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Stability analysis of a class of two-dimensional multipolar vortex equilibria
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The stability properties of a class of explicit multipolar vortex solutions of the two-dimensional
Euler equations found in Crowdy@Phys. Fluids.11, 2556 ~1999!# are studied. While the tripole
solutions are linearly unstable in all configurations, it is found that the exact quadrupolar vortices
have distinguished linear stability properties revealing them to be neutrally stable in all
configurations. This result is consistent with observations by previous investigators on the general
robustness of quadrupolar vortex structures. Higher-order multipolar structures are linearly unstable
when the satellites are too close together, but become neutrally stable when the satellites are far
enough apart and the ambient vortex patch sufficiently distorted. The nonlinear evolution of
perturbed solutions is investigated numerically using contour dynamics methods. Some new results
concerning limiting states involving cusp singularities in the vortex patch boundaries are also
presented. ©2002 American Institute of Physics.@DOI: 10.1063/1.1476302#
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I. INTRODUCTION

Multipolar vortices are a recurring dynamical feature
many large-scale geophysical, atmospheric, and astroph
cal flows. The term refers to a collection of coherent vor
structures with distributions of vorticity having certain cha
acteristic geometrical arrangements. Monopoles, dipoles
poles, and quadrupoles, for example, refer to vorticity dis
butions having one, two, three, and four distinct vortic
extrema. Higher order structures have correspondingly la
numbers of such extrema. Typically, in ann-polar vortex a
central core of vorticity of one sign is shielded byn21
satellite vortices all of opposite sign such that the total c
culation of the structure is approximately zero and the co
bined structure rotates steadily. One way in which multipo
vortices have been observed to form is via the instability
shielded monopolar structures. A linear stability analysis o
shielded two-contour Rankine vortex by Flierl2 showed the
possibility of the formation of higher-order multipolar stru
tures from the barotropic instability of shielded monopole

Once formed, the stability of these multipolar vortices
of great interest and has attracted the efforts of many
searchers. The monopole and dipole have long been stu
in the literature. The form and structure of the tripole w
studied in detail by Polvani and Carton3 and most instance
shown to be stable. The case of the quadrupole has
received much attention in the last decade, not least bec
it appears to be relatively robust compared to higher or
structures. Carton4 observed the formation of~transient! qua-
drupoles in his study of the merger of shielded vortices. I
study of tornadoes using contour dynamics, Lin5 observed
the formation of triangular vortices via the nonlinear des
bilization of shielded monopolar structures. Carnevale a
Kloosterziel6 have studied the formation, evolution and s

a!Electronic mail: d.crowdy@ic.ac.uk
b!Electronic mail: martin.cloke@ic.ac.uk
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bility, both experimentally and numerically, of various mu
tipolar vortex structures with emphasis on the triangu
~quadrupolar! vortex. Their conclusion is that, unlike pen
tapolar and other higher order structures, the quadrup
proves relatively robust and stable to perturbations of app
priately small amplitude. They also studied a point vort
model of a symmetric triangular vortex and showed that
configuration is stable to finite perturbations in both the eq
librium positions and strengths of the satellites.

Morel and Carton7 independently reached similar con
clusions on the robustness of the quadrupolar vortex
concluded that they are robust whether initially perturbed
not and can resist certain rather severe deformations. M
and Carton7 remark on the fact that, starting from differen
initial conditions, their results are in qualitative agreeme
with those of Carnevale and Kloosterziel.6

A class of exact solutions of the two-dimensional Eu
equations representing multipolar vortex structures with d
tributed vorticity has recently been found by Crowdy.1 For
eachN>2, the analysis of Ref. 1 provides a continuous on
parameter family~parametrized by a real parametera! of
solutions which, in the limita→` become increasingly mo
nopolar in form but which, asa decreases, develop into co
herent structures possessing all the qualitative features w
are now recognized as characterizing an (N11)-polar vor-
tex. The exact solution class consists of various finite dis
butions of line vortices superposed on an ambient vor
patch comprising a distributed region of uniform vorticity.

Beyond the realm of multipolar vortices, vortical con
figurations involving line vortices superposed on a ba
ground vorticity patch have recently been the subject
much theoretical and experimental investigation in oth
contexts. Lin5 studies the evolution of a small-scale line vo
tex superposed on a vortex patch to model a tornado vo
moving in a tornado mesocyclone. In this application, t
background patch of vorticity models the tornado meso
2 © 2002 American Institute of Physics
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1863Phys. Fluids, Vol. 14, No. 6, June 2002 Stability analysis of multipolar vortices
clone while a smaller-scale vortex typically models the t
nado cyclone. As discussed by Lin, the ‘‘multiple vortex
phenomenon is now well known in the study of tornado
and consists of a situation in which the tornado core is s
rounded by a number of orbiting ‘‘suction spots’’ which a
often seen to orbit the core and are the cause of much d
age and destruction. It is conceivable that the central
vortex in the solutions of Ref. 1 might model the core of t
tornado cyclone~superposed on the ambient vortex pat
which models the tornado mesocyclone! with the satellite
line vortices modelling the suction spots. Patch/line-vor
systems are also studied because of their relevance in m
elling the relaxation of 2D turbulence in which an initial
turbulent vorticity distribution coalesces into a number
distinct vorticity maxima effectively superposed on the
gion of ambient vorticity.8 Durkin and Fajans9,10 have per-
formed experiments in a Malmberg-Penning trap in an
tempt to under the dynamics of ‘‘vortex-within-a-vortex
phenomena. Jin and Dubin11 later performed an analysis o
such a system.

It is of interest to examine the stability properties of t
exact multipolar vortices of Ref. 1. This is the subject of t
present paper. A convenient feature of the exact solution
Ref. 1 is that the linear stability properties can be system
cally studied as a function of the continuous parametera for
each integerN>2. This requires a numerical treatment but
considerably simplified by knowledge of closed-form form
las for the base-state solutions.

The contents of the paper are as follows. In Sec. II
relevant formulas for the exact solutions found in Ref. 1
reviewed. This section also includes a detailed discuss
not included in the original presentation,1 of limiting states
within this class. Section III presents an analytical treatm
of the linear stability of the basicshielded Rankine vorte
~which was the starting point for the generalized solutio
found in Ref. 1!. Then, the linear stability of the gener
solutions of Ref. 1 is studied using a numerical spec
method based on Taylor and Laurent series. Section IV
scribes a numerical investigation, using contour dynam
methods, into the nonlinear evolution of the solution cla
starting with some preliminary observations on the nonlin
stability of the shielded Rankine vortex. The paper conclu
with a discussion of the results~Sec. V!.

II. EXACT SOLUTIONS OF REF. 1

A. Review

The solutions in Crowdy1 consist of a simply connecte
patch of uniform vorticityv on which a finite distribution of
line vortices are superposed such that the global config
tion is in dynamic equilibrium. A schematic of a typical qu
drupolar vortex is shown in Fig. 1.v can be chosen arbi
trarily. For any integerN>2, the shape of the vortex patch
described by a conformal mapz0(z) from the unitz disc ~in
a parametricz plane! to the interior of the patch. The map
ping takes the unit circleuzu51 to the boundary of the vorte
patch and is given by
Downloaded 28 Sep 2004 to 129.132.136.197. Redistribution subject to A
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z0~z!5RzS 11
b

zN2aND , ~1!

whereR, a, andb are suitable real parameters. Givena and
N, the value ofb is the solution of the nonlinear algebra
equation

1

a S 11
baN

~12a2N! D2a1
b~N21!

2NaN21 1
b

2NaN

z0zz~a21!

z0z~a21!

50, ~2!

an equation that is independent ofR. z0z(z) and z0zz(z)
denote the first and second derivatives ofz0(z). This nonlin-
ear equation forb can be rearranged to form a quadratic,

c2~a;N!b21c1~a;N!b1c0~a;N!50, ~3!

where

c2~a;N!5
a

2N~12a2N!3 @N2112N~12N!a2N22

1~2N222N12!a2N22Na4N22

1~N21!a4N#,

c1~a;N!5
1

2aN21N~12a2N!2 @N21

12N~22N!a2N221~2N224N12!a2N

24Na4N221~3N21!a4N#,

c0~a;N!5
12a2

a
, ~4!

which allowsb(a;N) to be found explicitly as

FIG. 1. Schematic of a quadrupolar vortex consisting of a uniform patch
vorticity v with four superposed line vortices—a central line vortex
strengthG0 and three satellite line vortices each of strengthGs .
IP license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1864 Phys. Fluids, Vol. 14, No. 6, June 2002 D. Crowdy and M. Cloke
b~a;N!5
2c1~a;N!2A@c1~a;N!#224c0~a;N!c2~a;N!

2c2~a;N!
.

~5!

The second possible solution forb does not yield a confor-
mal map that is a univalent function in the unitz circle and is
therefore physically inadmissible. The fact that a closed-fo
analytical expression forb(a;N) can be derived is not state
in Crowdy,1 but is a significant observation because it re
ders the exact solution class completely explicit.

R is an arbitrary normalization parameter which det
mines the size of the vortex structure. LetA denote the area
of the patch. In Ref. 1R is chosen so thatA5p. Here, a
different choice is made; we specify that each of the sate
line vortices is a unit distance from the central line vort
which is at the coordinate origin. Because the map~1! has a
satellite line vortex on the negative real axis, we insist t
this vortex is in fact atz521 leading to

R5
a2N112a

12a2N1baN . ~6!

With this choice, the central line vortex is atz50 while the
N satellite line vortices are at

zk052e2p i ~k21!/N, k51,2,...,N. ~7!

The strengthG0 of the central line vortex and the strengthGs

of each of the satellite line vortices are given by

G05vpRz0z~0!,
~8!

Gs52
vpRbz0z~a21!

NaN .

Let Gp denote the total circulation of the patch of areaA and
uniform vorticity v, then

Gp5vA. ~9!

The fact that the total circulation of the coherent structure
zero implies that the circulations are related via

Gp1G01NGs50. ~10!

B. Limiting states

We now discuss the limiting states of the class of ex
solutions just described and both clarify and amplify so
brief remarks made on this matter in Ref. 1.

The subject of limitingV-states has a rich history in th
vortex dynamics literature. The term ‘‘V-state’’ normally re-
fers to a globally uniform, simply-connected patch
vorticity.12 Overman13 has performed a study of limitingV-
states and, by means of a local analysis, has shown
points of nonanalyticity in the boundaries of patches of u
form vorticity can either be 90° corners or cusps. Overm
also examines the literature for equilibrium solutions of t
Euler equations involving uniformV-states and concludes
using a combination of local and global arguments, that
known solutions exhibit corner formation as the relevant li
iting states. At that time, no examples of limitingV-state
equilibria exhibiting cusps were known. The solutions fou
in Crowdy,1 while consisting of patches of uniform vorticit
Downloaded 28 Sep 2004 to 129.132.136.197. Redistribution subject to A
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are not, strictly speaking,V-states in the sense that the vo
ticity in the patch is not globally uniform. There is also
finite distribution of superposed line vortices. Neverthele
the local analysis of Overman which leads to the conclus
that points of nonanalyticity in the boundaries of locally un
form patches of vorticity must be either 90° corners or cu
still pertains to the solutions of Crowdy1 ~provided a line
vortex does not draw close to the point of nonanalyticity
the limit!. It is therefore of interest to examine whether t
solutions of Crowdy1 are consistent with Overman’s analy
sis.

In a short section of Ref. 1 on limiting vortex shapes, t
term ‘‘limiting’’ is used loosely to exhibit the qualitative fac
that as the parametera gets large a monopolar vortex~resem-
bling the shielded Rankine vortex! is obtained while asa
draws close to unity multipolar vortex structures havi
shapes highly reminiscent of some schematical drawing
Carnevale and Kloosterziel6 are observed. In Fig. 8 of Ref. 1
some example shapes are depicted forN53 and 4 witha
values close to unity but the exacta values used are no
given explicitly.

In fact, thea values used in Fig. 8 of Ref. 1 are close
the position of the vertical asymptote in the graphs ofb
againsta which can be clearly seen in Figs. 2 and 3 sho
here for the valuesN53 and 4. The corresponding patc
shapes, similar to those drawn in Fig. 8 of Ref. 1, are rep
duced here in Fig. 4. In Ref. 1 the graph ofb againsta was
depicted only forN52 and it is stated there that the grap
for N>3 are qualitatively similar. A comparison of Figs.
and 3 of the present paper with Fig. 2 of Ref. 1 reveals t
this is indeed true provided one only looks to the right o
vertical asymptote which appears at a value ofa which is
strictly greater than 1 and which will henceforth be deno
aasymp

(N) . Note that forN52, the case considered in most d
tail in Ref. 1 this vertical asymptote occurs ata51 while for
all N>3 this asymptote occurs at someaasymp

(N) .1. Thus for
N>3 there is an additional branch of possibleb values
~shown explicitly in Figs. 2 and 3! which are negative bu
which also give rise to univalent conformal mappings fro

FIG. 2. b againsta for N53: acrit
(3)51.211; aasymp

(3) 51.371.
IP license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1865Phys. Fluids, Vol. 14, No. 6, June 2002 Stability analysis of multipolar vortices
the unit z disc ~this additional branch, which exists forN
>3 but notN52, was missed at the time of writing Ref. 1!.

The vertical asymptote in theb-against-a graphs forN
>3 doesnot represent a genuine singularity in the class
exact solutions of Ref. 1 and the corresponding solutions
not limiting states. A hint that this is the case is given by t
graphs ofG0 /Gp and Gs /Gp as a passes throughaasymp

(N) .
These graphs are shown in Figs. 5 and 6 forN53 and 4. The
key to understanding this artificial singularity is to note th
the value ofG0 at aasymp

(N) is equal to zero. Thus the solution
a5aasymp

(N) for N>3 corresponds to seeking solutions cons
ing of a finite-area vortex patch withN superposed satellite
line vortices but no central line vortex. It is easy to exte
the derivation of Ref. 1 to show that the corresponding c
formal map from the unitz circle in this case would have th
modified form

z̃0~z!5
Rz

zN2aN . ~11!

To find aasymp
(N) it is simply necessary to solve the mod

fied nonlinear equation

aN21

12a2N 1
~N21!

2NaN21 1
1

2NaN

z̃0zz~a21!

z̃0z~a21!
50. ~12!

This equation depends only on the parametera and it is
found to have a unique solution in the range@1, `!. Note that

FIG. 4. Vortex patch shapes fora close toaasymp
(N) : N53, a51.385; N54,

a51.485~cf. Fig. 8 of Ref. 1!. Line vortices are shown as bold dots.

FIG. 3. b againsta for N54: acrit
(4)51.241; aasymp

(4) 51.477.
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~12! can be derived as a formal limit of~2! as b→`. For
eachN the solution of~12! will be denotedaasymp

(N) . The first
few values are calculated to be

aasymp
~3! 51.371, aasymp

~4! 51.477, aasymp
~5! 51.507. ~13!

It is clear from Figs. 2 and 3 that the positions of the vertic
asymptotes of theb-against-a graphs forN53 and N54
coincide withaasymp

(3) andaasymp
(4) , respectively.

As a remark, Crowdy15 has shown that there exists
branch of multipolar equilibria consisting of doubly con
nected regions of vorticity which bifurcate from the stea
solutions~11! with a5aasymp

(N) for eachN>3. These solutions
are parametrized by a parameterr which, when equal to
zero, give the solutions~11! with a5aasymp

(N) . For r.0, a
small region of quiescent irrotational fluid centered at t
origin begins to develop thus forming an annulus of vortic
containingN line vortex singularities.

Having better understood the vertical asymptotes in
b-against-a graphs forN>3, the question arises as to exact

FIG. 5. Graph ofG0 /Gp andGs /Gp againsta for N53.

FIG. 6. Graph ofG0 /Gp andGs /Gp againsta for N54.
IP license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1866 Phys. Fluids, Vol. 14, No. 6, June 2002 D. Crowdy and M. Cloke
how close to 1 the parametera can be made while still giving
an exact equilibrium solution of Euler. Indeed, reducinga
below aasymp

(N) should now provide the limiting states in th
same sense used by Overman.13

It turns out that, for eachN>3, a critical value of the
parametera exists at whichN cuspsform simultaneously at
N distinct points on the boundary of the vortex patch. T
critical a value in each case will be denotedacrit

(N) . For a
givenN, exact solutions exist for any value of the continuo
real parametera in the range

aP@acrit
~N! ,`!. ~14!

To find acrit
(N) it is necessary to solve the stationarity conditi

~2! and the equation

z0z~ep i /N!50 ~15!

simultaneously foracrit
(N) and the correspondingbcrit

(N) . These
two nonlinear equations can be solved numerically us
Newton’s method~or, indeed, solved analytically!. The solu-
tions for the first few values ofN are found to be

acrit
~3!51.211, acrit

~4!51.241, acrit
~5!51.232. ~16!

Recall that a necessary condition for~1! to represent a uni-
valent conformal map from the unitz disc to the vortex patch
is thatz0z vanishes nowhere insideuzu<1. A zero impinging
on the unit circle will lead to a loss of univalency of th
conformal map and will therefore constitute a limiting sta
By symmetry, the limiting case of the conformal map~1!
corresponds toN simple zero ofz0z simultaneously imping-
ing on the unitz circle. This gives rise to the simultaneou
formation of N cusps in the boundary of the vortex patc
The critical patch shapes forN53, 4, and 5 are shown in
Fig. 7.

For situation forN52 is different and is the case con
sidered in most detail in Ref. 1. It is found thata can draw
arbitrarily close to 1 and, in this limit, the correspondin
patch resembles two touching circular discs while the t
satellite line vortices tend towards the center of each of th
two discs. The solution fora51.05 is shown in Fig. 8. There
is a line vortex at the center of the configuration at the po
to which the two cusps in the patch boundary are tend
Strictly speaking, care is needed in applying the local ana
sis of Overman to this case because, in the limit, the poin
nonanalyticity of the vortex boundary coincides with a li
vortex singularity. However, the strength of this line vort
tends to zero in the limit and two cusps are still seen to fo
in the boundary of the patch. We do not investigate this po
in any detail. A class of rotatingV-states exhibiting cusp
singularities in their limiting configurations has recently be
found by Crowdy.14 A detailed local analysis of both th
limiting patch shape and velocity field is performed in R
14 and, while we omit the details, a similar analysis can
performed for the exact solution class of interest here.

If the central line vortex is removed, the vortex config
ration in Fig. 8 resembles two touching shielded Rank
vortices. The general idea of combining a disjoint collecti
of shielded Rankine vortices~which do not interact if they do
not overlap! to form more complicated global equilibria o
Downloaded 28 Sep 2004 to 129.132.136.197. Redistribution subject to A
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the two-dimensional Euler equation proves to be a fruit
one. Crowdy15,16has shown that there are situations in whi
a number of initially disjoint shielded Rankine vortices c
draw into contact and be ‘‘continued’’ to form higher-ord
compound vortices. The reader is referred to Refs. 15 and
for a development of these ideas.

III. LINEAR STABILITY

A. Shielded Rankine vortex

Flierl2 has examined the linear stability of a zero to
circulation monopolar structure consisting of a unit circu
disc r<1 of unit positive vorticity shielded by an annula
patch of uniform vorticity2q for radii between 1,r ,d. It
is found that as the width of the outer annulus decreases
wave number of the most linearly unstable mode also
creases.

The shielded Rankine vortex can be understood a
limit of Flierl’s configuration; the outer radiusd of the annu-

FIG. 7. Vortex patch shapes fora close toacrit
(N) : N53, acrit

(3)51.211; N
54, acrit

(4)51.241;N55, acrit
(5)51.232. These are close to the limiting states

the sense of Overman~Ref. 13! and exhibit near-cusp singularities in th
patch boundary. Line vortices are shown as bold dots.

FIG. 8. Patch boundary forN52 anda51.05. Line vortices are shown a
bold dots.
IP license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1867Phys. Fluids, Vol. 14, No. 6, June 2002 Stability analysis of multipolar vortices
lus is rescaled to unity while the area of the enclosed circ
patch is reduced to zero while simultaneously increasing
vorticity to infinity in such a way as to keep the total circ
lation of the enclosed vortex constant. In spite of this, it
not particularly straightforward to compute the correspo
ing limit of Flierl’s linear stability results. Therefore, we no
proceed to use rather separate analytical methods to ex
itly study the linear stability of the shielded Rankine vort
solution. This analysis is useful for two reasons: first, it w
provide a check on the numerical code written to find
linear stability spectrum in the general case; second, i
instructive in explaining the general numerical method to
employed later.

The steady shielded Rankine vortex solution can be w
ten

u2 iv5H 2
iv

2 S z̄2
1

zD , zPD,

0, z¹D.

~17!

Under a general~irrotational! perturbation, the Helmholtz
vortex theorems18 can be used to deduce that the veloc
field associated with the perturbed vortex can be written

u2 iv5H 2
iv

2 S z̄2
1

z2 ẑ0~ t !
1F~z,t ! D , zPD~ t !,

2
iv

2
G~z,t !, z¹D~ t !,

~18!

where D(t) now denotes the perturbed patch andF(z,t)
and G(z,t) are functions analytic inside and outsideD(t),
respectively.ẑ0(t) denotes the~perturbed! position of the
central line vortex. The dynamic pressure condition
equivalent to continuity of the velocity field on the patc
boundary. This implies

F~z,t !2G~z,t !52 z̄1
1

z2 ẑ0~ t !
on ]D~ t !. ~19!

Equation~19! constitutes a Riemann–Hilbert problem for th
analytic functionsF(z,t) andG(z,t).

We now assume that the perturbations are small so
their evolution can be described within linear theory. T
base-state conformal map in this case is simply

z0~z!5z. ~20!

It is now conjectured that the linear eigenmodes have
functional forman(t)zn for n>1 wherean(t)PC is an order
one quantity so that the perturbed conformal map has
form

z~z,t !5z0~z!1ean~ t !zn1O~e2!, n>1. ~21!

The perturbed position of the central line vortex is assum
to have the form

ẑ0~ t !5eb~ t !, ~22!

whereb(t)PC is an order one quantity.
We now verify that this ansatz for the linear eigenmod

is correct. First consider~19!. Using ~21! and ~22! in ~19! it
is seen
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F~z,t !2G~z,t !52
1

z
2

eān

zn 1
1

z1ean~ t !zn2eb

1O~e2!. ~23!

Expanding correction toO~e!,

F~z,t !2G~z,t !5eS 2
ān

zn 1
b

z22anzn22D1O~e2!.

~24!

The first two terms on the right-hand side are clearly n
analytic inside the patch. Indeed, it is deduced that

F~z~z,t !!52ean~ t !zn22, ~25!

which is analytic inside the patch.
The kinematic boundary condition can be written in t

form

ReFzt~z,t !z̄z~z21,t !

z G5ReF ~u1 iv !z̄z~z21,t !

z G . ~26!

To proceed, it is assumed that all perturbed quantities ha
time dependence of the formest wheres is an eigenvalue
which remains to be determined. In particular,

an~ t !5ãnest, b~ t !5b̃est, ān~ t !5ãn* est,

b̄~ t !5b̃* est, ~27!

where ãn , b̃, ãn* , b̃* are complex constants. The coeffi
cientsãn* and b̃* arenot assumed to be the actual comple
conjugates ofãn and b̃. To clarify notation, the actual com
plex conjugate ofãn will be denotedãn. Henceforth,ãn and
ãn* are independent complex parameters, as areb̃ and b̃* .
This technique is also used in Meiron, Saffman a
Schatzman17 in their study of the linear stability of inviscid
vortex streets. A physically realistic perturbation can be c
structed from the solutions obtained in this way.

Using ~21!, ~22!, and ~25! in ~26! to leading order we
obtain ~dropping tildes!

sanzn211
san*

zn21 52
iv

2 S an*

zn212
b

z D
1

iv

2
~anzn212b* z!. ~28!

First considern51. In this case, equating coefficients ofz0

andz61 in ~28! we deduce

s~a11a1* !52
iv

2
~a1* 2a1!, b50, b* 50. ~29!

This gives two~dynamically unimportant! modes: one corre-
sponding to a neighboring steady state in which the radiu
the vortex patch has increased slightly (s50) and another to
a rotational degree of freedom which is removed by insist
a1* 5a1 .

Now considern52. In this case, comparing coefficien
of z61 we obtain the two equations
IP license or copyright, see http://pof.aip.org/pof/copyright.jsp
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sa25
iv

2
~a22b* !,

~30!

sa2* 52
iv

2
~a2* 2b!.

Note that becausea2 , a2* , b, and b* are assumed to b
independent, Eqs.~30! constitute two equations forfour in-
dependent variables. We therefore require two more eq
tions. These follow from the dynamical equations for t
evolution of the central line vortex which we have yet
write down. By the Helmholtz vortex theorems,18 it is known
that a line vortex moves with the non-self-induced comp
nent of the local velocity field. In this case, this can
shown to be equivalent to the~linearized! equation

sb* 52
iv

2
~b* 2a2!. ~31!

This equation, together with its complex conjugate, prov
the two additional equations needed to supplement~30!.
These equations lead to a standard eigenvalue problem
434 matrix all of whose eigenvalues are found to be ze
e
n
e

he
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For all n>3, equating coefficients ofz6(n21) andz61 in
~26! yields

san5
ivan

2
, san* 52

ivan*

2
, b50, b* 50, ~32!

which yields two eigenvalues6 iv/2. Each of these two ei-
genvalues has infinite multiplicity. The linear stability spe
trum of the shielded Rankine vortex therefore consists of fi
zero eigenvalues and an infinitude of6 iv/2 pairs. Only the
n52 shape perturbation mode interacts with the line vor
evolution. It is concluded that the shielded Rankine vortex
neutrally stable to small perturbations~i.e., there are no lin-
ear eigenmodes with eigenfrequencies having strictly p
tive real part!. The nonlinear stability of the shielded Ran
ine vortex is examined briefly in Sec. III.

B. General equilibria of Ref. 1

Using Helmholtz laws18 the velocity field associated
with general irrotational perturbations to the general class
equilibria found in Ref. 1 can be written
u2 iv55 2
iv

2 S z̄2 (
k51

N
gs

z2zk~ t !
2

g0

z2z0~ t !
2F~z,t !D , zPD~ t !,

2
iv

2
G~z,t !, z¹D~ t !,

~33!
ts

ate

ne

er
where

g052Rz0z~0!,
~34!

gs5
Rbz0z~a21!

NaN ,

and whereD(t) is the perturbed vortex patch,F(z,t) is ana-
lytic inside D(t) andG(z,t) is analytic outsideD(t) and is
O(1/z) as uzu→`. The set of complex functions of tim
$zk(t)uk50,...,N% denotes the perturbed positions of the ce
tral and satellite line vortices. Continuity of velocity on th
vortex jump requires that

F~z,t !2G~z,t !52 z̄1 (
k51

N
gs

z2zk~ t !

1
g0

z2z0~ t !
on ]D~ t !. ~35!

Equation~35! is a standard Riemann–Hilbert problem. T
solution forF(z,t) is given by
-

F~z,t !5
1

2p i R
]D~ t !

S 2 z̄81 (
k51

N
gs

z82zk~ t !

1
g0

z82z0~ t !D dz8

z82z

52
1

2p i R
]D~ t !

z̄8 dz8

z82z
, zPD~ t !, ~36!

the second equality following because all the poin
$zk(t)uk50,1,...,N% are insideD(t).

The linearly perturbed conformal map, and its conjug
function, are assumed to be of the form

z~z,t !5z0~z!1eestẑ~z!,
~37!

z~z,t !5z0~z!1eestẑ~z!,

where e!1 is a small parameter. Perturbations to the li
vortex positions are denoted

zk~ t !5zk01eestẑk , k50,...,N. ~38!

The circulations of the line vortices do not change und
perturbation. The functionsẑ(z) have expansions of the form

ẑ~z!5 (
n50

`

ânzn, z̄̂~z21!5 (
n50

` ân*

zn , ~39!
IP license or copyright, see http://pof.aip.org/pof/copyright.jsp
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where$ân* % are assumed independent of$ân%. The expansion
~39! is truncated at order (N/2)21 whereN is an even in-
teger. The choice ofN is discussed shortly.

Defining the quantitieszk0 to be the preimages in thez
plane of the points$zk0%, i.e.,

zk05z0~zk0!, k50,...,N, ~40!

then the quantities$ẑkuk50¯N% are defined via the equa
tions

zk~ t !5zk01eestẑk[z~zk01eẑk ,t !, k50,...,N. ~41!

To leading order ine,

ẑk5 ẑkz0z~zk0!1 ẑ~zk0!, k50,...,N. ~42!

Similarly,

ẑk5 ẑk* z0z~ z̄k0!1 ẑ~zk0!, k50,...,N. ~43!

Here the set$ẑk* uk50,...,N% is again assumed independent
the set$ẑkuk50,...,N%.

The Riemann mapping theorem provides the freedom
specify that

z~0,t !50, ~44!

so thata05a0* 50, while to eliminate a rotational degree o
freedom we imposea15a1* . After truncation, the total set o
unknowns is then

H âkUk51¯
N
2

21J , H âk* Uk52¯
N
2

21J ,

$ẑkuk50¯N%, $ẑk* uk50¯N%. ~45!

A set ofN12N21 equations is required to determine the
unknowns.

By composition of analytic functions, we can defin
F0(z) via

F0~z![F0~z0~z!!, ~46!

and similarlyF̂(z) via

F~z~z,t !,t !5F0~z!1eF̂~z!est1O~e2!. ~47!

To find F̂(z), first note that becauseF(z,t) is analytic inside
D(t) then it has a Taylor series of the form

F~z,t !5 (
k50

`

Fkz
k. ~48!

It can be shown from~36! that

Fk[2
1

2p i R
]D

z̄8

z8k11 dz8, k50,1,2,... . ~49!

These coefficients depend one. Linearizing for smalle, so
that

Fk5Fk01eF̂ke
st1O~e2!, ~50!

it follows that

Fk052
1

2p i R
]D

z̄0~z21!z0z~z!

z0~z!k11 dz ~51!
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F̂k52
1

2p i F R
uzu51

z̄̂~z21!z0z~z!

z0~z!k11 dz

2 R
uzu51

~k11!
z̄0~z21!z0z~z!ẑ~z!

~z0~z!!k12 dz

1 R
uzu51

z̄0~z21!ẑz~z!

z0~z!k11 dzG . ~52!

Some algebra reveals that, to leading order ine, the linear-
ized kinematic boundary condition reduces to the simplifi
form

s ReF z̄0z~z21!ẑ~z!

z G
5ReF iv

2
zz0zS (

k51

N
gsẑk

~z0~z!2zk0!2

1
g0ẑ0

@z0~z!#22 (
k50

`

F̂kz0~z!kD G . ~53!

Equation ~53! is linear in the perturbation quantities wit
coefficients which depend nonlocally on the base-state e
librium. To find equations for the unknowns, the represen
tions ~39!, ~42!, and ~43! are substituted into~53! and the
equation expanded as a Laurent series inz between
z2(N/2)12 andz (N/2)22. The infinite sum appearing in~53! is
truncated, consistently, after thek5(N/2)22 term. Equating
coefficients on both sides of~53! then providesN23 equa-
tions.

The fact that the line vortices are convected with t
~non-self-induced! local velocity provides the additiona
equations

s ẑk52
iv

2 S ẑk2(
j Þk

gs~ ẑj2 ẑk!

~zk02zj 0!2

2
g0~ ẑ02 ẑk!

~zk0!2 1F̂k
~ lv !D , k51,...,N,

~54!

s ẑ052
iv

2 S ẑ02 (
k51

N
gs~ ẑk2 ẑc!

~zk0!2 1F̂0
~ lv !D ,

where

F̂k
~ lv !52

1

2p i R
uzu51

z̄̂~z21!z0z~z!

z0~z!2zk0
dz

2
1

2p i R
uzu51

z̄0~z21!ẑz~z!

z0~z!2zk0
dz

2
1

2p i R
uzu51

z̄0~z21!z0z~z!~ ẑk2 ẑ~z!!

~z0~z!2zk0!2 dz, ~55!

for k50,1,...,N. TheN11 equations~54!, together with their
complex conjugates, provide the additional 2N12 equations
required for a closed, consistent linear system.
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The set of unknowns~45! is vectorized to produce a
vectorx. The N2112N equations derived above lead to
generalized eigenvalue problem of the form

Ax5sBx, ~56!

where the matricesA and B depend purely on the~exact!
base-state equilibrium. To find these matrices, all Tay
Laurent coefficients of functions of the base-state confor
map ~and its derivatives and integrals! are computed by
evaluating these functions atM points on the unitz circle
and using fast-Fourier transforms. The following choices
made;N is taken to be a power of 2 andM is taken to be at
least two powers of 2 higher~typically M54N! in order to
avoid unacceptable aliasing errors. The accuracy of all
culations is checked by independently alteringN and M.
Most of the results which follow useN564 andM5256.

C. Checks on the linear stability analysis

It is known that the dynamics of point vortices an
patches of uniform vorticity is Hamiltonian.18 Therefore, any
eigenvalues that do not occur as pure-real or pure-imagin
pairs will occur in complex conjugate quartets. This provid
a first check on the numerical code.

For any steady state, there exists a neighboring equ
rium corresponding to a different value ofR, i.e., an equilib-
rium with a slightly different patch area. In addition, w
expect two additional zero eigenvalues associated with
turbations which shift the vortex centroid of the vortic
structure in either of the two coordinate directions. For ana
andN, we therefore expect to find at leastthreezero eigen-
values. This is found to be the case. These modes are re
nized and discarded—only perturbations which preserve
area and centroid of the vortex patch are considered.

As an important check on the general eigenmodes co
sponding tononzeroeigenvalues, the linear perturbation
the patch area and patch centroid for these modes are
puted and it is verified that these perturbations are ind

FIG. 9. Maximum linear growth rate againsta for N52, 4, 5, and 6. The
configurations forN54, 5, and 6 are found to become neutrally stable
astab

(4) 51.40,astab
(5) 51.41, andastab

(6) 51.37.
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zero ~to within the accuracy of the numerical method!. It is
also known that angular momentum is another quan
which is conserved by the linearized Euler equations and
additional check is provided by verifying that all modes wi
nonzero eigenvalue indeed have an associatedzero linear
perturbation in angular momentum. It is also verified that
the case whereN50 ~so that the steady state is the monop
lar shielded Rankine vortex! the spectrum found analytically
in Sec. III A is retrieved.

A note on a limitation of the numerical method. Th
method uses a Taylor expansion~48! of F(z,t) and asa
→acrit

(N) it must be expected that it will become increasing
inaccurate for fixed values ofN and M as a result of at-
tempting to evaluate an expansion close to its radius of c
vergence. Indeed, fora-values sufficiently far fromacrit

(N) it is
found that independently increasingN andM does not af-
fect the results of the eigenvalue calculation; however ifa is
too close toacrit

(N) the spectrum is susceptible to significa
changes as the order of the spectral method is increa
Thus, using the above method, the linear stability of so
tions with values ofa too close toacrit

(N) cannot be reliably
computed.

D. Results

Results are presented forv51; growth rates for other
values ofv are obtained by multiplication. For eachN>2,
the maximum linear growth rate~i.e., the magnitude of the
real part of the eigenvalue with the largest positive real p!
is calculated for different values ofa within the range of
existence of the solutions. From~16!, it is seen that the val-
ues of acrit

(N) are all around 1.25 forN52,...,5. UsingN
564, it is found that the numerical method just described c
adequately resolve the linear stability spectrum fora>1.35
~although forN52, a51.4 is the smallest value that can b
used reliably!.

It is found that the tripolar solutions withN52 are lin-
early unstable for all choices ofa. The maximum linear
growth rate in this case is shown in Fig. 9. The caseN53 is
distinguished and the solutions are found to be neutr
stable for alla values that can be calculated reliably usi
the method employed. While no eigenvalues with nonz
real part are found, seven zero eigenvalues are found. Th
true for all other values ofN. One corresponds to a neigh
boring steady state with different area, another two cor
spond to modes in which the vortex centroid is displac
The remaining four zero eigenvalues appear to correspon
nontrivial neutral states indicating the possibility of neig
boring steady solutions, but this is not investigated furth
here. For present purposes, the important fact is that no
genvalues with nonzero real part are found.

For the casesN54, 5, and 6 which were investigated i
detail, it is found that for largea the solutions are linearly
unstable. However, asa falls below some critical value~de-
notedastab

(N)! the configurationsbecomeneutrally stable, with
any real eigenvalues passing through the origin and bec
ing pure imaginary. Calculations usingN564 produce the
valuesastab

(4) 51.40 ~correct to 2 decimal places!, astab
(5) 51.41

andastab
(4) 51.37. Graphs of the maximum linear growth rat

t
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are shown in Fig. 9. It is conjectured that values ofastab
(N) at

which there is an exchange of stability exist for all high
values ofN. This was checked explicitly forN up to 8.

It is also observed from inspection of the correspond
eigenmodes for largea and M52 that the most unstabl
eigenmodes are associated with displacement of the ce
line vortex while for M54 and M55 the most unstable
modes are associated with displacement of the satellite
vortices with no motion of the central line vortex.

The work of Morikawa and Swenson19 involving line
vortices is consistent with many of these results, especi
in the parameter rangea→`. For largea, the vortex patch
becomes large compared to the separation of the line vor
and it becomes near-circular in shape. The role of the pa
can then be interpreted as providing an overall bulk rotat
such as to cancel the rotation that the line vortex configu
tion would otherwise have if placed in a field of irrotation
fluid. In this case, it is reasonable to expect that the stab
properties of the localized line vortex configuration might
inherited from the results of Morikawa and Swenson.19 An
asymptotic analysis of~2! asa→` reveals that

b;
2NaN

~N21!
as a→`. ~57!

Using ~1! and ~8! it follows that

G0

Gs
;2

~N21!

2
as a→`. ~58!

This fact facilitates comparison with Table I on p. 1063
Morikawa and Swenson19 which provides the stability region
for a configuration ofN equal satellite line vortices surround
ing a central line vortex as a function of the ratio of t
central-to-satellite circulations. Comparison with Table I
Ref. 19 shows that the asymptotic ratio2(N21)/2 only
falls within the stability range in the caseN53. Figure 10
shows that asa decreases,G0 /Gs increases for eachN. When
N53, G0 /Gs falls within the stability range of Ref. 19 for al
values ofa. For N52, G0 /Gs never falls inside the stability

FIG. 10. Graph ofG0 /Gs for N52, 3, 4, and 5. Asa→`, ratio approaches
asymptotic value given by~58!.
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region of Ref. 19 for any value ofa while, in the other two
casesN54 and 5 shown in Fig. 10, this ratio falls within th
stability range of Ref. 19 for sufficiently smalla. Indeed,
g0520.5 is the critical value for stability found by
Morikawa and Swenson19 for N54 and 5. Here, whenN
54, G0 /Gs520.5 whena51.808, while the relevant value
of N55 is a51.697. It should not be expected that the
values will correspond toastab

(4) and astab
(5) because, for these

small values ofa, the nontrivial shape of the ambient vorte
patch must be assumed to be having some effect on the e
librium other than simply cancelling out the rotation that t
line vortex configuration would otherwise have if the patch
absent. Nevertheless, the above linear stability results
qualitatively consistent with Morikawa and Swenson.19

The above results are further consistent with Morika
and Swenson19 in that, for N52, they also find that the in-
stability is associated with perturbations of the central l
vortex while, for N54, it is the satellite vortices that ar
unstable.

IV. NONLINEAR EVOLUTION

The purpose of this section is to examine to what ext
the results of the linear stability analysis manifest themsel
in the nonlinear evolution of the perturbed equilibria of Re
1. It is not our aim to present an exhaustive study of
nonlinear stability of the solutions.

A fortuitous property of the class of exact solution
found in Crowdy1 is that they are a hybrid of two of the mos
well-studied mathematical idealizations of two-dimension
vortex dynamics, i.e., line vortices and uniform vorte
patches. This important fact implies that the nonlinear e
lution of this class of solutions can be studied using cont
dynamics methods as originally expounded by Deem
Zabusky.12 An adapted version of the contour surgery co
as developed by Dritschel20 is now used to examine the typ
cal nonlinear evolution of the multipolar solutions of Ref.

The contour surgery code of Dritschel20 is modified by
adding 2N12 nonlinear ordinary differential equations go
erning thex andy positions of theN11 line vortices super-
posed on the vortex patch. By the Helmholtz vort
theorems18 it is known that line vortices move with the non
self-induced local velocity. Several runs of the modified co
consisting purely of anN-polygonal array of co-rotating line
vortices is made for various values ofN. The angular veloc-
ity V of steady rotation is well known to be given as

V5
Ḡ~N21!

4pr 0
2 , ~59!

wherer 0 is the radial distance of each line vortex from th
origin, and Ḡ is the circulation of each vortex.18 This pro-
vides a check that the supplementary equations descri
the line vortex motion have been correctly added to the c
tour dynamics algorithm.

In the following calculations we choosev51. In the
calculations which follow, time is scaled with 2p.
IP license or copyright, see http://pof.aip.org/pof/copyright.jsp
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A. Shielded Rankine vortex

While it was shown in Sec. III A that the shielded Ran
ine vortex solution is neutrally stable, this implies nothi
about its nonlinear stability. In this section, we show t
results of imposing the following azimuthal-modem pertur-
bation to the circular boundaryr 51 ~where r denotes the
usual radial polar coordinate! of the shielded Rankine vorte

r 511A cosmu, ~60!

where u is the polar angular variable andA represents a
measure of the size of the perturbation. In linear theory,A is
taken to be small; however, we do not impose this restrict
We also show the results of perturbing a regular Rank
vortex to exactly the same perturbation.

The purpose is to examine whether a shielded Rank
vortex, if perturbed strongly enough, can nonlinearly des
bilize into a multipolar vortex structure. Carton4 has shown
that provided the initial perturbation is strong enough,
two-contour Rankine vortex can destabilize into higher-or
multipolar structures although they tend not to be long liv
Morel and Carton7 show that athree-contour Rankine vorte
destabilizes into higher-order multipolar structures. As m
tioned in Ref. 1, the shielded Rankine vortex is a limit of t
~shielded! two-contour Rankine vortex in which the enclos
central patch of vorticity is taken to a line vortex limit. It i
therefore feasible that a suitably perturbed shielded Ran
vortex might exhibit similar qualitative behavior to the u
stable monopoles considered in Ref. 7.

Figures 11 and 12 answer this question in the affirm
tive. Figure 11 shows the vortical configuration, at timet
53, of a shielded Rankine vortex with an initial mode
perturbation of the kind~60! of magnitudeA50.4. This rep-
resents a finite-amplitude perturbation and it is clear that
vortex boundary folds in on itself in such a way as to form
very distinct quadrupolar structure. A threefold rotation

FIG. 11. Vortical configuration att53 of shielded Rankine vortex~left
diagram! and regular Rankine vortex~right diagram! perturbed by azimuthal
mode-3 perturbation of the form~60! with amplitudeA50.4. In contrast to
the regular Rankine vortex, the shielded vortex forms a distinctly quadru
lar configuration.
Downloaded 28 Sep 2004 to 129.132.136.197. Redistribution subject to A
.
e

e
-

e
r
.

-

ne

-

e

l

symmetry is generally preserved and each satellite vo
region has roughly the same circulation which is opposite
the overall circulation of the central region. Also show
~rightmost! in Fig. 11 is the state of a regular Rankine vort
at the same time in the evolution, having been exposed
exactly the same perturbation. While the residues of t
filaments that have been excised from the patch during
evolution are clearly seen, there is no well-defined multipo
formation in this case. Figure 12 shows the response aftt
53 of a mode-5 perturbation of slightly smaller amplitud
A50.3 and it is clear that a well-defined sextapolar struct
has developed. In contrast, the state att53 of a similarly
perturbed regular Rankine vortex~also shown! does not ex-
hibit the same distinctive multipolar formation. These pr
liminary nonlinear calculations highlight the crucial ro
played by the presence of the central line vortex in the f
mation of multipolar structures.

B. General equilibria of Ref. 1

First, several runs of the contour surgery code are m
in which the initial vortical configurations are given with n
perturbation added. The contour surgery threshold param
is set at 0.1 so that there are typically between 100–
points on each contour. More distorted shapes are descr
using more points. The time step is also chosen carefully
order to avoid stiffness problems whena is large so that the
line vortices are close together.

Figures 13–15 show the responses, by timet55, of un-
perturbed tripolar, quadrupolar and pentapolar vortices. In
cases, the initial states are seen to remain stationary u
evolution of the contour dynamics equations for a cert
period of time. Eventually, small numerical errors seed
growth of any linearly unstable modes. The tripole in Fig.
is seen to asymmetrically decompose into a monopolar
dipolar structure. The initial stages of the instability are ch

o-

FIG. 12. Vortical configuration att53 of shielded Rankine vortex~left
diagram! and regular Rankine vortex~right diagram! perturbed by azimuthal
mode-5 perturbation of the form~60! with amplitudeA50.3. In contrast to
the regular Rankine vortex, the shielded vortex forms a distinctly sextap
configuration.
n

FIG. 13. Evolution of an unperturbedN52, a52 vor-
tex at timest50, 3.25, and 5. The tripole splits into a
monopole and a dipole by growth in an instability i
which the central line vortex becomes displaced.
IP license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 14. Evolution of an unperturbedN53, a52 vor-
tex at timest50, 3.25, and 5. No detectable change
the vortex is observed~even after much longer times!.
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acterized by the central line vortex moving off its equili
rium position. This is consistent with the linear stabili
analysis: the displacements of the line vortices associ
with the most unstable eigenmode of the linear stabi
analysis are also found to be dominated by displacemen
the central line vortex with much smaller displacements
the satellites. A similar phenomenon of asymmetric deco
position into monopole and dipole is observed by Morel a
Carton7 for a particular tripole although most configuratio
investigated by these authors prove to be stable. For the c
of tripoles found in Ref. 1, none are linearly stable.

On the other hand, Fig. 14 highlights the fact that
quadrupole remains stationary and unperturbed for exten
periods. This is consistent with the linear stability analy
which reveals that there are no unstable linear modes in
case. This calculation also provides a reassuring check
the contour surgery code has been correctly adapted to
account of the superposed line vortices.

Figure 15 shows the decomposition into a dipole a
three monopoles of an initially unperturbed pentapolar v
tex with parametersN54 anda52.0. This configuration has
a maximum linear growth rate ofs'0.75 and, distinct from
the case of the tripole where the most unstable eigenmod
predominantly associated with displacements of thecentral
line vortex, here the most unstable eigenmode has zero
turbation of the central vortex and only displacements as
ciated with thesatellite line vortices. This is consistent with
the nonlinear evolution where the satellites are seen to de
bilize first with the central vortex position unchanged~see
the middle diagram of Fig. 15!. It is worth pointing out that,
for certain values ofa, the satellite line vortices were some
times seen to engage in a curious ‘‘dance’’ around the cen
line vortex, with the patch remaining mostly stationa
Morikawa and Swenson19 observed similar phenomena
the case of even numbers of satellite line vortices and p
vided the perturbation size was small enough. They refe
to them as ‘‘nonlinear periodic oscillations.’’ This line vorte
phenomenon may be related to a relaxation oscillation a
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ciated with a heteroclinic orbit in the dynamics of a 5-lin
vortex system as recently studied by Nakaki.21

The nonlinear evolution of perturbed equilibria is no
examined. The class of perturbations which have been c
sidered in most detail are those in which all satellites
symmetrically displaced inwards or outwards by a cert
amount. To show the effect of this perturbation on linea
stable configurations, Fig. 16 shows the nonlinear respo
of an a51.37 quadrupolar vortex to a perturbation in whic
all satellite line vortices are initially displaced to a radi
distance 1.1 from the central line vortex. Minor rearrang
ment of the patch vorticity takes place but the configurat
is structurally robust and, after a short period of adjustme
the overall structure rotates in an anticlockwise direction
the satellites are movedinwardsby 0.1, there is a more dra
matic rearrangement of the patch vorticity but again
structure retains its overall quadrupolar form and rotates
clockwise direction. This behavior of the perturbed quad
poles with the associated reorganization of the vortic
~which includes some filamentation events and surgery
therefore small losses in total circulation! is highly sugges-
tive of the configuration adjusting itself to relax into a neig
boring ~rotating! equilibrium. ~See Fig. 17.!

We now explore the nonlinear evolution of pentapo
structures on either side of the linear stability boundary. F
ure 18 shows the evolution of ana51.65 pentapolar vortex
when all satellites are moved outwards by 0.1. Figure
shows the evolution of a pentapolar structure witha51.4
under the same perturbation. The former configuration ha
linear growth rate of approximately 0.35 while the latter s
on the linear stability boundary. In common with the linear
stable quadrupolar vortices, it is found that thea51.4 pen-
tapolar vortex undergoes a mild rearrangement of the pa
vorticity and rotates~anticlockwise! without any significant
change of structural form right up tot510. In contrast, by
t57.5, thea51.65 vortex structure has disintegrated co
pletely.

The results of a large number of experimental runs s
o
by

ti-
FIG. 15. Evolution of an unperturbedN54, a52 vor-
tex at timest50, 3.25, and 5. The vortex is seen t
decompose into three monopoles and a dipole
growth in the displacements of the satellite line vor
ces.
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1874 Phys. Fluids, Vol. 14, No. 6, June 2002 D. Crowdy and M. Cloke
FIG. 16. Nonlinear response of a quadrupolar vortex (a51.37) to a perturbation in which all satellite line vortices~each of strengthGs52.563! are moved
outwards by 0.1. The strength of the central line vortex is negligible. A slight rearrangement of the patch vorticity occurs and the structur
anticlockwise but retains its overall quadrupolar form. Times shown aret50, 1, 2, and 5.

FIG. 17. Nonlinear response of a quadrupolar vortex (a51.37) to a perturbation in which all satellite line vortices~each of strengthGs52.563! are moved
inwards by 0.1. The strength of the central line vortex is negligible. There is a more dramatic rearrangement of the patch vorticity than in Fig. 1he
structure retains its overall quadrupolar form and rotates steadily in a clockwise direction. Times shown aret50, 1, 2, and 5.

FIG. 18. Nonlinear response of a pentapolar vortex (a51.65) to a perturbation in which all satellite line vortices are moved outwards by 0.1. This stru
is linearly unstable with a linear growth rate of approximately 0.1. The structure rotates steadily for a while but byt57.5 ~roughly thee-fold time according
to linear theory! it has eventually disintegrated. Times shown aret50, 2.5, 5, and 7.5.

FIG. 19. Nonlinear response of a pentapolar vortex (a51.4) to a perturbation in which all satellite line vortices are moved outwards by 0.1. This stru
sits on the linear stability boundary. The structure is slowly rotating anticlockwise and retains its pentapolar form. Times shown aret50, 2.5, 5, and 10.

FIG. 20. Nonlinear response of an 8-polar vortex witha51.4 to a perturbation in which all satellite line vortices are moved outwards by 0.1.
configuration has a maximum linear growth rate of 0.31. Times shown aret50, 2.5, 5, and 7.5. The configuration rotates steadily for a while, but bt
57.5 ~roughly thee-fold time according to linear theory! the structure has disintegrated.

FIG. 21. Nonlinear response of an 8-polar vortex witha51.3 to a perturbation in which all satellite line vortices are moved outwards by 0.1. Times s
aret50, 2.5, 5, and 10. This structure is neutrally stable according to linear theory. The configuration rotates steadily and maintains its structural founder
evolution. Note that small ripples in the boundary occur at the points of highest curvature.
Downloaded 28 Sep 2004 to 129.132.136.197. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp
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gest that the linear growth rates provide a good guide to w
happens to the vortical structures under perturbations of
kind. If an unperturbed vortex is linearly unstable then it
generally found to have disintegrated by roughly itse-fold
time according to linear stability theory. For example, vor
ces with linear growth rates of order 1021 are typically found
to have disintegrated by aroundt510.

On the other hand, linearly stable configurations
found to simply rotate steadily for extended periods of tim
An additional illustration of this is provided in Figs. 20 an
21 which show configurations, witha51.4 anda51.3, re-
spectively, forN58. Again, the equilibria are perturbed b
moving the satellites outwards by 0.1. As in the pentapo
case, thea51.4 case~which, it is found, has a maximum
linear growth rate of 0.31! has disintegrated byt57.5, while
thea51.3 configurations~which are neutrally stable accord
ing to linear theory! rotates steadily up to the termination
the calculations. These results suggest that this perturba
constitutes a linear one. In general, it is reasonable to ex
that what constitutes alinear perturbation will depend on the
equilibrium being perturbed. Nevertheless, these limi
nonlinear calculations reveal that linear stability theory c
provide a useful guide to the nonlinear fate of these vor
structures. Moderate nonlinear perturbation seems gene
to result in one of two long-term consequences: a stea
rotating structure or complete structural disintegration. T
linear stability boundaries seem to provide a good work
guide to which of these two eventualities occurs in any p
ticular case.

V. DISCUSSION

The stability properties of the exact solutions in Ref
have been found to be consistent with results on the stab
of multipolar vortices obtained by previous investigators e
cept in the case of the tripolar solutions within this class. I
known that tripoles can be stable structures while th
found in Ref. 1 appear to be linearly unstable in all adm
sible configurations. It has been found that only the quad
poles are neutrally stable in all configurations—a result c
sistent with general observations on the robustness
quadrupoles made by previous investigators. It seems t
generally accepted in the literature that tripoles and qua
poles are the only possible stable structures. In contrast
above results illustrate that there exist zero-total-circulat
multipolar structures of orderN>4 ~i.e., pentapoles and
higher! which are both neutrally stable and nonlinearly r
bust, although this is only true provideda is sufficiently
small. Physically, this corresponds to the satellites being
enough away from the center of the structure and the am
ent patch sufficiently deformed. It is interesting that, in th
investigations of a rather different class of pentapolar str
tures evolving in a contour surgery simulation, Morel a
Carton also report~in Table 2 of Ref. 7! an example of an
apparently stable pentapole.

As for the tripolar solutions, we conjecture that the co
bined constraints that the total structure has zero circula
and be nonrotating force the respective strengths of the c
tral and satellite line vortices to be such that linear stabi
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of the configuration is not possible. Perhaps generali
equilibria involving line vortices superposed on a pat
which are allowed to rotate steadily will produce a class
stable tripolar structures. It is unlikely, however, that th
generalized rotating class will be describable in exact ma
ematical form~although, it is worth pointing out that a clas
of exact rotating equilibria have recently been found14 using
an analysis similar to that used in Ref. 1!. It must be remem-
bered that the solutions of Ref. 1 are a mathematically ex
subclass~and hence, a rather special class! of the general
class of multipolar vortices.A priori, there is no reason to
suppose that this special class will share any of the stab
properties of the general class even though the exact equ
ria exhibit many of the defining qualitative features of t
more general class~see the discussion in Ref. 1!. However,
as this paper has shown, the tripolar solutions appear to
the only ones whose stability properties are atypical of g
eral tripolar vortices.

Owing to the choice of method used, it has not be
possible to study the linear stability of the limiting config
rations discussed in Sec. I, nor indeed, configurations tha
too close to limiting. However, several calculations for d
ferentN were performed fora values close toacrit

(N) and with
the order of the spectral method taken to be much larger t
the N564 used to obtain the results reported here. In
such calculations, as the order of the spectral method is
creased, the real parts of the spectrum tended to disap
thereby suggesting that the states very close to limiting ar
fact neutrally stable. However, we make no definite sta
ment on this matter until a method capable of more ac
rately computing these linear stability spectra is imp
mented.
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