
Math. Proc. Camb. Phil. Soc. (2007), 142, 319 c© 2007 Cambridge Philosophical Society

doi:10.1017/S0305004106009832 Printed in the United Kingdom
319

Schwarz–Christoffel mappings to unbounded multiply connected
polygonal regions

BY DARREN CROWDY

Department of Mathematics, Imperial College London, 180 Queen’s Gate,
London, SW7 2AZ.

(Received 14 March 2005; revised 6 June 2006)

Abstract

A formula for the generalized Schwarz–Christoffel conformal mapping from a bounded
multiply connected circular domain to an unbounded multiply connected polygonal domain
is derived. The formula for the derivative of the mapping function is shown to contain a
product of powers of Schottky–Klein prime functions associated with the circular preimage
domain. Two analytical checks of the new formula are given. First, it is compared with a
known formula in the doubly connected case. Second, a new slit mapping formula from a
circular domain to the triply connected region exterior to three slits on the real axis is derived
using separate arguments. The derivative of this independently-derived slit mapping formula
is shown to correspond to a degenerate case of the new Schwarz–Christoffel mapping. The
example of the mapping to the triply connected region exterior to three rectangles centred
on the real axis is considered in detail.

1. Introduction

A Schwarz–Christoffel mapping is a conformal mapping from a simple canonical domain
to a polygonal domain having boundaries which are all straight-line segments. Such map-
pings find wide relevance in applications. The theory and applications of such mappings
has been the central topic of a recent monograph by Driscoll and Trefethen [10]. There, the
role of such formulae in many physical applications, from fluid dynamics and electrostatics
to more abstract theoretical applications in approximation theory and the design of digital
filters, is expertly surveyed.

The Schwarz–Christoffel mapping (hereafter abbreviated to “S–C mapping”) to simply
connected polygonal domains dates back to the 1860’s [10] while a generalized formula for
mapping to bounded doubly connected polygonal domains was first presented in the 1920’s
[3] (it appears to have been rediscovered later by Komatu [16]). The question of finding more
general formulae to polygonal domains of arbitrary finite connectivity is a very natural one,
but work on this problem seems to have been largely impeded by implementation problems
associated even with the known simply and doubly connected mapping formulae. Before the
1980’s, while knowledge of the existence of these formulae was widespread, equally preval-
ent was the generally held view that application of the formulae in all but the simplest cases
was impractical owing to the numerical intractability of solving the so-called “parameter
problem” (in combination with various other difficulties such as “crowding” [10]). These
practical impediments have now been overcome and readily transferable software operating
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on platforms such as MATLAB are available. Now, S-C mappings of very complicated do-
mains can be constructed at the click of a mouse. Driscoll [11] has created a MATLAB pack-
age called SC Toolbox based on an earlier Fortran program developed by Trefethen.

Given this history, a long-standing theoretical problem has once again moved to the fore-
front: that of finding general formulae for S-C mappings to higher connected polygonal
domains. Only when they are found can one proceed to transfer and adapt all the mathemat-
ical technology devised to negotiate the numerical problems of S-C mapping in the simply
and doubly connected cases to the case of arbitrary finite connectivity.

In a recent paper, DeLillo, Elcrat and Pfaltzgraff [9] have addressed the multiply con-
nected problem and have derived a formula for a S-C mapping from a finitely-connected
unbounded circular preimage region to an unbounded conformally equivalent polygonal re-
gion. The derivation relies on an extension of an idea originally presented in [8] involving
consideration of an infinite sequence of reflections in circles needed to satisfy the relevant
argument conditions (on the derivative of the mapping function) on the segments of each
preimage circle mapping to the sides of the polygonal region.

This paper complements the work of DeLillo, Elcrat and Pfaltzgraff [9] and offers a differ-
ent perspective. In particular, although it is not mentioned in their paper, the infinite sequence
of reflections in circles considered in [9] is naturally associated with the theory of classical
Schottky groups of Möbius mappings [5]. In turn, associated with any such Schottky group
is a fundamental function known as the Schottky–Klein prime function [4]. The key result
of this paper is to show that an S-C formula to unbounded polygonal domains (from the
canonical class of bounded multiply connected circular preimage regions) can be written, in
a natural way, as a product of powers of this prime function. This provides an important link
between generalized Schwarz–Christoffel formulae and classical function theory.

The result here is a natural extension, to the case of unbounded domains, of a similar
formula for S-C mappings to bounded polygonal domains, recently derived by the present
author [6]. In Crowdy [6], the S-C formula mapping a bounded circular region to a bounded
polygonal region is

z(ζ ) = A + B
∫ ζ

SB(ζ ′)
n0∏

k=1

[
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(
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k

)]β
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and where ω(ζ, γ ) is the relevant Schottky–Klein prime function. M + 1 is the connectivity
of the domain. The mapping formula to unbounded domains derived in this paper differs only
in that SB(ζ ) (where the subscript B is chosen to reflect the fact that the image is “bounded”)
given in (1·2) must be replaced by a function which we call S∞(ζ ), the subscript reflecting
the fact that the image domain now includes the point at infinity. The final formula derived
here is

z(ζ ) = A + B
∫ ζ
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k dζ ′ (1·3)
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with

S∞(ζ ) ≡ SB(ζ )

ω(ζ, ζ∞)2ω(ζ, ζ̄−1∞ )2
(1·4)

and where ζ∞ is the preimage point in Dζ mapping to the point at infinity. All other para-
meters appearing in (1·3) and (1·4) are explained in the main body of the paper.

We are able to provide two analytical checks on this new formula. First, in Section 10 we
examine the special case of mappings to unbounded doubly connected polygonal regions
and compare with a formula of Akhiezer [2] and a related formula resulting from the con-
struction of DeLillo, Elcrat and Pfaltzgraff [9]. Second, in Section 11, we explicitly construct
an example of an unbounded triply connected domain in order to demonstrate the efficacy of
the new formula in practice. The case of the unbounded region exterior to three rectangles
centred on the real axis is considered. A special limit of this example consists of three real
intervals along the real axis. It turns out that, using independent arguments, an alternative
functional form for the mapping from the same circular preimage domain to the unbounded
domain exterior to this collection of real intervals can be found. The derivative of this al-
ternative function is then compared to the derivative of (1·3). The two functions are found
to be identically equal.

2. Mathematical formulation

Let the target region Dz in a complex z-plane be an unbounded (M + 1)-connected poly-
gonal region. M = 0 is the simply connected case. Let Dz be the unbounded region exterior
to M + 1 polygonal regions whose boundaries are denoted {Pj | j = 0, 1, . . . , M}. Let poly-
gon Pj have n j edges where n j � 2 are integers. Let the set of interior angles at each vertex
of polygon Pj be

π
(
β

( j)
k + 1

)
, k = 0, . . . , n j , (2·1)

where the usual S-C conditions [10], i.e.,
n j∑

k=1

β
( j)
k = 2, j = 0, 1, . . . , M (2·2)

must hold in order that each boundary is a closed polygon. The parameters
{
β

( j)
k | j =

0, 1, . . . , M
}

are called the turning angles [10]. Let the straight-line edges of polygon Pj be
given by the linear equations

z̄ = ε
( j)
k z + κ

( j)
k (2·3)

where ε
( j)
k and κ

( j)
k are complex constants with

∣∣ε( j)
k

∣∣ = 1. For a given target polygon,{
ε

( j)
k , κ

( j)
k

}
can be determined.

We seek a conformal mapping to Dz from a conformally equivalent bounded multiply
connected circular domain Dζ . (In contrast, DeLillo, Elcrat and Pfaltzgraff [9] choose an un-
bounded circular region as their preimage domain.) Let Dζ be the unit ζ -circle with M smal-
ler circular discs excised and let the boundaries of these circular discs be {C j | j = 1, . . . , M}.
The unit circle |ζ | = 1 will be called C0. The complex numbers {δ j | j = 1, . . . , M} will de-
note the centres of the enclosed circular discs, the real numbers {q j | j = 1, . . . , M} will
denote their radii. Figure 1 shows a schematic of a typical circular domain. Figure 2 shows
a schematic, in the triply connected case, of the mapping from a circular domain to the
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Fig. 1. Schematic of typical multiply connected circular region Dζ . The case shown, with three enclosed
circles, is quadruply connected. C0 denotes the unit circle. There are M interior circles (the case M = 3 is
shown here), each labelled {C j | j = 1, . . . , M}. The centre of circle C j is δ j and its radius is q j .

Dζ
Dz

z(ζ)

ζ∞

Fig. 2. Schematic of the preimage and target complex planes for the case of a triply connected domain. The
bounded circular domain Dζ in the ζ -plane is to be mapped by the function z(ζ ) to the unbounded domain
Dz in the z-plane exterior to the shaded polygonal regions. The point ζ∞ in Dζ maps to the point at infinity
in the z-plane.

unbounded region exterior to three polygons in a z-plane. It is supposed that the circle C j

maps to Pj .

3. Schottky groups

To proceed with the construction, first define M Möbius maps {φ j | j = 1, . . . , M} corres-
ponding, respectively, to the conjugation maps on the circles {C j | j = 1, . . . , M}. That is, if
C j is defined by the equation

|ζ − δ j |2 = (ζ − δ j )(ζ̄ − δ̄ j ) = q2
j , (3·1)

then

ζ̄ = δ̄ j + q2
j

ζ − δ j
, (3·2)
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Fig. 3. Schematic of the set of Schottky circles associated with a typical quadruply connected domain
Dζ . The region exterior to all six circles {C j , C ′

j | j = 1, 2, 3} is the fundamental region. The part of the
fundamental region inside the unit circle C0 is Dζ .

and so

φ j (ζ ) ≡ δ̄ j + q2
j

ζ − δ j
. (3·3)

If ζ is a point on C j then its complex conjugate is given by

ζ̄ = φ j (ζ ). (3·4)

Next, introduce the Möbius maps

θ j (ζ ) ≡ φ j (ζ
−1) = δ j + q2

j ζ

1 − δ̄ jζ
(3·5)

where the conjugate function φ̄ j is defined by

φ̄ j (ζ ) = φ j (ζ̄ ). (3·6)

Let C ′
j be the circle obtained by reflection of the circle C j in the unit circle |ζ | = 1 (i.e. the

circle obtained by the transformation ζ �→ ζ̄−1). It is easily verified that the image of the
circle C ′

j under the transformation θ j is the circle C j . Since the M circles {C j | j = 1, . . . , M}
are non-overlapping, so are the M circles {C ′

j | j = 1, . . . , M}. The (classical) Schottky group
� is defined to be the infinite free group of Möbius mappings generated by compositions
of the 2M basic Möbius maps {θ j | j = 1, . . . , M} and their inverses {θ−1

j | j = 1, . . . , M}.
Beardon [5] gives a general discussion of such groups. An accessible discussion of Schottky
groups and their mathematical properties can also be found in the book by Mumford, Series
and Wright [17].

Consider the (generally unbounded) region of the plane exterior to the 2M circles {C j | j =
1, . . . , M} and {C ′

j | j = 1, . . . , M}. A schematic is shown in Figure 3. This region is known
as the fundamental region associated with the Schottky group generated by the Möbius maps
{θ j | j = 1, . . . , M} and their inverses. This fundamental region can be understood as having
two “halves” – the half that is inside the unit circle but exterior to the circles C j is the
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region Dζ , the region outside the unit circle and exterior to the circles C ′
j is the “other”

half. The region is called fundamental because the whole complex plane is tesselated by an
infinite sequence of “copies” of this region obtainable by conformally mapping points in the
fundamental region by elements of the Schottky group. Any point in the plane which can
be reached by the action of a finite composition of the basic generating maps on a point in
the fundamental region is called an ordinary point of the group. Any point not obtainable in
this way is a singular point of the group. The set of 2M circles {C j , C ′

j | j = 1, . . . , M} are
known as Schottky circles.

There are two important properties of the Möbius maps introduced above. The first is that

θ−1
j (ζ ) = 1

φ j (ζ )
, ∀ζ. (3·7)

This can be verified using the definitions (3·3) and (3·5) (or, alternatively, by considering the
geometrical effect of each map). The second property, which follows from the first, is that

θ−1
j (ζ−1) = 1

φ j (ζ−1)
= 1

φ̄ j (ζ̄−1)
= 1

θ j (ζ̄ )
= 1

θ̄ j (ζ )
, ∀ζ. (3·8)

The full Schottky group will be denoted �. The notation �′′ will be taken to mean all
mappings in the group excluding the identity mapping and all inverse mappings meaning
that if some mapping θk is included in �′′ then its inverse mapping θ−1

k must be excluded.

4. The Schottky–Klein prime function

Following the discussion of Baker [4, chapter 12], the Schottky–Klein prime function is
defined as

ω(ζ, γ ) = (ζ − γ )ω′(ζ, γ ) (4·1)

where the function ω′(ζ, γ ) is given by

ω′(ζ, γ ) =
∏

θi ∈�′′

(θi(ζ ) − γ )(θi (γ ) − ζ )

(θi(ζ ) − ζ )(θi(γ ) − γ )
(4·2)

and where the product is over all mappings θi in the set �′′. It is emphasized that the prime
notation is not used here to denote differentiation. The function ω(ζ, γ ) is single-valued on
the whole ζ -plane, has a zero at γ and all points equivalent to γ under the mappings of
the group �. Again following Baker [4], we proceed under the assumption that the infinite
product defining the prime function is convergent. Whether this is true will depend, in gen-
eral, on the distribution of Schottky circles in the ζ -plane. A basic rule of thumb is that the
product is convergent provided the Schottky circles are sufficiently small and well separated
in the ζ -plane (similar convergence criteria arise in the construction of [9]). Baker [4] de-
scribes some explicit conditions for convergence. Further comments on the computation of
the prime function are given in Section 12.

The Schottky–Klein prime function has some important transformation properties which
will be needed in the construction of the S-C mapping. One such property is that it is anti-
symmetric in its arguments, i.e.,

ω(ζ, γ ) = −ω(γ, ζ ). (4·3)
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This is clear from inspection of (4·1) and (4·2). A second important property is given by

ω(θ j (ζ ), γ1)

ω(θ j (ζ ), γ2)
= β j (γ1, γ2)

ω(ζ, γ1)

ω(ζ, γ2)
(4·4)

where θ j is any one of the basic maps of the Schottky group. A detailed derivation of this
result is given in [4, chapter 12]. A formula for β j (γ1, γ2) is given explicitly in Crowdy [6]
but will not be needed here. A third property of ω(ζ, γ ) which will also be useful is

ω̄(ζ−1, γ −1) = − 1

ζγ
ω(ζ, γ ) (4·5)

where the conjugate function ω(ζ, γ ) is defined by

ω(ζ, γ ) = ω(ζ̄ , γ̄ ). (4·6)

The derivation of (4·5) follows directly from the definition of the prime function. Details of
the derivation are given in Crowdy [6] and will not be repeated here.

5. Three special functions

In this section, a series of propositions will outline the properties of three special func-
tions, {Fj (ζ ; ζ1, ζ2)| j = 1, 2, 3}, that will be needed in the construction of the S-C mapping
formula.

PROPOSITION 1. If ζ1 and ζ2 are any two distinct points on C0, then the function

F1(ζ ; ζ1, ζ2) ≡ ω(ζ, ζ1)

ω(ζ, ζ2)
(5·1)

has constant argument on each of the circles {C j | j = 0, 1, . . . , M}.
PROPOSITION 2. If ζ1 and ζ2 are two distinct points on a particular choice of enclosed

circle C j (for some j = 1, . . . , M) then the function

F2(ζ ; ζ1, ζ2) ≡ ω(ζ, ζ1)

ω(ζ, ζ2)
(5·2)

has constant argument on each of the circles {Ck |k = 0, 1, . . . , M}.
PROPOSITION 3. Let ζ1 and ζ2 be any two distinct ordinary points of a given Schottky

group. Then the function

F3(ζ ; ζ1, ζ2) ≡ ω(ζ, ζ1)ω
(
ζ, ζ̄−1

1

)
ω(ζ, ζ2)ω

(
ζ, ζ̄−1

2

) (5·3)

has constant argument on each of the circles {Ck |k = 0, 1, . . . , M}.
The proofs of the three propositions are a consequence of relation (3·5) along with re-

peated application of the two properties (4·4) and (4·5). The reader can find these proofs
in Crowdy [6]. The functions {F1(ζ ; ζ1, ζ2)| j = 1, 2, 3} will be used as the basic “building
block” functions with which to construct the mapping function in Section 8.

6. Conformal mapping to circular slit domain

It is convenient to introduce an intermediate η-plane. Consider a conformal mapping η(ζ )

taking the multiply connected circular domain Dζ to a conformally equivalent circular slit
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domain Dη consisting of the unit disc in an η-plane with M concentric circular-arc slits
inside. Let the image of C0 under this mapping be the unit circle in the η-plane which will
be called L0. The M circles {C j | j = 1, . . . , M} will be taken to have concentric circular
slit images, centred on η = 0, and labelled {L j | j = 1, . . . , M}. Let the arc L j (with j =
1, . . . , M) be specified by the conditions

|η| = r j , arg[η] ∈ [
φ

( j)
1 , φ

( j)
2

]
. (6·1)

It is clear that there will be two preimage points on C j corresponding to the two end-points of
the circular slit L j . These two preimage points, labelled γ

( j)
1 and γ

( j)
2 , satisfy the conditions

η
(
γ

( j)
1

) = r j e
iφ( j)

1 , ηζ

(
γ

( j)
1

) = 0,

η
(
γ

( j)
2

) = r j e
iφ( j)

2 , ηζ

(
γ

( j)
2

) = 0.
(6·2)

These 2M zeros of ηζ are all simple since the points γ
( j)
1 and γ

( j)
2 map to the ends of a slit

and the arguments of η(ζ ) − η
(
γ

( j)
1

)
and η(ζ ) − η

(
γ

( j)
2

)
change by 2π as ζ passes through

these points. This fact will be important later. The mapping of an M-connected domain to
such a circular slit domain was first proposed by Koebe [15].

The key idea of the construction of the S-C mapping is to consider conditions on the
derivative of the mapping function in the intermediate η-plane. These conditions turn out to
be easier to handle than those in the original ζ plane because they take the same functional
form on all boundaries (which is not the case in the original ζ -plane). Once these conditions
on z(η) are satisfied in the η-plane, the functional form of the required mapping function
z(ζ ) = z(η(ζ )) can be deduced.

The conformal mapping from the circular domain Dζ in the ζ -plane to the circular slit
domain Dη in the η-plane can also be constructed using the Schottky–Klein prime function.
Suppose that the point α in the domain Dζ is to map to η = 0. α can be chosen arbitrarily.
The conformal map η(ζ ) taking the circular domain Dζ to the circular-slit domain Dη is
given by

η(ζ ) = ω(ζ, α)

|α|ω(ζ, ᾱ−1)
. (6·3)

That this formula effects the required mapping from Dζ to Dη can be checked using the
properties of the Schottky–Klein prime function given earlier. More details can be found in
Crowdy and Marshall [7].

7. Properties of the S-C mapping function

Let z(η) map the circular-slit domain Dη to the bounded polygonal region Dz . In this
section, the properties required of this function will be outlined.

First, by definition, z(η) must be an analytic function everywhere inside Dη. Furthermore,
it must have branch point singularities (i.e. points of non-conformality) on the circular arcs
{L j | j = 0, 1, . . . , M}. Define the prevertices [10] in the ζ -plane to be the points{

a(0)

k

∣∣k = 1, . . . , n0

}
(7·1)

on C0, and the points {
a( j)

k

∣∣k = 1, . . . , n j

}
(7·2)

on each of the enclosed circles {C j | j = 1, . . . , M}.
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Now let the image of the point a( j)
k under the mapping η(ζ ) be ã( j)

k so that

ã( j)
k = η

(
a( j)

k

)
. (7·3)

Then, locally, we must have

zη

(
ã( j)

k

) = (
η − ã( j)

k

)β
( j)
k f (η) (7·4)

where f (η) is some function that is analytic at η = ã( j)
k . It follows that the composed

function z(ζ ) = z(η(ζ )) must have the local behaviour

zζ

(
a( j)

k

) = (
ζ − a( j)

k

)β
( j)
k g(ζ ) (7·5)

where g(ζ ) is some function that is analytic at ζ = a( j)
k . Except for these branch point

singularities, the mapping must be analytic at all other points on the circular arcs.
Next, in order that the segments of the circular arcs {L j | j = 0, 1, . . . , M} between these

branch point singularities map to straight-line segments in the z-plane, the mapping function
must satisfy the property that the quantity ηzη(η) has piecewise-constant argument on all the
circular arcs {L j | j = 0, 1, . . . , M}. To see this, consider the kth line segment of the polygon
Pj in the z-plane. On this line, it is known from (2·3) that

z̄ = ε
( j)
k z + κ

( j)
k (7·6)

for some constants ε
( j)
k and κ

( j)
k . This means that, on the portion of the circular arc L j

mapping to this line segment, differentiation with respect to z means that we must have

dz̄

dη

(
dz

dη

)−1

= ε
( j)
k . (7·7)

But, on this portion of L j , we also have

z̄ = z(η) = z̄(η̄) = z̄
(
r 2

j η
−1

)
(7·8)

where {r j | j = 1, . . . , M} are defined in (6·1) and we stipulate r0 = 1 (since L0 is the unit
circle). Therefore (7·7) becomes

− r 2
j

η2

z̄η

(
r 2

j η
−1

)
zη(η)

= ε
( j)
k . (7·9)

Since η̄ = r 2
j η

−1 on L j , it can be concluded from (7·9) that, on this portion of L j , ηzη(η)

has constant argument. It follows that the argument of ηzη(η) is piecewise constant on the
circular arcs {L j | j = 0, . . . , M} and hence on the circles {C j | j = 0, . . . , M}.

8. Construction of the S-C mapping function

The conformal mapping z(ζ ) from Dζ to Dz will now be constructed. First, pick an arbit-
rary point γ j on each of the circles {C j | j = 0, . . . , M}. It is required to construct a mapping
from Dη to Dz satisfying the condition that ηzη(η) has piecewise constant argument on the
segments of the circular arcs {L j | j = 0, . . . , M} between the prevertices

{
ã( j)

k

}
. But this is

equivalent to the condition that ηzη has piecewise constant argument on the segments of the
original circles {C j | j = 0, . . . , M} between the prevertices

{
a( j)

k

}
. We must also ensure that

ηzη has the requisite branch point singularities on these circles in the ζ -plane.



328 DARREN CROWDY

Consider the function

n0∏
k=1

(
F1(ζ ; a(0)

k , γ0

)β
(0)
k

M∏
j=1

n j∏
k=1

(
F2

(
ζ ; a( j)

k , γ j

))β
( j)
k

. (8·1)

Since this function is a product of various powers of the special functions F1 and F2 con-
sidered in Propositions 1 and 2 it will have piecewise constant argument on the circles
{C j | j = 0, . . . , M}. It also has the correct branch point singularities at the points

{
a( j)

k |k =
1, . . . , n j

}
. However, in addition to the required branch points, on use of the two rela-

tions (2·2) this function can be seen to have M + 1 second order poles at the points
{γ j | j = 0, . . . , M}.

Now multiply (8·1) by the quantity

M∏
j=1

F2

(
ζ ; γ j , γ

( j)
1

)
F2

(
ζ ; γ j , γ

( j)
2

)
(8·2)

which has a second order zero at the M points {γ j | j = 1, . . . , M} and simple poles at the
2M points

{
γ

( j)
1 , γ

( j)
2 | j = 1, . . . , M

}
. Multiplying (8·1) by this function has the effect of

shifting the M second order poles at the arbitrarily chosen points {γ j | j = 1, . . . , M} to
produce instead 2M simple poles of the function at the points

{
γ

( j)
1 , γ

( j)
2 | j = 1, . . . , M

}
.

Recall from (6·2) that the latter set of points are precisely the positions of the simple zeros of
the conformal mapping ηζ (ζ ) – a fact that will be useful in what follows. It is crucial to note
that since (8·2) is a product of F2-functions, we have effected this shift in the poles of the
function without affecting the important property that it has piecewise constant argument on
the circles {C j | j = 0, . . . , M}.

The new modified function, which can be written

n0∏
k=1

(
F1(ζ ; a(0)

k , γ0

)β
(0)
k

M∏
j=1

F2(ζ ; γ j , γ
( j)
1 )F2(ζ ; γ j , γ

( j)
2 )

n j∏
k=1

(
F2

(
ζ ; a( j)

k , γ j

))β
( j)
k

, (8·3)

is now multiplied by a second function given by

F3(ζ ; γ0, ζ∞)F3(ζ ; α, ζ∞). (8·4)

This has the effect of removing the second-order pole at the arbitrarily chosen point γ0 and
replacing it with a second-order pole at the points ζ∞ and ζ̄−1

∞ . It also adds two simple zeros
at the points α and ᾱ−1. Recall that α is the point in the ζ -plane which maps to η = 0 in
Dη. Again, because (8·4) is a product of F3-functions introduced in Proposition 3, this shift
in the poles of the function has been effected without sacrificing the property that it has
piecewise constant argument on the circles {C j | j = 0, . . . , M}. The new function can be
rewritten, after cancellations, as

S(ζ )

n0∏
k=1

[
ω

(
ζ, a(0)

k

)]β
(0)
k

M∏
j=1

n j∏
k=1

[
ω

(
ζ, a( j)

k

)]β
( j)
k , (8·5)

where

S(ζ ) ≡ ω(ζ, α)ω(ζ, ᾱ−1)

ω(ζ, ζ∞)2ω
(
ζ, ζ̄−1∞

)2 ∏M
j=1 ω

(
ζ, γ

( j)
1

)
ω

(
ζ, γ

( j)
2

) . (8·6)
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It will not have escaped the reader’s notice that the function in (8·5) has all the properties
required of ηzη. Indeed, it is now easy to prove that ηzη is indeed some multiple of (8·5).
The proof, which relies on an application of Liouville’s theorem, is outlined in appendix A.
It can be concluded that

ηzη(η) = B̃S(ζ )

n0∏
k=1

[
ω

(
ζ, a(0)

k

)]β
(0)
k

M∏
j=1

n j∏
k=1

[
ω

(
ζ, a( j)

k

)]β
( j)
k (8·7)

where B̃ is some complex constant. But, by the chain rule,

ηzη(η) = η(ζ )
dz

dζ

dζ

dη
(8·8)

which implies the following expression for dz/dζ :

dz

dζ
= B̃

η(ζ )

dη(ζ )

dζ
S(ζ )

n0∏
k=1

[
ω

(
ζ, a(0)

k

)]β
(0)
k

M∏
j=1

n j∏
k=1

[
ω

(
ζ, a( j)

k

)]β
( j)
k . (8·9)

To check the consistency of the formula, first note that the pole of the right-hand side at ζ =
α (arising because η(ζ ) vanishes there) is removable since S(ζ ) vanishes there. Second, the
simple zeros of dη/dζ at {γ ( j)

1 , γ
( j)
2 | j = 1, . . . , M} (cf. Section 2) do not produce unwanted

zeros of dz/dζ at these points since they are exactly cancelled by the simple poles of S(ζ ).
Finally, dz/dζ has the required second-order pole at ζ∞ owing to the presence of a second-
order pole of S(ζ ) at this point.

By direct calculation based on the formula (6·3), we obtain

dη

dζ
= 1

|α|
(

ωζ (ζ, α)ω(ζ, ᾱ−1) − ωζ (ζ, ᾱ−1)ω(ζ, α)

ω(ζ, ᾱ−1)2

)
. (8·10)

On substitution into (8·9),

dz

dζ
= BS∞(ζ )

n0∏
k=1

[
ω

(
ζ, a(0)

k

)]β
(0)
k

M∏
j=1

n j∏
k=1

[
ω

(
ζ, a( j)

k

)]β
( j)
k (8·11)

where S∞(ζ ) is defined in (1·4) and B is some constant. On integration of (8·11) with respect
to ζ , the final formula given in (1·3) is obtained where A is a constant of integration.

While dz/dζ must have the general form (8·11) with a second order pole at ζ∞, its prim-
itive must have a simple pole there. In other words, it is necessary that the residue of dz/dζ

at ζ∞ vanishes. This should be considered as an additional condition to be satisfied in the
problem of finding the accessory parameters.

9. The simply connected case

In the case of a simply connected domain there are no enclosed circles and hence no non-
trivial generating Möbius maps. The Schottky group is therefore the trivial group and the
associated Schottky–Klein prime function is just

ω(ζ, γ ) = (ζ − γ ). (9·1)

Moreover, if we take ζ∞ = 0, the function S∞(ζ ) reduces to

S∞(ζ ) = C

ζ 2
(9·2)

in this case. Formula (1·3) is then the well-known S-C mapping from the unit disc to an
unbounded polygonal region [10].
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10. The doubly connected case

Any doubly connected domain can be obtained by a conformal mapping from some an-
nulus q < |ζ | < 1 in a parametric ζ -plane where the value of the parameter q is determined
by the image domain. In this case, δ1 = 0 and q1 = q, so that the single Möbius map given
by (3·5) is

θ1(ζ ) = q2ζ. (10·1)

The Schottky group in this case is generated by θ1 and its inverse. Its elements are all Möbius
maps of the form {

θ
j

1

∣∣ j ∈ Z
}
. (10·2)

The associated Schottky–Klein prime function can be shown to be

ω(ζ, γ ) = − γ

D2
P(ζ/γ , q) (10·3)

where

P(ζ, q) ≡ (1 − ζ )

∞∏
k=1

(1 − q2kζ )(1 − q2kζ−1), D ≡
∞∏

k=1

(1 − q2k). (10·4)

The transformation properties of P(ζ, q) corresponding to (4·4) and (4·5) respectively are

P
(
q2ζγ −1

1 , q
)

P
(
q2ζγ −1

2 , q
) = γ1

γ2

P
(
ζγ −1

1 , q
)

P
(
ζγ −1

2 , q
) ,

P(ζ−1, q) = −ζ−1 P(ζ, q).

(10·5)

It can also be shown directly from the infinite product definition (10·4) that

P(q2ζ, q) = −ζ−1 P(ζ, q). (10·6)

By using a rotational degree of freedom in the mapping function we can assume, without
loss of generality, that the point α mapping to η = 0 is real. It follows that S∞(ζ ) takes the
form

S∞(ζ ) = S̃(ζ )

P2(ζ ζ−1∞ , q)P2(ζ ζ̄∞, q)
(10·7)

where

S̃(ζ ) = α−1 Pζ (ζα−1, q)P(ζα, q) − αPζ (ζα, q)P(ζα−1, q)

γ1γ2 P
(
ζγ −1

1 , q
)
P

(
ζγ −1

2 , q
) . (10·8)

In fact, as shown by Crowdy [6], S̃(ζ ) can be simplified to

S̃(ζ ) = C

ζ 2
(10·9)

where C is some constant. Thus, (8·11) produces the result

zζ = C

ζ 2 P2(ζ ζ−1∞ , q)P2(ζ ζ̄∞, q)

n0∏
k=1

[
P

(
ζ/a(0)

k , q
)]β

(0)
k

n1∏
k=1

[
P

(
ζ/a(1)

k , q
)]β

(1)
k (10·10)

for some constant C . This is the final formula. Note, for use in a moment, that from the
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transformation property (10·6), as well as (2·2), this can be rewritten as

zζ = B

P2(ζ ζ−1∞ , q)P2(ζ ζ̄∞, q)

n0∏
k=1

[
P

(
ζ/a(0)

k , q
)]β

(0)
k

n1∏
k=1

[
P

(
q2ζ/a(1)

k , q
)]β

(1)
k (10·11)

for some constant B.
Akhiezer [3] was apparently the first to derive the mapping of an annulus to an unbounded

doubly connected polygonal region. His formula, as reported in [2] but transcribed as closely
as possible into the notation of the present paper, is

c1z(ζ ) + c2 =
∫

dζ

ζ 2

N∏
k=1

[
�1

(
log ζ − log ak

2π i

)]βk
[
�1

(
log(ζ/ζ∞)

2π i

)
�1

(
log(ζ ζ∞)

2π i

)]−2

(10·12)

where �1 is the first Jacobi theta function. One obvious difference between (10·10) and
(10·12) is that the latter does not distinguish between branch points occurring on different
boundary circles of the annulus, but this is inconsequential. It can be verified that (10·12) is
an alternative representation of (10·10) on use of the formula

P(ζ ) = − ieχ/2

Dρ1/4
�1(−iχ/2) (10·13)

where χ = π−1 log ζ . (10·13) provides the connection between P(ζ ) and �1 [19].
DeLillo, Elcrat and Pfaltzgraff [8] also derive an expression for a mapping to a doubly

connected polygonal region from a conformally equivalent unbounded circular region given
by the exterior of the unit circle and a circle centred at c > 1 and of radius r . Their formula,
transcribed in the notation of the present paper, is

z(ζ ) = A + B
∫ ζ n0∏

k=1

[
�

(
T (ζ ′)

qT
(
a(0)

k

)
)]β

(0)
k n1∏

k=1

[
�

(
qT (ζ ′)

T
(
a(1)

k

)
)]β

(1)
k

× (�(−pT (ζ )/q)�(−T (ζ )/(qp)))−2 1 − p2

(1 − pζ )2
dζ ′

(10·14)

where

�(ζ) ≡
∞∏

k=0

(1 − q2k+1ζ )(1 − q2k+1ζ−1), (10·15)

A and B are constants, while

T (ζ ) = ζ − p

1 − pζ
, p = c

1 + rq
. (10·16)

To see the relationship between these two results, first note that it is easy to check from
(10·4) and (10·15) that

�(ζq−1) = P(ζ, q). (10·17)

The Möbius mapping T (ζ ) is precisely the one taking the unbounded circular region con-
sidered in [9] to the bounded annulus q < |ζ | < 1. Moreover, we can identify

ζ∞ = −p−1. (10·18)

Combining all this, the integral of (10·11) is identical to (10·14) if the substitution ζ ′′ =
T (ζ ′) is made in the integral of (10·11). This provides an important check on (1·3).
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φ
2

φ
3φ

1

Fig. 4. Definition sketch of the angles φ1, φ2 and φ3 as used in the triply connected example.

11. The triply connected case

It is appropriate to check the efficacy of the new formula (8·11) by using it to construct
an explicit example. We therefore present a triply connected case. The target domain is
chosen to have sufficient geometrical symmetry that the numerical complications of solving
the parameter problem are significantly reduced. Consider an unbounded triply connected
target region consisting of the complex plane with three rectangles excised. One rectangle
is centred at the origin z = 0 and is assumed to be reflectionally symmetric about both the
real and imaginary axes. Two equal rectangles centred on the positive and negative real axis
are positioned to either side of the central rectangle. The domain is taken to be reflectionally
symmetric about both the real and imaginary axes in the z-plane. A conformal mapping
from a conformally equivalent, triply connected circular domain to this target domain will
be constructed based on (1·3).

The parameter A can be chosen so that the origin is correctly placed (i.e., z(0) = 0) while
B can be thought of as governing the area of the central rectangle. Here we chose B so
that the central rectangle extends horizontally between ±1. By the symmetry of the target
domain, we expect

q1 = q2 = q, δ1 = −δ2 = δ, (11·1)

where δ is taken to be real so that C1 and C2 are centred on the real axis. The two real
parameters q and δ will be picked arbitrarily. This can be thought of as specifying the centre
and area of the two rectangles at either side of the central rectangle. We also expect, on
grounds of symmetry, that we should take ζ∞ = 0. Further, the prevertices on the unit ζ -
circle are also expected to be symmetrically disposed. We therefore take them to be at

e±iφ1, e±i(π−φ1) (11·2)

where φ1 is an adjustable real parameter. Figure 4 shows a schematic illustrating φ1 as the
argument of the branch point on C0. It can be thought of as governing the aspect ratio (or
height) of the central rectangle. Concerning the prevertices on C1 and C2, on grounds of
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Fig. 5. The circular region Dζ in the ζ -plane and the circular-slit domain Dη in the η-plane for the triply
connected example with q = 0.15 and δ = 0.6.

symmetry, we expect it follows from the symmetry that the prevertices on C1 are at

δ + qe±iφ2, δ + qe±i(π−φ3) (11·3)

where φ2 and φ3 are real parameters. Only one of these two parameters, φ2 say, should be
freely specifiable. The value of φ3 is then determined by the condition that the lengths of
the sides of the image polygon should be such that the polygon closes. By the symmetry, we
expect the pre-vertices on C2 to be at

−δ + qe±iφ3, − δ + qe±i(π−φ2). (11·4)

See the schematic in Figure 4.
It is easy to deduce from the interior angles of the polygonal region that we must take

β
(0)

k = 1

2
, k = 1, 2, 3, 4,

β
( j)
k = 1

2
, k = 1, 2, 3, 4 and j = 1, 2.

(11·5)

We also make the choice α = 0. In this case, (6·3) is not well-defined and must be replaced
by the formula

η(ζ ) = ω(ζ, 0)

ω(ζ, ∞)
= ζω′(ζ, 0)

ω′(ζ, ∞)
(11·6)

which is the appropriate limit of (6·3) as α → 0. Figure 5 shows the effect of this mapping
between the ζ and η-planes.

With α, q and δ now specified, the values of γ
( j)
1 and γ

( j)
2 for j = 1, 2 can now be

determined. This is done using a simple one-dimensional Newton iteration on the argument,
φ̂ say, of the point γ

(1)

1 relative to the point δ. The equation to be solved is that ηζ as given
by the derivative of (11·6) vanishes at ζ = δ + qei φ̂ . Then it follows from the symmetry that

γ
(1)

1 = δ+qei φ̂ , γ
(1)

2 = δ+qe−i φ̂ , γ
(2)

1 = −δ+qei(π−φ̂), γ
(2)

2 = −δ+qe−i(π−φ̂). (11·7)

In this way, the symmetries of the target configuration have reduced the parameter problem
to that of finding the appropriate value of the single real parameter φ3. Note that the sym-
metry of the distribution of circles and prevertices in the preimage ζ -plane will automatically
ensure that the residue of zζ at ζ = 0 vanishes so that there is no need to explicitly impose
this condition in this case.
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Fig. 6. The unbounded triply connected image domain Dz for the triply connected example.
Here φ1 = π/4 and φ2 = 0.4.

Figure 6 shows the ζ and η-plane for q = 0.15 and δ = 0.6 under the mapping (11·6).
Figure 6 shows the corresponding triply connected polygonal region for φ2 = 0.4 with
φ1 = π/4.

11·1. Comparison with a slit mapping formula

The triply connected example just considered affords us a further non-trivial analytical
check on the validity of the derived formula. Consider the degenerate case of the previous
mapping in which the target domain consists of three symmetrically-disposed slits on the
real axis. This corresponds to

φ1 = φ2 = φ3 = 0 (11·8)

with zζ given by

zζ = BS∞(ζ )ω(ζ, 1)ω(ζ, −1)ω(ζ, δ + q)ω(ζ, δ − q)ω(ζ, −δ + q)ω(ζ, −δ − q) (11·9)

with

S∞(ζ ) =
(

ωζ (ζ, α)ω(ζ, ᾱ−1) − ωζ (ζ, ᾱ−1)ω(ζ, α)

ω(ζ, 0)2ω(ζ, ∞)2
∏M

j=1 ω(ζ, γ
( j)
1 )ω(ζ, γ

( j)
2 )

)
. (11·10)

In this degenerate case, it turns out that there is an alternative derivation of the required map-
ping formula that yields another functional form for z(ζ ) from the same preimage region.
It can be shown (see appendix B for details) that an alternative mapping from the preimage
domain in Figure 4 to three symmetrically-disposed slits on the real axis is given by

z(ζ ) = C

[
ω(ζ, −1)2 + ω(ζ, 1)2

ω(ζ, −1)2 − ω(ζ, 1)2

]
(11·11)

where C is some real constant.See Figure 7. In (11·11), ζ = 0 maps to z = ∞ which is
also the case for (11·9). Since the pre-image regions Dζ are also identical it follows that, to
within multiplicative constants, the derivative of formula (11·11) must be identically equal
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Fig. 7. The degenerate case of mapping to an unbounded triply connected slit domain Dz as given by
formula (11·11). On the left, the circular preimage region is shown. The image is the unbounded region
exterior to three slits on the real axis as shown on the right. The parameters chosen are C = 1, q1 = q2 =
0.05 and δ1 = −δ2 = 0.35.

to (11·9). That is,

S∞(ζ )ω(ζ, 1)ω(ζ, −1)ω(ζ, δ + q)ω(ζ, δ − q)ω(ζ, −δ + q)ω(ζ, −δ − q)

= D
d

dζ

[
ω(ζ, −1)2 + ω(ζ, 1)2

ω(ζ, −1)2 − ω(ζ, 1)2

]
(11·12)

for some real constant D (determined, for example, by evaluating (11·12) at any arbitrary
value of ζ ). It can be checked numerically that the identity (11·12) holds for all values of ζ

thereby providing a further non-trivial check on the new formula (8·11).
Importantly, the identity (11·12) has practical utility. It can be used to provide

an alternative expression for S∞(ζ ) which is independent of the parameters α and
{γ (k)

j } – an expression which can be used to replace S∞(ζ ) in the general formula (8·11)
which also applies, of course, to non-degenerate domains such as those constructed in Fig-
ure 6. This is a useful observation since it obviates the need to pick α and then solve for the
α-dependent parameters

{
γ

(k)

j

}
.

The identity (11·12) is also important in providing explicit confirmation of the fact that
the function S∞(ζ ), while apparently depending on the choice of the arbitrary parameter α

and the associated α-dependent parameters
{
γ

(k)

j

}
, in fact is independent of α and depends

only on ζ∞ and the parameters {q j , δ j | j = 1, . . . , M} characterizing the relevant preimage
region. We have not yet been able to identify an alternative representation of S∞(ζ ) – one
which highlights this independence of the function on α – in the general case. While this is
desirable, it is no impediment to the direct implementation of the formula (8·11) in practice.

12. Discussion

By use of elements of classical function theory, the formula (1·3) for the S-C mapping
from a bounded, multiply connected circular domain to an unbounded, multiply connec-
ted polygonal domain has been constructed. It reduces to known formulae in the case of
simply and doubly connected domains. It also generalizes a new formula derived in [6] for
the mapping from a bounded, multiply connected circular region to a bounded multiply con-
nected polygonal region. The mapping to an example unbounded triply connected domain
has been constructed and checked, in a degenerate case, by comparison with an independent
construction of a triply connected slit-mapping formula.
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A principal contribution of this paper is the association of the general S-C formula with
the Schottky–Klein prime function. We believe this association to be significant, especially
when it comes to optimizing the numerical implementation of the S-C mapping formula
to multiply connected domains. The Schottky–Klein prime function has intimate connec-
tions with the more commonly employed Riemann theta functions which have better con-
vergence properties. Baker [4] cites explicit formulae relating Schottky–Klein prime func-
tions to Riemann theta functions. Indeed, as shown in (10·13) the prime function P(ζ ) in
the doubly connected case is related to the first Jacobi theta function. Hu [14] has found that
different representations of the first Jacobi theta function can lead to improved convergence
properties when performing a numerical implementation of the doubly connected mapping
formula to bounded regions. We expect that similar benefits of convergence may be afforded
by rewriting formula (1·3) in terms of Riemann theta functions. This is a subject for future
investigation. Indeed, there are many interesting open questions to be answered concerning
the numerical issues associated with the construction of multiply connected S-C mappings
based on the formula (1·3) or variants thereof.

The formula derived here has been written in terms of the Schottky–Klein prime
function which, with a view to finding explicit formulae that can form the basis of
a constructive algorithm, has been defined here in terms of a classical infinite-product
formula [4]. It should be noted, however, that the prime function is a well-defined
function on any Riemann surface (see, for example, Hejhal [12]) and therefore the
final formula derived here (in terms of the prime function) can be shown to be valid
even when the infinite product representation of the prime function is not. It is an impor-
tant matter to be able to find alternative methods of computing the prime function for values
of the parameters {q j , δ j | j = 1, . . . , M} for which the infinite product representation (4·2)
fails to converge. Work in this direction is currently in progress.

Appendix A: Application of Liouville’s theorem

Let

U (η) ≡ S(ζ )

n0∏
k=1

[
ω

(
ζ, a(0)

k

)]β
(0)
k

M∏
j=1

n j∏
k=1

[
ω

(
ζ, a( j)

k

)]β
( j)
k , (A 1)

where

S(ζ ) ≡ ω(ζ, α)ω(ζ, ᾱ−1)

ω(ζ, ζ∞)2ω(ζ, ζ̄−1∞ )2
∏M

j=1 ω
(
ζ, γ

( j)
1

)
ω

(
ζ, γ

( j)
2

) . (A 2)

Consider now the function

V (η) = U (η)

ηzη

(A 3)

where zη is the derivative of the S-C mapping we are seeking. First, note that V (η) is analytic
everywhere inside and on the unit η-circle L0. This is because: (a) both U (η) and ηzη have
the same branch point singularities at the prevertices {ã(k)

j } on {L j | j = 0, 1, . . . , M} and so
these cancel in the quotient; (b) the zero of the denominator at η = 0 is removed by the zero
of U (ζ ) at ζ = α; (c) since z(ζ ) has a simple pole at ζ∞ then zζ will have a second-order
pole there. But η(ζ ) is analytic at ζ = ζ∞, so zη also has a second order pole at ζ∞ and
so the second order pole of U (η) at ζ∞ is removable. Further, by the construction of U (η),
both U (η) and ηzη have piecewise constant argument on each segment between the branch
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points on L0 and have the same changes in argument on passing through the branch points
{a(0)

j | j = 1, . . . , n0}. From this we can deduce that, everywhere on L0, the argument of
V (η) is a constant. Equivalently,

V (η) = εV (η), on L0, (A 4)

for some complex constant ε. But (A 4) can be written

V (η−1) = εV (η) (A 5)

or

V (η−1) = εV (η̄) = ε̄V (η), (A 6)

an equation which furnishes the analytic continuation of V (η) to the exterior of L0. In par-
ticular, V (η) is seen to be analytic everywhere outside the unit η-circle L0 and is bounded at
infinity. V (η) is therefore an entire function bounded at infinity and, by Liouville’s theorem,
is necessarily a constant. It can be concluded that

ηzη(η) = B̃S(ζ )

n0∏
k=1

[
ω

(
ζ, a(0)

k

)]β
(0)
k

M∏
j=1

n j∏
k=1

[
ω

(
ζ, a( j)

k

)]β
( j)
k (A 7)

where B̃ is some complex constant.

Appendix B: Alternative slit-mapping formula

To construct the slit-mapping formula (11·11) consider the sequence of conformal map-
pings given by

ζ1(ζ ) = − ω(ζ, 1)

ω(ζ, −1)
,

ζ2(ζ1) = 1 − ζ1

1 + ζ1
,

z(ζ2) = C

2

(
ζ2 + 1

ζ2

) (B 1)

where C is any real constant. A schematic illustrating this sequence of mappings is shown in
Figure 8. The first mapping takes the circular region Dζ to the right-half ζ1-plane with two
finite-length slits on the real axis. To see this one makes use of properties (4·4) and (4·5).
For example, it is clear that ζ = 1 maps to ζ1 = 0 while ζ = −1 maps to ζ1 = ∞. To see
that the rest of the unit circle maps to the imaginary ζ1-axis notice that on C0 we have

ζ1(ζ ) = − ω(ζ−1, 1)

ω(ζ−1, −1)
= ω(ζ, 1)

ω(ζ, −1)
= −ζ1(ζ ) (B 2)

where we have used (4·4). By similar manipulations it is possible to show that the image of
C1 and C2 under the mapping ζ1(ζ ) each has constant argument, equal to zero. Hence each
of these two circles maps to a slit on the positive real axis. The second Möbius map takes
this slit half-plane in the ζ1-plane to the unit ζ2-disc similarly cut along its diameter on the
real axis by two finite-length slits. The third Joukowski mapping maps the interior of the
unit disc in the ζ2-plane to the whole of the z-plane exterior to three finite-length slits on the
real axis. A composition of the sequence of mappings yields (11·11).
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ζ-plane ζ
1
-plane

ζ
2
-planez-plane

Fig. 8. Schematic illustrating the composition of conformal mappings (B 1) effecting the mapping of a
triply connected circular region to the unbounded z-plane with three symmetrically disposed slits on the
real axis.
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