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Abstract. The construction of analogues of the Cauchy kernel is crucial for the
solution of Riemann–Hilbert problems on compact Riemann surfaces. A for-
mula for the Cauchy kernel can be given as an infinite sum over the elements
of a Schottky group, and this sum is often used for the explicit evaluation of
the kernel. In this paper a new formula for a quasi-automorphic analogue of
the Cauchy kernel in terms of the Schottky–Klein prime function of the asso-
ciated Schottky double is derived. This formula opens the door to finding new
ways to evaluate the analogue of the Cauchy kernel in cases where the infinite
sum over a Schottky group is not absolutely convergent. Application of this
result to the solution of the Riemann–Hilbert problem with a discontinuous
coefficient for symmetric automorphic functions is discussed.
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1. Introduction

The Schottky–Klein prime function is an important transcendental function with
a primary role to play in solving problems involving multiply connected domains.
It has, however, received almost no attention in the applied mathematics liter-
ature until relatively recently. The prime function is documented in Chapter 12
of H. Baker’s now classic 19th century monograph [4] and is discussed again in
the memoir by Hejhal [15]. In terms of applications, it has recently been demon-
strated that the prime function arises naturally in a variety of important applied
mathematical problems (e.g., [8, 11, 12]).

One way to define the Schottky–Klein prime function is by means of a clas-
sical infinite product formula recorded, for example, in Chapter 12 of Baker’s
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monograph on abelian functions [4]. However, this infinite product does not al-
ways converge; there are usually restrictions on the multiply connected domain
(or the Schottky group) required in order to ensure convergence. It should be em-
phasized, however, that the prime function is a well-defined (indeed a uniquely
defined) function for any multiply connected circular domain [15]. An alterna-
tive numerical scheme for the determination of the Schottky–Klein prime function
associated with the Schottky double of multiply connected planar domains has
recently been presented in [13]. This algorithm can be used to compute the prime
function when the infinite product is either divergent, or so slowly convergent as
to make its use in applications impracticable.

In this paper we demonstrate how to represent the Chibrikova–Silvestrov [6,7]
quasi-automorphic and automorphic analogues of the Cauchy kernel – functions
important in the solution of Riemann–Hilbert (RH) problems in the theory of
automorphic functions – in terms of the Schottky–Klein prime function. By virtue
of this formula, if the prime function can be calculated (by some method, not
necessarily by means of a sum or a product over a Schottky group), then the
analogues of the Cauchy kernel can also be readily computed. The solution of
the Riemann–Hilbert problem for automorphic functions is required for model
problems in fluid mechanics [1], electrostatics, and elasticity.

The new representation is used to solve the homogeneous RH problem for
Θ-automorphic functions with a discontinuous coefficient. Here Θ is a symmetric
Schottky group generated by compositions of Möbius transformations and their
inverses. It is known [17] that this problem can equivalently be reduced to the
Hilbert problem for a multiply connected circular domain (for a survey, see [18]).
The solution we present makes use of the new formula for the Cauchy kernel
(in terms of the Schottky–Klein prime function) and it avoids a reduction of the
problem to the construction of a finite number of the Schwarz operators (as done
in [18]). Instead, the method proceeds by converting the RH problem for auto-
morphic functions to a RH problem on a compact Riemann surface (the Schottky
double). It is shown that the terms ηj(τ)dτ (the functions {ηj(τ)} are the cyclic
terms in the representation [7] of the quasi-automorphic kernel) form a basis of
abelian differentials of the first kind on the Schottky double. The associated fac-
torization problem requires the solution of the Jacobi inversion problem. The final
formulas for the solution are thus expressed through the Schottky–Klein prime
function and the solution of this inversion problem.

2. The Schottky–Klein prime function

Let Dζ be the multiply connected circular domain consisting of the unit disk in the
ζ-plane with M smaller circular disks excised. Let the unit circle be denoted C0

and the boundaries of the M enclosed circular disks be denoted {Cj |j = 1, . . . , M}.
Let the radius and center of Cj be denoted ρj and δj respectively.
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Figure 1. Schematic illustrating the circles Cj and C′
j in a

quadruply connected case (M = 3).

First define M Möbius maps {φj |j = 1, . . . , M} corresponding to the conju-
gation map for points on the circle Cj . That is, if Cj has equation

|ζ − δj |2 = (ζ − δj)(ζ̄ − δ̄j) = ρ2
j , (2.1)

then

ζ̄ = δ̄j +
ρ2

j

ζ − δj
, (2.2)

and so

φj(ζ) ≡ δ̄j +
ρ2

j

ζ − δj
. (2.3)

If ζ is a point on Cj then its complex conjugate is given by ζ̄ = φj(ζ).
Next, introduce the M Möbius maps

θj(ζ) ≡ φj(ζ
−1) = δj +

ρ2
jζ

1 − δ̄jζ
. (2.4)
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Let C′
j be the circle obtained by reflection of the circle Cj in the unit circle |ζ| = 1,

that is, the circle obtained by the anti-holomorphic transformation T (ζ) given by

ζ �→ T (ζ) = ζ̄−1 . (2.5)

Figure 1 shows a schematic in a quadruply connected case. It is easily verified
that the image of the circle C′

j under the transformation θj is the circle Cj . Thus,
θj identifies circle C′

j with circle Cj . Since the M circles {Cj |j = 1, . . . , M} are
non-overlapping, so are the M circles {C′

j |j = 1, . . . , M}. The (classical) Schottky
group Θ is defined to be the infinite free group of mappings θ(ζ) generated by
compositions of the M basic Möbius maps {θj|j = 1, . . . , M}, their M inverses
{θ−1

j |j = 1, . . . , M} and including the identity map θ0(ζ) = ζ. All maps of the
group Θ admit the representation

θ(ζ) =
aθζ + bθ

cθζ + dθ
. (2.6)

It is easy to verify that, with the normalization aθdθ − bθcθ = 1,

θ′(ζ) =
1

(cθζ + dθ)2
. (2.7)

Let the radius and center of C′
j be denoted ρ′j and δ′j respectively. Then it follows

that
ρ′j =

ρj

||δj |2 − ρ2
j |

, δ′j =
δj

|δj |2 − ρ2
j

. (2.8)

Consider the (generally unbounded) region of the plane exterior to the 2M circles
{Cj , C

′
j |j = 1, . . . , M}. Let this region be called F . F is known as the funda-

mental region associated with the Schottky group generated by the Möbius maps
{θj|j = 1, . . . , M} and their inverses. This is because the entire plane is tessellated
with copies of this fundamental region obtained by mapping F by the elements
of the Schottky group. This fundamental region can be understood as having
two “halves” – the half that is inside the unit circle but exterior to the circles
{Cj |j = 1, . . . , M} is the domain Dζ, the other half is the region outside the unit
circle and exterior to the circles {C′

j |j = 1, . . . , M}.
These two halves of F , one just a reflection through the unit circle of the

other, can be viewed as a model of the two “sides” of a compact (symmetric)
Riemann surface associated with Dζ known as its Schottky double. The genus of
this compact Riemann surface is M . Indeed, in [4] it is discussed how the circles
{Cj |j = 1, . . . , M} (or, equivalently, the identified circles {C′

j |j = 1, . . . , M}) can
be understood, in the language of Riemann surface theory, as M a-cycles on a
genus-M Riemann surface; further, any line joining a pair of identified points on
Cj and C′

j can be viewed as a b-cycle (there are also M of these). The schematic
in Figure 1 illustrates the a and b-cycles for the case M = 3.

It is also well-known that any compact Riemann surface of genus-M also
possesses exactly M holomorphic differentials which will here be called {dvj(ζ)|j =
1, . . . , M}. The functions {vj(ζ)|j = 1, . . . , M} are the integrals of the first kind
and each is uniquely determined, up to an additive constant, by their periods
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around the a- and b-cycles. These functions are analytic, but not single-valued,
everywhere in F . Let ak denote the k-th a-cycle (which can be taken to be the circle
Ck) and let bk denote the k-th b-cycle (which can be taken to be any line joining
identified points on Ck and C′

k). Here we normalize the holomorphic differentials
so that ∮

ak

dvj = δkj ,

∮
bk

dvj = Bkj (2.9)

for some set of constants Bkj .
Armed with a normalized basis of a and b-cycles, the M integrals of the first

kind and the Schottky group Θ, we have now set up all the necessary machinery
to be able to define the Schottky–Klein prime function. The following theorem is
established in [15]; it holds for any compact Riemann surface, not just the Schottky
double of a planar domain considered here:

Theorem 2.1. There is a unique function X(ζ, τ) defined by the properties:
(i) X(ζ, τ) is analytic everywhere in F .
(ii) For any τ ∈ F , X(ζ, τ) has a second-order zero at each of the points {θ(τ)|θ ∈

Θ}.
(iii) For any τ ∈ F ,

lim
ζ→τ

X(ζ, τ)
(ζ − τ)2

= 1 . (2.10)

(iv) For j = 1, 2, . . . , M ,

X
(
θj(ζ), τ

)
= exp

(
− 2πi

(
2
(
vj(ζ) − vj(τ)

)
+ Bjj

))dθj(ζ)
dζ

X(ζ, τ) . (2.11)

In [15], the Klein prime function ω(ζ, τ) (or what we will call, following [4],
the Schottky–Klein prime function) is defined as the square root of this function,
i.e.,

ω(ζ, τ) =
(
X(ζ, τ)

) 1
2 , (2.12)

where the branch of the square root is chosen so that ω(ζ, γ) behaves like (ζ − τ)
as ζ → τ . A further property of X(ζ, τ) established in [15] is that

X(ζ, τ) = X(τ, ζ) . (2.13)

Finally it should be noted that, apart from the zero at τ , X(ζ, τ) has no other
zeros in the fundamental region F .

3. Quasi-automorphic analogue of the Cauchy kernel

The solution of the RH problem in the theory of automorphic functions and sin-
gular integral equations with automorphic kernels can be expressed through auto-
morphic or quasi-automorphic analogues of the Cauchy integral. For the remainder
of this paper, let K(ζ, τ) and A(ζ, τ) respectively denote the quasi-automorphic
and automorphic analogues of the Cauchy kernel. In this section, we show how
to derive a formula for K(ζ, τ) in terms of the function X(ζ, τ) defined in the
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previous section. As mentioned earlier, the function X(ζ, τ), with the properties
defined above, is a well-defined (indeed, uniquely defined) function on any compact
Riemann surface.

Alternative representations for the kernel K(ζ, τ) (not expressed in terms of
the Schottky–Klein prime function) are already known. For finite groups of Möbius
transformations the automorphic kernel of the integral is the finite sum [14]

K(ζ, τ) =
n∑

j=0

θ′j(τ)
θj(τ) − ζ

, ζ ∈ F, τ ∈ C , (3.1)

where C is a smooth contour in the fundamental domain F . For an infinite group Θ,
a series representation for K(ζ, τ) was proposed in [6, 7] (see also [1]):

K(ζ, τ) =
∑
θ∈Θ

(
1

θ(τ) − ζ
− 1

θ(τ) − ζ∗

)
θ′(τ) , ζ ∈ F, τ ∈ C , (3.2)

where ζ∗ is an arbitrary fixed point of the domain F . The convergence of the
series (3.2) is guaranteed if the series∑

θ∈Θ

θ′(τ) , τ ∈ C , (3.3)

is convergent. If, in addition, the above series converges absolutely, then the se-
ries (3.2) converges absolutely and uniformly with respect to ζ in the fundamental
domain F and with respect to τ on the line C. Since −dθ/cθ /∈ F , then there exists
a positive constant M0 such that |τ + dθ/cθ| > M0. Thus, the absolute conver-
gence of the series (3.2) is guaranteed by the convergence of the series (3.3), or,
equivalently, by the fact that the group Θ is of the first class (the Burnside classifi-
cation [5]). For such groups, it is possible to represent a Θ-automorphic function as
a series whose elements are simple fractions (the Poincaré series of dimension -2).

Let H(ζ, τ) be the logarithmic derivative, with respect to the second argu-
ment τ , of the Schottky–Klein prime function, i.e.,

H(ζ, τ) ≡ d

dτ
log ω(ζ, τ) =

1
2

d

dτ
log X(ζ, τ) . (3.4)

Also define
K(ζ, τ) ≡ H(ζ, τ) − H(ζ∗, τ) . (3.5)

Here ζ∗ is an arbitrary fixed point of the domain F . Note also that, by virtue of
(2.10), then

X(ζ, τ) = (ζ − τ)2 + O(ζ − τ)3 , (3.6)
so that, as ζ → τ ,

K(ζ, τ) =
1

τ − ζ
+ R(ζ, τ) , (3.7)

where R(ζ, τ) is an analytic function with respect to ζ everywhere in the domain
F .

Now, the transformation property (2.11) can be written in the form

X
(
θj(ζ), τ

)
= Fj(ζ)Gj(τ)X(ζ, τ) , (3.8)
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where

Fj(ζ) = exp
(− 4πivj(ζ) − 2πiBjj

)dθj(ζ)
dζ

,

Gj(τ) = exp
(
4πivj(τ)

)
.

(3.9)

It also follows from (2.13) that

X
(
ζ, θj(τ)

)
= X

(
θj(τ), ζ

)
= Fj(τ)Gj(ζ)X(τ, ζ) = Fj(τ)Gj(ζ)X(ζ, τ) , (3.10)

where we have used (3.8).
Now consider

H(θj(ζ), τ) =
1
2

d

dτ
log X

(
θj(ζ), τ

)

=
1
2

d

dτ

(
log Fj(ζ) + log Gj(τ) + log X(ζ, τ)

)

=
1
2

d

dτ
log X(ζ, τ) +

1
2

d

dτ
log Gj(τ)

= H(ζ, τ) + ηj(τ) ,

(3.11)

where
ηj(τ) ≡ 1

2
d

dτ
log Gj(τ) = 2πiv′j(τ) . (3.12)

Similarly, for any map θ(ζ) of the group Θ,

H
(
θ(ζ), τ

)
= H(ζ, τ) + ηθ(τ) . (3.13)

It follows that
K
(
θ(ζ), τ

)
= H

(
θ(ζ), τ

) − H(ζ∗, τ)

= H(ζ, τ) − H(ζ∗, τ) + ηθ(τ)

= K(ζ, τ) + ηθ(τ) , θ(ζ) ∈ Θ .

(3.14)

Therefore, as a function of ζ, the kernel K(ζ, τ) is a quasi-automorphic function
with the cyclic terms ηθ(τ) [7].

It will now be shown that, with respect to the argument τ , the kernel K(ζ, τ)
is an automorphic form of dimension −2. Consider

H
(
ζ, θ(τ)

)
=

1
2

d

dθ(τ)
log X

(
ζ, θ(τ)

)

=
1
2

dτ

dθ(τ)
d

dτ
log X

(
ζ, θ(τ)

)

=
1
2

1
θ′(τ)

d

dτ
log X

(
ζ, θ(τ)

)
, θ(ζ) ∈ Θ .

(3.15)

But
X
(
ζ, θ(τ)

)
= Fθ(τ)Gθ(ζ)X(ζ, τ) , (3.16)

so that

X2

(
ζ, θ(τ)

)
θ′(τ) = F ′

θ(τ)Gθ(ζ)X(ζ, τ) + Fθ(τ)Gθ(ζ)X2(ζ, τ) , (3.17)
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where X2(ζ, τ) denotes the derivative of X(ζ, τ) with respect to its second argu-
ment. Dividing (3.17) by (3.16) yields

X2

(
ζ, θ(τ)

)
X
(
ζ, θ(τ)

) θ′(τ) =
F ′

θ(τ)
Fθ(τ)

+
X2(ζ, τ)
X(ζ, τ)

(3.18)

or, equivalently,
d

dτ
log X

(
ζ, θ(τ)

)
=

F ′
θ(τ)

Fθ(τ)
+

X2(ζ, τ)
X(ζ, τ)

. (3.19)

Substitution of (3.19) into (3.15) produces

H
(
ζ, θ(τ)

)
=

1
2

1
θ′(τ)

[
F ′

θ(τ)
Fθ(τ)

+
X2(ζ, τ)
X(ζ, τ)

]
. (3.20)

Similarly,

H
(
ζ∗, θ(τ)

)
=

1
2

1
θ′(τ)

[
F ′

θ(τ)
Fθ(τ)

+
X2(ζ∗, τ)
X(ζ∗, τ)

]
. (3.21)

Therefore, subtraction of (3.20) and (3.21) implies

K
(
ζ, θ(τ)

)
=

1
θ′(τ)

K(ζ, τ) . (3.22)

However, on use of (2.7), it follows that

K
(
ζ, θ(τ)

)
= (cθζ + dθ)2K(ζ, τ) . (3.23)

This means that the kernel K(ζ, τ), as a function of τ , is the Poincaré series of
dimension −2 [7].

We can state the following result.

Theorem 3.1. Let ω(ζ, τ) be the Schottky–Klein prime function associated with
the group Θ, ζ∗ be an arbitrary point in the fundamental domain F , Φ(ζ) be the
integral

Φ(ζ) =
1

2πi

∫

C

ϕ(τ)K(ζ, τ)dτ (3.24)

with the kernel

K(ζ, τ) =
d

dτ
log
(

ω(ζ, τ)
ω(ζ∗, τ)

)
, (3.25)

and ϕ(τ) ∈ H(C). Then

(i) For any τ ∈ C, K(ζ∗, τ) = 0.
(ii) As a function of ζ ∈ F , K(ζ, τ) is a quasi-automorphic function with cyclic

terms ηj(τ) = 2πiv′j(τ): K(θj(ζ), τ) = K(ζ, τ) + ηj(τ), j = 1, 2, . . . , M ,
τ ∈ C.

(iii) As a function of τ ∈ C, K(ζ, τ) is the Poincaré series of dimension −2
K(ζ, θ(τ)) = (cθζ + dθ)2K(ζ, τ).
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(iv) K(ζ, τ) is an analogue of the Cauchy kernel, and the boundary values of the
singular integral (3.24) satisfy the Sokhotski–Plemelj formulas

Φ±(t) = ±ϕ(t)
2

+
1

2πi
V.p.

∫

C

ϕ(τ)K(t, τ)dτ , t ∈ C . (3.26)

In summary, the function K(ζ, τ), a quasi-automorphic analogue of the
Cauchy kernel for the symmetric Schottky group Θ, has been presented in terms
of a logarithmic derivative of the Schottky–Klein prime function on the Schottky
double of the associated planar domain.

This result is significant in light of the fact that Crowdy and Marshall [13]
have found a robust numerical scheme for the calculation of the prime function
which does not employ a representation that is a sum or product over the elements
of a Schottky group. In [6, 7] such an infinite sum representation of the Cauchy
kernel is given. Now, when this infinite sum converges slowly or is absolutely di-
vergent, (3.4) and (3.25) for K(ζ, τ) in terms of the Schottky–Klein prime function
can be used for its evaluation, together with the numerical algorithm of [13] for
the evaluation of the prime function.

It is also important to point out that, in the construction of the prime func-
tion as presented in [13], the subsidiary functions {vj(ζ)|j = 1, . . . , M} are also
computed as part of the algorithm. It follows from (3.12) that the algorithm in [13]
not only provides a way of evaluating the prime function ω(ζ, τ) but, at the same
time, a method for computing the cyclic terms associated with the kernel K(ζ, τ).

In an appendix it is shown how to explicitly retrieve the Chibrikova–Silvestrov
series representation [6] for the kernel K(ζ, τ) when an infinite product represen-
tation of the prime function ω(ζ, τ) (given, for example, in [4]) is substituted
into (3.25).

4. RH problem on a Riemann surface

Let C = C1 ∪C2 ∪ . . .∪CM and C′ = C′
1 ∪C′

2 ∪ . . .∪C′
M . Let Λ be the set of the

limit points of the group Θ. Then C̄ = Ω ∪ Λ, where C̄ is the extended complex
plane, and Ω = ∪θ∈Θθ(F ). Let Φ(ζ) be a holomorphic function in the domain Dζ .
Extend its definition for the whole domain Ω by

Φ(ζ) = Φ
(
T (ζ)

)
, ζ ∈ T (Dζ) ,

Φ(ζ) = Φ
(
θ−1(ζ)

)
, ζ ∈ θ

(
Dζ ∪ T (Dζ)

)
, θ ∈ Θ . (4.1)

Note that the first expression in (4.1) extends the definition of Φ(ζ) to the other
“half” of the fundamental region F while the second expression extends Φ(ζ) to all
regions of the plane equivalent to F under the group action. With this definition,
Φ(ζ) is a piecewise holomorphic and Θ-automorphic function and satisfies the
symmetry condition

Φ
(
θjT−1(ζ)

)
= Φ(ζ) , ζ ∈ θj

(
T (Dζ)

)
, j = 1, 2, . . . , M . (4.2)
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All circles θ(C) including C are the discontinuity lines of the function Φ(ζ). Let
Φ+(ζ) and Φ−(ζ) be the boundary values of the function Φ(ζ) from the interior
and the exterior of the circles θ(C), θ ∈ Θ, respectively. Consider the following
RH problem (for simplicity, we confine ourselves to analyzing the homogeneous
problem).

Problem 4.1. Find all piecewise holomorphic and Θ-automorphic functions bound-
ed at infinity which meet the symmetry condition (4.2) and on the discontinuity
line C of the group Θ satisfy the linear relation

Φ+(τ) = Π(τ)Φ−(τ) , τ ∈ C . (4.3)

The function Π(τ) satisfies the solvability condition of the problem |Π(τ)| = 1, it
is H-continuous on the contour C everywhere but at a finite set of singular points
Σ = {tν1, tν2, . . . , tνmν ; ν = 1, 2, . . . , M}, where it is finite and discontinuous. The
function Φ(ζ) is H-continuous in the domain Dζ up to the contour C apart from
the singular points, where it may have integrable singularities.

4.1. The automorphic kernel A(ζ, τ)
For the solution of Problem 4.1, it will be convenient to use the automorphic
kernel [7]

A(ζ, τ) = K(ζ, τ) −
M∑

j=1

ω̂j(τ)K(ζ, cj) , (4.4)

where K(ζ, τ) is the logarithmic derivative of the Schottky–Klein prime function
introduced in (3.25). The points c1, . . . , cM ∈ Dζ are fixed arbitrarily subject only
to the condition that

∆0 ≡ det ||ηj(cν)||j,ν=1,...,M �= 0 . (4.5)

The functions ω̂1(τ), . . . , ω̂M (τ) solve the following linear system of algebraic equa-
tions

M∑
j=1

ηj(cj)ω̂j(τ) = ην(τ) , ν = 1, . . . , M . (4.6)

This choice guarantees the automorphicity of the kernel: A(ζ, τ) = A(θ(ζ), τ). In
the domain Dζ , in addition to the simple pole at ζ = τ , the function A(ζ, τ) has M
simple poles at the points c1, . . . , cM . Note that because of (4.6) the residues of the
kernel at the points cν , the functions ω̂ν(τ) (ν = 1, . . . , M) are linear combinations
of the cyclic terms ην(τ) = 2πiv′ν(τ).

The kernel A(ζ, τ) is an automorphic analogue of the Weierstrass kernel on
a compact Riemann surface and can be presented as follows [7]

A(ζ, τ) =
∆(ζ, τ)

∆0
, (4.7)
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where

∆(ζ, τ) =

∣∣∣∣∣∣∣∣∣

K(ζ, τ) K(ζ, c1) . . . K(ζ, cM )
η1(τ) η1(c1) . . . η1(cM )

...
...

. . .
...

ηM (τ) ηM (c1) . . . ηM (cM )

∣∣∣∣∣∣∣∣∣
. (4.8)

4.2. Factorization on the Schottky double

Let R be the Schottky double associated with the domain Dζ . It is formed by gluing
the two halves Dζ and D′

ζ of the fundamental domain F along their boundaries
C and C′, (the a-cycles), respectively (Figure 1). The b-cycles lie on both sheets
of the surface (the broken line corresponds to the part which lies on the second
sheet D′

ζ). The loop bj crosses the cycle aj from right to the left and does not
cross the other loops aν and bν (ν �= j). A point q with affix ζ on this two-sheeted
genus-M surface R is ζ on the first sheet Dζ and T (ζ) on the second sheet D′

ζ .
Introduce a new function F(q)

F(q) =
{

Φ(ζ), q ∈ Dζ

Φ(T (ζ)), q ∈ D′
ζ

(4.9)

which is holomorphic and Θ-automorphic on the surface R. The RH problem (4.3)
can be written as the following RH problem on the surface R.

4.2.1. Problem 4.2. Find all meromorphic functions on R \ C which admit an
H-continuous extension to C \ Σ and whose boundary values satisfy the relation

F+(p) = G(p)F−(p) , p ∈ C , (4.10)

where

G(p) =
{

Π(τ), p ∈ C

[Π(T (τ))]−1, p ∈ C′ , p = q(τ) , (4.11)

and C = C ∪ C′ is a contour on the surface R, C ⊂ Dζ , C′ ⊂ D′
ζ .

We next specify the branches of the integrals

vj(ζ) =

ζ∫

s0

dvj(τ) , j = 1, . . . , M , (4.12)

which are single-valued in the domain D̂ζ cut along the curves b̃j (the parts of the
loops bj which lie in Dζ). Here s0 is an arbitrarily fixed point on the unit circle
C0 which does not lie on the b-loops. Since Im dvj(τ) = 0, τ ∈ Cj , the relation

dvj(ζ) = dvj

(
T (ζ)

)
, ζ ∈ Dζ , (4.13)

continues analytically the differentials dvj(ζ) into the domain D′
ζ . These differen-

tials are the abelian differentials of the first kind of the Schottky double R. The
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basis of the differentials can be normalized∫

aj

dvν = 2 Re
∫

Cj

dvν = δνj ,

∫

bj

dvν = 2i Im
∫

b̃j

dvν = Bνj , ν, j = 1, . . .M . (4.14)

The matrix B = ||Bνj ||ν,j=1,...,M is symmetric, Re B = 0, and ImB is a positive
definite matrix.

Now factorize the coefficient Π(t) so that

Π(t) =
Ψ+(t)
Ψ−(t)

, t ∈ C , (4.15)

where
Ψ(ζ) = exp

{
Γ(ζ) + Γ

(
T (ζ)

)}
, (4.16)

and

Γ(q) =
1

8πi

∫

C

log G(p)A(q, p)dp +
M∑

j=1

⎛
⎜⎝κj

∫

tj1pj

A(q, p)dp

+
∫

rjqj

A(q, p)dp + mj

∮

aj

A(q, p)dp + nj

∮

bj

A(q, p)dp

⎞
⎟⎠ . (4.17)

Ψ(ζ) will be referred to as the canonical solution. Here tj1pj ⊂ Dζ and rjqj ⊂ R.
The curves rjqj pass through the point s0 ∈ C0 and do not cross each other and
the a- and b-cycles. The points rj ∈ Dζ and pj ∈ Dζ are fixed arbitrarily (Figure 1).
The points qj ∈ R and the integers mj and nj are to be determined. If it turns out
that qj ∈ Dζ , then the curves rjqj lie on the first sheet Dζ. Otherwise, if qj ∈ D′

ζ ,
then the contours rjqj consist of two parts rjs0 ⊂ Dζ and s0qj ⊂ D′

ζ . A single
branch of the function log Π(τ) is fixed (arbitrarily) by imposing the condition
argΠ(t+ν1) = ϕν1, ν = 1, . . . , M . Let ∆νj be the increment of argΠ(τ) as the
point τ traverses the arc tνjtνj+1, j = 1, . . . , mν , and tνmν tνmν+1 is assumed to
be tνmν tν1. Then argΠ(t−νj+1) = ϕνj+∆νj , j = 1, . . . , mν , where ϕνj = arg Π(t+νj).
The arguments ϕνj (ν = 2, . . . , mν) cannot be chosen to be arbitrary but are
defined by the class of solutions.

Since Φ(ζ) may have integrable singularities at the singular points, define
ϕνj = arg Π(t+νj) by

−2π < arg Π(t−νj) − arg Π(t+νj) < 0 , j = 2, . . . , mν . (4.18)

We next introduce integers κν (ν = 1, . . . , M) which are uniquely defined by the
inequalities

−2π < argΠ(t−ν1) − argΠ(t+ν1) − 4πκν < 0 , (4.19)
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or, equivalently,
−2π < ϕνmν − ϕν1 + ∆νmν − 4πκν < 0 . (4.20)

These conditions guarantee that the solution has integrable singularities at the
initial points tν1.

It will now be shown that the boundary values of the function Ψ(t) solve
(4.15). Note that if q = ζ, then the first integral in (4.17) is equal to

1
4πi

∫

C

log Π(τ)A(ζ, τ)dτ . (4.21)

Clearly, if t ∈ C, then Γ+(t) − Γ−(t) = 1/2 logΠ(t). It is directly verified that on
the contours Cj , θ−1

j (t) = T (t). Since the kernel A(ζ, τ) is automorphic, it follows
that

Γ±(T (t)
)

= Γ±(θ−1(t)
)

= Γ±(t) . (4.22)

Furthermore, |Π(τ)| = 1 on C, and thus the jump Γ+(T (t)) − Γ−(T (t)) on the
contour C is also 1/2 logΠ(t).

Let us now examine the properties of the canonical solution Ψ(ζ) at the points
cν , ν = 1, . . . , M . Since the kernel A(ζ, τ) has simple poles at the points cν , the
function Ψ(ζ) has essential singularities at these points. They become removable
singular points if

1
4πi

∫

C

log Π(τ)ω̂ν (τ)dτ +
M∑

j=1

⎛
⎜⎝κj

∫

tj1pj

ω̂ν(τ)dτ +
∫

rjqj

ω̂ν(τ)dτ

+ mj

∮

aj

ω̂ν(τ)dτ + nj

∮

bj

ω̂ν(τ)dτ

⎞
⎟⎠ = 0 , ν = 1, . . . , M . (4.23)

Recognizing the integrals

uν(q) =
∫

s0q

ω̂ν(τ)dτ (4.24)

as abelian integrals on the Riemann surface R (single-valued on the surface R
cut along the loops aj and bj) and the differentials {ω̂ν(τ)dτ}ν=1,...,M as abelian
differentials, we can rewrite (4.23) as the following Jacobi inversion problem

M∑
j=1

[
uν(qj) + mjÃνj + njB̃νj

]
= dν , ν = 1, . . . , M , (4.25)

where Ãνj and B̃νj (ν, j = 1, . . . , M) form the A and B period matrices, and

dν = − 1
4πi

∫

C

log Π(τ)ω̂ν (τ)dτ −
M∑

j=1

⎛
⎜⎝κj

∫

tj1pj

ω̂ν(τ)dτ +
∫

rjs0

ω̂ν(τ)dτ

⎞
⎟⎠ . (4.26)
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The basis of abelian differentials can be normalized: dv = Âω̂dτ , where
dv = {dvν(τ)}ν=1,...,M is the canonical basis previously introduced and Â = Ã−1.
Because of the property (4.14) of the differentials dvν , the problem (4.25) reduces to

M∑
j=1

[
vν(qj) + njBνj

]
+ mν = d̂ν , ν = 1, . . . , M , (4.27)

where B = ÂB̃, and

d̂ν =
M∑

j=1

Âνjdj , ν = 1, . . . , M . (4.28)

The analysis of (4.27) and the first formula in (4.17) shows that the canonical
function Ψ(ζ) does not have essential singularities if the points qj and the integers
mν solve the real analogue of the Jacobi inversion problem

M∑
j=1

Re vν(qj) + mν = Re d̂ν , ν = 1, . . . , M . (4.29)

The solution to the classical inversion problem (4.27) always exists [18] and can
be expressed through the M zeros of the associated Riemann theta-function of the
surface R [1–3]. Notice that since (4.29) does not depend on the integers nν , they
can be chosen arbitrarily say, n1 = · · · = nM = 0, provided the points qν and the
integers mν solve the problem (4.27).

4.3. The general solution to the RH problem

Consider the properties of the function [Ψ(ζ)]−1Φ(ζ). It has simple poles at the
points qj ∈ Dζ ∪ D′

ζ (j = 1, . . . , M). Also, if the integers κj are positive, then the
function [Ψ(ζ)]−1Φ(ζ) has poles of orders κj at the points pj ∈ Dζ . It is bounded if
κj = 0 and has zeros of orders −κj if κj < 0. By the generalized Liouville theorem,
the general solution to Problem 4.1 has the form

Φ(ζ) = Ψ(ζ)
M∑

j=1

[
Ej

f(ζ) − f(qj)
+

Pκj−1

(
f(ζ)

)
[
f(ζ) − f(pj)

]κj

]
, (4.30)

where f(ζ) is the fundamental function of the symmetric Schottky group

f(ζ) =
A(ζ, a) + A

(
T (ζ), a

)
2

, (4.31)

and a ∈ Dζ ∪D′
ζ is an arbitrary fixed point. Clearly, it is an automorphic function:

f(ζ) = f(θ(ζ)), θ ∈ Θ, and meets the symmetry condition f(ζ) = f(T (ζ)). The
constants Ej are arbitrary real constants, and Pκj−1 is an arbitrary polynomial
of degree κj − 1 with real coefficients. If κj ≤ 0, it is assumed that Pκj−1 ≡ 0. In
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general, the function (4.30) has simple poles at the points rν ∈ Dζ (ν = 1, . . . , M),
the simple poles of the canonical function Ψ(ζ). To remove them, we require

M∑
j=1

Ej

f(rν) − f(qj)
+

Pκj−1

(
f(rν)

)
[
f(rν) − f(pj)

]κj
= 0 , ν = 1, . . . , M . (4.32)

Let κ =
∑M

j=1 κj . Summing up, we have shown the following result.

Theorem 4.1. If the index κ of the homogeneous RH problem (4.3) is positive, then
it has κ linearly independent solutions (4.30). For κ ≤ 0, the problem only admits
a trivial solution.

Finally, note that the technique just described also solves the homogeneous
Hilbert problem for multiply connected circular domains with discontinuous coef-
ficients.

Problem 4.3. Find all functions φ(ζ) = u(ζ) + iv(ζ) holomorphic in Dζ, H-
continuous up to the contour C apart from some points tν1, tν2, . . . , tνmν

ν = 1, . . . , M , where they may have integrable singularities and satisfying the
boundary condition

α(τ)u(τ) + β(τ)v(τ) = 0 , τ ∈ C . (4.33)

Here α(τ) and β(τ) are real functions which are H-continuous on the contour
C everywhere but at the singular points tν1, . . . tνmν , where they are bounded and
discontinuous.

This problem is equivalent [17] to the RH problem (4.3) with the coefficient

Π(τ) = −α(τ) + iβ(τ)
α(τ) − iβ(τ)

, (4.34)

which satisfies the condition of solvability of Problem 4.1 |Π(τ)| = 1.

Appendix A. Verification of infinite sum formulas

In this appendix we explicitly verify that an infinite sum formula for K(ζ, τ) that
appears in [1, 6] can be retrieved from the new formula (3.25) when an infinite
product representation of the prime function ω(ζ, τ) converges absolutely. Note,
importantly, that formula (3.25) for the Cauchy kernel in terms of the prime func-
tion ω(ζ, γ) still holds regardless of whether the infinite product representation for
the prime function converges absolutely.

Consider the kernel

K(ζ, τ) =
d

dτ
log
(

ω(ζ, τ)
ω(ζ∗, τ)

)
. (A.1)
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For the first class groups Θ, the Schottky–Klein prime function ω(τ, ζ) admits the
representation [4]

ω(τ, ζ) = (τ − ζ)
∏

θ∈Θ′′

(θ(τ) − ζ)(θ(ζ) − τ)
(θ(τ) − τ)(θ(ζ) − ζ)

(A.2)

where, as introduced in Crowdy & Marshall [11], the notation Θ′′ denotes all ele-
ments of the Schottky group excluding the identity and all inverses. By substituting
the infinite product formula (A.2) for ω(τ, ζ) and ω(τ, ζ∗) into (A.1), we have

K(ζ, τ) =
d

dτ
log

(
τ − ζ

τ − ζ∗

∏
θ∈Θ′′

(θ(τ) − ζ)(θ(ζ) − τ)
(θ(τ) − ζ∗)(θ(ζ∗) − τ)

)
. (A.3)

To simplify (A.3), we make use of the identity

θ(ζ) − τ =
(

cθτ − aθ

cθζ + dθ

)
(θ−1(τ) − ζ) (A.4)

which follows from the formulas for any map θ(ζ) of the group Θ and the inverse
θ−1(τ)

θ(ζ) =
aθζ + bθ

cθζ + dθ
, θ−1(τ) =

dθτ − bθ

−cθτ + aθ
. (A.5)

The identity (A.4) reduces (A.3) to

K(ζ, τ) =
d

dτ
log
(

τ − ζ

τ − ζ∗

∏
θ∈Θ′′

(θ(τ) − ζ)(θ−1(τ) − ζ)
(θ(τ) − ζ∗)(θ−1(τ) − ζ∗)

)

=
d

dτ
log
(∏

θ∈Θ

θ(τ) − ζ

θ(τ) − ζ∗

)
.

(A.6)

The final equality of (A.6) retrieves precisely the infinite sum formula for K(ζ, τ)

K(ζ, τ) =
∑
θ∈Θ

(
1

θ(τ) − ζ
− 1

θ(τ) − ζ∗

)
θ′(τ), ζ ∈ F, τ ∈ L , (A.7)

presented in [1].
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