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Abstract

A theoretical connection between reductions of the Benney hierarchy and the Dirichlet problem for Laplace’s equation
in the plane is made. The connection is used to deduce general formulas for the uniformizations of two spectral functions
associated wittiv-parameter reductions of the hierarchy. Two types of reduction are considered: one type has been considered
by previous authors using alternative arguments, the second type is new. The formulas are general and are expressed in term
of the modified Green’s function (for Laplace’s equation) in arbitr&rgonnected, reflectionally-symmetric, planar domains.

The Benney moments are found to be purely geometrical quantities associated with these domains.
0 2005 Elsevier B.V. All rights reserved.

1. Introduction moments of a domain change under deformation of the
domain exhibits an integrable structure—a result most
A connection has recently been made between the easily understood from the Hadamard variational for-
universal Whitham hierarchy and the Dirichlet prob- Mulainvolving the (Laplacian) Green's function of the
lem for the Laplace equation in two-dimensional pla- domain. Takhtajaif] has also independently noticed
nar domaing1,2]. This connection emerged by first this integrable structure of the Dirichlet problem and
making an association between conformal mappings the significance of the associated Green'’s function. As
and integrable hierarchies: in particular, a direct theo- @ résult, the first-type Green’s function for the Dirich-
retical connection was made between the dispersion- €t boundary value problem for Laplace’s equation in
less Toda hierarchy and the Laplacian growth problem Planar domains now has an important role in under-
(or Hele—Shaw problem) in the simply-connected case standing the mathematics of the dispersionless Toda

[3,4]. It was then noticed that the problem of how the Nierarchy and universal Whitham hierarchy.
It has been known for a long time that the Hele—

Shaw problem admits large classes of solutions in
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of evolving quantities. Owing to this circumstance, The focus here is to use the connection we make
such solutions are commonly called “exact”. Before to find explicit general formulas for the solutions to a
the connection with integrable systems was made, the spectral problem associated with two specific types of
exact solutions to the Hele—Shaw problem already en- N-parameter reduction. There has been much recent
joyed an abstract mathematical interpretation as time- work [16—18]on finding such formulas. In the context
evolvingquadrature domain§g]. Richardsorj7] was of the geometrical interpretation of the reductions de-
the first to associate Hele—Shaw flows with the the- scribed by Gibbons and Tsarg], the two reduction
ory of quadrature domains (it has since been real- types considered here correspond to the following:
ized that quite a number of physically-distinct prob- one corresponds to slit mappings from an upper-half
lems in fluid dynamics can be usefully interpreted in plane to another upper half-plane containiNgver-
terms of quadrature domain theoj§]). Richardson tical straight-line slits, the other type corresponds to
considered a set of moment quantities now known mappings to an upper half-plane containigoncen-

as the “Richardson moments”. For certain problems, tric circular-arc slits. Our principle result is to show
many of these moments are conserved by the dy- that the solutions to both these spectral problems can
namics. The exact solutions of the Hele—Shaw prob- be written, for anyV, in terms of the modified Green’s
lems[7,9—11] have an interpretation as the algebraic function of a reflectionally-symmetriév-connected
orbits of the universal Whitham hierarctjg]. Con- planar domain in a parametricplane. The variable
versely, the methods developed for constructing solu- z plays the role of uniformization parameter.

tions to the Hele—Shaw problem (e.[8,9,12) might

now be profitably employed to construct representa-

tions of the algebraic orbits of the Whitham hierar- 2. The Benney hierarchy

chy.
A tantalizing parallel to all this exists with an- The Benney equatiorf3] are
other fluid dynamical problem: the evolution of long-
wavelength incompressible gravity waves on shallow ’
water. Benneyj13] studied this problem and showed u, + uu, — (/ ue(x, v, 1) dy/)uv +h,=0,
that it has an infinite number of conserved densities 5 )
which are polynomials in a set of “moment” quan- i
tities. In analogy with the “Richardson moments”, , ,
these are now known as the “Benney moments”. They 7 +uhx + (/ ux(x,y, 1)dy )“y =0. @
satisfy an infinite set of partial differential equations 0

dubbed thé8enney hierarchgr Benney moment equa-
tions Intriguingly, Gibbons and Tsarey14] have
shown how the finite reductions of this integrable

Benney showed that if moments, (x, ¢) are defined

hierarchy correspond to conformal mappings to slit h
domains. . ' N An(x, 1) :/un dy (2)
A less widely known fact is that the Dirichlet prob-

lem for Laplace’s equation in the plane has deep the- 0

oretical connections with the general problem of con- then they satisfy the infinite set of equations

formal mapping to slit domains. The seminal work on

this is due to Koebg15]. Given the connection be- % + % +nA,,_1% =0, n=12,... (3
tween the planar Dirichlet problem and the universal ot dx dx

Whitham hierarchy, and in light of the connection of which are theBenney moment equationsn identical

the Benney hierarchy to conformal slit mappings, it set of moment equations can be derived from a Vlasov
seems natural to ask whether the Benney hierarchy, orequation

its reductions, can be linked directly with the Dirich-

let problem of planar domains. It is the purpose of this of + p% _ 340df =0 (4)
Letter to elucidate such a connection. 012 dx  dx dp
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where f (x, p, t) is some distribution function and the
moments are now defined as

o0

An:/pnfdp-

—00

(®)

Benney[13] showed that the moment equations have
an infinite number of conserved densities which are
polynomial in the moment&4,, |n =0,1,...}.

The best way to see this is to consider the generat-

ing function of the moments defined by

Ay (x,t

ARG pD=p+ Y .1 (6)
n=0

which is the asymptotic series as— oo of
t

p+73f S, pn ) @

The notatiorP | denotes the principal-value integral.

Gibbons and Tsardit4] have found a method for con-

structing a family of solutions to the above equations.

Their method is to define
x,p',t

N f oD
p—p

A

A(p) = 8)

where A is an indented contour passing below the "

point p on the realp’-axis. This function has the
same largep asymptotics as the function defined in
(7) but, importantly, it can be analytically continued
into the upper-halfp-plane. Gibbons and Tsar§i4]
have shown thatv-parameter reductions of the inte-
gral equation(8) correspond to slit-mappings from an
upper-halfp-plane to an upper hak-plane having a
collection of N non-intersecting slits emanating from
fixed points on the real-axis into the upper-halk-
plane. Let{c; | j =1,..., N} be some fixed choice of
Jordan arcs into the upper-haHplane from some set
of fixed pomts{)»m | j=1,..., N}onthe reah-axis.
The N-parameter reductions correspond to conformal
mappings from the upper-hagjf-plane to a collection
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for such slit maps. It is this construction that will be
the focus of the remainder of this Letter.

3. Themodified Green’sfunction

The elements of Dirichlet calculus that will be used
in the sequel will now be introduced. The key refer-
ences for the following material are Koefb], Ne-
hari[19] and Schiffef20].

Let D, be an arbitrary boundedf-connected pla-
nar domain. Suppos®, is bounded byN smooth
Jordan curve(Cy is taken as the outermost boundary
while {C; | k=1,..., N — 1} denote theN — 1 en-
closed boundaries (or the boundaries of the finite set
of “holes” in the domain). Define thmodified Green’s
functionas the functiorGo(x, y; xo, yo) satisfying the
following properties:

(i) the function

)

is harmonic with respect t@r, y) throughoutD, in-
cluding at the pointxg, yo). Hererg is

go(x, y; x0, yo) = Go(x, y; xo, yo) — logrg

o=\/(x —x0)%+ (y — 0%

(ii) if 8Go/0n is the normal derivative of;g on a
curve then

(10)

Go(x,y; x0,y0) =0, onCo,

Go(x, y; x0,y0) =Ax, onC, k=1,...,N-—1,
3G

yg—ods— k=1,....N-1, (11)

whereds denotes an element of arc afl;} are con-
stants.

It is convenient to introduce complex coordinates
z=x+iyandz =x —iy. Thus, if the complex num-
ber z, = xo + iyp denotes the complex position of

of N slits taken along these arcs and having end-points the singularity of the Green’s function we will hence-

at some set of poinﬁj | j=1,...,N}onthese arcs.

forth write Go(z, z¢) instead oiGo(x, y; xo, yo). Since

These points are the Riemann invariants of the system Go(z, z¢) is a harmonic function ot in D, (except

and they have characteristic speggs= p(2;). In this
way, construction of analytical forms far(p) corre-

for the single logarithmic singularity at= z,) then
we defineGo(z, zo) to be its analytic extension, ob-

sponds to being able to construct analytical formulas tained by adding t&o(z, z¢) its harmonic conjugate
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Fig. 1. Schematic illustrating the images of a general quadruply connected domain under the conformal ma@pidgs given in(13) and

(14).

function Hy(z, za), i.€.,

Go(z, 7a) = Go(z, 7a) + i Ho(z, 7). (12)

It will be in terms of this object that we shall represent
the solutions of the reductions of the Benney hierar-
chy.

4. Slit mappings

It was shown by KoebFL 5] (see also Schiffdi20])
that a univalent conformal mapping of an arbitrary
multiply connected domai®, to anN-connected slit
mapping consisting aW-slits all of which are parallel
to thereal axis in the image domain is given by

10 -
91(2; 20) = —~—Go(z, 2a)
i dyo

d d |~
[ 2 o

13
PER (13)

It is also known[15,20] that a univalent conformal
mapping takingD, to a multiply connected domain
consisting ofN-slits, all of which are parallel to the
imaginaryaxis in the image domain, is given by

0 =~
$2(2; 2¢) = —7—Go(z, 2a)
d0xg

14
. o (14)

where, againz, is some point insideD,. Fig. 1il-
lustrates the images of a general quadruply connected
domainD, under the two mappings; andgs.

9 3 7=
—[— + —]Go(z, Za),

5. Reflectionally-symmetric domains

The reductions considered by Yu and Gibb§i6]
and Baldwin and Gibbor4.7,18]treat the case where
the slits in thex-plane are straight vertical lines per-
pendicular to the real axift 6] treats the genus-1 case,
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Fig. 2. Schematic illustrating the conformal mapping betwgemda planes for the first-type Benney reductions in the genus-2 case. Crosses,
indicating the branch points, show corresponding points in the two planes.

[17] tackles the genus-2 case while higher-genus casesfunction of D, with logarithmic singularity at some
are addressed ifilL8]. Fig. 2 illustrates the required  pointz, insideD,.

conformal mappings in the genus-2 case: a conformal

mapping from the upper-halp-plane with 3 finite-

length slits on the regl-axis to the upper-hak-plane 6. Thegenerating functions

containing 3 vertical slits is required. Actually, this

figure illustrates the case in which the wheleplane Equipped with such a reflectionally-symmetric do-

exterior to the three finite-length slits on the rgal main D, we now pose that the pair of functiopsz)
axis maps univalently to the wholeplane exteriorto  andj,(z) is given by

the three vertical slits with the upper and lower-haif

planes mapping to the upper and lower-haiplane, P(2) = p1(2: 20) = [i _ i]éo(z,za),

respectively. This will be the class of mappings to be 9724  0za
constructed in what follows. A(z) = 2(z: 20) + C
First, it is necessary to restrict the class of do- 5 9
mains D, under consideration. LeD, now be any = _[ﬁ + g}Go(z, zo) +C, (15)
o o

boundedN-connected domain in a complexplane
which is reflectionally-symmetric about the reahxis where C is some real constant ang is some point
and such that all the holes in the domain are centred onconstrained to be on the realaxis insideD, (where
the real axis. LetGo(z, z») be the modified Green’s 7, is only taken to be real once derivatives have been
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taken). It is claimed thatl5) represents a uniformiza-
tion, via the parametey, of the functionsp(z) and
A(z) solving the spectral problem for the Benney re-
ductions considered if16-18]

To see this, first note that, being logarithmic deriva-
tives, bothp(z) andi(z) have simple poles, with unit
residue, at, = z,. It therefore follows that, as— z,,

A~p~ +O(1), asz— zg4. (16)

o

The constan€ in (15) can be chosen so that= p +
O(p~Y) asz — z, which is the condition required of
A(p) asp — 00 [18].

Next, it follows from the assumed reflectional sym-
metry of D, and the choice of, to be on the real
z-axis that the images of the boundarigs; | j =
0,1,...,N — 1} under the mapping(z) will each
be finite-length horizontal slits along the rgalaxis.
Let{(a;,b;)| j=0,1,..., N — 1} be the two points
at which each of the boundary circld€; | j =
0,1,..., N —1}intersects the reataxis. These points
must map to the two end-points of each slit, that is,

paj) = p2j+1,

pbj)=p2j+2, j=0,1,...,N—1, (17)

where all the valuegpy;y1, p2j+21j=0,1,...,

N — 1} are on the regp-axis. It also follows, on use of
the Schwarz reflection principle, that the upper/lower
halves of D, map to the upper/lower halves of thpe
plane, respectively.

In a similar way, the reflectional symmetry &f,
and the choice of, real also implies that the images
of the boundarie$C; | j =0,1,..., N — 1} under the
mappingX(z) will each be finite-length vertical slits,
symmetric about the realaxis. This time, the pair of
points (a;, b;) will both map to the point where the
centre-point of each vertical slit intersects the real
axis (strictly speaking, of course; andb; will map
to points on different “sides” of the vertical slit corre-
sponding to the image af ;). This means that
Maj) =19,

abjy=29, j=01,...N-1

(18)
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that

0
A =A(p2j+1)s

29=r(p2j42). j=01.... N-1 (19)

which are exactly the conditions requirediap) [18].
Again, it follows from the Schwarz reflection principle
that the upper/lower halves &f, map, respectively, to
the upper/lower halves of the-plane. Thus, we have
established thaf{l5) are the required expressions for
p(z) andA(z). Further, it should be clear that we can
also multiply (15) by arbitrary real constants and still
obtain reductions of the Benney system.

Note that it can also be shown that the distribu-
tion function can be written in terms of the modified
Green'’s function in the form

fx,p,t)= E Im[iéo(z, Za)]~ (20)
b4 d

Za

Inspection of(15) immediately shows that the Ben-
ney moments are, in fact, purely geometrical quantities
associated with the domaib, and some given point
7o Inside it. In this respect, the Benney moments are
strongly reminiscent of the Richardson moments in
the Hele—Shaw problem. The Richardson moments are
usually written as integral quantities over the support
of some multiply connected domain. Equivalently, on
use of Green’s theorem, they become line integral
quantities around the boundary of the domain. It is
possible to write the Benney moments in the same
way. On use of the Plemelj formula {B) asp tends to
the real axis and taking the imaginary part, it follows
that

=—1 Im[A]. (22)

T

(21) highlights two properties off: first, on the
real p-axis between the slit$[pz; 1, p2ji2] | j =
0,...,N — 1}, f =0; second, since the upper side
of each slit in thep-plane corresponds to the upper
vertical segment of the image in theplane with the
lower side of each slit in the-plane corresponding
to the lower vertical segment in thieplane, and ow-
ing to the reflectional symmetry of the arrangement, it

where, in the context of the Benney reductions, the set also follows from(21) that the values of at any point

{A(} |j=0,1,..., N — 1} are a set of fixed constants
[14] determined from the initial conditions. Consider-
ing A now as a function op, i.e.,A = A(p), it follows

on the lower side of each slitin the-plane is the neg-
ative of the value at the corresponding point on the
upper side. These two properties pf together with
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the expressiofb) for A,, can be used to deduce that  where

1 n AP / - 2% 2% . —1
9D k=1

or, on use of21), For brevity, we have suppressed the dependence of

) p P(¢) onp. It follows directly from(25) and(26) that

-, 4p

Ay = — "Im[A]——d 23 -

zyrfgp a4 @) )=~ tr),

aD,

_ P ==¢tP©). (27)
which shows that the Benney moments are contour B 7 _ _
integrals around the boundary &f, of an integrand ~ 1h€ modified Green’s functiotio(¢, @) for this do-
purely expressible in terms of the modified Green's Mainis

function of D,. Indeed, on use dfL5) and(20), it fol- P(a b
Go(¢,a) =log||la| ——|, 28
lows that (¢ 91575 (28)
a1 3Go 9Go\"[(3Go 3Go whereq is a point insideD, . It can be verified that
"o 37y 024 37y 074 (28) satisfies all the requirements of the modified
aD; Green’s function described in Sectidnlt follows that
2Go  9%Go the analytic extension of this function is
X(aa‘_aa ) (24) 1
720Zq 202q - P(ca™h
Go(Z,a)=lo <|a|—_). 29
¢ g P (29)

6.1. The elliptic reduction
Given (28), expressions fop(¢) and A(¢) follow

As a check on our formulation, it is appropriate to from the general resul{d5). Since

check that the new expressiofi) are equivalent to ~ _

those already derived, using alternative arguments, by 9Go = 1 iw,

previous authors. We therefore now consider the spe- 9% 20 o? P(ta™)

cial case of the elliptic reduction previously analyzed 9Go 1 P (@)

by Yu and Gibbon§16]. & 2a Pea)
Consider a doubly connected, reflectionally-symm-

etric domain. By the Riemann mapping theorem, every

such domain is conformally equivalent to a concentric

annulus in a parametric plafie9]. Since the boundary

value problem satisfied by the modified Green'’s func-

tion is conformally invariant then picking different

choices of conformally equivalent domais, sim-

ply corresponds to inconsequential reparametrizations

of the uniformizing variable. It is therefore enough

(30)

where P; (¢) denotes the derivative a?(¢) with re-
spect taz, it follows that

1
p(@) = E(K(ga‘l) - K@Gw),

1
AE) = a(K(gorl) +K(¢a)—-1)+C, (31)

whereK (¢) is defined as

to construct the modified Green's function associated g,y — ¢£¢(¢) (32)
with this annulus. Letitbe < |¢| < 1. Since we have P()
now specified a definite domain, we denote it Dy and where we have now takén= «. Formulas(31)
(reserving the notatiom, for discussion of a general  gjve an explicit expressions of the functiopsand
domain).p is the conformal moduluiL9] of the dou-  in terms of the uniformizing parameter The constant
bly connected domain. The point= z, corresponds ¢ js chosen to ensure that~ p + O(p~1) as¢ — a.
tof=oa. Straightforward algebra produces
First, introduce the function

, c=ta-2x¢(?) (33)

PO)=A-0)P (), (25) o ’
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Fig. 3. An illustration of the first type of reduction in the elliptic case. The figures shows the images of the annulus under the conformal

mappingq31) with parameter values = 0.05 andw = 0.25.

Yu and Gibbond16] use a different uniformizing
parametety and report their results as
1
P(x)—Px0)’

1
A0 = E(V(x + x0) + ¥ (x — x0) + C,

p(X)=ps—

(34)

whereps, xo andC are constantsP () is the Weier-
strass ellipticP-function[21] with periodsw; andwz
and

(1)

w1

y(x)=—C(0) + X, (35)

whereZ (x) is the Weierstrass zeta-functif@i]. It is
possible to verify thaf34) are equivalent t¢31) if the
following identifications are made:

xo0 = loga,
w2 =2logp.

x =log¢,

w1=Tmi,

(36)
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This confirms the correctness of the newly-derived ex-
pressiong15). To illustrate the conformal mappings,
Fig. 3shows how the annulus in thieplane maps to
the two types of slit domains in the and A-planes.
The parameter valugs= 0.05 andwx = 0.25 are cho-
sen.

7. New reductions

In [16—-18] the N -parameter vertical-slit reductions
just considered were viewed as Schwarz—Christoffel
mappings between the and A planes. A natural ex-
tension of Schwarz—Christoffel maps is to consider
mappings to circular-arc regions. Therefore, consider
now a mapping from the upper-hafi-plane to an
upper-halfi-plane with N slits emanating from the
real A-axis that are all circular arcs. The “centres” of
the N circular arcs must be specified. Here we choose
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all the circular arcs to be concentric, with an arbitrarily
chosen centre.

Another result of[15] (also described by Schif-
fer [20]) is that conformal mappings from any-
connected domai, to a conformally equivalent un-
bounded domain consisting & concentric arcs of
circles can also be written in terms of the modified
Green'’s function ofD,. To do so, choose two points
zo andzg inside D, and consider the analytic function
of z given by

$3(2; 20 28) = exP Go(z, 2p) — Go(2, 2a) -

¢3 mapsD,, in a one-to-one fashion, to an unbounded
domain consisting oV concentric arcs of circles. We
now pose that

(37)

9 9 7=
p(2) = ¢1(z,24) = [— - —}Go(z, Za),

0Zq 024
AMz) = AP3(z; 2a, 28) +C

= Aexp[Go(z, zp) — Go(z, za)| + C, (38)

where bothz, andzg are now restricted to be distinct
points on the reaj-axis insideD;. It follows from (38)
that, ax — z4, p — oo andi — oo. Constantst and
C should therefore be chosen so that p + O(p~1)
asz — Zy-

As before, the image oD, under the mapping
given by p(z) is a set ofN real intervals on the real
axis in the image plane. Further, by the choice of tak-
ing zg real, it also follows that the common “centre”
of the circular arcs will be on the real-axis and
that the image ofD, underi(z) consists ofN con-
centric circular arcs, each of finite length, which are
reflectionally-symmetric about the reialaxis. Indeed,
picking the parameterg can be thought of as speci-
fying the common centre of the circular arcs. By the
Schwarz reflection principle, it also follows that the
upper/lower halves ofb, maps to the upper/lower
halves of thep and A-planes. Therefore, all the con-
ditions required ofp(z) andA(z) are satisfied and they
are given by(38) with z as the natural uniformizing
variable.

It is possible to show, using arguments analogous
to those concerning the first-type reduction, that for-
mula(23) expressing the Benney moments in terms of
p and X holds in this case as well. Again this gives
an expression for thgd,,} as contour integrals around
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aD, of an integrand dependent only on the modified
Green'’s function oD, .

7.1. The elliptic case

Let D; be the annular domaip < || <1 as in
Section6.1 On use 0f29)in (38) it follows that

1
p@) = E(K(za—l) - K(®),

P HP(ca .
AE) = A(gﬂ_—)(;‘i) ¢
PEBYP(Ga™)
for some real constangsandC which must be chosen
sothat. ~ p+O(p~1) asp — oo. Alocal expansion
of (39)yields
P(aB)P'(1)
aP(@pHP@?)’
1
“(1-K(?
~(1-K ()
-1
+aA~i<P(Ca)P(§ﬂ ))‘ '
de\ Pp)P'caD) )|,
where we have now takeh= « and = . To illus-
trate the conformal mappingbijg. 4 shows how the
annulus in thez-plane maps to the two types of slit

domains in thep andA-planes. The parameter values
p =0.05,0 =0.25 andB = —0.25 are chosen.

(39)

A

C

(40)

8. Discussion

The key new formulas of this Letter for the two dif-
ferent reduction types ar@5) and (38) where G is
the analytic extension of the modified Green’s func-
tion of an N-connected planar domaib, which is
reflectionally-symmetric about the real axis and with
all its holes centred on this axis. The specific mani-
festations of(15) and (38) in the elliptic caseN = 2
have been explicitly constructed. One of these ellip-
tic reductions corresponds to that derived by Yu and
Gibbons[14], the other is new. Given these explicit
expressions one could now, in principle, make use of
the hodograph method of Tsarg2] to solve the ini-
tial value problem. This was done by Yu and Gibbons
[16] in the case of the first-type elliptic reduction.

We believe the general resul{45) and (38) to
be significant for the following reason. Associated
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Fig. 4. An illustration of the second type of reduction in the elliptic case. The figures shows the images of the annulus under the conformal

mappingq38) with parameter values = 0.05 andx = 0.25, 8 = —0.25.

with any multiply connected planar domain, (let
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Indeed, based on the results of the present Letter,

us assume, having boundary components that are allthe present authg24] has produced explicit formulas

smooth Jordan curves) is a compact, symmetric Rie-

mann surface known as tisehottky doubldt is a Rie-
mann surface consisting of two identical “halves” and
endowed with an anti-holomorphic involution provid-
ing a mapping from one “half” to the other. It is pos-
sible to write an expression for the modified Green'’s
function associated with a given planar domain in
terms of the prime form on the Schottky double. For-
mulas for the Green’s function are given, for example,
in Krichever et al[23] where they are represented in
terms of the Riemann theta function. Analogous for-
mulas exist for the modified Green’s function (since
the Green'’s function and the modified Green’s func-
tions are solutions to “dual” problems, as discussed in
[23]) which, together with(15) and (38) for the two
types of reduction considered here, give formulas for
the required uniformizations gf andA.

for the generalv-parameter case of the two reduction
types considered here. The method is based on finding
explicit formulas for the modified Green'’s functions of
the canonical class of reflectionally-symmetric multi-
ply connectectircular domains(i.e., domains whose
boundaries are all circles) and then making usg.6j
and(38).

The formulation here also suggests that the re-
ductions of the Benney hierarchy can be interpreted
as a special class of flows in the extended moduli
space of analytic curves. This mirrors recent work
in [1,2] where an identification between exact solu-
tions of the equations governing Laplacian growth
are reinterpreted as special reductions, known as “al-
gebraic orbits”, of the universal Whitham hierarchy.
There, the flows are generated by certain meromor-
phic differentials defined on the Schottky double of
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