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A class of exact mathematical solutions describing distributed regions of uniform vorticity

attached to two solid walls meeting at an angle 2α is derived. Exterior to the uniform

vorticity region the flow is quiescent and irrotational. The mathematical method used is a

generalization of ideas original presented in Crowdy [4] combined with elements of conformal

mapping theory associated with a differential equation method due to Polubarinova-Kochina

traditionally applied in finding the solution to various free boundary problems.

1 Introduction

Steady planar vortical flows involving regions of uniform vorticity are not only of great

mathematical interest owing to the fact that contour dynamics techniques can be applied

for the numerical solution [10, 11], but are also of great physical interest because of the

Prandtl–Batchelor theorem [2]. This states that, in the limit of vanishing viscosity, the

central effect of viscosity in a region of closed streamlines will be to diffuse vorticity across

streamlines thereby leading to a uniform-vorticity region over long periods.

It is well known that one method of generating vorticity in a flow is due to viscous

effects at solid boundaries. From the perspective of ideal flow theory, given its existence

in the flow by whatever means, the problem of finding steady uniform-vorticity regions

near a smooth or sharp-edged solid boundary is a difficult one and few results are known.

Certainly, there currently appear to be no analytical solutions in the literature. Saffman &

Tanveer [20] used numerical methods based on analytic function theory to compute a class

of steady flows in which a uniform vortex is trapped in the wedge-type region between

a finite-length flat plate and a finite-length forward-facing flap. Such a configuration has

relevance to aerodynamic applications and involves a bounded recirculating region of

uniform vorticity attached to a corner and which is otherwise surrounded by irrotational

flow. In related work, Moore et al. [14] again used numerical methods to compute a class

of Batchelor flows in which regions of uniform vorticity (vortex patches) were bounded

by both walls and/or vortex sheets. Vanden-Broeck & Tuck [21] performed a similar

numerical study of uniform vortex regions which were partly bounded by impenetrable

slip walls and were partly free (adjacent to an irrotational fluid region). In terms of fully

nonlinear calculations involving uniform vortex regions attached to walls, Pullin [17] has

used contour dynamics methods to examine their behaviour.
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In this paper, a class of exact solutions is derived describing layers of uniform vorticity,

of finite thickness but infinite extent, attached to corners and wedges. Given the lack of

analytical results for steady vortex patch regions attached to solid boundaries, it seems

appropriate to report the existence of such exact solutions and give details of their

mathematical construction. No specific applications of the solutions to this paradigmatic

problem will be discussed but the ideas presented are rather general meaning that they

might, in principle, be generalizable to more complicated geometries of practical interest.

Crowdy [4] finds a class of exact solutions of the Euler equations providing analytical

models of a class of coherent structures known as multipolar vortices [15]. The solutions

have distributed vorticity. The method involves consideration of a streamfunction having

the form

ψ(x, y) =

{−ω
4

(
z̄z −

∫ z
S(z′) dz′ −

∫ z̄
S(z′) dz′

)
z ∈ D

0 z � D
(1.1)

where D is the region of non-zero vorticity and S(z) is the Schwarz function [9] of its

boundary curve ∂D. For a given analytic curve, its associated Schwarz function S(z) is the

function, analytic in an annular neighbourhood of the curve, satisfying

S(z) = z̄ (1.2)

everywhere on the curve. Mathematically, functions of the form (1.1) are known as

modified Schwarz potentials [18].

When used in conjunction with elements of conformal mapping theory, streamfunctions

having the form of modified Schwarz potentials can yield exact solutions describing

vortical equilibria of the Euler equations. Indeed, the general ideas originally presented

in Crowdy [4] have been extended to produce exact solutions involving rotating vortical

equilibria involving both a single [6] and multiple [8] vortex patches, multipolar vortical

equilibria existing on the surface of a sphere [7] and equilibria involving multiply-

connected vortical regions [5].

All the studies just cited involve hydrid combinations of point vortices and uniform

vortex patches (or “V-states” [10]). This paper presents the new result that streamfunctions

of the same general form (1.1) can also yield exact solutions of the steady Euler equations

involving solid boundaries. When combined with the appropriate elements of conformal

mapping theory, it is possible to produce equilibrium solutions of the Euler equation in

which both the region of distributed non-zero vorticity as well as the entire velocity field

are given explicitly in terms of closed-form mathematical formulae.

2 Mathematical formulation

Consider a region D of uniform vorticity ω of infinite extent, bounded by two straight

walls meeting at an angle 2α where 0<α� π and a vortex jump ∂D separating the region

D from a region of irrotational flow. If the vortex region is in equilibrium, both the two

bounding walls as well as the patch boundary ∂D must be streamlines. If α< π/2, we shall

refer to the flow as being in a corner, if α> π/2 it will be flow around a wedge.

Depending on the nature of the irrotational flow outside the patch region, a multitude

of possible equilibrium solutions are expected to exist. Here, we seek a special subclass
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in which the flow in the irrotational region away from the patch is quiescent. It will be

shown that this subclass of solutions can be described in exact mathematical form.

Now, the general solution of

∇2ψ = 4ψzz̄ = −ω, in D (2.1)

is

ψ(x, y) = −ω

4

(
z̄z −

∫ z

F(z′) dz′ −
∫ z̄

F(z′) dz′
)
, z ∈ D (2.2)

for some function F(z) which, if there are no singularities in the fluid, is analytic everywhere

in D. The conjugate function F(z) is defined by

F(z) = F(z̄). (2.3)

The dynamic condition on the patch boundary that, at the vortex jump, the fluid

pressures are continuous is known [19] to be equivalent to continuity of the fluid velocities.

Since

u− iv = 2iψz (2.4)

this condition takes the form

ψz = 0, on ∂D (2.5)

so that the fluid velocity on the patch boundary as one approaches it from inside the

patch is continous with the stagnant fluid velocity in the region of irrotational flow. There

is an additional kinematic condition on the patch boundary that it must be a streamline

if the flow is steady. However, if (2.5) holds, then this condition is also satisfied because

dψ = ψz dz + ψz̄ dz̄ = 0, on ∂D. (2.6)

If condition (2.5) holds then, using (2.2),

z̄ = F(z), on ∂D. (2.7)

This means that, for the particular flow being considered here, F(z) must be precisely the

Schwarz function S(z) of the curve ∂D. For a given closed analytic curve, its associated

Schwarz function S(z) is analytic in an annular neighbourhood of the curve. In this

case of a curve of infinite extent (or a closed curve going through the point at infinity

on the Riemann sphere), S(z) is analytic in an infinite strip-like neighbourhood of the

curve. Outside this neighbourhood, S(z) will in general have a distribution of singularities

dictated by the shape of the curve.

In Crowdy [4], the method then proceeds by picking special choices of domain D

having boundary curves ∂D whose Schwarz functions S(z) have just a finite distribution

of simple pole singularities inside D. Physically, this corresponds to allowing a distribution

of point vortices to be superposed on the patch of otherwise uniform vorticity. This

construction produces mathematical models of multipolar vortices [15]. Mathematically,

the requirement of a finite distribution of point vortices inside the patch restricts the

class of admissible Schwarz functions S(z) and hence determines the shape of the vortex
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patch boundary. It should also be noted that such special domains D are subject to the

additional restriction that the point vortices must be steady under the effects of the local

non-self-induced velocity. This is a requirement dictated by the Helmholtz laws of vortex

motion [19].

Here we proceed differently and do not allow any vortical singularities in D. Rather, the

requirement on the analytic continuation of the Schwarz function S(z) out of the strip-like

region containing ∂D takes a different form: its continuation into the fluid region D is

required to be everywhere analytic in D and such that ψ is constant on the two straight

walls. If so, the streamfunction (2.2) will then satisfy the kinematic conditions on the two

walls that there is no flow through them – clearly a necessary condition for a consistent

solution. Equivalently, both walls must be streamlines. It is this modified condition that

will determine the Schwarz function S(z) in this case, and hence will determine the shape

of the vortex patch boundary ∂D.

It should be noted that there is a natural length-scale in the problem associated with

the width of the vortex patch region infinitely far from the corner. This can be chosen

arbitrarily and is here chosen to be
√

2 for reasons given in the next section.

3 Conformal mapping

As in Crowdy [4], an effective way to parametrize the boundaries of the special vortex

regions D satisfying all the above conditions is by use of conformal maps. To construct the

relevant conformal maps, we make the observation that the mathematical problem just

described is identical to one arising in a formulation of the problem of coating wedges

of arbitrary angle with viscous films. This problem has been solved, using conformal

mappings from the upper-half of a parametric ζ-plane, by Craster [3] who generalized

earlier work by Howison & King [13]. All these workers make use of a well-developed

mathematical technique based on differential equations originally devised by Polubarinova-

Kochina [16].

This observation affords us the luxury of simply writing down the required mathematical

solution while referring readers interested in the derivation to Section 2 of Craster’s

paper [3]. There, the conformal mapping from the upper-half ζ-plane to the region D is

found to be

z(ζ) =
√

2

(
2

π
Qν(1 − 2ζ) + iPν(1 − 2ζ)

)
, (3.1)

where ν= 2α/π − 1 and Pν, Qν are the Legendre functions of the first and second kinds

[1, 12]. The points 0, 1 and ∞ on the real axis in the ζ-plane are taken to map respectively

to the points z = ∞, ∞e2iα and z= 0. The vortex jump, or ∂D, therefore corresponds to

the image of the segment on the real axis between 0 and 1, i.e. 0<ζ < 1. The factor
√

2

gives us the required far-field width of the vortex layer and is chosen simply because (3.1)

is the form of the map given in Craster [3].

The Schwarz function S(z(ζ)) is then

S(z(ζ)) = z(ζ) = z̄(ζ̄) = z̄(ζ) =
√

2

(
2

π
Qν(1 − 2ζ) − iPν(1 − 2ζ)

)
, (3.2)
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Figure 1. A uniform vortex layer (shaded) attached to a corner of angle π/4.

where we have used the fact that ζ̄ = ζ on the segment (0, 1). Using u − iv = 2iψz , the

complex velocity field is given explicitly as a function of ζ and ζ̄ by

u− iv = − iω√
2

(
2

π
Qν(1 − 2ζ̄) − iPν(1 − 2ζ̄) − 2

π
Qν(1 − 2ζ) + iPν(1 − 2ζ)

)
. (3.3)

Thus, from (3.1) and (3.3), we have explicit formulae for both the equilibrium vortex patch

boundary and the velocity field everywhere inside the patch.

It is of interest to examine the shape of the uniform vorticity region D. Thus we need to

calculate (3.1) for ζ ∈ (0, 1). To do this, we first note that if ζ ∈ (0, 1) then 1 − 2ζ ∈ (−1, 1).

Next, we note that Pν(cosφ) has the integral representation [12]

Pν(cosφ) =
2

π

∫ φ

0

cos((ν + 1/2)ψ)

(2 cosψ − 2 cosφ)1/2
dψ, (3.4)

which can be used to calculate Pν for real values of its argument between −1 and 1.

Finally, it is known [12] that for real arguments x,

2

π
Qν(x) =

1

2 sin(πν)
(Pν(x) cos(πν) − Pν(−x)) , (3.5)

which, when used in conjunction with (3.4), can be used to evaluate Qν for real values of

its argument between −1 and 1.

The shaded regions of Figures 1–4 shows the vortex patch regions D for the values

α = π/8, π/4, π/3 and 2π/3.
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Figure 2. A uniform vortex layer (shaded) attached to a corner of angle π/2.
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Figure 3. A uniform vortex layer (shaded) attached to a corner of angle 2π/3.

4 Discussion

This paper has derived classes of exact solutions for uniform vortex regions attached

to solid walls. The simplest examples of flows in corners and past wedges have been

presented. In principle, the same method of combining consideration of streamfunctions

which are modified Schwarz potentials with elements of conformal mapping theory

associated with the differential equation method of Polubarinova-Kochina [16] can be



Exact solutions for vortex layers 649

–1.5 –1 –0.5 0 0.5 1 1.5 2
–2.5

–2

–1.5

–1

–0.5

0

0.5

1

1.5

wall

wall

Figure 4. A uniform vortex layer (shaded) attached to a corner of angle 4π/3.

applied in more complicated geometrical situations. While the latter method has found

multifarious applications in a wide range of free boundary problems [13], the present

paper appears to be the first time its applicability to the problem of finding equilibria

of the Euler equation involving uniform vortex regions has been pointed out. This

provides an addition to the compendium of physical problems to which the method of

Polubarinova-Kochina [16] can be applied.

The stability of the equilibria remains to be investigated but is left for the future. It

is also possible that more general mathematical solutions, for example, ones in which

there is a non-trivial irrotational flow exterior to the uniform vorticity region, might

be available analytically using perturbation methods about the leading-order non-trivial

exact solutions found here.
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