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Stability analysis of a class of two-dimensional multipolar vortex equilibria
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The stability properties of a class of explicit multipolar vortex solutions of the two-dimensional
Euler equations found in CrowdyPhys. Fluids.11, 2556 (1999] are studied. While the tripole
solutions are linearly unstable in all configurations, it is found that the exact quadrupolar vortices
have distinguished linear stability properties revealing them to be neutrally stable in all
configurations. This result is consistent with observations by previous investigators on the general
robustness of quadrupolar vortex structures. Higher-order multipolar structures are linearly unstable
when the satellites are too close together, but become neutrally stable when the satellites are far
enough apart and the ambient vortex patch sufficiently distorted. The nonlinear evolution of
perturbed solutions is investigated numerically using contour dynamics methods. Some new results
concerning limiting states involving cusp singularities in the vortex patch boundaries are also
presented. ©2002 American Institute of Physic§DOI: 10.1063/1.1476302

I. INTRODUCTION bility, both experimentally and numerically, of various mul-
tipolar vortex structures with emphasis on the triangular

Multipolar vortices are a recurring dynamical feature in (Iquadrupola)r vortex. Their conclusion is that, unlike pen-

many large-scale geophysical, atmospheric, and astrophysi- .
cal flows. The term refers to a collection of coherent vortex apolar and other higher order structures, the quadrupole

structures with distributions of vorticity having certain char- pr_O\;els relatl\lllely rolt_)tuzt an_lt_jhstablle o p:e(rjt.urdbatlons_ (t)f ap![:)ro—
acteristic geometrical arrangements. Monopoles, dipoles, trpr'zely ]:c,ma ampiitude. ely aiso st 'Z s pmg r\]/or ?\X
poles, and quadrupoles, for example, refer to vorticity distri-TCd€! Of & symmetric triangular vortex and showed that the
butions having one, two, three, and four distinct vorticity configuration is stable to finite perturbations in both the equi-

extrema. Higher order structures have correspondingly largdfPrium positions and strengths of the satellites.

numbers of such extrema. Typically, in arpolar vortex a Morel and Cartoh independently reached similar con-
central core of vorticity of one sign is shielded foy-1 clusions on the robustness of the quadrupolar vortex and

satellite vortices all of opposite sign such that the total cir-concluded that they are robust whether initially perturbed or
culation of the structure is approximately zero and the comNOt and can resist certain rather severe deformations. Morel
bined structure rotates steadily. One way in which multipolarad Cartoh remark on the fact that, starting from different
vortices have been observed to form is via the instability ofnitial conditions, their results are in qualitative agreement
shielded monopolar structures. A linear stability analysis of avith those of Carnevale and Kloosterzfel.
shielded two-contour Rankine vortex by Flfeshowed the A class of exact solutions of the two-dimensional Euler
possibility of the formation of higher-order multipolar struc- equations representing multipolar vortex structures with dis-
tures from the barotropic instability of shielded monopoles. tributed vorticity has recently been found by Crowldior
Once formed, the stability of these multipolar vortices is€achN=2, the analysis of Ref. 1 provides a continuous one-
of great interest and has attracted the efforts of many reparameter family(parametrized by a real paramet@r of
searchers. The monopole and dipole have long been studig@lutions which, in the limia— < become increasingly mo-
in the literature. The form and structure of the tripole wasnopolar in form but which, aa decreases, develop into co-
studied in detail by Polvani and Carfband most instances herent structures possessing all the qualitative features which
shown to be stable. The case of the quadrupole has alstre now recognized as characterizing &h{1)-polar vor-
received much attention in the last decade, not least becautex. The exact solution class consists of various finite distri-
it appears to be relatively robust compared to higher ordebutions of line vortices superposed on an ambient vortex
structures. Cartdrobserved the formation dfransient qua-  patch comprising a distributed region of uniform vorticity.
drupoles in his study of the merger of shielded vortices. Ina  Beyond the realm of multipolar vortices, vortical con-
study of tornadoes using contour dynamics, *Labserved figurations involving line vortices superposed on a back-
the formation of triangular vortices via the nonlinear desta-ground vorticity patch have recently been the subject of
bilization of shielded monopolar structures. Carnevale andgnuch theoretical and experimental investigation in other
Kloosterzief have studied the formation, evolution and sta-contexts. Lifi studies the evolution of a small-scale line vor-
tex superposed on a vortex patch to model a tornado vortex
3Electronic mail: d.crowdy@ic.ac.uk moving in a tornado mesocyclone. In this application, the
YElectronic mail: martin.cloke@ic.ac.uk background patch of vorticity models the tornado mesocy-
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clone while a smaller-scale vortex typically models the tor-
nado cyclone. As discussed by Lin, the “multiple vortex”
phenomenon is now well known in the study of tornadoes
and consists of a situation in which the tornado core is sur-
rounded by a number of orbiting “suction spots” which are
often seen to orbit the core and are the cause of much dam
age and destruction. It is conceivable that the central line
vortex in the solutions of Ref. 1 might model the core of the
tornado cyclone(superposed on the ambient vortex patch
which models the tornado mesocyclongith the satellite
line vortices modelling the suction spots. Patch/line-vortex
systems are also studied because of their relevance in moc
elling the relaxation of 2D turbulence in which an initially
turbulent vorticity distribution coalesces into a number of
distinct vorticity maxima effectively superposed on the re-
gion of ambient vorticity Durkin and Fajars!® have per-
formed experiments in a Malmberg-Penning trap in an at-
tempt to under the dynamics of “vortex-within-a-vortex”
phenomena. Jin and DuBinater performed an analysis on
such a system.

It is of interest to examine the stability properties of theFIG. L. Sche_matic ofa quadrupola_r vortex _consisting of a ur_1iform patch of

. . - . vorticity w with four superposed line vortices—a central line vortex of
exact multipolar vort|ces_of Ref. 1. This is the subject pf thestrengthFO and three satellite line vortices each of strenjth
present paper. A convenient feature of the exact solutions of
Ref. 1 is that the linear stability properties can be systemati-
cally studied as a function of the continuous paramatfar
each integeN=2. This requires a numerical treatment but is
considerably simplified by knowledge of closed-form formu-  Zo({)= RZ( 1+ =al
las for the base-state solutions.

The contents of the paper are as follows. In Sec. Il thevhereR, a, andb are suitable real parameters. Giveand
relevant formulas for the exact solutions found in Ref. 1 aré\, the value ofb is the solution of the nonlinear algebraic
reviewed. This section also includes a detailed discussiorgquation
not included in the original presentatidrof limiting states

, ()

N _ -1
within this class. Section Il presents an analytical treatment  Z| 1+ bazN —a+ b(N N_li n b . Zogz(a_l)
of the linear stability of the basishielded Rankine vortex a (1-a™) 2Na 2Na™ zg,(a™ ")
(which was the starting point for the generalized solutions -0 )

found in Ref. . Then, the linear stability of the general

solutions of Ref. 1 is studied using a numerical spectrabn equation that is independent Bf z,,({) and zy..({)

method based on Taylor and Laurent series. Section IV dedenote the first and second derivativegg(f). This nonlin-
scribes a numerical investigation, using contour dynamicear equation fob can be rearranged to form a quadratic,
methods, into the nonlinear evolution of the solution class, 2 _ _
starting with some preliminary observations on the nonlinear ~ C2(&:N)b"+c1(a;N)b+co(a;N) =0, )
stability of the shielded Rankine vortex. The paper concludeghere

with a discussion of the resultSec. V.

. a 2N—-2
cz(a,N): m[N—l+2N(l—N)a

2_ 2N _ 4AN—2
Il. EXACT SOLUTIONS OF REF. 1 +(2N"=2N+2)a™" - 2Na

A. Review +(N-1)a*™],
The solutions in CrowdYyconsist of a simply connected
patch of uniform vorticityw on which a finite distribution of ci(aN)= 2aV IN(1—a2V)2 [N-1
line vortices are superposed such that the global configura-
tion is in dynamic equilibrium. A schematic of a typical qua- +2N(2-N)a®N "2+ (2N?~4N+2)a®™
drupolar vortex. is shown in Fig. v can be chosen arbi? —4Na*™N"2+ (3N—1)a*M],
trarily. For any integeN=2, the shape of the vortex patch is
described by a conformal mag(¢) from the unit{ disc (in 1—a?
a parametricZ plane to the interior of the patch. The map- Co(a;N) = a (4)
ping takes the unit circlg?| = 1 to the boundary of the vortex
patch and is given by which allowsb(a;N) to be found explicitly as
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The second possible solution fbrdoes not yield a confor-
mal map that is a univalent function in the ugitircle and is 200¢ ]

therefore physically inadmissible. The fact that a closed-form
analytical expression fds(a;N) can be derived is not stated
in Crowdy? but is a significant observation because it ren- |
ders the exact solution class completely explicit.

R is an arbitrary normalization parameter which deter- -'®
mines the size of the vortex structure. Létdenote the area
of the patch. In Ref. R is chosen so thatl= . Here, a
different choice is made; we specify that each of the satellite -soo- 1
line vortices is a unit distance from the central line vortex

g

which is at the coordinate origin. Because the MiBphas a T 15 2 25 4 35 4 45 s
satellite line vortex on the negative real axis, we insist that
this vortex is in fact az=—1 leading to FIG. 2. b againsta for N=3: a{}}=1.211;a{),,=1.371.
= a2N-¢—l_ a (6)
=T _ NI AN
1—a®N+pal

are not, strictly speaking/-states in the sense that the vor-
With this choice, the central line vortex is a2&0 while the ticity in the patch is not globally uniform. There is also a
N satellite line vortices are at finite distribution of superposed line vortices. Nevertheless,
Zig= —2MDIN  } 10 N ) the Iocgl analysis of ngrma_m which Ieads. to the conclusipn
ko ' B that points of nonanalyticity in the boundaries of locally uni-
The strengtH’ of the central line vortex and the strendth ~ form patches of vorticity must be either 90° corners or cusps
of each of the satellite line vortices are given by still pertains to the solutions of Crowdlyprovided a line
vortex does not draw close to the point of nonanalyticity in
F'o=wmR7,(0), the limit). It is therefore of interest to examine whether the
amszog(afl) ® s_olutions of Crowdy are consistent with Overman’s analy-
s— N—aN SIS.
In a short section of Ref. 1 on limiting vortex shapes, the
LetI', denote the total circulation of the patch of aréand  term “limiting” is used loosely to exhibit the qualitative fact
uniform vorticity , then that as the parametargets large a monopolar vortésesem-
I' —wA. ) bling the shielded Rankine vortexs obtained while as
P draws close to unity multipolar vortex structures having
The fact that the total circulation of the coherent structure isshapes highly reminiscent of some schematical drawings of
zero implies that the circulations are related via Carnevale and Kloosterzfedre observed. In Fig. 8 of Ref. 1
I+ To+NI'y=0. (10 some example sha_pes are depictedNer3 and 4 witha
values close to unity but the exaatvalues used are not
given explicitly.

In fact, thea values used in Fig. 8 of Ref. 1 are close to
We now discuss the limiting states of the class of exacthe position of the vertical asymptote in the graphsbof
solutions just described and both clarify and amplify someagainsta which can be clearly seen in Figs. 2 and 3 shown
brief remarks made on this matter in Ref. 1. here for the valuedN=3 and 4. The corresponding patch

The subject of limitingV-states has a rich history in the shapes, similar to those drawn in Fig. 8 of Ref. 1, are repro-
vortex dynamics literature. The termVv<state” normally re- duced here in Fig. 4. In Ref. 1 the graphlmagainsta was
fers to a globally uniform, simply-connected patch of depicted only folN=2 and it is stated there that the graphs
vorticity.'> Overman® has performed a study of limiting-  for N=3 are qualitatively similar. A comparison of Figs. 2
states and, by means of a local analysis, has shown thand 3 of the present paper with Fig. 2 of Ref. 1 reveals that
points of nonanalyticity in the boundaries of patches of uni-this is indeed true provided one only looks to the right of a
form vorticity can either be 90° corners or cusps. Overmarvertical asymptote which appears at a valueaofvhich is
also examines the literature for equilibrium solutions of thestrictly greater than 1 and which will henceforth be denoted
Euler equations involving unifornv-states and concludes, ag’;'}),mp. Note that forN=2, the case considered in most de-
using a combination of local and global arguments, that altail in Ref. 1 this vertical asymptote occursaat 1 while for
known solutions exhibit corner formation as the relevant lim-all N=3 this asymptote occurs at sora%mg 1. Thus for
iting states. At that time, no examples of limiting-state N=3 there is an additional branch of possildevalues
equilibria exhibiting cusps were known. The solutions found(shown explicitly in Figs. 2 and)3which are negative but
in Crowdy?! while consisting of patches of uniform vorticity which also give rise to univalent conformal mappings from

B. Limiting states
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G. 3. b againsta for A= Basymp~ FIG. 5. Graph of', /T, andT'/I', againsta for N=3.

the unit £ disc (this additional branch, which exists fod (12) can be derived as a formal limit @2) asb—o. For

=3 but notN=2, was missed at the time of writing Refl. 1 eachN the solution of(12) will be denotedaly),,,. The first
The vertical asymptote in thib-againsta graphs forN few values are calculated to be

=3 doesnot represent a genuine singularity in the class of 3 @ 5

exact solutions of Ref. 1 and the corresponding solutions are Basymp= 1-371, @agymg= 1477, aggymg=1.507.  (13)

not limiting states. A hint that this is the case is g|ven by thelt is clear from Figs. 2 and 3 that the positions of the vertical
graphs of'y/I', and I's/I", as a passes througlaasymp asymptotes of thé-againsta graphs forN=3 andN=4

These graphs are shown in Flgs 5and 6Ner3 and 4. The  coincide withal3),, andaly), respectively.
key to understanding this artificial singularity is to note that  As a remark, Crowd’;? has shown that there exists a
the value ofl"y atagg)),mpis equal to zero. Thus the solution at branch of multipolar equilibria consisting of doubly con-

a= aghs‘gmpfor N=3 corresponds to seeking solutions consist-nected regions of vorticity which bifurcate from the steady
ing of a finite-area vortex patch witN superposed satellite solutions(11) with a= agg‘)m for eachN=3. These solutions
line vortices but no central line vortex. It is easy to extendare parametrized by a parame'qerwhwh when equal to

the derivation of Ref. 1 to show that the corresponding conzero, give the solution§ll) with a= ag’;'}),mp For p>0, a

formal map from the unit circle in this case would have the small region of quiescent irrotational fluid centered at the

modified form origin begins to develop thus forming an annulus of vorticity
R¢ containingN line vortex singularities.

Zo(0)= Ta“' (11 Having better understood the vertical asymptotes in the

b-againsta graphs folN= 3, the question arises as to exactly
_ To find a(a’;';mplt i_s simply necessary to solve the modi-
fied nonlinear equation

06 T T T T T T T
N-1
1-a®™ " 2NaV"t o 2NaM Zp(a” l) ' /
/T, |
This equation depends only on the parameteand it is o4
found to have a unique solution in the rarige~). Note that
o2} i
of _
-02f i
r /T
s Tp
-0.4 L ) L 1 1
1 15 2 25 3 35 4 45 5
a
FIG. 4. Vortex patch shapes farclose toaly),,; N=3, a=1.385;N=4,
a=1.485(cf. Fig. 8 of Ref. ). Line vortices are shown as bold dots. FIG. 6. Graph ofl’,/T';, andT's/T", againsta for N=4.
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how close to 1 the parametaican be made while still giving
an exact equilibrium solution of Euler. Indeed, reducing
below aly),, should now provide the limiting states in the
same sense used by Overntan.

It turns out that, for eaciN=3, a critical value of the
parameter exists at whichN cuspsform simultaneously at
N distinct points on the boundary of the vortex patch. The
critical a value in each case will be denoted). For a
givenN, exact solutions exist for any value of the continuous
real parametea in the range

aefaly, ). (14)

To findall) it is necessary to solve the stationarity condition
(2) and the equation

2o(e™N)=0 (15

simultaneously fom{"\) and the corresponding{). These
two nonlinear equations can be solved numerically using
Newton’s methodor, indeed, solved analyticallyThe solu-
tions for the first few values dfl are found to be

al¥=1.211, a®=1.241, al®=1.232. (16)

crit crit crit

Recall that a necessary condition fdn to represent a uni-
valent conformal map from the unjtdisc to the vortex patch
is thatz,, vanishes nowhere insidé|<1. A zero impinging
on the unit circle will lead to a loss of univalency of the "> , ° N E t .

. . S =4, ag;=1.241;N=5, ag5t=1.232. These are close to the limiting states in
conformal map and_WI_”_ therefore constitute a limiting State'the sense of OvermafRef. 13 and exhibit near-cusp singularities in the
By symmetry, the limiting case of the conformal mé&p patch boundary. Line vortices are shown as bold dots.
corresponds tiN simple zero ofzy, simultaneously imping-
ing on the unit{ circle. This gives rise to the simultaneous
formation of N cusps in the boundary of the vortex patch. the two-dimensional Euler equation proves to be a fruitful
The critical patch shapes fdi=3, 4, and 5 are shown in one. Crowdy>'®has shown that there are situations in which
Fig. 7. a number of initially disjoint shielded Rankine vortices can

For situation forN=2 is different and is the case con- draw into contact and be “continued” to form higher-order
sidered in most detail in Ref. 1. It is found thatcan draw compound vortices. The reader is referred to Refs. 15 and 16
arbitrarily close to 1 and, in this limit, the corresponding for a development of these ideas.
patch resembles two touching circular discs while the two
satellite line vortices tend towards the center of each of thesgl. LINEAR STABILITY
o e Sk R vore

guration at the poin
to which the two cusps in the patch boundary are tending.  Flierl”> has examined the linear stability of a zero total
Strictly speaking, care is needed in applying the local analyeirculation monopolar structure consisting of a unit circular
sis of Overman to this case because, in the limit, the point oflisc r<1 of unit positive vorticity shielded by an annular
nonanalyticity of the vortex boundary coincides with a line patch of uniform vorticity—q for radii between Xr<d. It
vortex singularity. However, the strength of this line vortexis found that as the width of the outer annulus decreases, the
tends to zero in the limit and two cusps are still seen to formwave number of the most linearly unstable mode also in-
in the boundary of the patch. We do not investigate this pointreases.
in any detail. A class of rotatinyy-states exhibiting cusp The shielded Rankine vortex can be understood as a
singularities in their limiting configurations has recently beenlimit of Flierl’s configuration; the outer radius of the annu-
found by Crowdy** A detailed local analysis of both the
limiting patch shape and velocity field is performed in Ref.
14 and, while we omit the details, a similar analysis can be
performed for the exact solution class of interest here.

If the central line vortex is removed, the vortex configu-
ration in Fig. 8 resembles two touching shielded Rankine
vortices. The general idea of combining a disjoint collection
of shielded Rankine vorticesvhich do not interact if they do FIG. 8. Patch boundary fad=2 anda=1.05. Line vortices are shown as
not overlap to form more complicated global equilibria of bold dots.

FIG. 7. Vortex patch shapes far close toaly): N=3, al®)=1.211; N

crit - crit
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lus is rescaled to unity while the area of the enclosed circular 1 ea, 1
patch is reduced to zero while simultaneously increasing its F(z,t) =G(z,t)=— I F+ Ifea ()i~ eb
vorticity to infinity in such a way as to keep the total circu- "
lation of the enclosed vortex constant. In spite of this, it is +0(€?). (23
not particularly straightforward to compute the correspond- ) )
ing limit of Flierl’s linear stability results. Therefore, we now Expanding correction td(e),
proceed to use rather separate analytical methods to explic- a b
itly study the linear stability of the shielded Rankine vortex F(z,t)—-G(z,t)=¢€| — —2+ ——ap " ? |+ O(€?).
solution. This analysis is useful for two reasons: first, it will ¢ ¢ (24)
provide a check on the numerical code written to find the
linear stability spectrum in the general case; second, it iThe first two terms on the right-hand side are clearly not
instructive in explaining the general numerical method to beanalytic inside the patch. Indeed, it is deduced that
employed later.

The steady shielded Rankine vortex solution can be writ-  F(2(£,1))=—€an(t)¢"2, (25

ten which is analytic inside the patch.
iw(_ 1 The kinematic boundary condition can be written in the
. ->|z=5| zebh, form
u—iv= 2 z (17)
0, z¢D. z (L )z (LMt u+iv)z (¢ 4t
- . - Re{ (4,t) g(g )}ZRE{( v) g(f ) . (26)
Under a generalirrotationa) perturbation, the Helmholtz { 4

vortex theorem$ can be used to deduce that the velocity . .

! . . . To proceed, it is assumed that all perturbed quantities have a

field associated with the perturbed vortex can be written as_ t . .
time dependence of the foref" whereo is an eigenvalue

iw

_ 1 which remains to be determined. In particular,
- —=|Z——5——+F(zt)|, zeD(1),
2 z—7y(t) =~ ot T ot = =% qot
u—iv= | an(t)=2a,e”, b(t)=be”, a,(t)=3a}e",
w
-5 G(z1), z¢D(1), —
2 ( ) b(t)=b*e‘”, (27)
(18)

where D(t) now denotes the perturbed patch aR@z,t) Where~§n, b, @, b* are complex constants. The coeffi-
and G(z,t) are functions analytic inside and outsidgt), ~ cientsa; andb* arenot assumed to be the actual complex
respectively.2,(t) denotes the(perturbedl position of the ~Cconjugates o&, andb. To clarify notation, the actual com-
central line vortex. The dynamic pressure condition isplex conjugate o, will be denoteda,. Hencefortha, and
equivalent to continuity of the velocity field on the patch @} are independent complex parameters, asbasad b*.

boundary. This implies This technique is also used in Meiron, Saffman and
Schatzmal in their study of the linear stability of inviscid
F(zt)—G(z,t)=—z+ ——— on dD(t). (19)  vortex streets. A physically realistic perturbation can be con-
z—2o(1) structed from the solutions obtained in this way.
Equation(19) constitutes a Riemann—Hilbert problem for the ~ Using (21), (22), and (25) in (26) to leading order we
analytic functionsF(z,t) andG(z,t). obtain (dropping tildes
We now assume that the perturbations are small so that 2 . & b
their evolution can be described within linear theory. The ;5 /n-14 on_“lz_ i S _)
base-state conformal map in this case is simply ' 2\¢ {
PlO=E 29 2 (" 070, 28

It is now conjectured that the linear eigenmodes have the

functional forma,(t){" for n=1 wherean(t)  Cis an order  fjrst considem=1. In this case, equating coefficients &
one quantity so that the perturbed conformal map has thg,q 7*Lin (28) we deduce

form

2(L,1)=20(0) +ean(1) "+ O(€?), n=1. (21) a(a1+a’1‘):—l7w(a’l‘—a1), b=0, b*=0. (29
The perturbed position of the central line vortex is assumed
to have the form This gives two(dynamically unimportantmodes: one corre-

- sponding to a neighboring steady state in which the radius of
Zo(1) = eb(1), (22 the vortex patch has increased slightty= 0) and another to
whereb(t) e C is an order one quantity. a rotational degree of freedom which is removed by insisting

We now verify that this ansatz for the linear eigenmodesa; =a; .
is correct. First considgrl9). Using (21) and(22) in (19) it Now considem=2. In this case, comparing coefficients
is seen of ! we obtain the two equations
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lo For alln=3, equating coefficients af* ("~ and¢=* in
7a,=75 (3=b%), (26) yields

(30

iw iwa iwa*
* * n n
va; ==& (a5 —h). oap= h=-

2 ) O.an = 2 ’

b=0, b*=0, (32

Note that because,, a5, b, and b* are assumed to be ) ] ) ) )
independent, Eq¢30) constitute two equations fdour in-  Which yields two eigenvalues iw/2. Each of these two ei-

dependent variables. We therefore require two more equ,;genvalues has infinite multiplicity. The linear stability spec-
tions. These follow from the dynamical equations for thel'um of the shielded Rankine vortex therefore consists of five

evolution of the central line vortex which we have yet to 2€70 €igenvalues and an infinitude bf /2 pairs. Only the

write down. By the Helmholtz vortex theorertfit is known n=2 shape perturbation mode interacts with the line vortex
that a line vortex moves with the non-self-induced Compo_evolution. It is concluded that the shielded Rankine vortex is

nent of the local velocity field. In this case, this can peneutrally stable to small perturbatiofise., there are no lin-

shown to be equivalent to tHéinearized equation ear eigenmodes with eigenfrequencies having strictly posi-
) tive real part. The nonlinear stability of the shielded Rank-
ob* = — '?“’(b* —a,). 31) ine vortex is examined briefly in Sec. Ill.
This equation, together with its complex conjugate, provideB' General equilibria of Ref. 1
the two additional equations needed to supplem@&. Using Helmholtz law¥ the velocity field associated
These equations lead to a standard eigenvalue problem forvaith general irrotational perturbations to the general class of
4X 4 matrix all of whose eigenvalues are found to be zero.equilibria found in Ref. 1 can be written

. N
lw | __ Vs Yo
T2\ T AT m @) =P,
u—iv= _ (33

lw
-5 Gz, zeD(W),

where 1 N Vs
(Z ) 2i aD(t)( z kgl Z —Zk(t)

’Yo:_RZOg(O), dz’

z
(34) R LT M
7' —2z74(t))2' —2

-1
L 1 7 dz
Nal = ——, zeD(1), (36)

B 2i aD(t) z'—z

. , the second equality following because all the points
and whereD (t) is the perturbed vortex patck(z,t) is ana- {z(t)|k=0,1,...N} are insideD(t).

lytic inside D(t) andG(z,1) is analytic outsided(t) and is The linearly perturbed conformal map, and its conjugate
O(1/z) as |z|—. The set of complex functions of time f,ction. are assumed to be of the form

{z(t)|k=0,...N} denotes the perturbed positions of the cen- '

tral and satellite line vortices. Continuity of velocity on the 2(L,t)=20(2)+ €€'2(?),

vortex jump requires that (37)
2(£,1)=20({) + ee”2(),

N where e<1 is a small parameter. Perturbations to the line
F(z,t)-G(z,t)=—2z+ E _ s vortex positions are denoted
k=1 2= 2(1)
Zk(t):Zk0+ ee”tik, kZO,N (38)
Yo
+ =z " aD(t). (39 The circulations of the line vortices do not change under

perturbation. The functior ¢) have expansions of the form

207H=2 -, (39)

=

Equation(35) is a standard Riemann—Hilbert problem. The 2(¢)= E a,"
n il
n=0

a
Z
solution forF(z,t) is given by n=0 ¢
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where{a} } are assumed independentéf,}. The expansion and
(39 is truncated at orderN/2)—1 where\ is an even in-

teger. The choice ol is discussed shortly. E__ 1 fﬁ 2L Y200 q

Defining the quantitieg,, to be the preimages in the KT 2mi | Jige1r zo(OFTE ¢
plane of the point§z.}, i.e., o .

2o({ )z (9)2(E)
Zv0o=20({ko), k=0,..N, (40) - (k+1 krz——dd
. ld=1 (zo(0))
then the quantitie$(,|k=0---N} are defined via the equa- .
tions zo({ ) Zd0)
+ — ke adl|. (52
=1 Zo({)

Zk(t):Zk0+ ee"tikzz(gk(ﬁ- Ezk,t), kZO,N (41)

To leading order i, Some algebra reveals that, to leading ordeg,ithe linear-

ized kinematic boundary condition reduces to the simplified

2= {i2o({ko) T 2(Lko), k=0,...N. (42 form
Similarly, E{fog(gl)z(g)

_ o Rg —————

2= 8} 20i(l0) + 2(4k0)s k=0,..N. (43 ¢

- . N a

Here the sef{; |k=0,...N} is again assumed independent of =Re{l—w§z ( S Vslk
the set{{,|k=0,...N}. 2 > &L (20(0) —240)?

The Riemann mapping theorem provides the freedom to ~ o
specify that PN S k

[ZO(Z)]Z kZO kZO(g) . (53)

z(01)=0, (44)

so thatag=a} =0, while to eliminate a rotational degree of Equation(53) is linear in the perturbation quantities with -

freedom we impose, =a? . After truncation, the total set of Cc0€fficients which depend nonlocally on the base-state equi-

unknowns is then librium. To find equations for the unknowns, the representa-
tions (39), (42), and (43) are substituted int@53) and the

3 kzl---ﬁf—l 8 k=2 equation expanded as a Laurent series {inbetween
k 2 ’ k 2 ’ W2+2 and fM2)=2 The infinite sum appearing if53) is

. R truncated, consistently, after the= (NV/2)— 2 term. Equating
{&lk=0---N}, {{K|k=0--"N}. (45  coefficients on both sides ¢53) then providesV—3 equa-

A set of N+ 2N — 1 equations is required to determine these!!onS: _ _ .
The fact that the line vortices are convected with the

unknowns. ) . . s
By composition of analytic functions, we can define (non—§elf-|nduce)j local velocity provides the additional
Fo(2) via equations
Fo(§)=Fo(zo({)), (46) Pl ol N 2 Tl
R o= 2 Zy (Z —7 )
and similarly 7(¢) via JF k050
N 20— 2 .
F(Z(glt)1t):f0(§)+Ef(g)eo-t-i_o(ez) (47) _})/()EZO—)ZI()—i_FI((IU)); k:lyN!
. ko
To find (), first note that becaude(z,t) is analytic inside (54)
D(t) then it has a Taylor series of the form — o — N v(Z—2;) = (10)
02%0== 5|20~ 2 —5 -z TF" |,
» 2 =1 (2o
F(zt)= >, FZ~. (48)
k=0 where
It can be shown froni36) that . 1 f(gfl)zog(g)
1 z F T 2w =1 Zo(&) —Zko o
FkE— ﬁ %{m Z_,k+_ldz , k=0,1,2,.... (49) L.
. o Lg mEO,
tThr;;ise coefficients depend en Linearizing for smalle, so 27 Jig=1 Zo(0)— 2o
R 1 Zo(4 N 2o O(2—2(0))
Fi=Fio+eF e +0(e?), 50 ___3§ df, (5
k=Fkot eFy (€°) (50 27 Pes (Zo(d) —Z40)2 ¢, (59

it follows that
for k=0,1,...N. TheN+ 1 equation$54), together with their

(51) complex conjugates, provide the addition®&d 22 equations
required for a closed, consistent linear system.

1 Zo(L Y 20,(0)
Fr==57 }gﬁDmku—d{
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maximum linear growth rate

35

FIG. 9. Maximum linear growth rate againstfor N=2, 4, 5, and 6. The
configurations folN=4, 5, and 6 are found to become neutrally stable at
al=1.40,al)}=1.41, anda®)=1.37.

The set of unknowng45) is vectorized to produce a
vectorx. The N—1+2N equations derived above lead to a
generalized eigenvalue problem of the form

Ax= oBX, (56)

where the matrices\ and B depend purely on théexac)

D. Crowdy and M. Cloke

zero (to within the accuracy of the numerical methott is
also known that angular momentum is another quantity
which is conserved by the linearized Euler equations and an
additional check is provided by verifying that all modes with
nonzero eigenvalue indeed have an associatd linear
perturbation in angular momentum. It is also verified that in
the case wherBl=0 (so that the steady state is the monopo-
lar shielded Rankine vortesthe spectrum found analytically
in Sec. Il A is retrieved.

A note on a limitation of the numerical method. The
method uses a Taylor expansiof8) of F(z,t) and asa
(M it must be expected that it will become increasingly
inaccurate for fixed values ot and M as a result of at-
tempting to evaluate an expansion close to its radius of con-
vergence. Indeed, farvalues sufficiently far froma{\) it is
found that independently increasinld and M does not af-
fect the results of the eigenvalue calculation; howeverig
too close toal) the spectrum is susceptible to significant
changes as the order of the spectral method is increased.
Thus, using the above method, the linear stability of solu-
tions with values ofa too close toal) cannot be reliably
computed.

—a

D. Results

Results are presented far=1; growth rates for other
values ofw are obtained by multiplication. For eadh=2,
the maximum linear growth raté.e., the magnitude of the

base-state equilibrium. To find these matrices, all Taylorkeal part of the eigenvalue with the largest positive real)part
Laurent coefficients of functions of the base-state conformais calculated for different values af within the range of

map (and its derivatives and integralsre computed by
evaluating these functions & points on the unit/ circle

existence of the solutions. Fro(6), it is seen that the val-
ues ofal\) are all around 1.25 foN=2,...,5. Using\'

and using fast-Fourier transforms. The following choices are=64, it is found that the numerical method just described can

made;\ is taken to be a power of 2 an®fl is taken to be at
least two powers of 2 highdtypically M=4N\) in order to

adequately resolve the linear stability spectrumder1.35
(although forN=2, a=1.4 is the smallest value that can be

avoid unacceptable aliasing errors. The accuracy of all calysed reliably.

culations is checked by independently alteringand M.
Most of the results which follow usé&/=64 and M= 256.
C. Checks on the linear stability analysis

It is known that the dynamics of point vortices and
patches of uniform vorticity is Hamiltonial¥. Therefore, any

It is found that the tripolar solutions witN=2 are lin-
early unstable for all choices ai. The maximum linear
growth rate in this case is shown in Fig. 9. The chise3 is
distinguished and the solutions are found to be neutrally
stable for alla values that can be calculated reliably using
the method employed. While no eigenvalues with nonzero

eigenvalues that do not occur as pure-real or pure-imaginarigal part are found, seven zero eigenvalues are found. This is
pairs will occur in complex conjugate quartets. This providesirue for all other values oN. One corresponds to a neigh-

a first check on the numerical code.

boring steady state with different area, another two corre-

For any steady state, there exists a neighboring equilibSpond to modes in which the vortex centroid is displaced.

rium corresponding to a different value Bf i.e., an equilib-
rium with a slightly different patch area. In addition, we

The remaining four zero eigenvalues appear to correspond to
nontrivial neutral states indicating the possibility of neigh-

expect two additional zero eigenvalues associated with pebRoring steady solutions, but this is not investigated further

turbations which shift the vortex centroid of the vortical
structure in either of the two coordinate directions. For any
andN, we therefore expect to find at leakree zero eigen-

here. For present purposes, the important fact is that no ei-
genvalues with nonzero real part are found.
For the casedl=4, 5, and 6 which were investigated in

values. This is found to be the case. These modes are recogetalil, it is found that for large the solutions are linearly
nized and discarded—only perturbations which preserve thegnstable. However, a& falls below some critical valuéde-

area and centroid of the vortex patch are considered.

notedally}) the configurationdecomeneutrally stable, with

As an important check on the general eigenmodes correany real eigenvalues passing through the origin and becom-

sponding tononzeroeigenvalues, the linear perturbation of

the patch area and patch centroid for these modes are comaluesag‘t‘gbz
puted and it is verified that these perturbations are indeedndalf)=

ing pure imaginary. Calculations usingy=64 produce the
1.40 (correct to 2 decimal placgsal)=1.41
1.37. Graphs of the maximum linear growth rates
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! ; T T ; ; : ; - region of Ref. 19 for any value o while, in the other two
caseN=4 and 5 shown in Fig. 10, this ratio falls within the
stability range of Ref. 19 for sufficiently smadl. Indeed,
vo=—0.5 is the critical value for stability found by
Morikawa and Swensdn for N=4 and 5. Here, whemN
=4,T,/T's=—0.5 whena=1.808, while the relevant value

of N=5 is a=1.697. It should not be expected that these
values will correspond ta{{), and al®), because, for these
small values of, the nontrivial shape of the ambient vortex
patch must be assumed to be having some effect on the equi-
librium other than simply cancelling out the rotation that the
line vortex configuration would otherwise have if the patch is
absent. Nevertheless, the above linear stability results are
qualitatively consistent with Morikawa and Swenson.

The above results are further consistent with Morikawa
and Swensoli in that, forN=2, they also find that the in-
FIG. 10. Graph of'o /T, for N=2, 3, 4, and 5. As <, ratio approaches stability is. associated V\(lth perturbathns of the central line
asymptotic value given b{s8). vortexblwhne, forN=4, it is the satellite vortices that are
unstable.

0.5

L""05
e

-2

are shown in Fig. 9. It is conjectured that valuesad), at
which there is an exchange of stability exist for all higher'V- NONLINEAR EVOLUTION

valules_ Oﬂl\l' Tht')s was dc?ecke_d expl|_C|tIy ];d‘:] up to 8. i The purpose of this section is to examine to what extent
tis also observed from inspection of the correspondingq gt of the linear stability analysis manifest themselves

e@genmodes for large _and M %2 t_hat the most unstable iq the nonlinear evolution of the perturbed equilibria of Ref.
eigenmodes are associated with displacement of the central |+ is not our aim to present an exhaustive study of the

I|nedvortex while .for g/l ='4h Zpd Ilvl =5 the Tohst unstﬁblel_ nonlinear stability of the solutions.
modes are assouatg with disp acemc_ant of the satellite line A fortyitous property of the class of exact solutions
vortices with no motion of the central line vortex.

found in Crowdy is that th hybrid of two of th t
The work of Morikawa and Swensbhinvolving line ound in Crowds is that they are a hybrid of two of the mos

. . . . . well-studied mathematical idealizations of two-dimensional
vortices is consistent with many of these results, especially, ). dynamics, i.e., line vortices and uniform vortex

in the parameter range—. For largea, the vortex patch atches. This important fact implies that the nonlinear evo-

bego_mss large compar_ed tlo the sEparatﬂr]w of tlhe |Ifnth0I'tIC gtion of this class of solutions can be studied using contour
and it becomes near-circular in shape. The role of the patc ynamics methods as originally expounded by Deem and

can then be interpreted as providing an overall bulk rmatiorkabusky?z An adapted version of the contour surgery code

SfUCh as to cancellthe rotat!on that the Img vorte_x Conflguraés developed by Dritsct8lis now used to examine the typi-
tion would otherwise have if placed in a field of irrotational

. . o . cal nonlinear evolution of the multipolar solutions of Ref. 1.
fluid. In this case, it is reasonable to expect that the stability 1o <ontour surgery code of Dritsch®ls modified by

prrcl)pgrtldesf of thehlocallzled Ilr;e vorjt(ex conﬁguraﬂonérgght beadding N+ 2 nonlinear ordinary differential equations gov-
inherited from the results of Morikawa and Swenson erning thex andy positions of theN+ 1 line vortices super-

asymptotic analysis of2) asa—c reveals that posed on the vortex patch. By the Helmholtz vortex

2NaN theorem& it is known that line vortices move with the non-
T(N—1) ¥ (57 self-induced local velocity. Several runs of the modified code
] ] consisting purely of aiN-polygonal array of co-rotating line
Using (1) and(8) it follows that vortices is made for various values Nf The angular veloc-
I'o (N—1) ity () of steady rotation is well known to be given as
-~ as a—o. (58)
T 2 -
. - : . '(N—-1)
This fact facilitates comparison with Table | on p. 1063 of Q=——5—, (59)
Morikawa and Swensdfiwhich provides the stability region 4y

for a configuration oN equal satellite line vortices surround-

ing a central line vortex as a function of the ratio of thewherer is the radial distance of each line vortex from the
central-to-satellite circulations. Comparison with Table | oforigin, andT is the circulation of each vorte’. This pro-

Ref. 19 shows that the asymptotic ratio(N—1)/2 only  vides a check that the supplementary equations describing
falls within the stability range in the cagé=3. Figure 10 the line vortex motion have been correctly added to the con-
shows that aa decreased, /1" increases for eadN. When  tour dynamics algorithm.

N=3,I'y/I's falls within the stability range of Ref. 19 for all In the following calculations we choose=1. In the
values ofa. ForN=2, I'j/T' never falls inside the stability calculations which follow, time is scaled withm2
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FIG. 11. Vortical configuration at=3 of shielded Rankine vorteeft FIG. 12. Vortical configuration at=3 of shielded Rankine vortedeft
diagram and regular Rankine vortexight diagram perturbed by azimuthal diagram and regular Rankine vortexight diagram perturbed by azimuthal
mode-3 perturbation of the fori60) with amplitudeA=0.4. In contrast to ~ Mode-5 perturbation of the forii60) with amplitudeA=0.3. In contrast to

the regular Rankine vortex, the shielded vortex forms a distinctly quadrupoth regular Rankine vortex, the shielded vortex forms a distinctly sextapolar
lar configuration. configuration.

A. Shielded Rankine vortex symmetry is generally preserved and each satellite vortex
region has roughly the same circulation which is opposite to
the overall circulation of the central region. Also shown
(rightmos} in Fig. 11 is the state of a regular Rankine vortex
at the same time in the evolution, having been exposed to
exactly the same perturbation. While the residues of thin
filaments that have been excised from the patch during the
evolution are clearly seen, there is no well-defined multipolar
r=1+Acosmé, (60) formation in this case. Figure 12 shows the response after
=3 of a mode-5 perturbation of slightly smaller amplitude

where 6 is the polar angular variable andl represents a A—0.3 and it is clear that lI-defined tapolar struct
measure of the size of the perturbation. In linear theArig —U.oanditis clear tnat a wetl-aetined sextapolar structure
has developed. In contrast, the stateat3 of a similarly

taken to be small; however, we do not impose this restriction. urbed lar Ranki eal h q ;

We also show the results of perturbing a regular Rankin Eriurbed reguiar Rankine vor _eéa SO S me. 0€s not ex-

vortex to exactly the same perturbation. ibit the same distinctive multipolar formation. These pre-
- ; gminary nonlinear calculations highlight the crucial role

played by the presence of the central line vortex in the for-
mation of multipolar structures.

While it was shown in Sec. Il A that the shielded Rank-
ine vortex solution is neutrally stable, this implies nothing
about its nonlinear stability. In this section, we show the
results of imposing the following azimuthal-modepertur-
bation to the circular boundany=1 (wherer denotes the
usual radial polar coordingtef the shielded Rankine vortex

vortex, if perturbed strongly enough, can nonlinearly desta
bilize into a multipolar vortex structure. Cartbhas shown
that provided the initial perturbation is strong enough, the .
two-cpontour Rankine vortpex can destabilize in?o highegr-orderB' General equilibria of Ref. 1
multipolar structures although they tend not to be long lived.  First, several runs of the contour surgery code are made
Morel and Cartohshow that ahree-contour Rankine vortex in which the initial vortical configurations are given with no
destabilizes into higher-order multipolar structures. As menperturbation added. The contour surgery threshold parameter
tioned in Ref. 1, the shielded Rankine vortex is a limit of theis set at 0.1 so that there are typically between 100-150
(shielded two-contour Rankine vortex in which the enclosed points on each contour. More distorted shapes are described
central patch of vorticity is taken to a line vortex limit. It is using more points. The time step is also chosen carefully in
therefore feasible that a suitably perturbed shielded Rankinerder to avoid stiffness problems wharis large so that the
vortex might exhibit similar qualitative behavior to the un- line vortices are close together.
stable monopoles considered in Ref. 7. Figures 13—15 show the responses, by timeé, of un-
Figures 11 and 12 answer this question in the affirmaperturbed tripolar, quadrupolar and pentapolar vortices. In all
tive. Figure 11 shows the vortical configuration, at titne cases, the initial states are seen to remain stationary under
=3, of a shielded Rankine vortex with an initial mode-3 evolution of the contour dynamics equations for a certain
perturbation of the kind60) of magnitudeA=0.4. This rep- period of time. Eventually, small numerical errors seed the
resents a finite-amplitude perturbation and it is clear that thgrowth of any linearly unstable modes. The tripole in Fig. 13
vortex boundary folds in on itself in such a way as to form ais seen to asymmetrically decompose into a monopolar and
very distinct quadrupolar structure. A threefold rotationaldipolar structure. The initial stages of the instability are char-

FIG. 13. Evolution of an unperturbed=2, a=2 vor-
tex at timest=0, 3.25, and 5. The tripole splits into a
monopole and a dipole by growth in an instability in
which the central line vortex becomes displaced.
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FIG. 14. Evolution of an unperturbed=3, a=2 vor-
tex at timest=0, 3.25, and 5. No detectable change in
the vortex is observeteven after much longer times

acterized by the central line vortex moving off its equilib- ciated with a heteroclinic orbit in the dynamics of a 5-line
rium position. This is consistent with the linear stability vortex system as recently studied by Nak3ki.
analysis: the displacements of the line vortices associated The nonlinear evolution of perturbed equilibria is now
with the most unstable eigenmode of the linear stabilityexamined. The class of perturbations which have been con-
analysis are also found to be dominated by displacements sidered in most detail are those in which all satellites are
the central line vortex with much smaller displacements ofsymmetrically displaced inwards or outwards by a certain
the satellites. A similar phenomenon of asymmetric decomamount. To show the effect of this perturbation on linearly
position into monopole and dipole is observed by Morel andstable configurations, Fig. 16 shows the nonlinear response
Cartorl for a particular tripole although most configurations of ana=1.37 quadrupolar vortex to a perturbation in which
investigated by these authors prove to be stable. For the clasd satellite line vortices are initially displaced to a radial
of tripoles found in Ref. 1, none are linearly stable. distance 1.1 from the central line vortex. Minor rearrange-
On the other hand, Fig. 14 highlights the fact that ament of the patch vorticity takes place but the configuration
guadrupole remains stationary and unperturbed for extended structurally robust and, after a short period of adjustment,
periods. This is consistent with the linear stability analysisthe overall structure rotates in an anticlockwise direction. If
which reveals that there are no unstable linear modes in thithe satellites are movddwardsby 0.1, there is a more dra-
case. This calculation also provides a reassuring check thatatic rearrangement of the patch vorticity but again the
the contour surgery code has been correctly adapted to talstructure retains its overall quadrupolar form and rotates in a
account of the superposed line vortices. clockwise direction. This behavior of the perturbed quadru-
Figure 15 shows the decomposition into a dipole andpoles with the associated reorganization of the vorticity
three monopoles of an initially unperturbed pentapolar vor{which includes some filamentation events and surgery and
tex with parameterbl=4 anda=2.0. This configuration has therefore small losses in total circulatjois highly sugges-
a maximum linear growth rate @f~0.75 and, distinct from tive of the configuration adjusting itself to relax into a neigh-
the case of the tripole where the most unstable eigenmode Boring (rotating equilibrium. (See Fig. 17.
predominantly associated with displacements of ¢hatral We now explore the nonlinear evolution of pentapolar
line vortex, here the most unstable eigenmode has zero pestructures on either side of the linear stability boundary. Fig-
turbation of the central vortex and only displacements assadre 18 shows the evolution of a= 1.65 pentapolar vortex
ciated with thesatelliteline vortices. This is consistent with when all satellites are moved outwards by 0.1. Figure 19
the nonlinear evolution where the satellites are seen to destahows the evolution of a pentapolar structure wath 1.4
bilize first with the central vortex position unchangéke under the same perturbation. The former configuration has a
the middle diagram of Fig. 25It is worth pointing out that, linear growth rate of approximately 0.35 while the latter sits
for certain values o, the satellite line vortices were some- on the linear stability boundary. In common with the linearly
times seen to engage in a curious “dance” around the centradtable quadrupolar vortices, it is found that #re 1.4 pen-
line vortex, with the patch remaining mostly stationary.tapolar vortex undergoes a mild rearrangement of the patch
Morikawa and Swensdn observed similar phenomena in vorticity and rotateganticlockwisé without any significant
the case of even numbers of satellite line vortices and proehange of structural form right up tic=10. In contrast, by
vided the perturbation size was small enough. They referret=7.5, thea=1.65 vortex structure has disintegrated com-
to them as “nonlinear periodic oscillations.” This line vortex pletely.
phenomenon may be related to a relaxation oscillation asso- The results of a large number of experimental runs sug-

FIG. 15. Evolution of an unperturbed=4, a=2 vor-

tex at timest=0, 3.25, and 5. The vortex is seen to

decompose into three monopoles and a dipole by
growth in the displacements of the satellite line vorti-

ces.
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3 Co &

FIG. 16. Nonlinear response of a quadrupolar vortex (.37) to a perturbation in which all satellite line vortidgzmch of strengthh’s=2.563 are moved
outwards by 0.1. The strength of the central line vortex is negligible. A slight rearrangement of the patch vorticity occurs and the structure rotates
anticlockwise but retains its overall quadrupolar form. Times showrta® 1, 2, and 5.

S

FIG. 17. Nonlinear response of a quadrupolar vortex (.37) to a perturbation in which all satellite line vortidgsch of strengthh’s=2.563 are moved
inwards by 0.1. The strength of the central line vortex is negligible. There is a more dramatic rearrangement of the patch vorticity than in Fige 16 but t
structure retains its overall quadrupolar form and rotates steadily in a clockwise direction. Times show®ate 2, and 5.

O dRe

FIG. 18. Nonlinear response of a pentapolar vortex (.65) to a perturbation in which all satellite line vortices are moved outwards by 0.1. This structure
is linearly unstable with a linear growth rate of approximately 0.1. The structure rotates steadily for a whilet but.Byroughly thee-fold time according
to linear theory it has eventually disintegrated. Times shown &), 2.5, 5, and 7.5.

@ £3 <&

FIG. 19. Nonlinear response of a pentapolar vortax (.4) to a perturbation in which all satellite line vortices are moved outwards by 0.1. This structure
sits on the linear stability boundary. The structure is slowly rotating anticlockwise and retains its pentapolar form. Times shevdn 2i% 5, and 10.

A R R e

FIG. 20. Nonlinear response of an 8-polar vortex wéth-1.4 to a perturbation in which all satellite line vortices are moved outwards by 0.1. This
configuration has a maximum linear growth rate of 0.31. Times shown=afe 2.5, 5, and 7.5. The configuration rotates steadily for a while, but by
=7.5 (roughly thee-fold time according to linear theorythe structure has disintegrated.

o L340 L

FIG. 21. Nonlinear response of an 8-polar vortex vath 1.3 to a perturbation in which all satellite line vortices are moved outwards by 0.1. Times shown
aret=0, 2.5, 5, and 10. This structure is neutrally stable according to linear theory. The configuration rotates steadily and maintains its struciudal form
evolution. Note that small ripples in the boundary occur at the points of highest curvature.
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gest that the linear growth rates provide a good guide to whatf the configuration is not possible. Perhaps generalized
happens to the vortical structures under perturbations of thisquilibria involving line vortices superposed on a patch
kind. If an unperturbed vortex is linearly unstable then it iswhich are allowed to rotate steadily will produce a class of
generally found to have disintegrated by roughly étfold stable tripolar structures. It is unlikely, however, that this
time according to linear stability theory. For example, vorti- generalized rotating class will be describable in exact math-
ces with linear growth rates of order 1bare typically found  ematical form(although, it is worth pointing out that a class
to have disintegrated by aroune- 10. of exact rotating equilibria have recently been fotfhasing

On the other hand, linearly stable configurations arean analysis similar to that used in Ref. It must be remem-
found to simply rotate steadily for extended periods of time.bered that the solutions of Ref. 1 are a mathematically exact
An additional illustration of this is provided in Figs. 20 and subclass(and hence, a rather special clas$ the general
21 which show configurations, wita=1.4 anda=1.3, re- class of multipolar vorticesA priori, there is no reason to
spectively, forN=8. Again, the equilibria are perturbed by suppose that this special class will share any of the stability
moving the satellites outwards by 0.1. As in the pentapolaproperties of the general class even though the exact equilib-
case, thea=1.4 case(which, it is found, has a maximum ria exhibit many of the defining qualitative features of the
linear growth rate of 0.31lhas disintegrated biy=7.5, while  more general clas&ee the discussion in Ref).lHowever,
thea= 1.3 configurationgwhich are neutrally stable accord- as this paper has shown, the tripolar solutions appear to be
ing to linear theory rotates steadily up to the termination of the only ones whose stability properties are atypical of gen-
the calculations. These results suggest that this perturbatiaral tripolar vortices.
constitutes a linear one. In general, it is reasonable to expect Owing to the choice of method used, it has not been
that what constitutes lanear perturbation will depend on the possible to study the linear stability of the limiting configu-
equilibrium being perturbed. Nevertheless, these limitedations discussed in Sec. I, nor indeed, configurations that are
nonlinear calculations reveal that linear stability theory carntoo close to limiting. However, several calculations for dif-
provide a useful guide to the nonlinear fate of these vortexerentN were performed fom values close t@{\) and with
structures. Moderate nonlinear perturbation seems generaltite order of the spectral method taken to be much larger than
to result in one of two long-term consequences: a steadilfhe A’=64 used to obtain the results reported here. In all
rotating structure or complete structural disintegration. Thesuch calculations, as the order of the spectral method is in-
linear stability boundaries seem to provide a good workingcreased, the real parts of the spectrum tended to disappear
guide to which of these two eventualities occurs in any parthereby suggesting that the states very close to limiting are in
ticular case. fact neutrally stable. However, we make no definite state-
ment on this matter until a method capable of more accu-
rately computing these linear stability spectra is imple-
mented.
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V. DISCUSSION
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