B j ) = B j . (22)

They are therefore the two solutions of a quadratic equation. It follows that

θ j (ζ ) − B j

θ j (ζ ) − A j
= µ j eiκ j

ζ − B j

ζ − A j
, (23)
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for some real parameters µ j and κ j . The roots A j and B j are ordered such that |µ j | < 1 (in our case,
A j lies in C ′

j while B j lies in C j , so we can distinguish between these fixed points by the simple criteria
that |A j | > 1 and |B j | < 1). It is also known (Baker, 1995) that, for any regular point ζ ,

θ−∞
j (ζ ) = A j , θ∞

j (ζ ) = B j . (24)

7. Explicit expressions for {G j (ζ ; α)}
In this section, explicit formulae for the modified Green’s functions associated with Dζ are found.

Given a circular domain Dζ , the associated Schottky–Klein prime function ω(ζ, γ ) can be con-
structed. As discussed in Section 2, there are M + 1 modified Green’s functions {G j (ζ ; α)|
j = 0, 1, . . . , M} that can be defined.

It will now be argued that an explicit expression for G j (ζ ; α) is

G j (ζ ; α) = − 1

4π
log |R j (ζ ; α)|, (25)

where we define the M + 1 functions

R j (ζ ; α) = ω(ζ, α)ω(φ j (ζ ), φ j (α))

ω(ζ, φ j (ᾱ))ω(φ j (ζ ), ᾱ)
, j = 0, 1, . . . , M. (26)

Consider the fundamental region generated by Dζ and the reflection of Dζ in the j th circle. Then, since
α is in the half of this fundamental region corresponding to Dζ , φ j (ᾱ) will be in the other half. From
(25), it follows that G j (ζ ; α) has a single isolated logarithmic singularity in Dζ at ζ = α. Since the zero
of R j is second order, locally G j (ζ ; α) has the expansion

G j (ζ ; α) = − 1

2π
log |ζ − α| + O(1), (27)

which is what is required.
It remains to verify that (25) satisfies the appropriate boundary conditions. It can be shown that, on

the circle Ck ,

|R j (ζ ; α)| =
∣∣∣∣∣β j (φ j (ᾱ), α)

βk(φ j (ᾱ), α)

∣∣∣∣∣ . (28)

This formula is established in the appendix to Crowdy & Marshall (2006) (there, the function R j (ζ ; α)

is denoted R̃ j (ζ ; α) but all other notations are the same as in the present paper). Equation (28) holds for
all integers j and k (between 0 and M) provided we adopt the convention that β0(ζ, α) ≡ 1.

It is immediate that, on C j , |R j (ζ, α)| = 1 so G j (ζ ; α) = 0 there. On Ck with k �= j , we have

G j (ζ ; α) = − 1

4π
log

∣∣∣∣∣β j (φ j (ᾱ), α)

βk(φ j (ᾱ), α)

∣∣∣∣∣ . (29)

This means that the functions {γ jk(α)} defined in (2) and (5) are given by the formulae

γ jk(α) = − 1

4π
log

∣∣∣∣∣β j (φ j (ᾱ), α)

βk(φ j (ᾱ), α)

∣∣∣∣∣ , (30)

for k �= j .
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Finally, note that in any fundamental region associated with the Schottky group, G j (ζ ; α) has ex-
actly two logarithmic singularities of equal and opposite strength: one at α in Dζ and the other at φ j (α)
in the other half of the fundamental region. A natural way to define a branch of G j (ζ ; α) is therefore to
join each such pair of logarithmic singularities in the fundamental region, and in each region equivalent
to it under the elements of the group, by a branch cut. It follows that

Im

[∮
C j

d[Gk(ζ ; α)]

]
= 0 (31)

unless k = j which, after a little algebra, can be shown to be equivalent to the conditions that the
quantities ∮

C j

∂Gk

∂n
ds (32)

will be nonzero only for k = j .
Having identified a function satisfying all the conditions required of a modified Green’s function,

we now exploit the result that the latter function is unique (Koebe, 1914). We have therefore constructed
expressions for the required set of M + 1 modified Green’s functions in terms of the prime function.

Before proceeding, it is worth mentioning that there are alternative (equivalent) ways of expressing
the functions {G j (ζ ; α)| j = 0, 1, . . . , M} in terms of the prime function. Indeed, by making use of the
properties of the prime function already outlined, it can be also be shown (we omit the details) that

G j (ζ ; α) = − 1

2π
log

∣∣∣∣∣ q j

(α − δ j )

ω(ζ, α)

ω(ζ, φ j (α))

∣∣∣∣∣ . (33)

If preferred, all the results to follow can be rederived using formula (33) instead of (25) and (26).

8. Harmonic measures

In this section, explicit formulae for the ‘harmonic measures’ associated with the circular domain Dζ

are found.
We define the M harmonic measures, {σ j | j = 1, . . . , M}, to be the set of functions, harmonic in D,

that satisfy the conditions

σ j (ζ ) =
{

1 on C j ,

0 on Ck, k �= j.
(34)

These functions are known to constitute a basis of an M-dimensional vector space of functions which
are harmonic in D and constant on the boundary of D. It turns out that we can construct this basis now
that explicit formulae for the M + 1 modified Green’s functions are known. Nehari (1952) and Schiffer
discuss the general theory from different, but related, perspectives. First, define a set of M nontrivial
functions given by

S0 j (ζ ; α) = A j (α)

(
R0(ζ ; α)

R j (ζ ; α)

)1/2

(35)
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for j = 1, . . . , M (note that the choice j = 0 yields a trivial constant function), where A j (α) is a
normalization constant chosen so that S0 j (ζ ; α) = 1 on C0. Specifically, it is easy to show that

A j (α) = |β j (φ̄ j (ᾱ), α)|1/2. (36)

Then, define σ̃ j (ζ ) for j = 1, . . . , M by

σ̃ j (ζ ) ≡ log |S0 j (ζ ; α)|. (37)

These M functions are known explicitly since formulae for R j (ζ ; α) are given in (26). It is also known
that, on Ck ,

|σ̃ j (ζ )| = 1

2
log

∣∣∣∣A j (α)2 R0(ζ ; α)

R j (ζ ; α)

∣∣∣∣
= 1

2
log

∣∣∣∣∣β j (φ j (ᾱ), α)
β0(φ0(ᾱ), α)βk(φ j (ᾱ), α)

βk(φ0(ᾱ), α)β j (φ j (ᾱ), α)

∣∣∣∣∣
= 1

2
log

∣∣∣∣∣βk(φ j (ᾱ), α)

βk(ᾱ−1, α)

∣∣∣∣∣
= 1

2
log |βk(φ̄ j (ᾱ), ᾱ−1)|, (38)

where we have used (28). Then, it follows from the general theory that σ j is some linear combination
of the M harmonic measures {σ̃ j | j = 1, . . . , M}. Let

σ j (ζ ) =
M∑

k=1

α jk σ̃k(ζ ), (39)

where α jk denote the elements of some matrix to be determined. Imposing conditions (34) on each of
the M circles, it is easily found that

αααi j = [A−1]i j , (40)

where the matrix A has elements

Ai j = 1

2
log |β j (φi (ᾱ), ᾱ−1)|. (41)

It is shown in Appendix A that the quantities β j (φi (ᾱ), ᾱ−1) are all independent of α. Indeed, it is also
noted that

β j (φi (ᾱ), ᾱ−1) = exp(2π iτ j,i ), (42)

where the parameters τ j,k are defined in Chapter 12 of Baker (1995) and depend only on the parameters
{q j , δ j | j = 1, . . . , M}. Indeed, when k �= j ,

τ j,k = 1

2π i
log

⎡
⎣ ∏

ψ∈kΘ j

(
ψ(B j ) − Bk

ψ(B j ) − Ak

)(
ψ(A j ) − Ak

ψ(A j ) − Bk

)⎤
⎦ , (43)
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where Ak and Bk are the two fixed points of the mapping θk , while

τk,k = 1

2π i
log

⎡
⎣µk eiκk

∏
ψ∈kΘ

′′
k

[(
ψ(Bk) − Bk

ψ(Bk) − Ak

)(
ψ(Ak) − Ak

ψ(Ak) − Bk

)]2
⎤
⎦ , (44)

where µk and κk are defined in (23).
With the coefficients αi j known, the harmonic measures {σ j | j = 1, . . . , M} are now determined

from (39). Nehari (1952) gives details of a general proof that the matrix A is always invertible.

9. Construction of G(ζ ; α)

Given expressions for the modified Green’s functions and the M harmonic measures of the domain
Dζ in terms of the prime function, it is now possible to construct a formula for the first-type Green’s
function G(ζ ; α) for the circular domain Dζ . It is given by

G(ζ ; α) = G0(ζ ; α) −
M∑

j=1

γ0 j (α)σ j (ζ ). (45)

This function has the same logarithmic singularity at ζ = α as the modified Green’s function G0(ζ ; α).
It is harmonic everywhere else in Dζ . On C0, we have G(ζ ; α) = 0 since both G0(ζ ; α) and all the
harmonic measures {σ j (ζ )| j = 1, . . . , M} vanish there. It is also clear that G(ζ ; α) vanishes on all the
interior circles {C j | j = 1, . . . , M} since G0(ζ ; α) = γ0 j (α) on C j and this is precisely cancelled by
the term −γ0 j (α)σ j (ζ ) which equals −γ0 j (α) for ζ on C j .

10. The doubly connected case

It is instructive to see how the general theory reduces to familiar formulae in the doubly connected case.
Any doubly connected domain is conformally equivalent to an annular region q < |ζ | < 1 for some

value of the conformal modulus q (Nehari, 1952). In this case, δ1 = 0 and q1 = q so that the relevant
Möbius maps are

φ1(ζ ) = q2

ζ
, θ1(ζ ) = q2ζ. (46)

The associated Schottky group has just one generator. Its elements are {θ j
1 | j ∈ Z}. The associated

Schottky–Klein prime function can be shown to be

ω(ζ, γ ) = − γ

C2
P(ζ/γ , q), (47)

where

P(ζ, q) ≡ (1 − ζ )

∞∏
k=1

(1 − q2kζ )(1 − q2kζ−1), C ≡
∞∏

k=1

(1 − q2k). (48)

It is straightforward to verify, directly from the definition (48), that

P(ζ−1, q) = −ζ−1 P(ζ, q), P(q2ζ, q) = −ζ−1 P(ζ, q). (49)
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It follows that

R0(ζ, α) = ω(ζ, α)ω(ζ−1, α−1)

ω(ζ, ᾱ−1)ω(ζ−1, ᾱ)
= P(ζα−1, q)P(αζ−1, q)

P(ζ ᾱ, q)P(ζ−1ᾱ−1, q)
,

R1(ζ, α) = ω(ζ, α)ω(q2ζ−1, q2α−1)

ω(ζ, q2ᾱ−1)ω(q2ζ−1, ᾱ)
= P(ζα−1, q)P(αζ−1, q)

P(ζ ᾱq−2, q)P(q2ζ−1ᾱ−1, q)
. (50)

Now, define

S01(ζ ; α) = A1(α)

(
R0(ζ ; α)

R1(ζ ; α)

)1/2

. (51)

It follows that

A1(α) = q

|α| (52)

and

σ̃1(ζ ) = log |S01(ζ, α)| = log |ζ |, (53)

where we arrive at the final equality after some algebraic manipulation which makes use of the formulae
(49). Therefore σ1(ζ ) = α11σ̃1(ζ ), where α11 is some constant chosen so that σ1(ζ ) = 1 on C1. There
is no matrix inversion to be performed here and it follows immediately that

σ1(ζ ) = log |ζ |
log q

=
{

0 on C0,

1 on C1.
(54)

On use of (54) and (45), we deduce that the first-type Green’s function in the annulus is given by

G(ζ ; α) = − 1

2π

[
log

∣∣∣∣∣αP(ζα−1, q)

P(ζ ᾱ, q)

∣∣∣∣∣ − log |α| log |ζ |
log q

]
, (55)

where we have used the fact that

G0(ζ ; α) = − 1

4π
log

∣∣∣∣∣ P(ζα−1, q)P(αζ−1, q)

P(ζ ᾱ, q)P(ζ−1ᾱ−1, q)

∣∣∣∣∣ = − 1

2π
log

∣∣∣∣∣αP(ζα−1, q)

P(ζ ᾱ, q)

∣∣∣∣∣ . (56)

11. Higher connected examples

Having constructed explicit formulae for the first-type Green’s function in multiply connected circular
domains, the Green’s function in conformally equivalent domains follows by conformal transplantation.
This renders the methods here relevant to a rather broad class of domains. We now include represen-
tative examples illustrating the efficacy of our construction in various domains of connectivity greater
than two.

To truncate the infinite products, it is convenient to categorize all possible compositions of the basic
maps according to their ‘level’. As an illustration, consider the case in which there are four basic maps
{θ j | j = 1, 2, 3, 4}. The identity map is considered to be the ‘level-zero map’. The four basic maps,
together with their inverses, {θ−1

j | j = 1, 2, 3, 4} constitute the eight ‘level-one maps’. All possible
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combinations of any ‘two’ of these eight level-one maps which do not reduce to the identity, e.g.

θ1(θ1(ζ )), θ1(θ2(ζ )), θ1(θ3(ζ )), θ1(θ4(ζ )), θ2(θ1(ζ )), θ2(θ2(ζ )), . . . (57)

will be called the ‘level-two maps’, all possible combinations of any ‘three’ of the eight level-one maps
that do not reduce to a lower-level map will be called the ‘level-three maps’ and so on.

In all the calculations to follow, the Schottky–Klein prime function is computed to level-three accur-
acy, meaning that all levels up to level three are included in the product while all higher level terms are
truncated. It is known from comparison studies with other (more accurate) methods of computing the
prime function—see Crowdy & Marshall (2007)—that one can typically expect between 4 and 6 digits
of accuracy with this truncation. This is more than adequate for many applications. Greater accuracy
can be obtained by using higher levels of truncation.

When finding the matrix Ai j , note that one can either use the definition (41) directly together with
(21) or, alternatively, the equivalent formulae given in (42)–(44). Indeed, a comparison of the matrices
obtained by both methods can be used as a numerical check.

11.1 Green’s functions of circular domains

A basic problem in electrostatics is to compute the electric field generated by a point charge in the
presence of a finite distribution of conductors. Let there be M + 1 such conductors and let them all
be circular and let the point charge be at zα . Since the conductors are equipotentials, the mathematical
problem for the electric field potential is that of finding the first-type Green’s function, with singularity
at zα , in the unbounded domain, call it Dz , exterior to the finite set of circular conductors.

Figures 3 and 4 depict examples of bounded triply connected circular domains with the singularity
placed at different points in the domain. In each figure, to the left, just the critical contours are shown
(the critical contour values are given in the caption), while to the right, a global distribution of contours
is shown. A common feature is the presence of exactly two ‘critical points’ of the Green’s function
at which two ‘separatrix’ contours separate the region into qualitatively distinct contour types. These
critical points are points in the domain at which both first partial derivatives of the Green’s function

FIG. 3. Unit disc with two equipotential conductors of radius 0.1 centred at ±0.5. The singularity is at 0.4(1 + i). The critical
contours are shown on the left and correspond to level-line values 0.0038 and 0.0009.
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FIG. 4. Unit disc with two equipotential conductors, one of radius 0.125 centred at −0.6 and another of radius 0.08 centred at 0.1.
The singularity is at 0.6. The critical contours are shown on the left and correspond to level-line values 0.0072 and 0.0001.

FIG. 5. Three equal equipotential conductors each of radius 0.5 centred at ±2 and 0. The singularity is at infinity. The critical
contour is shown on the left and corresponds to level-line value 0.0105.

vanish simultaneously. The fact that there are just two such points is consistent with a general result
(Nevanlinna, 1970) on Green’s functions in multiply connected domains which says that the Green’s
function of an (M + 1)-connected domain has precisely M critical points.

Möbius mappings map circles to circles. Such a map will therefore map a bounded circular preimage
region Dζ to the unbounded circular region Dz exterior to some circular discs. Figures 5 and 6 show
a series of illustrative examples of unbounded triply connected circular domains obtained by such a
conformal map from a bounded preimage region. Figure 5 shows the case where the singularity of the
Green’s function (or point charge) is at infinity. In this case, the symmetry of the configuration is such
that the two critical points are on the real axis between the circular conductors. Figure 6 shows how
complex the geometry of the critical contours can become for a general position of the singularity.
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FIG. 6. Three equal equipotential conductors each of radius 0.5 centred at ±2 and 0. The singularity is at 0.5(1 − i). The critical
contours are shown on the left and correspond to level-line values 0.0016 and 0.0055.

FIG. 7. Five equal equipotential conductors each of radius 0.5 centred at ±4, ±2 and 0. The singularity is at infinity. The critical
contours are shown on the left and correspond to level-line values 0.0060 and 0.0076.

Higher connected regions can be tackled with no extra difficulty. Figure 7 shows a quintuply connected
unbounded domain with the point charge out at infinity. Figure 8 shows the same configuration of
conductors but with the point charge now at a finite position.

It is important to give some quantitative validation of the new construction. A useful diagnostic is
furnished by the critical points. Table 1 gives a quantitative comparison of the position, on the positive
real axis, of the critical point of the Green’s function exterior to a left–right symmetric distribution of
three circular conductors where the central cylinder intersects the real axis at ±a, the left-most cylinder
at −b and −c and the right-most at b and c, where a < b < c. The singularity is at infinity. By the
symmetry, the critical points will be at ±e1 for some real e1 reported in the table. Shown in Table 1 is
a comparison of the values determined by the formulae derived above and those given by a numerical
method, due to Trefethen (2005), based on Laurent expansions of the (complex) Green’s function about
the centres of the conductors and use of a least squares method to ensure that the boundary conditions
are satisfied (the MATLAB code is called many disks.m (Trefethen, 2005)). Twenty terms in each of
the Laurent expansions are used and the errors in the least squares fit are found to be of the order of
10−8 to 10−10. The table shows that the results agree within 4–6 digits of accuracy in all cases. This
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FIG. 8. Five equal equipotential conductors each of radius 0.5 centred at ±4, ±2 and 0. The singularity is at (0, 1). The critical
contours are shown on the left and correspond to level-line values 0.0016 and 0.0033.

TABLE 1 Comparison of critical point positions of differing right–left
symmetric distributions of three conductors on the real axis

Geometry (a, b, c) New method e1 Least squares e1

(0.1, 0.3, 0.5) 0.2009235 0.2009345
(0.1, 0.5, 0.7) 0.3047789 0.3047020
(0.1, 0.7, 0.9) 0.4104804 0.4104831
(0.3, 0.7, 0.9) 0.5250642 0.5250685
(0.3, 0.5, 0.7) 0.4093054 0.4093686

is as expected given the level-three truncation of the prime function. Greater accuracy can be obtained
by using a higher level of truncation or by employing alternative means (Crowdy & Marshall, 2007) of
computing the prime function.

11.2 Potential theory of several intervals

The mapping formula from a bounded circular domain Dζ to the unbounded region exterior to a sym-
metric arrangement of (an odd number) intervals on the real axis in a z-plane is given by

z(ζ ) = C

(
ω(ζ, −1)2 + ω(ζ, 1)2

ω(ζ, −1)2 − ω(ζ, 1)2

)
, (58)

where C is some real constant. The preimage region Dζ must have a distribution of circles {C j | j =
1, . . . , M} that are centred on the real ζ -axis and reflectionally symmetric about the imaginary axis. The
present authors have not seen this result reported in the literature, but to see how to construct it, consider
the sequence of conformal mappings given by

ζ1(ζ ) = − ω(ζ, 1)

ω(ζ, −1)
,

ζ2(ζ1) = 1 − ζ1

1 + ζ1
,

z(ζ2) = C

2

(
ζ2 + 1

ζ2

)
, (59)
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where C is any real constant. A schematic illustrating this sequence of mappings in the triply connected
case (i.e. three intervals) is shown in Fig. 9. The first mapping takes the circular region Dζ to the right-
half ζ1-plane with a number of finite-length slits on the real axis. To see this, note that ζ = 1 maps to
ζ1 = 0, while ζ = −1 maps to ζ1 = ∞. To see that the rest of the unit circle maps to the imaginary
ζ1-axis, note that on C0 we have

ζ1(ζ ) = − ω(ζ−1, 1)

ω(ζ−1, −1)
= ω(ζ, 1)

ω(ζ, −1)
= −ζ1(ζ ), (60)

where we have used

ω(ζ−1, γ −1) = −ζ−1γ −1ω(ζ, γ ) (61)

which is an identity whose proof is given in an appendix to Crowdy & Marshall (2005). By similar ma-
nipulations, it is possible to show that the image of any interior circle C j centred on the real ζ -axis under
the mapping ζ1(ζ ) has constant argument equal to zero. Hence, the boundary of any interior circular disc

FIG. 9. Schematic illustrating the composition of conformal mappings producing the formula for the triply connected slit mapping.
The origin in each conformal mapping plane is shown as a dot.
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centred on the real ζ -axis maps to a slit on the positive real ζ1-axis. The second Möbius mapping maps
this slit half-plane region in the ζ1-plane to the unit ζ2-disc similarly cut along its diameter on the real
axis by finite-length slits. The third Joukowski mapping maps the interior of the unit disc in the ζ2-plane
to the whole of the z-plane exterior to a series of finite-length slits on the real axis. A composition of
these maps yields (58).

Figures 10 and 11 show the case of three equipotential slits along the real axis with the singularity at
infinity (Fig. 10) and at a finite point (Fig. 11). Figures 12 and 13 show two additional slit configurations
with the singularity at infinity. Note, from Fig. 13, how close to the slits the critical contour becomes as
the gap intervals close up.

FIG. 10. Three equipotential intervals between [−1, −0.5], [−0.2, 0.2] and [0.5, 1]. The singularity is at infinity (the preimage is
α = 0). The critical contour is shown on the left and corresponds to the level-line value 0.0266.

FIG. 11. Three equipotential intervals between [−1, −0.5], [−0.2, 0.2] and [0.5, 1]. The singularity is at −0.1513i (the preimage
is α = 0.5i). The critical contour is shown on the left and corresponds to the level-line value 0.0130.
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FIG. 12. Three equipotential intervals between [−1, −0.8], [−0.1, 0.1] and [0.8, 1]. The singularity is at infinity (the preimage is
α = 0). The critical contour is shown on the left and corresponds to the level-line value 0.0798.

FIG. 13. Three equipotential intervals between [−1, −0.2], [−0.1, 0.1] and [0.2, 1]. The singularity is at infinity (the preimage is
α = 0). The critical contour is shown on the left and corresponds to the level-line value 0.0082.

For quantitative validation, we exploit the fact that the potential theory of several intervals on the
real line can be addressed using alternative arguments. Shen et al. (2001) have studied this problem
(and its applications to digital filter design and polynomial-based matrix iteration methods) based on
the formulation of Embree & Trefethen (1999). In Shen et al. (2001), an independent means is given
for determining the positions of the critical points of the Green’s function based on quadratures and the
solution of a linear system. This method is now briefly described. It is then used to compare with the
values for the critical points obtained from the new formulae of this paper.

Consider a set of n disjoint intervals [−1, a1], [b1, a2], . . . , [an−1, bn], [an, 1]. Let {ek |k = 1, . . . , n}
be the critical points of the Green’s function associated with the domain exterior to these intervals.
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Define the polynomials

Q(z) = (z2 − 1)

n∏
k=1

(z − ak)(z − bk),

P(z) =
n∏

k=1

(z − ek) ≡ zn − c1zn−1 − c2zn−2 − · · · − cn . (62)

Let {Ik |k = 1, . . . , n} denote the n gap intervals. Then, according to Theorem 3 of Shen et al. (2001), if

M jk =
∫

I j

tn−k dt√
Q(t)

, b j =
∫

I j

tn dt√
Q(t)

, (63)

then the vector c ≡ (c1, c2, . . . , cn)� solves the linear system Mc = b. Having solved for c, the values
{ek |k = 1, . . . , n} can then be determined.

Table 2 gives data for a symmetric distribution of three intervals [−1, −b], [−a, a] and [b, 1] along
the real axis together with the position, e1, of the critical point between these intervals as calculated
by the formulae of this paper and Shen et al. (2001). The values of the second column of the table are
computed using the formulae of this paper (with level-three truncation) together with Newton’s method
to find the zero of the derivative of the Green’s function in the gap interval. In all cases, agreement to
several digits of accuracy is found.

Table 3 gives the data for a symmetric distribution of five intervals [−1, −d], [−c, −b], [−a, a],
[b, c] and [d, 1] along the real axis and the positions e1 (between a and b) and e2 (between c and d) of
the critical points in the gap intervals as calculated by the formulae of this paper (to level-three accuracy)
and Shen et al. (2001). Again, there is a good agreement to several decimal places.

TABLE 2 Comparison of critical point positions of differing right–left symmetric
distributions of three equipotential slits on the real axis

Geometry (a, b) New method e1 Shen et al. e1

(0.1, 0.2) 0.150077 0.150067
(0.1, 0.3) 0.200123 0.200119
(0.1, 0.4) 0.250416 0.250414
(0.1, 0.5) 0.301591 0.301591
(0.1, 0.6) 0.473644 0.473644
(0.1, 0.7) 0.550757 0.550757

TABLE 3 Comparison of critical point positions of differing right–left symmetric
distributions of five equipotential slits on the real axis

Geometry (a, b, c, d) New method (e1, e2) Shen et al. (e1, e2)
(0.05, 0.15, 0.25, 0.35) (0.100161, 0.299993) (0.100071, 0.299885)
(0.1, 0.35, 0.55, 0.8) (0.226884, 0.683378) (0.226896, 0.683390)
(0.18, 0.23, 0.59, 0.64) (0.205137, 0.613791) (0.205067, 0.615306)
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12. Discussion

This paper has described a new constructive method, based on analytical formulae involving the
Schottky–Klein prime function, for finding the first-type Green’s function in multiply connected bounded
circular domains. By conformal transplantation, the first-type Green’s functions in more general mul-
tiply connected domains can also be found. The method exploits connections between potential theory
and conformal mapping theory and, to render the ideas concrete and constructive, combines these with
the results from classical function theory to build the relevant expressions. The efficacy of the con-
struction has been validated by comparison, in a number of special example cases, to two independent
(numerical and analytical) means of computing the Green’s function.

Our emphasis has been on analytical formulae and we have employed an infinite product represen-
tation of the Schottky–Klein prime function (and we have assumed that the domain Dζ is such that this
product is convergent). The prime function is a well-defined function even when the infinite product rep-
resentation is not convergent. In such cases, other schemes for computing the prime function—e.g. that
presented recently by Crowdy & Marshall (2007)—can be used in conjunction with the new formulae
(for the modified Green’s functions, harmonic measures and the first-type Green’s function) presented
in this paper.

There is a conceptually different way to compute the first-type Green’s function in a multiply con-
nected domain that is based on a ‘dual’ view of the theory (this alternative approach lies at the heart
of the treatment of Julia (1934)). Instead of performing the analysis in a multiply connected domain as
we have done, one can alternatively introduce a series of ‘cross-cuts’ in the domain to render it simply
connected. Then, it is known that one can uniformize the boundaries of the resulting simply connected
domain by means of a conformal mapping from an upper half-plane with 2M half-discs, all centred on
the real axis, excised. The 2M semicircular boundaries of such a domain correspond to the 2M cross-
cuts (each of the M cross-cuts has two sides), while the remainder of the real axis corresponds to the
original boundaries of the multiply connected domain. This is sometimes referred to as the Fuchsian
uniformization of the domain and, in a manner akin to that employed here, it is possible to employ
function-theoretic results in this alternative uniformization domain to find the relevant formulae for the
first-type Green’s function.

Finally, one of the many uses of the first-type Green’s function is as an analytical tool for finding
the solution of the classical Schwarz problem (and modified Schwarz problem) in multiply connected
domains (Mityushev & Rogosin, 2000). In recent work, Crowdy (2007) has presented novel integral
formulae, again expressed in terms of the Schottky–Klein prime function, for the general solution of the
Schwarz problem in multiply connected circular domains. The approach in Crowdy (2007) has close
connections to the results presented here.
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Appendix A. Properties of {βk(φ j (ᾱ), ᾱ−1)}
In this appendix, the properties of {βk(φ j (ᾱ), ᾱ−1)} will be derived. By definition,

βk(φ j (ᾱ), ᾱ−1) =
∏

θ∈Θk

(
φ j (ᾱ) − θ(Bk)

φ j (ᾱ) − θ(Ak)

)(
ᾱ−1 − θ(Ak)

ᾱ−1 − θ(Bk)

)
. (A.1)

Applying θ−1 to each term in this cross-ratio, we can also write

βk(φ j (ᾱ), ᾱ−1) =
∏

θ∈Θk

(
θ−1(φ j (ᾱ)) − Bk

θ−1(φ j (ᾱ)) − Ak

)(
θ−1(ᾱ−1) − Ak

θ−1(ᾱ−1) − Bk

)

=
∏

θ∈Θk

(
θ−1(θ j (ᾱ

−1)) − Bk

θ−1(θ j (ᾱ−1)) − Ak

)(
θ−1(ᾱ−1) − Ak

θ−1(ᾱ−1) − Bk

)
. (A.2)
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Now observe that if θ ∈ Θk , then θ−1 ∈ kΘ . So {θ−1|θ ∈ Θk} ⊆ kΘ . But, if θ̃ ∈ kΘ then θ̃−1 ∈ Θk ,
so θ̃−1 = θ for some θ ∈ Θk . So θ̃ = θ−1 and kΘ ⊆ {θ−1|θ ∈ Θk}. We therefore conclude that
{θ−1|θ ∈ Θk} =kΘ . It follows that

βk(φ j (ᾱ), ᾱ−1) =
∏

θ∈kΘ

(
θ(θ j (ᾱ

−1)) − Bk

θ(θ j (ᾱ−1)) − Ak

)(
θ(ᾱ−1) − Ak

θ(ᾱ−1) − Bk

)
. (A.3)

We now consider the cases j �= k and j = k separately.
Case k �= j : For every θ ∈ kΘ , we can write θ = ψθr

j , where ψ ∈ kΘ j and r ∈ Z. So kΘ ∈
{ψθr

j |ψ ⊆ kΘ j , r ∈ Z} but it is also obvious that {ψθr
j |ψ ∈ kΘ j , r ∈ Z} ⊆ kΘ . Therefore, kΘ =

{ψθr
j |ψ ∈kΘ j , r ∈ Z}. Equation (A.3) can be rewritten as

βk(φ j (ᾱ), ᾱ−1) =
∏

ψ∈kΘ j

∏
r∈Z

(
ψ(θr+1

j (ᾱ−1)) − Bk

ψ(θr+1
j (ᾱ−1)) − Ak

)(
ψ(θr

j (ᾱ
−1)) − Ak

ψ(θr
j (ᾱ

−1)) − Bk

)

=
∏

ψ∈kΘ j

(
ψ(θ∞

j (ᾱ−1)) − Bk

ψ(θ∞
j (ᾱ−1)) − Ak

)(
ψ(θ−∞

j (ᾱ−1)) − Ak

ψ(θ−∞
j (ᾱ−1)) − Bk

)

=
∏

ψ∈kΘ j

(
ψ(B j ) − Bk

ψ(B j ) − Ak

)(
ψ(A j ) − Ak

ψ(A j ) − Bk

)
, (A.4)

where the second equality follows because of cancellations between most of the terms in the second
product and the third equality follows from (24). First, note that the final expression of (A.4) is inde-
pendent of α. Second, note that the right-hand side of (A.4) corresponds precisely to the definition of
exp(2π iτ j,k) given in Chapter 12 of Baker (1995).
Case k = j : We can consider the set {ψθr

k |ψ ∈ kΘ
′
k, r ∈ Z} which is contained in the setkΘ

′. But if
θ ∈kΘ

′, we can write θ = ψθr
k for some ψ ∈kΘ

′
k . So kΘ

′ ⊆ {ψθr
k |ψ ∈kΘ

′
k, r ∈ Z}. Thus, kΘ

′ is the
same as {ψθr

k |ψ ∈kΘ
′
k, r ∈ Z}. Thus, it follows that

kΘ = {identity map} ∪ {ψθr
k |ψ ∈kΘ

′
k, r ∈ Z}. (A.5)

So, from (A.3), separating off the identity term yields

βk(φk(ᾱ), ᾱ−1) =
(

θk(ᾱ
−1) − Bk

θk(ᾱ−1) − Ak

)(
ᾱ−1 − Ak

ᾱ−1 − Bk

)

×
∏

ψ∈kΘ
′
k

∏
r∈Z

(
ψ(θr+1

k (ᾱ−1)) − Bk

ψ(θr+1
k (ᾱ−1)) − Ak

)(
ψ(θr

k (ᾱ−1)) − Ak

ψ(θr
k (ᾱ−1)) − Bk

)

=
(

θk(ᾱ
−1) − Bk

θk(ᾱ−1) − Ak

)(
ᾱ−1 − Ak

ᾱ−1 − Bk

)

×
∏

ψ∈kΘ
′
k

(
ψ(θ∞

k (ᾱ−1)) − Bk

ψ(θ∞
k (ᾱ−1)) − Ak

)(
ψ(θ−∞

k (ᾱ−1)) − Ak

ψ(θ−∞
k (ᾱ−1)) − Bk

)
, (A.6)
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where the second equality follows from cancellations in most of the terms of the second product. But,
we know that (

θk(ᾱ
−1) − Bk

θk(ᾱ−1) − Ak

)(
ᾱ−1 − Ak

ᾱ−1 − Bk

)
= µk eiκk , (A.7)

so that, on use of (A.7) and (24) it follows from (A.6) that,

βk(φk(ᾱ), ᾱ−1) = µk eiκk
∏

ψ∈kΘ
′
k

(
ψ(Bk) − Bk

ψ(Bk) − Ak

)(
ψ(Ak) − Ak

ψ(Ak) − Bk

)

= µk eiκk
∏

ψ∈kΘ
′′
k

(
ψ(Bk) − Bk

ψ(Bk) − Ak

)(
ψ(Ak) − Ak

ψ(Ak) − Bk

)

×
(

ψ−1(Bk) − Bk

ψ−1(Bk) − Ak

)(
ψ−1(Ak) − Ak

ψ−1(Ak) − Bk

)

= µk eiκk
∏

ψ∈kΘ
′′
k

[(
ψ(Bk) − Bk

ψ(Bk) − Ak

)(
ψ(Ak) − Ak

ψ(Ak) − Bk

)]2

, (A.8)

where the last line follows by applying ψ to each term in the second cross-ratio in the infinite product.
First note that the final term in (A.8) is independent of α. Second, the right-hand side of (A.8) turns out
to be precisely the quantity defined as exp(2π iτk,k) in Chapter 12 of Baker (1995).

In summary, it has been shown that the quantities βk(φ j (ᾱ), ᾱ−1) are independent of the value of α.
Further, it is found that

βk(φ j (ᾱ), ᾱ−1) = exp(2π iτ j,k), for j, k = 1, . . . , m, (A.9)

where the quantities on the right-hand side of (A.9) are defined in Chapter 12 of Baker (1995).


