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The explicit construction of the conformal mapping of a concentric annulus to a doubly
connected polygonal domain was first reported by Akhiezer in 1928. The construction of
an analogous formula for the case of a polycircular arc domain, i.e. for a doubly
connected domain whose boundaries are a union of circular arc segments, has remained
an important open problem. In this paper, we present this explicit formula. We first
introduce a new method for deriving the classical formula of Akhiezer and then show how
to generalize the method to the case of a doubly connected polycircular arc domain. As
an analytical check of the formula, a special exact solution for a doubly connected
polycircular arc mapping is derived and compared with that obtained from the more
general construction. As an illustrative example, a doubly connected polycircular arc
domain arising in a classic potential flow problem considered in the last century by Lord
Rayleigh is considered in detail.
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1. Introduction

Schwarz–Christoffel mapping is the name commonly given to a conformal
mapping from a simple ‘canonical’ domain to a polygonal domain having
boundaries that are all straight-line segments. Such maps are important in both
theory and applications. This is the central topic of a recent monograph by
Driscoll & Trefethen (2002). There, the role of such mappings in a wide range of
circumstances, from transport problems in heterogeneous media and fluid
dynamics to more abstract theoretical applications in approximation theory, is
expertly surveyed.

The Schwarz–Christoffel formula (henceforth abbreviated to S–C formula) for a
mapping to a simply connectedpolygonal domaindates back to the 1860s (Driscoll &
Trefethen 2002), while the formula relevant to doubly connected domains was first
derived by Akhiezer (1928). The natural question of generalizing this formula to
polygonal domains of arbitrary finite connectivity has remained open until recently.
Apparently, developments in this directionwere partly discouraged by knowledge of
the difficulty, evenwith the known simply and doubly connected formulae, of solving
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the so-called ‘parameter problem’ (as well as various other difficulties such as
‘crowding’; Driscoll & Trefethen 2002). These practical impediments have now been
overcome and readily transferable software operating on platforms, such asMATLAB,
are available. Now, S–C mappings of even very complicated domains can be
constructed with the click of a mouse. Driscoll has created a MATLAB package called
S–C Toolbox (www.math.udel.edu/-driscoll/SC) based on an earlier FORTRAN

program developed by Trefethen.
Influenced by the above developments, the long-standing theoretical problem

of finding general formulae for S–C mappings to higher connected polygonal
domains has recently been solved. DeLillo et al. (2001) were the first to produce a
multiply connected S–C mapping from an unbounded circular preimage region to
the unbounded region exterior to a finite collection of polygonal objects. Their
arguments rely on the use of reflection principles and are an extension of an
approach to the doubly connected S–C mapping presented in DeLillo et al.
(2004). The S–C formula to bounded multiply connected polygonal region was
first derived by Crowdy (2005), who introduced the powerful formalism of
classical function theory into the analysis of this problem. Indeed, employing the
machinery of Schottky groups, Crowdy was able to write the formula, in a
natural way, as a product of powers of a special transcendental function known
as the Schottky–Klein prime function (Baker 1995). The approach can also be
readily extended to unbounded polygonal regions (Crowdy 2007).

A natural extension of the theory of S–C mappings is the related theory of
mappings to polycircular arc domains. These are domains whose boundaries are a
collection of arcs of circles. Since straight-line segments are particular cases of
circular arcs, this theory includes the theory of S–C mappings as a special case.
Nehari (1952) and Ablowitz & Fokas (1997) discuss conformal mappings to
simply connected polycircular arc domains. A numerical construction of such
mappings to simply connected regions has been carried out by Bjørstad & Grosse
(1987) and Howell (1993). Given the recent development of multiply connected
S–C formulae, it is natural to ask about the construction of the analogous
formulae for conformal maps to multiply connected polycircular arc domains.
This question apparently remains open even for doubly connected domains.

This paper presents the theory for the doubly connected case; the general case
of arbitrary connectivity will appear in a subsequent publication (Crowdy &
Fokas in preparation). Since the doubly connected case is likely to be the most
important for applications, and since it has special features not shared by the
case of higher connectivity, we feel that the doubly connected situation deserves
a separate treatment.

In the case when a doubly connected polycircular arc domain reduces to a
doubly connected polygonal domain, the relevant formula is known. It appears to
have been first reported by Akhiezer (1928). It was later rederived, using
separate methods, by Komatu (1945) and DeLillo et al. (2001). Yet another
approach is implicit in the construction of S–C mappings to higher connected
domains of Crowdy (2005). All these methods produce, for the derivative of the
required mapping, an explicit formula up to a finite set of accessory parameters.
In order to unify our approach with the known formula for the S–C mapping to a
doubly connected polygonal region, we consider the latter case first. In fact, while
there exist many different derivations of the doubly connected S–C formula, the
one given here appears to be new.
Proc. R. Soc. A (2007)
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Figure 1. Schematic of (a) the preimage annulus r!jzj!1 and (b) a typical target polycircular arc
domain Dz.
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2. The conformal mapping problem

Let Dz denote the annulus r!jzj!1 in a complex z-plane, where 0!r!1 is a real
parameter. It is known that any doubly connected target domain Dz in a complex
z-plane can be conformally mapped to such an annulus Dz for some choice of
the conformal modulus r (Nehari 1952). r is determined by the target domain.

Let the boundary jzjZ1 be denoted by C(0) and let jzjZr be denoted by C(1).
Let the target domain Dz, in a complex z -plane, be a bounded doubly

connected polycircular arc domain. It is characterized by the fact that it is a
doubly connected region having two boundaries each of which is a (continuous)

union of circular arc segments. Let P (0) and P (1) denote the two boundaries of Dz.
Then, P (0) is a union of n0 circular arc segments, each defined by the equations

zKD
ð0Þ
k

��� ���2 Z Q
ð0Þ
k

� �2
; k Z 1;.; n0 ð2:1Þ

for some complex parameters fDð0Þ
k jkZ1;.;n0g and some real parameters

fQð0Þ
k jkZ1;.;n0g. Similarly, P (1) is a union of n1 circular arc segments with

associated equations

zKD
ð1Þ
k

��� ���2 Z Q
ð1Þ
k

� �2
; k Z 1;.;n1: ð2:2Þ

The conformal mapping problem is to find the functional form of a conformal

mapping z(z) from the annulus Dz to the polycircular region Dz. Let P
(0) and P (1)

correspond to the imageunder themapping z(z) ofC(0) andC(1), respectively.Let the

points fzðj Þk jjZ0; 1; kZ1;.;njg denote the vertices of Dz (i.e. the points at which

the distinct circular arc segmentsmakingup the boundaries intersect).We can adopt

the convention that these are ordered in an anticlockwise fashion around each

boundarycontour (figure 1).Thepreverticesonthe circlesC(0) andC(1) in the z-plane

will be denoted faðj Þ
k jjZ0; 1; kZ1;.;njg, where

zðaðj Þ
k ÞZ z

ðj Þ
k : ð2:3Þ
Proc. R. Soc. A (2007)
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3. Function theory in an annulus

Consider the annulus r!jzj!1. The following function will play a primary role
when performing analysis in this annulus,

PðzÞhð1KzÞ
YN
kZ1

ð1Kr2kzÞð1Kr2kzK1Þ: ð3:1Þ

This function, to within a constant of proportionality, is the Schottky–Klein
prime function (ch. 12 of Baker 1995) associated with the annulus r!jzj!1. It is
convergent for all finite zs0.

It is easy to verify directly from the definition (3.1) (appendix A) that

Pðr2zÞZKzK1PðzÞ; PðzK1ÞZKzK1PðzÞ: ð3:2Þ

Next, define

KðzÞh zP 0ðzÞ
PðzÞ ; ð3:3Þ

which has a simple pole at zZ1 with residue C1. By making use of equation
(3.2), it follows that

Kðr2zÞZKðzÞK1; KðzK1ÞZ 1KKðzÞ: ð3:4Þ

Finally, define

LðzÞhz
dKðzÞ
dz

: ð3:5Þ

Using equation (3.4), it can be verified that

Lðr2zÞZLðzÞ; LðzK1ÞZLðzÞ: ð3:6Þ

L(z) has a second-order pole at zZ1 with strength K1, i.e. near zZ1,

LðzÞZK
1

ðzK1Þ2
Canalytic: ð3:7Þ

L(z) is an example of a loxodromic function (Valiron 1947): a function G(z) is
defined to be a loxodromic function if it is meromorphic everywhere inside (and
on the boundary of ) the fundamental annulus r%jzj!rK1 and which
additionally satisfies the functional relation

Gðr2zÞZGðzÞ: ð3:8Þ

The annulus r%jzj!rK1 is called fundamental because, given the singularity
structure of G(z) in this annulus, the singularity structure in all other annuli
filling out the complex z-plane follows from the functional relation (3.8). Since
the only singularity of L(z) in the fundamental annulus is a second-order
pole at zZ1, and since it satisfies equation (3.6), it follows that L(z) is a
loxodromic function.
Proc. R. Soc. A (2007)



1889Conformal mappings to polycircular arc domains
4. Doubly connected S–C mappings

In this section, we will rederive the known formula for the S–C mapping to a
doubly connected polygonal region (Akhiezer 1928; Komatu 1945; Driscoll &
Trefethen 2002). The derivation here appears to be new.
(a ) Maps from circles centred at zZ0 to straight lines

Let z(z) denote the associated conformal mapping, then if z is on a circle C (0)

or C (1), it follows that z(z) is on a straight-line segment. Functions which have
this property are characterized in the following proposition:

Proposition 4.1. Let the functions F(z) and S(z) be defined by the equations

FðzÞhz
dzðzÞ
dz

ð4:1Þ

and

SðzÞhz
d2zðzÞ
dz2

dzðzÞ
dz

� �K1

: ð4:2Þ

Now, suppose that z is on a circle centred at the origin of the complex z-plane and
z is on a straight-line segment of the complex z -plane. Then,

Re
dFðzÞ
dz

� �
Z 0 ð4:3Þ

and

Re½SðzÞ�ZK1: ð4:4Þ

Proof. A circle in the complex z-plane, denoted by C, which is centred at the
origin and has radius r, is specified by the equation �zZr2zK1, thus

dz

dz
ZK

z

z
; on C : ð4:5Þ

If z2C, then zðzÞ is also a function of �z so that the chain rule implies

d�z

dz
Z

d�z

d�z

d�z

dz
ZK

�z

z

d�z

d�z
ð4:6Þ

or

z
d�z

dz
ZK z

dz

dz

� �
: ð4:7Þ

Now, a straight-line segment in the complex z -plane, denoted by P, is specified
by the equation

�z Z ezCd; ð4:8Þ

where e and d are some complex constants. Thus

d�z

dz
Z e; z2P: ð4:9Þ
Proc. R. Soc. A (2007)
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The chain rule implies

d�z

dz
Z

d�z

dz

dz

dz
Z e

dz

dz
; z2P: ð4:10Þ

Replacing, in equation (4.7), d�z=dz by the above expression, equation (4.7) becomes

ez
dz

dz
ZK z

dz

dz

� �
; z2C ; z2P: ð4:11Þ

Using the definition of F(z), this can be written as

�F

F
ZKe: ð4:12Þ

Differentiating this equation with respect to z, we find

1

F

d �F

dz
K

�F

F2

dF

dz
Z 0: ð4:13Þ

The chain rule implies

d �F

dz
Z

d �F

d�z

d�z

dz
Z

d �F

d�z
eZK

�F

F

d �F

d�z
; ð4:14Þ

where we have used equations (4.9) and (4.12). Finally, using equations (4.14) in
(4.13), we find

K
�F

F2

dF

dz

� �
C

dF

dz

� � !
Z 0; ð4:15Þ

which implies the result (4.3).

The definitions of F(z) and S(z) imply

dF

dz
Z 1CS: ð4:16Þ

Indeed,

dF

dz
Z

dF

dz

dz

dz

� �K1

Z
dz

dz
Cz

d2z

dz2

� �
dz

dz

� �K1

: ð4:17Þ

Equations (4.3) and (4.16) imply equation (4.4). &
(b ) The construction of S(z)
The target doubly connected domain Dz in the complex z -plane is specified by

two closed polygons P (0) and P (1) which consist, respectively, of n0 and n1
straight-line segments. Each of these segments can be specified by

�z Z e
ðj Þ
k zCd

ðj Þ
k ; j Z 0; 1; ð4:18Þ

where, for jZ0, 1%k%n0 and, for jZ1, 1%k%n1. Let z
ðj Þ
k denote the vertices

of the polygons and let a
ðj Þ
k denote the associated prevertices in the z-plane.

At each vertex of the polygon, the boundary direction shifts by a turning angle.
Proc. R. Soc. A (2007)
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Let the turning angle at prevertex a
ðj Þ
k be pb

ðj Þ
k . The polygons P (0) and P (1) are

closed, thus it is necessary thatXn 0

kZ1

b
ð0Þ
j ZK2;

Xn1
kZ1

b
ð1Þ
j Z 2: ð4:19Þ

Local arguments imply that near the prevertex a
ðj Þ
k ,

dz

dz
Z zKa

ðj Þ
k

� �bð j Þ
k
g
ðj Þ
k ðzÞ; ð4:20Þ

where the function g
ðj Þ
k ðzÞ is analytic at a

ðj Þ
k .

Equation (4.4) will play a crucial role in the determination of the conformal
mapping formula. In this respect, we note the following:

(i) if z is on the segment specified by equation (4.18), then equation (4.11) is

valid with e replaced by e
ðj Þ
k . This is a statement of the fact that z(dz/dz)

has piecewise constant argument on the two circles C (0) and C (1). This
condition forms the basis of the approach of Crowdy (2005) for the
construction of a general S–C mapping formula to polygonal domains of
arbitrary finite connectivity. We note that although equation (4.11) with e

replaced by e
ðj Þ
k depends on the values of both j and k, both equations (4.3)

and (4.4) are valid for all values of j and k,
(ii) condition (4.4) is precisely the one used by DeLillo et al. (2001) in their

construction of the doubly connected S–C formula and also in a
generalization thereof to multiply connected polygonal domains (DeLillo
et al. 2004). A geometrical interpretation of condition (4.4) is that the
curvature on each straight-line segment of the polygonal boundary is zero.

Proposition 4.2. Let z(z) be the conformal mapping from the annulus r!jzj!1
in the complex z-plane to the doubly connected domain Dz in the complex z -plane

bounded by the two closed polygons P (0) and P (1). These polygons are specified by

the turning angles fpbðj Þk jkZ1;.; nj ; jZ0; 1g and the prevertices faðj Þ
k jk:

Z1;.; nj ; jZ0; 1g. Let S(z) be defined in terms of z(z) by equation (4.2).

Then, S(z) is given by

SðzÞZ
Xn 0

kZ1

b
ð0Þ
k Kðz=að0Þ

k ÞC
Xn1
kZ1

b
ð1Þ
k Kðz=að1Þ

k ÞK2; ð4:21Þ

where K(z) is defined in equation (3.3).

Proof. The function S(z) has the following properties:

(i) if z is on C (0) or C (1), then Re[S(z)]ZK1,
(ii) it has a simple pole singularity at each of the points fað0Þ

k jkZ1;.; n0g
and fað1Þ

k jkZ1;.; n1g with associated residues fað0Þ
k b

ð0Þ
k jkZ1;.; n0g and

fað1Þ
k b

ð1Þ
k jkZ1;.; n1g, and

(iii) it is a loxodromic function.

Property (i) is a consequence of equation (4.4), (ii) follows from (4.20) and,
in order to establish (iii), we must show that S(z) satisfies the functional
Proc. R. Soc. A (2007)
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equation (3.8). In this respect, we define the Schwarz conjugate of f(z) by

f̂ ðzÞZ f ð�zÞ: ð4:22Þ

Equation (4.4) can be written as

SðzÞCSðzÞZK2 ð4:23Þ
or

Ŝð�zÞCSðzÞZK2: ð4:24Þ
Hence,

ŜðzK1ÞCSðzÞZK2; on C ð0Þ;

Ŝðr2zK1ÞCSðzÞZK2; on C ð1Þ:
ð4:25Þ

By analytic continuation, these equations imply

ŜðzK1ÞZ Ŝðr2zK1Þ; in Dz ð4:26Þ
or, equivalently,

SðzÞZSðr2zÞ; in Dz: ð4:27Þ
We shall now construct S(z) explicitly. Consider the candidate function

SC ðzÞZ
Xn 0

kZ1

b
ð0Þ
k K z=a

ð0Þ
k

� �
C
Xn1
kZ1

b
ð1Þ
k K z=a

ð1Þ
k

� �
Cc ð4:28Þ

for some constant c.

(i) The first equation in equation (3.4) implies that

SC ðr2zÞZSC ðzÞK
Xn 0

kZ1

b
ð0Þ
k K

Xn1
kZ1

b
ð1Þ
k ; ð4:29Þ

therefore SC (z) is a loxodromic function in the light of the conditions (4.19).
(ii) The function K(z) has a simple pole at zZ1 with unit residue, hence

KðzaK1ÞZ a

zKa
Canalytic; ð4:30Þ

thusSC (z) has the required simple pole singularitieswith the correct residues.

(iii) For z on C(0),

SCðzÞ Z
Xn 0

kZ1

b
ð0Þ
k K a

ð0Þ
k =z

� �
C
Xn1
kZ1

b
ð1Þ
k K a

ð1Þ
k =r2z

� �
Cc: ð4:31Þ

Now equation (3.4) implies that

K a
ð0Þ
k =z

� �
Z 1KK z=a

ð0Þ
k

� �
;

K a
ð1Þ
k =ðr2zÞ

� �
Z 1KK r2z=a

ð1Þ
k

� �
Z 2KK z=a

ð1Þ
k

� �
:

ð4:32Þ

Substituting these relations into equation (4.31), we obtain

SC ðzÞ Z 2C2cKSC ðzÞ: ð4:33Þ
Proc. R. Soc. A (2007)
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A similar relation is valid for z onC(1). Thus, the conditionRe[SC]ZK1 implies that
we must choose cZK2.

In summary, the candidate function SC (z) with cZK2 has all the properties
(i)–(iii) required of S(z). By an application of Liouville’s theorem (for loxodromic
functions) to the ratio S(z)/SC (z), it can be deduced that this ratio is equal to
unity so that S(z) is given by equation (4.21). This completes the proof of
proposition 4.2. &
(c ) S–C mapping to doubly connected polygonal domains

Using, in equation (4.21), the definitions of K(z) and S(z) (equations (3.3) and
(4.2)) and dividing by z, we find

d2z

dz2
dz

dz

� �K1

Z
Xn 0

kZ1

b
ð0Þ
k

a
ð0Þ
k

P 0ðz=að0Þ
k Þ

Pðz=að0Þ
k Þ

C
Xn1
kZ1

b
ð1Þ
k

a
ð1Þ
k

P 0ðz=að1Þ
k Þ

Pðz=að1Þ
k Þ

K
2

z
: ð4:34Þ

Integration of this equation yields

dz

dz
Z

B

z2

Yn 0

kZ1

P z=a
ð0Þ
k

� �h ibð0Þ
k
Yn1
kZ1

P z=a
ð1Þ
k

� �h ibð1Þ
k
; ð4:35Þ

for some complex constant B. A further integration yields the S–C formula for the
doubly connected case (Akhiezer 1928; Komatu 1945; Driscoll & Trefethen 2002).
5. Doubly connected polycircular arc maps

We now turn our attention to constructing the mapping to doubly connected
polycircular arc domains. In particular, we first present the analogue of
proposition 4.1.
(a ) Maps from circles centred at zZ0 to circular arcs

Proposition 5.1. Let the functions F(z) and T (z) be defined respectively by
equation (4.1) and

T ðzÞhz2fzðzÞ; zg; ð5:1Þ
where {z(z), z} is the Schwarzian derivative (Nehari 1952; Ablowitz & Fokas
1997) defined by

fzðzÞ; zghd3z=dz3

dz=dz
K

3

2

d2z=dz2

dz=dz

� �2

: ð5:2Þ

Suppose that z is on a circle centred at the origin in the complex z-plane and z is
on a circular arc in the complex z -plane. Then

F
d2F

dz2
K

1

2

dF

dz

� �2� �
ZF

d2F

dz2
K

1

2

dF

dz

� �2

ð5:3Þ

and
T ðzÞ Z T ðzÞ: ð5:4Þ

Proof. It was shown in the proof of proposition 4.1 that if z is on a circle C
centred at the origin, then equation (4.7) is valid.
Proc. R. Soc. A (2007)
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Now, a circular arc, denoted by P, is specified by an equation of the form

�zK �DZ
Q2

zKD
; ð5:5Þ

for some D2C and some real QO0. Differentiating this with respect to z, we find

d�z

dz
ZK

�zK �D

zKD
: ð5:6Þ

The chain rule implies

d�z

dz
Z

d�z

dz

dz

dz
ZK

�zK �D

zKD

� �
dz

dz
: ð5:7Þ

Replacing, in this equation, d�z=dz by the right-hand side of equation (4.6), we find

zdz=dz

zKD

� �
Z

zdz=dz

zKD
; z2C ; z2P: ð5:8Þ

This equation is the analogue of equation (4.11).
Differentiating equation (5.6) with respect to z produces

d2�z

dz2
ZK

d�z=dz

zKD
C

�zK �D

ðzKDÞ2
Z 2

�zK �D

ðzKDÞ2
; ð5:9Þ

where we have used equation (5.6). Combining this equation with equation (5.6),
we find

d�z=dz

d2�z=dz2
ZK

1

2
ðzKDÞ: ð5:10Þ

Differentiating equation (5.10) with respect to z, we obtain

K
d3�z

dz3
C

3

2

ðd2�z=dz2Þ2

d�z=dz
Z 0; z2C ; z2P: ð5:11Þ

It should be emphasized that equation (5.11) has no dependence on either Q or D.
We will now rewrite equation (5.11) in terms of the function F(z). The chain
rule implies

d�z

dz
Z

d�z

d�z

d�z

dz
ð5:12Þ

or

d�z

dz

dz

dz
Z

d�z

d�z
K

�z

z

� �
; ð5:13Þ

where we have made use of equation (4.5) to replace d�z=dz by K�z=z. This
equation can be rewritten in the form

K
d�z

dz
Z z

dz

dz

� �.
z
dz

dz

� �
Z

�F

F
: ð5:14Þ
Proc. R. Soc. A (2007)
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Direct calculations lead to the following:

d2�z

dz2
Z

�F

F2

dF

dz
C

dF

dz

� � !
;

d3�z

dz3
ZK

�F

F3
�F

d2F

dz2

� �
KF

d2F

dz2
C

dF

dz

� �2

C3
dF

dz

dF

dz

� �
C2

dF

dz

� �2
 !

:

ð5:15Þ

Substitution of equation (5.15) into equation (5.11) yields equation (5.3).
On differentiation of equation (4.1), the definition of F(z), with respect to z, it

is easy to verify that the following relations are valid:

dF

dz
Z 1Cz

dz

dz

d2z

dz2
;

d2F

dz2
Z

dz

dz

 !2
d2z

dz2
Cz

d2z

dz2
d2z

dz2
Cz

dz

dz

 !2
d3z

dz3
:

ð5:16Þ

These imply that

F
d2F

dz2
K
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2

dF

dz
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ZK
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2
Cz2

dz

dz

d2z

dz2
d2z

dz2
Cz2

dz

dz

d3z

dz3
K
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z
dz

dz

d2z

dz2
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: ð5:17Þ

Using the identity

d2z

dz2
ZK

d2z

dz2
dz

dz

� �3

; ð5:18Þ

equation (5.17) simplifies as follows:

F
d2F

dz2
K

1

2

dF

dz

� �2

ZK
1

2
Cz2

dz

dz

d3z

dz3
K

3

2
z2

dz

dz

� �2 d2z

dz2

� �2

: ð5:19Þ

Finally, this equation and the definition of T (z) yield equation (5.4). This
completes the proof of proposition 5.1. &
(b ) The construction of T (z)

The following proposition is the analogue of proposition 4.2.

Proposition 5.2. Let z(z) be the conformal mapping of the annulus r!jzj!1 in
the complex z-plane to the doubly connected domain Dz in the complex z -plane

bounded by the two closed polycircular curves P (0) and P (1). These curves are

specified by equations (2.1) and (2.2). Let fpbðj Þk jkZ1;.; nj ; jZ0; 1g be

the turning angles at the prevertices faðj Þ
k jkZ1;.; nj ; jZ0; 1g, respectively.
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Let T (z) be defined in terms of z(z) by equation (5.1). Then, T (z) is given by

T ðzÞZ
Xn 0

kZ1

b
ð0Þ
k

h i2
K1

2

0
B@

1
CAL z=a

ð0Þ
k

� �
C ig

ð0Þ
k K z=a

ð0Þ
k

� �

C
Xn1
kZ1

b
ð1Þ
k

h i2
K1

2

0
B@

1
CAL z=a

ð1Þ
k

� �
C ig

ð1Þ
k K z=a

ð1Þ
k

� �
Cc; ð5:20Þ

where fgðj Þ
k jkZ1;.; nj ; jZ0; 1g are real constants satisfying the conditions

Xn 0

kZ1

g
ð0Þ
k C

Xn1
kZ1

g
ð1Þ
k Z 0; ð5:21Þ

while c is a complex constant satisfying

cK �cZKi
Xn1
kZ1

g
ð1Þ
k : ð5:22Þ

Proof. The function T (z) has the following properties:

(i) if z is on C (0) or C (1), then T ðzÞZT ðzÞ,
(ii) it has a second-order pole at each of the points faðj Þ

k jkZ1;.;nj ; jZ0; 1g
with associated strengths f½aðj Þ

k �2ð1K½bðj Þk �2Þ=2jkZ1;.;nj ; jZ0; 1g, and
(iii) it is a loxodromic function.

Indeed, (i) is just a restatement of equation (5.4). Regarding (ii), we note that local

arguments imply that near the prevertex a
ðj Þ
k , equation (4.20) is still valid. Then, a

simple calculation (Nehari 1952; Ablowitz & Fokas 1997) shows that

fzðzÞ; zgZ 1

2

1K b
ðj Þ
k

h i2
zKa

ðj Þ
k

� �2 CO zKa
ðj Þ
k

� �K1
� �

: ð5:23Þ

Regarding (iii), if we denote the Schwarz conjugate of T (z) by T̂ ðzÞ, i.e.
T̂ ðzÞZ T ð�zÞ; ð5:24Þ

then equation (5.4) can be written as T̂ ð�zÞZT ðzÞ. Hence,
T̂ ðzK1ÞZ T ðzÞ; on C ð0Þ;

T̂ ðr2zK1ÞZ T ðzÞ; on C ð1Þ:
ð5:25Þ

Analytic continuation of these equations into the annulus r!jzj!1 yields

T̂ ðzK1ÞZ T̂ ðr2zK1Þ and hence T ðr2zÞZT ðzÞ. This condition, together with the
fact that the only singularities of T (z) are the second-order poles at the

prevertices faðj Þ
k jkZ1;.;nj ; jZ0; 1g imply that T (z) is a loxodromic function.
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Let TC (z) defined by

TC ðzÞZ
Xn 0
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� �
Cc; ð5:26Þ

be a candidate function for the required function T (z). First, from equation (3.7),
it is easy to show that TC (z) satisfies (ii). Next, equations (3.4) and (3.6) and the
imposed conditions (5.21) can be used to verify that TC (z) is a loxodromic
function and therefore satisfies condition (iii).

Finally, note that if z is on C (0), then

TC ðzK1ÞZ
Xn 0

kZ1

b
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k

h i2
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Xn 0

kZ1

g
ð0Þ
k K2i

Xn1
kZ1

g
ð1Þ
k ;

Z TCðzÞ; ð5:27Þ

where we have made use of equations (3.4), (3.6), (5.21) and (5.22). A similar
calculation shows that TC ðr2zK1ÞZTC ðzÞ. The candidate function TC (z)
therefore satisfies all conditions (i)–(iii) required of T (z). Finally, an application
of the generalized Liouville theorem (for loxodromic functions) yields the result
(5.20). This completes the proof of proposition 5.2. &
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6. The parameter problem

Proposition 5.2 reduces the construction of the required conformal mapping to
solving the third-order nonlinear differential equation

z2fzðzÞ; zgZ T ðzÞ ð6:1Þ

with the functional form of T (z) given in equation (5.20) up to a finite set of
accessory parameters.

However, there are additional conditions on the parameters appearing in the
expression for T (z). To see this, first note that a polycircular region with a total
of N sides depends on 3N real parameters (one can specify, for example, the
centre and radius of each circular arc). On the other hand, the ordinary
differential equation (6.1) is invariant under the arbitrary Möbius mappings of
the solution z(z), i.e. if

ZðzÞZ azðzÞCb

czðzÞCd
; a; b; c; d2C; adKbcZ 1; ð6:2Þ

then the equation satisfied by Z(z) is the same as that satisfied by z(z), i.e.

z2fZðzÞ; zgZ T ðzÞ: ð6:3Þ

There are six real degrees of freedom associated with the Möbius mapping
(6.2); these are precisely the six real constants needed to specify (initial)
conditions on, say, z(1), zz(1) and zzz(1) (where subscripts denote derivatives) in
order to solve the third-order ordinary differential equation (6.1). It follows that
equation (6.1) should depend on precisely 3NK6 real parameters in order to
describe a given polycircular arc region with N sides.

However, the parameters appearing in the representation (5.20) are

a
ð0Þ
i ;a

ð1Þ
j ji Z 1;.;n0; j Z 1;.; n1

n o
; b

ð0Þ
i ;b

ð1Þ
j ji Z 1;.; n0; j Z 1;.;n1

n o
;

fgð0Þ
i ;g

ð1Þ
j ji Z 1;.; n0; j Z 1;.;n1g; c2C and r2R:

ð6:4Þ

The total number of sides N is n0Cn1 and, counting all the parameters in
equation (6.4), it follows that T (z) depends on a total of 3NC3 real parameters.

Now, these parameters are constrained by the two real relations (5.21) and
(5.22), which reduce the count to 3NC1 real parameters. In addition, there
remains a single rotational degree of freedom associated with the Riemann
mapping theorem (the fact that we have specified that P1 corresponds to C1,
centred at the origin, has used up two of the usual three degrees of freedom
associated with the Riemann mapping theorem). Taking this freedom into
account reduces the count to 3N parameters. It is clear that we have still to
determine six real constraints on the parameters appearing in T (z).

Before presenting these constraints, we first consider the simply connected
case. Nehari (1952) also discusses the question of the ‘parameter count’ in the
case of simply connected mappings from an upper-half plane.
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(a ) Simply connected case

The simply connected case corresponds to r/0. Then, we have

LðzÞZK
z

ð1KzÞ2
; KðzÞZK

z

ð1KzÞ : ð6:5Þ

Thus, equation (5.20) becomes

T ðzÞZ
Xn 0
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1K b
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zKa
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k

� �Cc: ð6:6Þ

In this case, condition (5.21) disappears while equation (5.22) assumes the form

KcC �cKi
Xn 0

nZ1

g
ð0Þ
k Z 0: ð6:7Þ

In this case, the total number of sides isNZn0 and the total number of parameters
in equation (6.6) is 3NC2. Equation (6.7) is a single real constraint and there are
also the usual three real degrees of freedom associated with the Riemann mapping
theorem. This reduces the count to 3NK2. Therefore, there must exist four
additional real conditions on the parameters in equation (6.6). These four
conditions follow from the two complex conditions

T ð0ÞZ T zð0ÞZ 0: ð6:8Þ

These are a direct consequence of equation (5.1): since z(z) is analytic at zZ0, it
follows that the function {z(z), z} has a finite value at zZ0; hence, by equation
(5.1), T (z) has a double zero there. This, together with the fact that T (z) is
analytic at zZ0, leads to conditions (6.8).

From equation (6.6), the condition T (0)Z0 clearly requires that cZ0. Hence

Xn 0

nZ1

g
ð0Þ
k Z 0: ð6:9Þ

Now equation (6.6) can be written as

T ðzÞZ z2
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The condition T z(0)Z0 yields
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1K½bð0Þk �2
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K
ig
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k

a
ð0Þ
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" #
Z 0: ð6:11Þ
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Hence, equation (6.10) becomes
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In summary, we deduce that
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with the parameters satisfying the constraints
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After appropriate changes in notation, equations (6.13) and (6.14) are exactly
the results stated in theorem 4.1 of Howell (1993) on mapping the unit z-disc to a
simply connected polycircular arc domain.

(b ) The doubly connected case

We have already established that T (z), as given in equation (5.20), depends on
3N real parameters. The six real constraints satisfied by these parameters are
characterized by the following three complex equations:

#
C

T ðzÞ dz
dz

C
3

2
z2

d2z

dz2
dz

dz

� �K1� �
dz

znC1
Z 0; n ZK1; 0; 1; ð6:15Þ

where C is a simple closed contour in the annulus r!jzj!1. Indeed, in this
annulus, z(z) has a convergent Laurent expansion of the form

zðzÞZ/C
aK2

z2
C

aK1

z
Ca0Ca1zCa2z

2 C/ ð6:16Þ

Hence, z2(d3z/dz3) admits a Laurent series expansion where the coefficients of zn

for nZK1, 0, 1 vanish. Using equations (5.1) and (5.2), the latter conditions
imply conditions (6.15).

In summary, we have now derived the functional form of a nonlinear equation
(6.1), up to a finite set of parameters, for the required conformal mapping function
z(z). There are a number of constraints on these parameters, the nature of which we
have determined. In the next section, we consider two examples where symmetry
consideration simplifies the parameter problem considerably and allows us to
numerically solve equation (6.1) to construct the required conformal map.
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7. Examples

To illustrate the constructive method, we consider some examples. First, we
present an analytical check of the general method by constructing a special exact
solution for a polycircular arc mapping using independent considerations. Then,
in §7b, we use the new method to construct a mapping to a polycircular arc
domain arising in a problem considered by Lord Rayleigh (1892).

In order to avoid complications associated with solving the parameter problem
(Driscoll & Trefethen 2002), we consider examples that have both a rotational
symmetry as well as a reflectional symmetry about the real z -axis. If the

boundaries P (0) and P (1) of Dz have an n-fold rotational symmetry about the

origin zZ0, then the positions of the prevertices on C (0) and C (1) will also have
this symmetry. The solutions we seek will then be of the general functional form

zðzÞZ zhðznÞ ð7:1Þ
for some functionh. Using this general form,wecan show thatT (z) is invariant under

the transformation z1z e2pi/n. This implies that the coefficients fgðj Þ
k jkZ1;.; nj ;

jZ0; 1g must be equal for all k. On the other hand, reflectional symmetry about
the real axis implies that ẑðzÞZzðzÞ (where ẑðzÞ denotes the Schwarz conjugate to
z(z)) and hence T̂ ðzÞZT ðzÞ (it also implies that the prevertices must appear in

complex conjugate pairs). This relation implies that the coefficients g
ðj Þ
k

corresponding to complex conjugate pairs of preverticesmust be complex conjugates.

Combining these facts, we conclude that all coefficients fgðj Þ
k jkZ1;.;nj ; jZ0; 1g

for such rotationally and reflectionally symmetric domains must vanish.
(a ) An analytical check

It is shown in appendix B, using independent considerations, that the
conformal mapping from the annulus r!jzj!1 to the unit disc with a
symmetrical slit along the real axis (figure 5) is given by

zðzÞZ PðKzÞKPðzÞ
PðKzÞCPðzÞ : ð7:2Þ

In what follows, as an independent verification of our method, we will compare
formula (7.2) with the formula obtained using proposition 5.2. In this case,
proposition 5.2 implies

T ðzÞZ 3

2
LðzrK1ÞCLðKzrK1Þ
� 	

CR1 ð7:3Þ

for some appropriately chosen real constant R1. Here, we have used the fact

that a
ð1Þ
1 Zr, a

ð1Þ
2 ZKr, b

ð1Þ
1 Zb

ð1Þ
2 Z1.

In practice, it would be necessary to solve for the accessory parameter R1

numerically. Here, however, we already know that the relevant map is equation
(7.2). We can therefore check that the result of equation (7.2) is consistent with
equation (7.3) by picking an arbitrary value of z and evaluating the left-hand side of
equation (7.3) at this point using the known function (7.2). This determines R1.
With this value ofR1, it can then be verified that the functional relation (7.3) holds
for any choice of z. This was tested numerically and was found to be the case, thus
providing a check on the general analysis.
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Figure 2. Schematic of the mapping from an annulus to a single period window of the problem
considered by Lord Rayleigh (1892).
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(b ) Rayleigh’s example

We now consider a classical example that is of great interest for applications.
Lord Rayleigh (1892) analysed the problem of potential flow past a doubly periodic
array of cylindrical objects. One approach to the analysis of such problems is to
construct a conformal mapping from the annulus r!jzj!1 to a single period
window of this array (see figure 2 for a schematic of this target domain). It is clear
that such adomain is a polycircular arc region.Rayleigh’s example is also studiedby
Bjørstad &Grosse (1987), but they exploit the fourfold rotational symmetry of the
target domain to find a mapping from a simply connected preimage domain to one
quarter of the full domain. Here, in contrast, we seek a mapping from the preimage
annulus to the full doubly connected domain.

Let the unit circle jzjZ1 map to the square outer boundary of the target
domain. By the fourfold rotational symmetry, the preimage points on the unit z
can be expected to be at the points

a
ð0Þ
k Z eipð2kK1Þ=4: ð7:4Þ

The function T (z) has second-order poles at the points given in equation (7.4).
In order to encode the fourfold rotational symmetry, it is natural to consider
the function

P4ðzÞZ
Y4
kZ1

P z=a
ð0Þ
k

� �
Z ð1Cz4Þ

YN
jZ1

1Cr8jz4
� 	

1Cr8jÞ=z4
� 	

; ð7:5Þ

which is simply a product of four prime functions defined in equation (3.1), but

with arguments chosen so that the zeros of P4(z) are exactly the points fað0Þ
k g.

By analogy with K(z) and L(z), now define

K4ðzÞhz
P 0
4ðzÞ

P4ðzÞ
; L4ðzÞhzK 0

4ðzÞ: ð7:6Þ

It is easy to verify that K4(z) has simple poles, and L4(z) has second-order poles,
at the points (7.4). From the results of proposition 5.2, we find that

T ðzÞZK
3

8
L4ðzÞCR1: ð7:7Þ

The single real accessory parameter R1 must be determined as part of the solution.
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Figure 3. The annulus 0.2!jzj!1. The solid, dashed and dot-dashed curves are the three curves
described in equation (7.12).
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In order to evaluate the conformal mapping and the value of R1 numerically,
equation (6.1) is written in the form

d3z

dz3
Z

3

2

d2z

dz2

� �2. dz

dz
C

T ðzÞ
z2

dz

dz
; ð7:8Þ

with T (z) given by equation (7.7). Defining pZdz/dz and qZd2z/dz2, equation
(7.8) can be written as the following system for (z, p, q):

dz

dz
Z p;

dp

dz
Z q;

dq

dz
Z

3

2

q2

p
C

T ðzÞp
z2

: ð7:9Þ

The initial conditions are chosen as follows. We choose zZ0 to be the image of
zZ1. Since zZ0 is on a straight-line segment, we demand that the curvature at
this point vanishes. It is easy to show that the curvature k is given by the formula

kZ
��� dz
dz

���Re 1Cz
d2z

dz2

. dz

dz

� �
: ð7:10Þ

Hence, we take initial conditions

zð1ÞZ 0; pð1ÞZ r; qð1ÞZKr ; ð7:11Þ
for some real parameter r. The value of r simply determines the scale of the
target domain, so we arbitrarily set rZ1. We also choose rZ0.2.

With these initial conditions, and an arbitrary choice of R1, the system (7.9)
was integrated numerically along the following three curves in the z-plane:

fjzjZ 1;Kp=4%arg½z�%p=4g; fr%z%1; arg½z�Z 0g; jzjZ r: ð7:12Þ
These curves are shown as solid, dashed and dot-dashed curves, respectively, in
figure 3. This integration procedure was repeated for different values of R1 until
the image of these three curves was as required. It is found (numerically) that
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Figure 4. The images of the solid, dashed and dot-dashed curves of figure 3. Note that z(1)Z0. The
radius of the inner enclosed circle is found to be centred at K1.311 and to have radius 0.283. The
length of each square side is found to be 2.575.
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R1Z0 is the appropriate value of this accessory parameter. The numerically
computed images of these three curves, when R1Z0, are shown in figure 4 (also
as solid, dashed and dot-dashed curves). Of course, the rest of the shape will
follow from the fourfold symmetry of the mapping. It was also checked
numerically that, with R1Z0, different values of r simply produce rescaled
versions of the same image.

In summary, the conformal mapping z(z) from the annulus r!jzj!1 to the
polycircular arc domain relevant to Rayleigh’s problem (figure 2) is the solution
of the following explicit nonlinear ordinary differential equation

d3z

dz3
Z

3

2

d2z

dz2

� �2. dz

dz
K

3

8z
L4ðzÞ

dz

dz
; ð7:13Þ

where L4(z) is defined by equations (7.5) and (7.6).
8. Discussion

This paper has presented a new procedure for constructing conformal maps to
doubly connected polycircular arc domains. Some simple illustrative examples of
the method have also been presented. It is expected that the formulation here
will form the basis of a general numerical scheme for constructing conformal
mappings to doubly connected polycircular arc domains.

It is worth pointing out that Hu (1998) has already developed software to
numerically construct S–C mappings to doubly connected polygonal domains
based on the doubly connected S–C formula. It would be of interest to examine
whether such software can be extended to doubly connected polycircular arc
domains using the new formulae presented in this paper. Actually, there is a
Proc. R. Soc. A (2007)
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wider issue of whether existing software (such as the S–C Toolbox www.math.
udel.edu/-driscoll/SC) can be enhanced to incorporate mappings to multiply
connected polygonal and polycircular arc domains.
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Appendix A. Properties of P(z)

For the sake of completeness, we derive equations (3.2), (3.4) and (3.6). The
definition (3.1) of P(z) implies

Pðr2zÞZ ð1Kr2zÞ
YN
kZ1

ð1Kr2kr2zÞð1Kr2krK2zK1Þ: ðA 1Þ

On use of the identitiesYN
kZ1

ð1Kr2krK2zK1ÞZ ð1K zK1Þ
YN
kZ1

ð1Kr2kzK1Þ;

ð1Kr2zÞ
YN
kZ1

ð1Kr2kr2zÞZ
YN
kZ1

ð1Kr2kzÞ;
ðA 2Þ

it can be shown that the right-hand side of (A 1) becomes

ð1K zK1Þ
YN
kZ1

ð1Kr2kzK1Þð1Kr2kzÞ; ðA 3Þ

and the first identity of equation (3.2) follows.
The second identity in equation (3.2) is a direct consequence of the following

invariance:
PðzÞ
1Kz

Z
PðzK1Þ
1K zK1

: ðA 4Þ

Differentiation of the first of the identities (3.2) with respect to z yields

r2P 0ðr2zÞZ zK2PðzÞK zK1P 0ðzÞ; ðA 5Þ
which, on division by the equation

zK1Pðr2zÞZKzK2PðzÞ; ðA 6Þ
leads to the first of the identities in equation (3.4). Differentiation of the second
of the identities (3.2) with respect to z implies

KzK2P 0ðzK1ÞZ zK2PðzÞK zK1P 0ðzÞ; ðA 7Þ
which, on division by the equation

KzK1PðzK1ÞZ zK2PðzÞ; ðA 8Þ
yields the second of the identities in equation (3.4).
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Figure 5. Schematic of the sequence of conformal maps (B 1) leading to formula (7.2).
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Finally, the identities (3.6) follow by differentiating equation (3.4) with
respect to z.

By employing appropriate transformations of the parameters and of the
independent variable, the functions P(z), K(z) and L(z) can be identified with
the Weierstrass-s, Weierstrass-z and Weierstrass-P functions, respectively
(Valiron 1947).
Appendix B. An exact polycircular arc mapping

This appendix gives a brief derivation of equation (7.2), which maps the annulus
r!jzj!1 to the doubly connected polycircular arc region consisting of the unit
disc with a slit along the real axis (figure 5).

Consider the sequence of two conformal mappings given by

z1ðzÞZ
PðzÞ
PðKzÞ ; zðz1ÞZ

1K z1

1Cz1
: ðB 1Þ

The composition of these two mappings gives equation (7.2). Consider the first of
these mappings. On jzjZ1,

z1ðzÞ Z
PðzK1Þ
PðKzK1Þ

Z
KzK1PðzÞ
zK1PðKzÞ

ZKz1ðzÞ; ðB 2Þ

where we have used equation (3.2). This shows that jzjZ1 maps to the imaginary
z1-axis. Similarly, on jzjZr,

z1ðzÞ Z
Pðr2zK1Þ
PðKr2zK1Þ

Z z1ðzÞ; ðB 3Þ

where we have again used equation (3.2). The circle C (1) therefore maps to the
real z1-axis. Since the map is single-valued and does not become infinite, it is

clear that there must be (at least) two points on C (1) where dz1(z)/dzZ0 (so that
the image turns through a corner of angle 2p as z passes through such a point). In
fact, the argument principle can be used to show that the map is univalent and
therefore that there are only two such points of non-conformality on C (1).

Finally, the second Möbius mapping in (B 1) is the one that takes the right-
half z1-plane to the interior of the unit z -disc. Thus, the imaginary z1-axis maps
to jzjZ1, while any finite segment on the positive real z1-axis will map to a
segment on the real z -axis inside the unit z -disc. Figure 5 shows a schematic of
this construction.
Proc. R. Soc. A (2007)
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It is worth noting that a different derivation of this map, using elliptic function
theory, can be found in Nehari (1952, pp. 293–296).
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Valiron, G. 1947 Cours d’analyse mathématique, 2nd edn. Paris, France: Masson et Cie.
Proc. R. Soc. A (2007)

http://dx.doi.org/doi:10.1137/0908003
http://dx.doi.org/doi:10.1098/rspa.2005.1480
http://dx.doi.org/doi:10.1017/S0305004106009832
http://dx.doi.org/doi:10.1137/S0036144500375280
http://dx.doi.org/doi:10.1016/0377-0427(93)90284-I
http://dx.doi.org/doi:10.1145/292395.291204

	Conformal mappings to a doubly connected polycircular arc domain
	Introduction
	The conformal mapping problem
	Function theory in an annulus
	Doubly connected S-C mappings
	Maps from circles centred at zeta=0 to straight lines
	The construction of S(zeta)
	S-C mapping to doubly connected polygonal domains

	Doubly connected polycircular arc maps
	Maps from circles centred at zeta=0 to circular arcs
	The construction of T(zeta)

	The parameter problem
	Simply connected case
	The doubly connected case

	Examples
	An analytical check
	Rayleighs example

	Discussion
	D.G.C. acknowledges the receipt of a 2004 Philip Leverhulme Prize in Mathematics, an EPSRC Advanced Research Fellowship and partial support from the ESF project MISGAM (Methods of Integrable Systems, Geometry and Applied Mathematics). He also acknowled...
	Properties of P(zeta)
	An exact polycircular arc mapping
	References


