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The motion of a point vortex around multiple circular islands
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A new constructive method for computing the motion of a single point vortex around an arbitrary
finite number of circular islands in the special case when the circulations around all the islands are
zero is presented. In this case, explicit representations for the governing Hamiltonians can be found
and used to study the vortex trajectories. An example application is to geophysical flows and this
study provides a simple model of the interaction of ocean eddies with topography. A wide range of
illustrative examples are given, including the case of various multi-island configurations lying off an
infinite coastline as well as in an unbounded ocean. The critical trajectoriesparatricesdividing

the flow domain into regions of qualitatively different dynamics of the vortices can be computed in
a systematic and unified fashion irrespective of the number of islands pres@¥0%American
Institute of Physics[DOI: 10.1063/1.1900583

I. INTRODUCTION Routh approach to multiply connected domains, and more
recently by Flucher and Gustafs§owho analyze various

The study of point vortex dynamics is an important areasgpects of the general boundary value problem arising from
of fluid dynamics already commanding a vast literature. Th"point vortex motion in bounded domains.

review of Aref et al! provides a recent survey of results The motion of a single vortex in bounded simply con-
involving vortex equilibria or “vortex crystals,” mainly in  nected domains is relatively well studied. Flucher and
unbounded and periodic configurations, while the receng siatssohhave shown that the Kirchhoff-Routh path func-
monograph of Newto?nglve_s a broader perspective of the o i this case satisfies an elliptic Liouville equation in the
gen_eraI_N-vortex problem including dlscuss|on§ of VOeX 1,unded domain and is infinite everywhere on its boundary.
motion in unbounded and bounded planar domains as well 35, e subject olN-vortex motion in multiply connected
on curved surfaces such as the surace of a sphere. domains very little literature exists. LSrestablishes the ex-

_Wh|le the ”.‘0“0“ of point v_ort|ces in unbounded do- istence and uniqueness of a generalized Kirchhoff-Routh
mains has received much attention, much less developed Is

. o . ath function in this case, but gives no explicit examples. In
the theory of point vortex motion in domains bounded byb v b P

. . . . . a recent paper, Johnson and McDofaldnsider the motion
impenetrable walls. The simplest example is a single poin : .

. P . of a vortex(which they model both as a point vortex and a
vortex adjacent to an infinite straight wall. Such a vortex

Y : vortex patch in the doubly connected region exterior to two
translates at constant speed maintaining a constant distance . . .
: O . Cifcular cylinders whose boundaries act as impenetrable bar-
from the wall. This motion is conveniently understood as . L : . X
riers for the flow. The motivation for their study is to provide

being induced by an equal and opposite “image” vortex be- = .
hind the wall. Another result in this area is the “Milne— & simple model to understand how an oceanic eddy/vortex

Thomson circle theoreni"applying to the case of point vor- interacts with topo_graph_’;? Sl.JCh flow scenarios occur in a

. ) . . . range of geophysical situations such as the interaction of
tices situated exterior to a circular cylinder. The famOUSMediterranean salt lensédleddies with seamounts in the
solution known as the “Foppl vortex paif* modeling the

. . . . . Canary basitt or the collision of North Brazil Current rings
gsvbewa?gr:ngai gi“ggﬁ\r/elg ﬂg:;oér?hgo;vefe?;} &Xe%r?;f Of & ith the islands of the CaribbedRin their study, Johnson

A number of more elaborate examples involving Simplyand McDonald consider the case in which the circulation

connected fluid regions are given by Newt@@hapter 32 .arou_nd. each i.s"f".”d is_zerp. By Kglvin’s circulation theorem,
others are described by Saffm%Many of these examples |f this is true initially _|t will rgmaln_true at all subsequent
rely on the transformation properties, under conformal map!ImeS since all round-island qrculaﬂons are cpnserved by th_e
ping, of what is known as the Kirchhoff-Routh path function dyngmlcs Of, the Euler equa’qons. Othgr studies of geophyS|—
which is another designation of the Hamiltonian governingcal interest involve the motion of vortices near gaps in an

the vortex motion. The Hamiltonian formulation of point impenetrable barrier™* ith oceanographic applications in
vortex dynamics, and the Kirchhoff-Routh path function,

mind, the case of point vortex motion, involving boundaries,
dates back to the work of Kirchhoff and Routt was re-

on the surface of a sphere has also received attettion.
appraised much later by 154 who extended the Kirchhoff— The present study generalizes the work of Johnson and

McDonald to the case of an essentially arbitrary finite num-
dAuthor to whom correspondence should be addressed. Electronic maiF:)er of circular islandsor Cy“nders' The treatment e_pr0|ts
d.crowdy@imperial.ac.uk some recent réew mathema_tl_cal resul_ts developed in Crowdy
PElectronic mail: jonathan.marshall@imperial.ac.uk and Marshalt® There, explicit analytical formulas for the
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ImW(Z,)]=0 on|{=1 1)
and
IMW({,a)]=B;(t) onCj, j=1,..,M, (2

where the paramete{g;(t)} depend possibly on time but not
space. Condition§l) and(2) ensure that all boundaries are
streamlines. The choicd) provides a normalization which
uniquely determinesW({,«). The values of {Bj(t)|j
=1,...,M} are dictated by the zero-circulation conditions
around the islands. Flucher and Gustaf§sgine a compre-
hensive discussion of the mathematical problem of point vor-
tex motion in multiply connected domains.

Crowdy and Marshatf show that an explicit formula for
the complex potentialM(¢, «) satisfying all the conditions
above is

( ol a)w(l a‘1)>
o a ol Ha))

wherew andw are two special functions to be defined below.
FIG. 1. Schematic of typical multiply connected circular regbp The Let ¢ be the streamfunction associated with the incompress-
case shown, with three enclosed circles, is quadruply connected. There isjg|e flow. Then
single point vortex at positior(t). C, denotes the unit circle. There alké
interior circles (the caseM=3 is shown herg each Iabeled{Cj\j —
=1,...,M}. The center of circleC; is &, and its radius isj;. ¢=ImW(L, a)]. (4)

W({,a) = - i—ln

47 ©

point vortex

Formula(3) is the key result from Ref. 16 to be employed in
what follows.

Kirchhoff—-Routh path functions for thi-vortex problem in The functionsw(¢, ) andw(Z, @) are defined as follows.
circular domains of arbitrary finite connectivity are found in Fqor each interior circle{Cj|j=1,...,M} of the domainD;

the SpeCia| case in Wh|Ch a” round'island Circulations Vanish(see F|g ;L deﬁne the Conforma| map

These formulas for the path function are reproduced here

without proof, the interested reader being referred to Crowdy _ad+b

and Marshaff for full details of the mathematical deriva- 1% = ql+d;’ J=Leo M, ®
tion. While the derivation is involved, application of the final

formula is relatively straightforward. It is one of the pur- Where
poses of the present paper to highlight the efficacy of the

|2 . S
formula, and its ease of application in modeling practical a, = -ﬂ, bjzél, C; :_él, d :1_ (6)
situations of geophysical interest, without obfuscating the g g qj qj

presentation with the underlying mathematical proofs. Conformal maps of the linear-fractional for() are known

as Mobius maps’ With the M basic Mobius maps5) to-
Il. MATHEMATICAL FORMULATION gether with theirM inverses{ej"1|j=1,... ,M} (which are
) ) ) also easily shown to be M6bius mapan infinite number of
Let D, be a bounded circular domain with the outer 5qgitional Mobius maps can be generated by composition of
boundary given b)m.:l. LetM be a non-negative integer ihese a1 basic mapsit is easy to verify that the composition
and let the boundaries & enclosed circular disks be de- +t hwo Mébius maps is another Mobius mafhe infinite set

noted{Cj|j=1,...,M}. M=0 corresponds to the simply con- ot maps constructed in this way can be categorized according
nected case where there are no enclosed circular disks. L& their level The level one maps will be the @ maps

the radius of circleC; be g;e R and let its center be af
=8, e C. Such a domain i6M + 1) connected. An example of 61,05, ..., 00,67, 657, ..., 641, (7)
a quadruply connected domain is shown in Fig. 1.

Let W(Z, a) be the complex potential associated with an
incompressible flow irD, which is irrotational except for a
single point vortex singularity af=«. The point vortex will
be taken to have unit ci_rculation yvhile all the circulations 6%,0102, 91051,---,9M—19M,9ﬁ|- (8)
around theM enclosed islands will be taken to be zero.

W(¢, a) must be analytic, but not necessarily single valued,Thelevel threemaps are all those compositions of any three
everywhere ian except for a |Ogarithmic Singu|arity d-’t of the basic maps which do n.Ot red.UC.e to a lower-level map.
=« corresponding to the point vortex. It must also be suchAll higher level maps are defined similarly.
that We define the conjugate mapg{) to be

thelevel twomaps will be all compositions of any two of the
above level one maps that do not reduce to a lower level map
(i.e., the identity. Some level two maps include

Downloaded 24 May 2005 to 155.198.192.80. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



056602-3 The motion of a point vortex Phys. Fluids 17, 056602 (2005)

(A = 0.(7) 1 o(f,0)w(l Y a™h
6(0=6(0 © Y= MW a)] = - ——In|[ 22E2E 2| (15)

A | w(fa el T a)

so that _ o )
Now let HY(a, @) denote the Hamiltoniaror Kirchhoff—
. al+b Routh path functiopfor the motion of the vortex ifD,. The
gj(g) =11 i=1,..,M. (10) existence and uniqueness of such a function is established by

ci+d, Lin.® Following Lin® (see also Ref.)8and on use of15), a

formula for H9(a,a) can be derived by decomposing the
Again, a second infinite set of MObius maps can be generatestreamfunction as
by compositions of the @ basic mapg6,,6,7Y[j=1,...,M}.
Given these two infinite sets of M6bius maps, the function y=- iln|§— al - lAﬂ(&Zaﬁ). (16)
w(Z,7y) is defined to be 2w

w(Z,y) == e’ (,7y), (11)  Where the functiony is regular at the point vortex singular-
ity. The Hamiltonian for a point vortex of circulatioh is
where then
2. _
o'(Cy) = [ D=0 =] 12 HO@,a) =~ — i@t ) 17)

g, L0 = L0Ly) — »]
or, on use of(15) in (16),
and where the product is over all compositions of the basic )
maps{;, 6 j=1,...,M} excludingthe identity map and all HO(a, ) = - F_|n
inverse maps. This means, for example, that if it is decided to 8m
include the level two map,[ 6,(¢)], then the mag,*[6;%()]
must not be included. Note that the prime notation is not
used in this paper to denote derivatives.
The functionw(Z, @) is defined similarly to be

iw’(a,a)a’(a_l,a_l)

@ wle,aHYolata) |

(18)

This is an explicit formula for the Hamiltonian of a single
vortex in the bounded circular domaidy. All the geometri-
cal information on the shape @, is neatly encoded in the
functionsw andw. Referring back to the familiar “method of
images®* mentioned in the Introduction, these special func-

W&y ==V (&), (13 tions do all that is necessary to place an appropriate distri-
bution of “image vortices” in the plane in such a way that all
where e . g
boundary conditions are simultaneously satisfied. In the mul-
— — tiply connected case, an infinite number of image vortices
T =1l [%(() - 7][Ek(7) - é“]’ (14)  Must be introduced and disposed in a complicated arrange-
@ [60) = [ 6(y) = 7] ment throughout the plane.

In order to find the Hamiltonian for motion in the more

and where the product is over all compositions of the basitP_hysicmg’ interesting casef ?f vortexl motion Mmbgundetlj .
— . . . . . circular domains, it is useful to employ a second result o
maps{6:,6:*|j=1,...,M}, again excluding the identity ma . ; N
ps{ ! J hag 9 y P Lin’ showing how the Hamiltoniall?(«a, @) transforms un-
and all inverse maps. d bit ¢ | . f the doman. Indeed. if
In writing a numerical subroutine to compute the above er arbitrary conformal mapping ol the domal. Indeed, |

functions, it is necessary to truncate the infinite products depl maps to a domaib, by means of a one-to-one conformal

- . . (Z) - . .
fining them. This can be done in a natural way by includingmapz'z(o’ then the Hamiltoniai™® in the image domain

all Mébius maps up to some levids defined earligrAll the 218
examples in this paper are computed by truncating the infi- Bn = O = 2
nite products at level four, keeping all maps up to level three  H(Z..2,) =H%(a,a) + Eln|z§(a)|, (19

in the product. The truncation was checked by reevaluating
various quantities by truncating at a higher level to makewherez,=z(«). Explicitly,
sure that convergence was reached. ) ) — 4

We remark that while we have omitted any formal math- @, 7= - F_m 1 o (“'i)‘”ia a)
ematical proofs thatW(Z,a) as given in(3) satisfies the T 8w | zda)?e? w(e,a Holata) |
boundary conditions listed earli@he proofs are in Ref. 16 (20)
the interested reader can nevertheless verify this numerically,
for a choserD,, now that the functions» and w have been where it should be recalled that the one-to-one conformal
defined. A further check on the validity ¢8) appears later mappingz=z(¢) is invertible so that, in principle can be
when we retrieve known results for the simply and doublywritten as a function ot, i.e., {={(z), or as is more relevant
connected scenarios from our more general form@ae for the formula(20), a=a(z,).

Secs. Il A and Il B. Finally, if there is an externally imposed background
From (3) the associated streamfunction for the flow isflow with associated complex potentislz(z), the Hamil-
given by the formula tonian H(TZ)(ZQ,ZY) of the total flow field becomes
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HE (200Z0) = H®(24,Z,) + He(Z0,2,), (21) (- 6¢- 8+ g -l =0. (26)
h
where - Substituting(25) into (26) yields the following equation re-
HB(ZmZa) =r Im[WB(Za)]- (22) Iatlng Z,Z

In this smgle degree-of-freedom Hamiltonian system in 1z

-D?=Q? 27
which H (z,,Z,) is conserved by the dynamics, the trajec- =9 @7

tories of the vortex are simply the contoursrfhff( Z,). where

1-|6P+f+6-6

D = J | J J (28)

Ill. ISLANDS OFF A COASTLINE ] > 2.

L+|of*~af+ 5+

The purpose of the next two sections is to demonstrate

how readily the vortex trajectories around greatly differing and
island configurations can be found by exploiting the formu-
las above. The basic construction is the same irrespective of o = 29; . (29)

the number of islands present. This affords us a flexible and l 1 +|5j|2— q].2+§j+ 8
versatile means of constructing the vortex paths whatever the
topology of the island configuration. All that changes from Two equations provided b§28) and(29) are to be solved for
one example to the next is the set of preimage cir(@§ {g;.§lj=1,...,M} given the parametef®);,Dj[j=1,...,M}.
=1,...,M} in the ¢ plane and therefore the functionsandw
appearing in the Hamiltonian. A. The simply connected case

First, consider the case in which a chain of islands exists
off an infinite coastline. Let the imaginary axis in thglane
represent the coastline and consider a chaimMotircular
islands in the right half plane. This is the dom&n By the
Riemann mapping theorem for multiply connected
domains'® such a domain is conformally equivalentgome
bounded circular domaib, of the type considered earlitt.
Given a distribution oM islands inD,, it remains to deter-
mine the geometrical arrangement of the circles {C;|j

It is instructive to see how our general approach for any
finite connectivity reduces to the case of simply and doubly
connected domains previously studied in the literature. This
also provides an important check on the preceding analysis.

In the simply connected case, there are no enclosed
circles to generate any Mobius maps so that

oLy =w'(ly=1

=1,...,M} characterlzmgi)g __ B (30
It is knowrt” that Mobius maps take circles to circles, so w(§,y) =l ==
to mapD, to D, we seek a Mobius map. Lgf|=1 map to the - . .
imaginary axis. If£=1 maps toz=0 and{=-1 maps to in- Substituting this intd24) yields
finity in the z plane, the relevant conformal mapping is 4
1+a) 1
H?(z,,z,) =~ —I — . (31)
1-¢ 8w 4 (aa-1)>?
20="15 (23
¢
. . . . But
The given centers and radii of the circles in theplane
dictate the values of the parametégs, 6|j=1,...,M} in the 1-a 1-2,
preimagel plane. Once the latter parameters are known, the Z,= o a= (32
. — lt+a l+z,
functionsw and w can be constructed.
On use of(23) in both (18) and(19), the Hamiltonian in so that
this case is
4 o' -1 +7
877 4a? w(a,a 1)w(a 1,@ (1+z,)(1+z,)
(24) (33)
wherez,=z(a). lva=o -
Let Q; be the radius an®; the position of the center of “
the jth circle in the z plane. To determine{q;, 5| Substituting(33) into (31) yields
=1,...,M} from the specified parameters(Q;,D;lj
=1,...,M}, note that(23) is self-inverse so that _ T2 _
H?(z,.z,) = —In|z, + 7], (34)
1-z A1
(2= Tes (25
which is well known(e.g., Ref. 2 to be the Hamiltonian for
Now, the equation foC; is a single vortex near an infinite vertical wall.
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B. The doubly connected case

A doubly connected domain can be obtained by a con-

formal mapping from some annulgg<|Z| <1 in a paramet-

ric £ plane. The value of] is determined by the domain
itself. In this caseg;=0 andq;=q, so that the single Mo&bius
map given by(5) is

6:.(0) = ¢ (35)
Then,

ﬁ @*¢-n@*y-0 vy

)=~ =--2P(Zly,9),
o(l,y)=( 7)k=1 (q2k§_ g)(qZky_ 5) Czp(g %.Q)
(36)

where

P, =1-0I] @ -0*0)@-g?¢™ (37)

k=1

and

c=Ila-g%. (39)

k=1

Note also that sincgl(g): 01(0) thenw(Z, y)=w(Z,y) in this
case.

Phys. Fluids 17, 056602 (2005)

2

-2

-3 L
0 1

5

FIG. 2. Critical vortex trajectories for two islands of unit diameter off a
coastline. The interisland separatidr 1.

For a bounded doubly connected domain, the stream-

function becomes
P({a™,q)P(a ")
P({a,9)P({ Mo o) |

On use of the property th&(¢ ~1,q)=-¢ "*P(£,q) [which is
easily established directly from the definitié87)], this re-
duces to

1

l/f:—ZT

(39)

1

2 (40

v=-

aP({a™t,q) ‘
P({a,q)

P(Z,q) is related to the first Jacobi theta functién.'® In-
deed, defining

7=-In¢, 7,=-Ina (41)

then the annulus in thé plane is mapped to a rectangle in
the 7 plane. It can be show(see Ref. 19that

ic—l ~ 72
P(qu) = _Wel[”-/zlq] (42)

On use of(42) it follows that

P(letg) =~ iC‘lq‘l"‘\/%Gl[i(r— 7,)12,q],

(43)
P({a,q) = - iC Y4 a® [i(7+7,)12,q],

which, on substitution int@40), yields

(44)

g L m‘ O.li(7~ 7.)/2,d]

“2m | Ofi(r+T)i2.q]|

This is precisely the imaginary part of the complex potential
given in Eq.(2.11) of Johnson and McDonaft.

C. The higher-connected case

Since the doubly connected case has been treated in de-
tail in Ref. 9, no further examples are considered here. In-
stead, consider a triply connected fluid domain in which two
circular islands are situated off an infinite coastline. Figure 2
shows the critical vortex trajectory for two islands, each of
unit diameter, in horizontal alignment off a coastline. The
first island is unit distance from the coast while the second
island is separated by unit distance from the first. Figure 3
shows a more detailed distribution of trajectories. The criti-
cal vortex trajectories, or separatrices, can be found by iden-
tifying the position of the saddle points and finding the value
of ¢ associated with the contours passing through such
points. This is done by using Newton’s method to find the
zeros of the derivative of the Hamiltonian at points on the
real  axis between the circlg€;}. It follows from the sym-
metry in this case that the saddle points are on thefraais.

No arrows are shown in the various figures of this paper but
are determined by the sign &f. For example, ifl’ >0, the
vortex travels down frony— +co.

When the vortex is far from the two islands, it is ex-
pected that the vortex paths should become parallel to the
coastline since the effect of the island cluster will be negli-
gible and the vortex will see only its single image vortex in
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-2

-3
0 1 2

FIG. 3. Distribution of vortex trajectories around two unit-diameter islands |G, 4. Schematic for problem of two circular islands, separated by distance
off a coastline. d, off a coastline. The two critical trajectories have far-field distances from
the coast ofd; andd.,.

the straight coastline. As mentioned in the Introduction, the
vortex will translate at constant speed maintaining a constariteated analogously without difficulty. Figures 9 and 10, re-
distance from the coastline. In terms of geophysical applicaspectively, show the critical vortex trajectories in the cases of
tion, an interesting question is to ascertain how far from thdour and five horizontally aligned islands. An interesting fea-
coastline a distant approaching vortex must be in order tdure is that the area of vortex paths that encircle any given
trace out qualitatively different paths as it approaches thésland gets larger for islands farther away from the coastline.
island cluster. To perform such a study, consider two equal- Other alignments of islands are also amenable to analy-
sized islands of unit diameter in horizontal alignment insis. Figure 11 show vortex trajectories for the cases of two,
which one island is fixed to be unit distance from the coastthree, and four islands in vertical alignment near a coastline.
line. Let d, an adjustable parameter, denote the horizontahll islands have unit diameter and are separated from one
separation of the two islands. Léf andd, be the distances another, and from the coastline, by unit distance. An interest-
from the coastline of the two critical streamlines far awaying feature of these trajectories is that a vortex just to the left
from the island cluster. Figure 4 shows a schematic. Usin@f the critical trajectory travels between the coastline and the
the above formulation, it is straightforward to systematicallyisland cluster with very little disturbance to what would be
examine howd; andd, vary for differing interisland separa- its path in the absence of the island cluster. However, vorti-
tionsd (or indeed for any other geometrical parameter thates on paths just to the right of the critical trajectory diverge
one might choose to vayyFigure 5 shows the critical vortex wildly from a straight vertical trajectory and, in passing to
trajectory for the four valued=0.5, 1.5, 2.5, and 3.5. Figure the right of each island, the vortex can be significantly drawn
6 shows a graph of; andd, againstd. It is found thatd;  into each interisland region, getting very close to the coast-
remains almost constant akis varied whiled, increases line, and then moving back out again before being drawn
near-linearly with increasing. This means that as the sec- back to the coastline in the region between the next two
ond island draws farther away from the coastline, vortices farslands.
upstream of the island cluster must also be farther away from Besides horizontally and vertically aligned island clus-
the coastline in order to avoid traveling between the islandgters, staggered configurations are also of interest. Figures 12
Additional islands can readily be incorporated into theand 13 show two and three islands, respectively, in various
approach. Figure 7 gives the critical vortex trajectory forgeometrical arrangements along the coastline. Note that the
three islands while Fig. 8 gives a more detailed path distriveflectional symmetry of the horizontally and vertically
bution in this case. These figures show three unit-diameteaaligned configurations considered earlier are such that the
islands each separated from each oftierorizontal align-  circles in the{ plane are also reflectionally symmetric about
mend by unit distance, the leftmost island being unit dis-the real axis so thatw({,y)=w(Z,y) and only one such
tance from the coast. Even greater numbers of islands can lfenction needs to be defined. However, the case shown in
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op>@
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FIG. 5. Critical vortex trajectories for two unit-diameter islands at various

separationsl=0.5, 1.5, 2.5, and 3.5.

Fig. 12 is an example in whic(Z,y) # o(Z,y), but the

Phys. Fluids 17, 056602 (2005)

45 b

35t M 1

25 x b

15} d1 4

0 1 1 1 1 1 1 1 1 1
0 05 1 15 2 25 3 35 4 45

separation of islands d

FIG. 6. Critical far-field distances away from coagd—and d,—as func-
tions of the two-island separatiah

around these islands will be zero. The unit cir¢lg=1, will

be taken to map to the final island. In order that the image
domain is unbounded, there must be a point dengteslich
that z({) has a simple pole at that point.

The circulation around the island corresponding to the
image of|Z|=1 will not, in general, be zero. In the calcula-
tions to follow, we choose to impose that the circulations
aroundall M +1 islands are zero. Such a situation arises, for
example, when a vortex approaches the island cluster from
far away, the initial flow around the islands being zero. To
arrange this, it is necessary to add a point vortex of circula-

1

method encounters no additional difficulty. Figure 14 shows
another example of trajectories around a randomly choser
three-island configuration with no geometrical symmetries

at all. 5

IV. ISLANDS IN UNBOUNDED OCEAN
-3
In the case oM +1 islands in an unbounded ocean, each

of the M enclosed circle$0j|j =1,...,M} will be taken to  gig. 7. critical vortex trajectories for three unit-diameter islands separated

0

5

map to the boundary of one of the islands. The circulatiorby unit distance.
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3 3 T T T T
2
2
1
1
0
0 -1
-1 -2
= i 5 6 7 s 9
-2
FIG. 9. Critical vortex trajectories for four unit-diameter islands off a coast-
line. The islands are separated by unit distance.
-3
0 1

On a minor technical point, note that in the particular
FIG. 8. Distribution of vortex trajectories for three unit-diameter islands off case When( =0 (WhiCh will in fact be the choice in the
a coastline. The islands are separated by unit distance. * . . .
examples to follow then the functionw(Z,*) as given in
(11) is not well defined. In this case, we instead use the
modified formulas
tion —-I" to the point at infinity in thez plane. Johnson and 0 "0 o(z.0 2 (2.0
McDonald employ a similar strategy in their study of the w(¢,0) = w,(g’ ), 2({:’ ) = :(g’ )
doubly connected case. The complex potential for the back- w(f) "o'(®) w(f®) Ce'(( %)
ground flow associated with this point vortex at infinity is  jn (49) below. These are the appropriate generalizations since
ir (o 8)ed ™80 the functions on the right-hand sides of the two equations in
Wg({) = Z'“ T Np— b (45)  (46) have a zero af=0 and a pole af=. The general form
T\ {)w(l ™) of the Hamiltonian in a conformally mappexblane is then

(46)

FZ

r 1 o, (@laYoXa e (a L)
87Tn

zg@l ol a Yola L Doim )o@ bl | 2

H(z,,2,) = -

where we have use@0) and(45) in (21) and(22).
The class of conformal maps to be used in the following examples is

3
2 5 -
11 _
FIG. 10. Critical vortex trajectories
for five unit-diameter islands off a
o} . coastline. The islands are separated by
unit distance. The region of recircula-
tion around the islands is greater for
iy | | islands further from the coastline.
2 _
-3
0 11
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4

2

FIG. 11. Trajectories for two, three, and four unit-diameter islands aligned vertically at unit separation and at unit distance from a coastkse. \Vor
sufficiently close to the coastline travel close to the straight path they would take in the absence of the island cluster. Trajectories just ¢ the cigical
trajectory diverge wildly from this straight path.
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4 T 4 T

3 A 3 -

2 - 2 4

1 A 1 -

0 A 0 -
-1 4 -1 4
-2 B _2 i
-3 - -3 4
_4 1 1 _4 1

0 1 2 5 6 0 1 2 5 6
FIG. 12. Typical trajectories for two staggered islands near a coastline. BotIG. 13. Trajectories for three islands near a coastline. All have unit diam-
have unit diameter, one is centered at 1.%hd the other at 3.5+ eter, two are centered at 1.5t#@nd the other is centered at 3.5.
a
2= 7 +Db, (48)

compleX parameterb is chosen to appropriately locate its
where the real parametaris chosen to fix the radius of the center. Clearly,(=0 maps to physical infinity so we have
island corresponding to the image|¢f=1 and thelgenerally ~ chosenZ,.=0. On use 0f48) in (47), the Hamiltonian is

I? afz o' (o, )0 (ot a Yo (a,2)w’(aL,0)

H?(z,.z,) =-—In — , 49
( ) 87 | a? w(a,a Hola ™ a)wa,0)0(at,®) 49
where the formulas it46) must be used. qj|a|
Again, letQ; be the radius and; the position of the Q= 52— (51
i j

center of thejth circle(j=1,...,M) in the physical plane. It

remains to determine the parametfys 6/j=1,...,M} from

the known parametemb,{Qj,Dj“ =1,...,M}. ltis straight-  Since /=0 maps to infinity, and therefore cannot be inside

forward to show that the equations relating these parameteemy of the circles{Cj|j:1,...,M}, then necessarilyéﬂ2

are given by >qj2 forall j=1,...,M so thatQ;>0 as required.

By way of examples, Figs. 15 and 16 show the cases of

three and four unit-diameter islands equispa¢eith unit

— separatioh in an unbounded ocean. All vortex paths are

D.=b+ ad (50) closed and the critical trajectory separates vortex paths that

J |51|2—qu encircle one or other of the islands from vortex paths that
encircle all of the islands. Figure 17 shows the trajectories
around a randomly chosen island configuration with no geo-

and metrical symmetries so that, again,# w. It is the same
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for simple uniform or straining flows presents further math-
ematical challenges. Such extensions of the present work are
currently under investigation.

V. DISCUSSION

The formulas used in this paper, specificall0) and
(47), are very general and are relevant to the flow of a single
vortex inany multiply connected regions for which a confor-
mal mapz({) to the region from some multiply connected
circular preimage region is known. Here, the two conformal
§ maps(23) and (48) have been used to investigate various
multi-island configurations in unbounded oceans and in
oceans bounded by a coastline. It should be mentioned, how-
a ever, that multiply connected circular preimage regions of
the type exemplified in Fig. 1 are a standard set of canonical
domains for general multiply connected conformal
mappingsl.8 Therefore, the formulas used in this paper are
also those relevant to single-vortex motionairbitrary mul-

4 tiply connected regions. If a mappira§l) to the domain of
interest is known explicitly, then the Hamiltonian is also
known explicitly on use 0f20) or (47). If z(¢{) is not known

7 in analytical form, a numerical determination of such a map
can nevertheless be used in the formulas above. The numeri-
cal determination of conformal maps is a standard
7 procedur€®?We also mention that while we have restricted
attention here to the motion of a single vortex, the formula-

FIG. 14. Typical trajectories for vortices near three nonsymmetrically,. . _
placed islands off a coastline. One island is centered awdth diameter 1, tion presented In CrOWdy and Marsﬁgléxtends to the gen

another is centered at 3+®@ith diameter 2, and a third centered at 5 with €ral N-vortex problem.
diameter 1.5. A limitation of the formulas used in this paper is that the

round-island circulations are zero. In certain physical situa-

tions, non-zero round-island circulations are relevant. We
island configuration as in Fig. 14 but with no coastline have not yet succeeded in generalizing the formulas of Ref.
present. 16 to the general case of nonzero round-island circulations

In the case of unbounded oceans, more interesting vortefalthough it turns out to be straightforward to do so in the

trajectories would be obtained if a background flow is incor-special case of doubly connected domairnsowever, Litf
porated. The effect of background flows requires the additiomas demonstrated that this circumstance simply implies the
of another contribution(22) to the total Hamiltoniar{see addition of a further contribution to the total Hamiltonian—
(21)]. However, finding a complex potentidz(z) satisfying  one that does not depend on the instantaneous point vortex
the no normal-flow boundary conditions on the islands everpositions. Lin refers to the contribution of nonzero round-

-2

-3

-4

-5

0

FIG. 15. Typical trajectories for three
unit-diameter islands in an unbounded
ocean and no background flow. The is-
lands are separated by unit distance.
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FIG. 16. Typical trajectories for four
unit-diameter islands in an unbounded
ocean and no background flow. The is-
lands are separated by unit distance.

island circulations as being due to “external agencies” of  The efficacy of our method has been demonstrated by a
vorticity (in general, these round-island circulations are fixedseries of examples. It should be pointed out, however, that
in time as a consequence of Kelvin's circulation theorem we have proceeded under the assumption that the infinite
The fact that this additional Hamiltonian does not depend omproducts defining the functions and w converge. In fact,

the point vortex positions means that it can be determinethese products do not converge for all choices of the param-
(e.g., numerically, perhaps using boundary integral methodseters {qj,51|j =1,...,M}—broadly speaking, their conver-

at the start of any calculation and will remain fixed during gence depends on the distribution of circ{é§|j =1,...,M}

the calculation if the contribution from the external agenciesin the preimage plane. If the circles are “well separatgal”

is time invariant. The explicit formulas of this paper can still a sense that will be left imprecise hgrthen good conver-

be employed to give the “point vortex contribution” to the gence is assured. There is a large region of the parameter
Hamiltonian. In this way, the formulas employed here shouldspace{q;, §|j=1,...,M} where the convergence is com-
simplify the numerical computation of vortex trajectories pletely adequate for practical purposes, as we have demon-
even in the presence of nonzero round-island circulations. strated by example. This region of parameter space is large
enough to capture all of the physically interesting fluid do-
mains investigated herein.

This paper has made use of a general analytical frame-
work in which to study the motion of a single vortex in
general multiply connected flow domains. Given its general-
ity, we expect the methodology to be useful in a variety of
fluid dynamical contexts. We believe the power and useful-
ness of the method lies in the fact that it is algorithmically
identical for flow regions of all finite connectivities.
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