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Analytical solutions for distributed multipolar vortex equilibria on a sphere
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Analytical solutions of the steady Euler equations corresponding to stationary multipolar vortices on
a sphere are derived. The solutions represent localized regions of distributed vorticity consisting of
uniform vortex patches with a finite set of superposed point vortices. The mathematical method
combines stereographic projection with conformal mapping theory to generalize a class of exact
solutions for planar multipolar vortices developed by CroWalys. Fluidsll, 2556(1999] to the
physically more important scenario of multipolar vortices on a spherical surface. The solutions are
believed to be the first examples of analytical solutions of the Euler equations on a sphere involving
patches of distributed vorticity with nontrivial shape. Z03 American Institute of Physics.
[DOI: 10.1063/1.1521727

I. INTRODUCTION tropic vortex pairs include the exact modon solutions of
Verkley”

In modeling large-scale features of atmospheres and Recently, much attention has been paid to a class of co-
oceans, it is natural to study the dynamics of vorticity on theherent vortical structures known as multipolar vortices. A
surface of a sphere. When modeling planetary-scale coherettipole, for example, has a central region with vorticity of
structures the curvature of the planet can play an importardne sign and two satellite vortices of opposite sign and such
part in the dynamics. The atmosphere contains localized structure has been observed in the Bay of Bioayua-
large-scale structures the dynamics of which can be signifidrupolar vortex has a central core surrounded by three equal
cantly affected by the curvature of the sphere and rotationadatellites of opposite signature; higher-order multipolar struc-
effects (as, for example, in the dynamics of concentratedtures have correspondingly greater numbers of satellite vor-
regions of vorticity such as a hurricane on time scales of theices. Much recent effort has been made to understand these
order of one day In terms of localized vorticity distributions coherent structure&ee, e.g., Van Heijst and Kloosterziel,
on a sphere, point vortex models represent the most-studie@arnevale and Kloosterzidl,Morel and Cartoh’) but most
paradigm(see, for example, Kidambi and Newfowhich  theoretical studies have been confined to two-dimensional
includes an extensive list of refereng.eBhe purpose of this models in the plane. In an attempt to understand these struc-
paper is to construct and study a class of stationary coherenires as a class of mathematical solutions to the two-
vortical equilibria on the surface of the sphere. The full cur-dimensional Euler equations, Crowdyhas constructed ex-
vature effects of the sphere are taken into account and th&ct solutions of these equations having all the qualitative
solutions involve localized regions of distributed uniform features of the general class of multipolar equilibria. This
vorticity. The theory is at present limited to a sphere that isanalysis rests on a generalization of a basic solution referred
nonrotating. to in Ref. 12 as theshielded Rankine vortexThis simple

In comparison with planar vortex equilibria, the under- solution is a point vortex of one sign situated at the center of
standing of vortical equilibria on a spherical surface is mucha uniform circular vortex patch of opposite sign such that the
more limited. The equations of motion for the simplest pointtotal circulation of the structure is zero. It might equivalently
vortex models appear to have been first written down bybe thought of as a shielded point vortex. The generalized
Bogomolov? Kimura and Okamotd later retrieved these solutions consist of uniform vortex patches of nontrivial
equations and also those relevant for the motion of patcheshape with distributions of superposed point vortices. Many
of uniform vorticity. Dritschel and Polvafihave used nu- of these equilibria have recently been shown to be linearly
merical contour surgery codes to study the roll-up of vortic-stable structuret’ The general ideas underlying this study
ity strips on a spherical surface and later studied multivorteshave been extended in various directiohs>
equilibria modeled as patches of uniform vorticitpiBat- This paper examines whether the exact multipolar solu-
tista and Polvafiihave constructed models combining point tions of Crowdy? can be generalized to the physically more
vortices and uniform vortex patches to study barotropic vorimportant case of vortices on the surface of a sphere. There

tex pairs on a rotating sphere. More general models of barcare two fundamental theoretical differences in finding vorti-
cal equilibria in the plane and on the sphere. The first differ-

_ . ence is that the surface of a sphere has a nonzero curvature.

dTelephone: (0200 7594 8587; fax:(020) 7594 8517. Electronic mail: . P . ..
d.crowdy@ic.ac.uk The radius of curvature pf the sphere defines a character'lstlc
YElectronic mail: martin.cloke@ic.ac.uk lengthscale not present in the planar case. The second differ-
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ence is that the sphere is a closed compact surface. Astarms of standard spherical polar coordinatess, ¢) with

consequence of Gauss’ theorem, the integral of the scaldhe latitude angl® measured from the axis through the north

vorticity field over the spherical surface must, therefore, bepole, the velocity vector has the form

zero. This constraint does not exist in the planar case. u=(0p.u) 3)
Given these differences, it is by no means immediate ~ R

that the exact solution structure of the planar multipolar vorwhereu andv are the zonal and meridional components of

tex solutions of Crowd3f will be generalizable to the sphere. the velocity field, respectively. The incompressible nature of

Indeed, it is a well-known fact that the classical planar ellip-the flow allows the introduction of a scalar streamfunctjon

tical vortex solution of Kirchhoff® cannot be generalized, in via

exact mathematical form, to a spherical surface. Strictly u=Vyle )

speaking, even the simple mathematical idealization of an ~ =

isolated point vortex solutiofi.e., a &-function distribution ~ Whereg, is the radial unit vector. It is then possible to define

of vorticity) does not generalize directly to a sphere. This isa scalar vorticity fieldo(6, ¢) such that

a consequence of the c_onstraint that the total integra! of the we, =V, (5)

vorticity of the sphere is zero. Instead, &function point

vortex distribution of vorticity must always be embedded inWhere

a background of constant uniform vorticity of exactly the w:_V§ ¥, (6)

right strength to render the global integral of vorticity equal

to zero. Such a situation is strongly reminiscent of theAndV§ denotes the spherical Laplace—Beltrami operator

shielded Rankine vortex solution that has formed the basis of , 1 4 9 1 42

a general constructive method for vortical equilibria of Vi=—— —.

Crowdy!?1*15This similarity provides a first clue that gen- sing 90 TS g ¢

eralization of Ref. 12 to a sphere might be possible. Thign terms of the streamfunctiog, u, andv are given as

paper shows that a generalization can indeed be made and

@)

(smﬁ

. . . J
gives details of the construction. u=— —lz
We summarize the main result. In Crowdjt was dem- J
onstrated that streamfunctions of the form 1 9y
_ V= "7 "~—- (8)
wol _ (2 z_ _ siné d¢
——\|zz— | S(z')dZ - | S(z')dZ| zeD ) ) L
W(2,2)= 4 , There exists a global constraint on the vorticity distribution.
0 z¢D Gauss’ theorem dictates that only vorticity fields which inte-
1) grate to zero over the sphere are permitted, i.e.,
where z=x+iy andz=x—iy denote points in a complex
plane, comprise a class of exact solutions for multipolar vor- f ) wdo=0, 9
sphere

tices provided thatD, the boundary of the vortex patdh,
is chosen appropriately arg{z) is chosen to be th8chwarz  wheredo denotes the area element on a spherical surface.
functionassociated witlhD. In this paper, this class of so-

lutions is generalized to multipolar vortices on the surface ofll. STEREOGRAPHIC PROJECTION

a sphere. This is done by first projecting the vortex patch
stereographically onto a regidh, of a complext-plane. The
boundary of the vortex patch projects down to a cufiz, .
It is shown herein that the generalization(@f is

The analysis of Crowdy depends crucially on consid-
ering complexified equations of motion. The surface of a
sphere can be endowed with a complex structure obtained by
stereographic projection. In what follows, we consider a

( _ S class of multipolar vortices centred on the south pole. A ste-
—wo| log(1+¢¢)— m g reographic projection in which the north pole maps to infin-
ity in a projected{-plane is therefore appropriate. Figure 1
l/,(gf) =< 7 S , _ , 2) shows a schematic illustrating this projection onto a complex
— | ————d{'| zeD, {-plane through the equator. In polar form
1+7'S(L _
¢'s(g’) [=rel® (10
0 D
N 25 where
where( is the complex conjugate variable {o For special 0
choices of the bounding curwD,, the streamfunctiori2) r—cot( (11
describes, in closed form, a class of multipolar vortices in 2

equilibrium on the surface of a sphere. The originZ=0 corresponds to the south pole of the sphere.
It is convenient to observe that
II. VORTEX MOTION ON A SPHERE

. . _ -1
Consider vortex motion on a sphere. Without loss of cosf= &
generality it is assumed that the sphere has unit radius. In §§+1
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stereographic
projection

n-plane

FIG. 1. Schematic illustrating stereographic projection from the physical
sphere to a complegplane and conformal mapping to tielane from the

unit-disc in a complexy-plane.

2\

D. Crowdy and M. Cloke

lution corresponds to the classical Rankine vor@xircular
vortex patch in pure solid body rotatitfh with the addi-
tional feature that a single point vortex, of equal but opposite
circulation to the vortex patch, is placed at the center of the
Rankine vortex thus producing a composite monopolar vor-
tex structure with zero total circulation. In terms of the stan-
dard complex coordinate=x+iy, the streamfunction asso-
ciated with the shielded Rankine vortex can be written
S (@Z-2loglz) |7=<1
——(zz—2log|z AR
W(z)=y 4 : 17
0 |zj>1
wherew is the uniform patch vorticity and the Rankine vor-
tex is assumed to have unit radius. For purposes of generali-

zation, in Ref. 12 the observation was made thaas given
in (17), can be rewritten as

—%(27— fZS(z’)dz’—fzg(z’)dz’) |z|<1,

W(z,2)=
0 |z|>1
(18)
where
B 1
S(2)= 7, (19

is theSchwarz functiol of the boundary circléz| =1 of the
Rankine vortex. Instead of calling the solutidd?7) a
“shielded Rankine vortex,” it is equally sensible to refer to it
as a “shielded point vortex,” i.e., a point vortex at the origin
is being shielded by a uniform background of constant vor-
ticity such that the total circulation of the combined structure
is zero.

The latter perspective is instructive when comparing
with the notion of a point vortex on a sphere. This is because,
owing to the constraint9) that the global integral of the
vorticity over the sphere must always equal zero, in order to
generalize the notion of a point vortex solution to the sphere,
any single point vortex existing on the sphere mestessar-
ily be shielded. The accepted way to perform this shielding is
to place the singular point vortex in a background of uniform
vorticity covering the whole spherical surfat&Such a con-
figuration is more reminiscent of the shielded point vortex
solution (17) rather than the regular planar point vortex so-

To see the analogy mathematically, in Appendix A the
streamfunction associated with a single point vortex on a

sinf=——-. (12
[i+1
It can be verified that
P ] )
T B i% (13
(96¢ smﬁagZ smaagg
and
Ay '?q (14)
— == —i—= .
J Jal|—
¢, T Cadl,
Using (13) and (14), simple algebraic manipulations reveal |ytion.
that
Vig=(1+10D%0, (15)

where subscripts denote partial differentiation. Usid8)
and(14) it follows that
2{

U—iv:mlﬂg. (16)

IV. MOTIVATION

sphere is derived using the equations presented in Sec. Il. In
terms of the complex stereographic coordinétatroduced

in Sec. lll, the streamfunction for a point vortex of strength
—wl2 placed at the south pole is given by

y=— 3 (log(1+ {0~ 2 loglZ]). (20)

Equation(20) should be compared witfi7). Identifying the

In Crowdy!? a solution of the Euler equation which was two complex coordinatesand ¢, the streamfunctions take a
dubbed ashielded Rankine vortewas introduced. This so- very similar form. In(17), the termzz corresponds to the
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uniform vorticity contribution while log(% £2) performs this ~ continuous at the patch bounda#p. This implies that it

role in (20). The slightly different functional forms are a Must be continuous 0D, . Itis immediate, by differentia-

result of the nonzero curvature effects of the sphere. Mearfion of (25) with respect tq/ and use of16), that the stream-

while, the point vortex contributions I¢gj and lod| clearly f_unctlon (25) satisfies this condition. It is req_uwed, in adQ|-

take exactly the same functional form on both the plane andon: that the boundary of the vortex patch is a streamline,

the sphere. The close analogy betwé®h and(20) leads us -8~ & ¢-contour. But ondDy, it can be verified that25)

to suggest thatl?) is the natural candidate for the singular Satisfies the equation

planar point vortex solution which generalizes to a singular o

sphericalpoint vortex solution. dy= ¢ dl+yd;=0, (26)
While Crowdy* gives the generalization of th@no-

nopolaj solution(17) to planar multipolar vortices of higher which implies thawD, is indeed a streamline. The choice of

order, this paper gives the analogous generalization of thstreamfunction(25), therefore, satisfies both the kinematic

spherical monopolar solutiof20). and dynamic conditions at the vortex jump on the patch
boundary.
V. EXACT MULTIPOLAR VORTICES ON A SPHERE There is the additional constraint that the global circula-

tion on the sphere is zero. Because the region around the

Consider a simply connected patch of uniform vorticity north pole of the sphere is stagnant, it is clear that the global
on the surface of the sphere. LBtdenote this vortex patch circulation on the sphere is equal to the circulation around
and letD , denote the stereographic projection of all points inthe contoursD ,. But the velocity field vanishes everywhere
the domainD onto the/-plane. Assume that the boundary on gD, so it is easy to see that this circulation is zero. Hence
dD of the vortex patch projects onto a curg®, in the the global circulation vanishes, as required.
{-plane and tha#iD, is an analytic curve. The closure of the  However, for ararbitrary patchD, the Schwarz function
(open domainD, in the {-plane is denoted,. Define a  of the projected curvéD, will be singular inD, and hence

streamfunction having the form so will the composite functio®(Z). This will mean that the
¢ streamfunctior{25) will possesgpossibly unphysicalsingu-
—wo| log(1+ é“é’)—J S(¢Hde! larities inside the vortex patch. However, to model multipo-
lar vortices(and to obtain physically consistent solutipns
W 0= _ Jgg(g')dg’) [eD, (21)  consider the possibility of restricting to a special class of
P vortex patch domain® with the property that the Schwarz

0 D. function of the projected curvéD , is such that the compos-
¢&Dp ite function S(¢) as defined by(24) has only simple pole
whereS(¢) is to be specified shortly. First observe that sub-singularities with real residues. For this special class of do-
stitution of (21) into (15) shows that it satisfies the equation mains, the streamfunctiof25) will possess a finite distribu-

V2= —w 22) tion of point vortex singularities. In addition to this con-

2 o straint on the vortex patch domains there exists the additional
except possibly at any singularities 8¢) inside the vortex requirement, dictated by the Helmholtz laws of vortex mo-
patch. tion, that any and all such point vortices are steady under the

The fact that’D , is an analytic curve implies that there effects of the nonself-induced velocity field. This condition is
exists, in an annular neighborhood of the cua,, an  necessary for a consistent equilibrium solution of the dy-
analytic functionS(¢) such that namical equations and imposes an additional constraint on

— the admissible class of vortex patches.

{=S({), on iD,. (23

The function S(¢) is known as theSchwarz functionof ~ A. Conformal mapping

17 H .
dDp.~" Now pick S(£) as follows: It turns out that such vortex patch domains on the sphere

S(¢) exist. The aim here is to construct the spherical analogues of
Nk 11500’ (24 the planar multipolar vortices found in Crowtf/A typical
N+ 1-polar solution in Ref. 12 consists of a patch of uniform
then, the form of the streamfunction becomes vorticity with a central point vorteXat the patch centrojd
( - ¢S(Z) aqd N satellite_point vortices symmetrically disposed about
—wo| log(1+{)— | —————-d{’ this central point vortex.
1+¢'S(¢7) To construct the spherical analogues explicitly it is ex-
— =, pedient to introduce a conformal mappitig;) from a para-
(&= _ gﬁdgr 7¢D. : (29 metric z-plane mapping the unig-disc to the(projected
1+ 'S¢ P vortex patchD,, in the {-plane. See Fig. 1 for a schematic.
Let
|0 ze&Dy
Consider the velocity field given byl6). For a consistent _ 7
equilibrium solution, it is necessary that the fluid velocity is §om=R| 7+ N—aN)’ @7
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whereR, aandb are real constants with>1 andN=2isan  ments corresponding to the othiith roots of unity. At all
integer. It will be shown that, for suitable choices of the such zerosS(Z(7)) has a simple pole singularity with a real
parameter®, a, b, andN, the mapg27) provide the appro- residue. Together, these points correspond to the
priate conformal parametrization of the boundaries of a clasg}-preimages of thé satellite point vortices.
of (N+ 1)-polar vortices in equilibrium on the surface of a Let Z, denote the image of under the conformal map;
sphere. ie.,

The conditiona>1 is specified in order that the confor-
mal map is analytic in the unif-disc. Owing to the bijective {s=£(m9). (39
nature of the stereographic projection, the requirement that,, therefore, corresponds to the stereographic projection of
the vortex patch boundargon the sphereshould not cross  a (satellit¢ point vortex on the surface of the sphere. The
itself translates to a condition that the conformal ni2p be  singularity of S(Z(7)) at =0 corresponds to a point vortex
a univalent conformal map from the unitcircle. It is also  at the south pole.
assumed that the projected boundary of the vortex patch is an

analytic curve. Note that B. Stationarity of the point vortices
(=7, (28) By construction, both the kinematic and dynamic bound-
_ — _ ary conditions on the vortex patch boundary have been sat-
where the conjugate functiof( ) is defined as isfied. By the Helmholtz laws of vortex motion, it remains to

- = ensure that all point vortices are stationary under the effects
{m=LCn). (29) of the nonself-induced terms in the local velocity field. To
In terms of the conformal mapping variabig the Schwarz impose this condition, it is most convenient to consider the
function can be written local expansion of the velocity field in Cartesian components
_ in the stereographically projectefiplane. Near a satellite
SO =d(n7Y), (30) graphically projectefip

point vortex at{s, we can write
where we have use@8) and the fact thaiy= 5" * on dD,. o) I
S

In terms of the variables, 7, the functiony, takes the form - oyt 36
, - T il D 4 (39
— wo L for some real coefficientb s and y5 so that, neat,
(L+24(n) () _
= -1 . 200 { r
l//g \ o §(77 ) - )’ |7]|s1 (31) u—iv=-— - —— S 75+ . (37)
(1+L(me(nh) sind \ (1+¢¢) {4
L0 [7[>1 To find expressions fof's and ys, define the auxiliary func-
tion

By inspection,S({(7)) is seen to be analytic everywhere
inside the unity-circle except aty=0 and at all pointsy G(p)=1+L(np)i(n™ Y. (38

with | 7| <1) satisfyin . : . . :
( [71<1) fying After some Taylor expansions and algebraic manipulations, it

1+¢(n)e(n~H=0, (32 follows that
(32) is equivalent to the following quadratic equation #g\: {(msHE(ms)
co(a,b,R,N) 72N +cy(a,b,R,N) 7N +co(a,b,R,N)=0, 0 Gulms)
53 (™) (L7 Gon) L)
where VTG (9 | 20,9 2G (0 7L nﬁ))' 39

—pP2(h_ aNy_ 4N
cz(a,b,R,N)=R*(b—a%)—a", In order the determine the condition for stationarity of the

ci(a,b,RN)=1+a®N+R?>+R?*b—aM)?, (34)  point vortex at{s, it is necessary to subtract off its self-
5 \ \ induced contribution to the velocity field. In terms of the
Co(a,b,R,N)=R*(b—a")—a". stereographically projected coordinate, the streamfunction

It is instructive to observe that &—0 (which, for point ~ ¥p for @ point vortex of strengtix at s is

vortices situated close to the south pole, forces the vortex R
patch to be localized near the south palee solutions of W= — flog (=4)(E= 49 _ (40)
(33 tend toyN=a"N, aV. The solutionyN=aN is discarded ) (14 01+ L)

because it yieldN solutions for» which are not inside the ) _
unit 7-circle, while the solutioyN=a "N retrieves the ex- S¢€ Appendix A for more details. Analogous (@), the
pected result for the planar cake associated velocity field on the sphere is given as

This solution structure fot32) is found to be generic:

Let 55 denote the positive real root ¢83) satisfying|#| up_ivpzﬁ Yor=— 2¢ (f 1 o« ¢ ,
sind\ 2 {—{s 2 (1+¢0)

<1. There existN—1 other symmetrically disposed zeros siné
inside the unit circle with the same modulus and with argu- (42
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whereu, andv,, respectively, denote the zonal and meridi- It is worth remarking that, in the case of the exact solution
onal components of the velocity field induced by the pointclass for multipolar vortices in the plafigthe analogue to
vortex. The first term on the right-hand side(dfl) is singu-  the stationarity conditio48) was independent of the param-
lar at {= ¢ and corresponds to the point vortex singularity. eterR which can be thought of as a normalization parameter
The second term corresponds to the background of uniforron the size of the vortex. This reflects the lack of a charac-
vorticity which must exist in order to satisfy the global con- teristic lengthscale in that problem and hence the fact that the
straint(9). To see this, note that a uniform patch of vorticity length-scale of the vorticity distribution could be arbitrarily

of strengthx/2 satisfies

Vig=— % (42)

Using (15) this is equivalent to

wp=—5—2 (43
2447
which can be integrated with respectzdo give
K 1
¢g:—(—_+f(§) : (44)
2\ ¢(1+¢0)

wheref () is an arbitrary function. Pickingd({)=—1/{ so
that the velocity field is regular dt=0, yields

kK ¢

21460

(49)

which, using(16), gives precisely the second term on the
right-hand side of(41). Comparing(37) with (41) reveals

that the point vortex af has strength
Kks= — 2wl g, (46)
while the condition for stationarity is
[(u=iv)—(up=ivp)]lg, =0, (47)

which is equivalent to

(1-T9¢s

— vs=0. (48)
(1+4:86)

Equation (48) is henceforth referred to as the stationarity
condition. It can be directly verified that, by the symmetry of

the configuration and the associated velocity fi€kB) is

sufficient to ensure that all other symmetrically disposed

point vortices are also stationary.
It can also be shown that, nea=0

5(7771) _Fc
Tr i g et “9

where
_ R¥(1-ba™)
¢ 1+R*(1-ba M)’

(50

and y.=0. This means that there is a point vortex at the
south pole and that it is automatically stationary so that no
additional conditions need to be satisfied. The point vortex a%

the south pole has strength
Ke=—2wol ;. (51

set. This is no longer true in the case of the sphere and its
radius now defines a characteristic lengthscale. Conse-
quently, the relevant stationarity conditiof8) is now inex-
tricably dependent ofR. It is also noted that whereas the
analogous nonlinear stationarity condition for the planar so-
lutions could be solved exactlleading to completely ex-
plicit solutions—see Ref. 13this is no longer possible in
the spherical case. Thus, although the solutions can be de-
scribed in exactly in terms of a finite set of parameters, those
parameters must be determined numerically.

VI. PROPERTIES OF THE SOLUTIONS

To investigate solutions for a giveN, it is natural to
specify the latitudinal anglé, at which all the satellite vor-
tices are situated. This corresponds to specifying the length-
scale of the vortex structure relative to the characteristic
lengthscale of the sphere. The value of the parametisr
then varied and solutions sought. For any giaesndN, the
specified value of), provides the value of via the formula

0o
{s= cor( 7) . (52

This provides one equation relating the three as yet undeter-
mined parameter®, b and 7. A second relation derives
from the condition of stationarity of the satellite vortidéds)
while a third condition is Eq(32). These three nonlinear
equations are solved simultaneously f®rb and »s using
Newton’s method.

Only R and b are required to actually reconstruct the
vortex patch solutions. To plot the solutions on the physical
sphere, the following relations are inverted f#band ¢, viz:

0
CO[(z =L(n)l,
p=ard {(n)], (53

for a discrete set of points on thg|=1 circle. Use of the
formulas

X=sin6 cosq¢,
y=sinfsing, (54)
Z=C0s0,

then produces the physical position of the vortex patch
boundary on the spherical surface. Exactly the same proce-
dure is used to find the satellite point vortex positions.

Exact solutions have been found to exist for any positive
ntegerN=2, theN=2 case corresponding to tripolar solu-
ons and higher values ®f to higher-order multipolar struc-
tures. For purposes of illustrating the general features of the
solution class, we present the quadrupolar ddse3 in de-
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FIG. 2. T} andT'} against latitudinal angl® (in radi-
ans for stationary point vortex problem with=3. The
graphs intersect aty= 65"'=70.5° (to 3 significant fig-
. ures.
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tail. One reason for concentrating on tNe=3 case is that a around some specified latitudinal circle at angte 6,. The
stability analysi$® of the planar configurations found in strengthsl"; andT'% , say, of the central and satellite vorti-
Crowdy*? have revealed the quadrupolar solutions to be disees, respectively, must be chosen in such a way that the
tinguished in that they are neutrally stable in all configura-satellites are stationar§or general values of the central line
tions except possibly those that are close to exhibiting cuspgortex circulation one would obtain a relative equilibrium in
in the patch boundarieishe reader is referred to Crowdy and which the satellites rotate at constant angular velacipe
Cloke'® for more details The quadrupolar solutions are present authors have not found the solution to this point vor-
therefore the most likely solutions to be stable on the sphergsy problem written down in the literature. It is therefore
(at least for certain configurations—see discussion section gqjved in Appendix C, using stereographically projected co-
For fixed N and 6,, it is found that varyinga corre-  gginates, and the values Bt andT'* are found explicitly

sponds to altering the area of the vortex patch. In all casegg fynctions oN and 0,. A graph of ['* andT'* againstd,
examined, the area of the vortex patch increases monotonis <hown in Fig. 2. S ¢

cally with a. Since the parameter has no obvious physical
significance it is, therefore, more natural to plot solutions
(for given 60,) as functions of the total vortex patch arda

In Appendix B the formulas used to calculateare given. It

is also convenient to definkg, as

Figure 2 is instructive because it indicates that, in the
point vortex problem, the point vortex at the south pole is of
the samgpositive strength as the uniform background vor-
ticity when the satellites are close to it in latitude. As the
satellites move further away from the south pole, the strength

I'p=woA, (55 of the point vortex at the south pole goes through zero when
which represents the total strength of the vortex patch. AIFhe sateII_ltes are _at the equator and_becomes negative vyhen
point vortex circulations are renormalized with respect totne Satéllites are in the northern hemisphere. The generalized

solutions found here are expected to behave similarly. Fig-

I'y. In the calculations which follow, we chose,= 1. -
It is found that for largea, the patch area tends tar4 Ures 3and 4 show graphs Bg/I", andI's/T', against patch

corresponding to a uniform blanketing of the whole spher@reafl for \{arious choices ofly. These quantities determine
by the uniform patch vorticity. As decreases it can, there- the dynamical nature of the flow because they measure the
fore, be imagined that a growing region of quiescent irrota0int vortex strengthselative to the total background patch
tional fluid is developing at the north pole. This suggests &/orticity. For any givend,, these graphs terminate at some
useful check on the problem formulation as well as the nuCritical area below which no solution can be found. The cor-
merical method used to solve the nonlinear equations derive@sponding limiting solutions display cuspidal singularities
in the previous section. Aa gets large so that the entire in the patch boundary and are discussed in more detail
sphere contains a uniform background patch of vorticity, theshortly. As expected, at large latitude anglgs that the sat-
problem reduces to a point vortex problem on the spheregllites are in the southern hemisphere and close to the south-
This point vortex problem is the spherical generalization ofern polar point vortek the graphs in Figs. 3 and 4 are quali-
the planar point vortex problem of Morikawa and Swert§on tatively similar to those plotted for the planar case in Ref. 13.
where a central line vortex is placed at the south poleMnd However, as the latitudinal angle of the satellites decreases
equal-strength satellites are equispaced in longitudinal angleso that the satellites move towards the northern hemisphere
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¢ FIG. 3. Renormalized point vortex strengtli /T",

of (solid lineg and I's/T", (dashed lingsagainst vortex

0.=135° patch area foN=3 andf,=160°, 135°, and 90°. The

o1} 0 i values at patch area equal ter £orrespond to those

given in Fig. 2.

vortex patch area

a “cross-over” occurs as the relative strength of the pointanalogous situation arises in the planar ¢dshe neighbor-
vortex at the south pole changes from positive to negative. Ahood of any point on a sphere is locally planar so this obser-
o= 05"=70.5° (a value obtained by equatifdg® =I'* us-  vation on the limiting states is consistent with a local analy-
ing the expressiongC4) and (C5) obtained in Appendix £  sis of Overmal? who studied limiting V-states in the plane
the value ofl"./I", equalsl’s/I", when the patch has maxi- and found that any points of nonanalyticity in the patch
mum area so that all point vortices have the same strengtiboundary must be either 90°-corners or cusps.
agm represents a cross-over latitude where the point vortex at  In Fig. 5 the solutions are shown in orthographic projec-
the south pole is becoming just as important as the satelliteion on the physical sphere in the cag&g=160° and for four
in cancelling out the overall uniform background vorticity. different choices of patch area. The associated stereographic
For eachN and 6,, a critical value of the patch area projections are also shown to the right of each orthographic
exists for which physically admissible equilibria can be projection. The smallest patch areb=0.868 (correct to 3
found. This critical value provides a lower bound on thedecimal placesis close to the limiting cuspidal configura-
admissible values of the patch area. The corresponding lintion, while the largest area showpdE 11.805) is close to
iting states exhibit cusps in the vortex patch boundary. Arthe pure point vortex case where the patch entirely covers the

0 T T
-0.05 4
0.1 B
0.=90°
-015F ° - . .
FIG. 4. Renormalized point vortex strengtlis /I",
(solid lineg and I's/T', (dashed Iine)sagainst_ vortex
patch area foN=3 and §,=90°, 70.5°E 65") and
0.2 7 68.7°. The values at patch area equal tocbrrespond
6,=68.7° to those given in Fig. 2.
09,=705° - T~ _ _ |
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vortex patch area
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FIG. 5. Multipolar vortices witiN= 3 satellites at lati-
tude 6,=160° for different vortex patch areasl
=0.868 (close to cusped configuratipnl.322, 5.640,
and 11.805close to point-vortex cageEach solution is
shown in orthographic projection on the left and in ste-
reographic projection on the right. The corresponding
point vortex strengthsl{.,I's) are given, respectively,
by (0.001, 0.022 (—0.013, 0.039 (—0.189, 0.213

and (—0.445, 0.462

sphere. Two intermediate shapes with different areas are al3dl. DISCUSSION
shown. The orthographic projection in these diagrams has
been varied in order to highlight the structural features of A broad class of analytical solutions for distributed re-
each solution. Figure 6 shows three typical vortex equilibriagions of vorticity in equilibrium on a sphere has been pre-
for the caseN=3 and#,=135° while Fig. 7 shows typical sented. The construction is a generalization of the math-
equilibria forN=3 andf,=90° so that the satellites are on ematical approach originally expounded in Crowdyo
the equator. Asf, decreases, the range of possible patcrstudy planar multipolar equilibria. This generalization is sig-
areas for which solutions can be found decreases as is ewiificant given that other well-known planar resulésg., the
dent from Figs. 3 and 4. exact solution for the rotating Kirchhoff ellipselo not gen-
Finally, for illustration, some examples of tripola eralize to the spherical geometry.
=2 solutions are shown in Fig. 8 for point vortices @&t The solutions are presented as a contribution to the
=160° while Fig. 9 shows similar results for the pentapolarmathematical theory of vortex dynamics on a sphere. The
theoretical approach is potentially generalizable to the con-

caseN=4.
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FIG. 6. Multipolar vortices witiN= 3 satellites at lati-
tude 6,=135° for different vortex patch areasl

= - =4.106, 7.476, and 10.544correct to 3 decimal
place3. The corresponding point vortex strengths
(I'.,I'y) are given, respectively, by0.007, 0.107,
(—0.133, 0.243 and(—0.281, 0.373

struction of distributed vortex equilibria on more generalchange as the quadrupoles grow bigger and cover more of
closed surfaces. Other generalizations might be feasiblehe spherical surface, as well as how they depend on the
Crowdy? has extended the approach of Ref. 12 to construclatitudinal positions of the satellite point vortices, are inter-
rotating vortex equilibria in the plane which generalize the esting questions. Dritschel and Polvahave found that dis-
classical results of Thoms&rand Morikawa and Swensdfi.  tributions of vorticity on the sphere can have very different
Thus, it may similarly be possible to generalize such planastability properties to their planar analogues.
rotating equilibria to the sphere. Since the new solutions consist of combinations of uni-
The stability of the spherical multipolar equilibria is of form vortex patches with superposed point vortices, the non-
interest, especially the question of how these stability proplinear stability and nonlinear evolution of these configura-
erties compare to those of the planar cagleich has recently tions can be studied by simple adaptations of existing
been examined in detail by Crowdy and ClbkeAlthough  contour dynamics/surgery codes on a spRére.is simply
the linear stability calculation is made easier by knowledgenecessary to add a finite set of ordinary differential equations
of closed-form formulas for the equilibrium base-states, it isgoverning the point vortex motion to these codes. At the
nevertheless somewhat involved and beyond the scope of tleame time, the analytical solutions herein provide important
present paper. It can be anticipated that at least some of thntrivial checks on such numerical codes. This feature also
equilibria found here will be linearly stable. For example, theprovides a possible alternative to performing the detailed lin-
planar quadrupolar solutions of Crowdyave recently been ear stability calculation mentioned above; Polvani and
found to be neutrally stable in all configuratidhgexcept  Dritschel? for example, have studied the stability of a class
possibly those near to limiting where the question of linearof (numerically computedvortex patch equilibria on the
stability could not be resolved using the method of Rej. 13 sphere using contour dynamics to observe the behavior of
For small-area patches with satellites close to the south polalightly perturbed equilibria and the same method can, in
the spherical quadrupolar solutions are close to the planarinciple, be used in respect of the present solutions.
case(in the sense that the spherical curvature will have little  On a mathematical note, the present authors have not
effect on such solutions They are therefore similarly ex- seen the simple expressidA7) for the streamfunctiony
pected to be stable. How these linear stability propertiesssociated with a point vortex of strengthderived in Ap-

FIG. 7. Multipolar vortices witiN= 3 satellites at lati-
tude 6,=90° for different vortex patch areasA
=11.107 and 12.271. The corresponding point vortex
strengths ['.,I's) are given, respectively, by0.110,
0.258 and(0.024, 0.318
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FIG. 8. Multipolar vortices withN=2 satellites at latitudedy=160° for ~ FIG. 9. Multipolar vortices withN=4 satellites at latitud&),=160° for
vortex patch areasl=0.846, 3.272, and 11.007. The corresponding point VOrtex patch areasA=0.838 and 3.239. The corresponding point vortex
vortex strengths I{.,I') are given, respectively, by—0.001, 0.03%  Strengths ['c,I') are given, respectively, b§0.003, 0.016 and (-0.111,
(—0.056, 0.159 and(—0.275, 0.575 0.092.

pendix A explicitly written down in the literature in terms of
the complex stereographic coordingtelndeed, the use of
stereographic projection to study the dynamics of vorticity
on a sphere is rare although Dritscieind Kimur&* employ

wheredo is the area element on the surface of the sphere
and integration is over the entire spherical surface, is given

it in various contexts. Bogomoléwalso mentions the possi- 1

bility of studying spherical point vortex dynamics in this y= Elog(l—cosw, (A3)
way. Stereographic projection, combined with conformal

mapping theory, has been crucial in the construction of théNhere

present solutions and provides a particularly convenient pa- cosy=cosfcosf’ +sinfdsing’ cog¢—¢'). (A4)

rametrization thereof. The new solutions would have an ex- .
. : o ... After some algebra, it can be shown that
tremely complicated mathematical representation if rewritten

in terms of the original spherical polar angle variabfeand 2(¢— 4“')(?—?)

0. 1-cosy= — —. (Ab)
(1+LD(1+7)

APPENDIX A: FUNDAMENTAL SOLUTIONS AND Therefore, the streamfunction associated with a point vortex

POINT VORTICES of unit circulation at, is given, as a function of andZ by

Let the stereographic projections of two points on the N
sphere with spherical polar coordinatés, 6, ¢) and 1 2(8= 88—

Ay ’ : : (ﬁ_ - _Iog — —_— |- (A6)
(1,0",¢") beZand{’, respectively. The simplest fundamen- A (14 20)(1+ o)
tal solution(see, e.g., Ref.)3of S8

Alternatively, it is said that the streamfunction associated

1 . . .
2, _ Py with a point vortex ofstrengthx is
Viy=0(0,6,0".4")— ;—, (A1) o
satisfying the constraint v=—"log 2(5_55)(5_ 5_5) , (A7)
, 2 N (A+LD(1+ L)
f wdo= _f V3ydo=0, (A2) " \yhere the circulatior" is related to the strength via
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r wn=e>""N. Then the instantaneous streamfunction is given,
K=o (A8) as a function of the stereographically projected coordinates,
by
APPENDIX B: COMPUTATION OF PATCH AREA . r* é,z
The area elemerto in spherical polars on a unit-radius Y&.0=- Elog 1+ gz
sphere is
do=sinodad . (B1) ~ ENzl (=)= -
If x andy denote the Cartesian coordinates{ofso that{ 4 j= (1+§?)(1+§JZ-) '
=X+iy) then Assume, without loss of generality, that the integral of the
dxdy=|J(x,y;8,¢)|dod o, (B2) uniform background vorticity is equal to unitjgo that the

vorticity is locally equal to 1/4 everywherg The global

here the Jacobiad(x,y; 6, ¢) is . L .
W 1ad(x,y; 0, ¢) | constraint on the vorticity distribution, therefore, dictates that

a(X,
J(X’y;0’¢)5&((0 Z))) 'y +NI';+1=0. (C2)
_ We seek solutions which are completely station@sy., non-
_ siné (B3) rotating. By the rotational symmetry of the configuration, it
(1—cos6)?" is enough to consider the point vortexéat(corresponding to

j=0). By the Helmholtz vortex theorems, the condition that

Using (12), the aread is therefore given b ) S
9(12 d y the nonself-induced component of the local velocity field at

4 f f d this point vortex is zero is equivalent to the condition
= g
NS F VR IS v 3 .
— — + _— — =0.
f f Adxdy §oavgg Loy vl o,
(1+0)? (C3)
(C2) and(C3) provide two equations fdry andI'; as func-
f J' ( dxdy tions of N and ;. Solving these equations gives
Paz\ (1+¢0) 5
rE=- C4
1 47 S (N+1)+(N—-1)£8 (€4
= —d{, (B4) d
P(1+L0) an
2
where the last line follows by application of the complex * (N-1)(5—1)

Te= (N+1)+(N—-1)7%" €9
The values given ifiC4) and(C5) are precisely the values to
1 4§(77_1)§,,( 7) which the renormalized circulation$’s/I', and T'¢/T",
T2 én_IW (BS)  should tendrespectively as the patch area tends tar.4

A graph of '} andI'y against latitudinal anglé, is
As a check, note that the special cdgey) = » corresponds  shown in Fig. 2 for the cash=3. When#,= 7 (so that all
to a hemispherical shell on a unit-radius sphere which isoint vortices are superposed at the south palesatellites

form of Green’s theorem. More conveniently, in terms of the
conformal mapping variable, the patch area is given by

well-known to have area2 _ have circulation—1/2 while the central line vortex has cir-
A more convenient way to compute the area is to obylation 1/2. The total net circulation at the south pole is,

serve that therefore, equal te-1, as must be the case to cancel out the
woA=4m(NT+T,), (B6)  total patch vorticity. Asé, decreasegso that the satellite

move further up the spherghe satellites grow weaker until

they have zero strength when at the north pole while the

central vortex strength increases until it becomes positive

APPENDIX C: STATIONARY POINT VORTEX and eventually re_aches unity as the satellites reac_h the north

CONFIGURATIONS pole. If the satellites have zero strength there, this must be

the case because the point vortex at the south pole is then the

Consider a point vortex configuration on sphere consistonly one “cancelling out” the overall patch vorticity.

ing of N satellite point vortices of circulatioRiy equispaced

in azimuthal anglep around a fixed latitude circl®’ = _ _ _

with a Circulationr* point vortex fixed at the south pole. !R. Kidambi and P. K. Newton, “Motion of three point vortices on a

sphere,” Physica 116, 143(1998.
Suppose that, at some instant, the satellite point vortices arg, 5 Bogomolov, “Dynamics of vorticity on a sphere,” Fluid Dy, 863
at (projected positions {;= gSwN where {;=cot(6,y/2) and (1977.

wherel'g andI'. are defined in39) and(50), respectively.
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