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Using ideas involving the Schwarz function of analytic curves, a new class of exact multipolar
equilibria of the two-dimensional Euler equations characterized by an annular region of vorticity
enclosing a region of irrotational fluid is constructed. The results generalize a recently derived class
of exact solutions for multipolar vortex equilibriiCrowdy, Phys. Fluidsl1, 2556 (1999]. The
solutions have many qualitative similarities to the multiple-vortex nonlinear saturation states of an
unstable annulus of uniform vorticity. More generally, the results suggest the possibility of
constructing multipolar equilibria of the steady Euler equations having distributed vortical regions
of more or less arbitrary geometrical complexity. Z02 American Institute of Physics.
[DOI: 10.1063/1.1420746

I. INTRODUCTION of interest, from a theoretical point of view, to find effective
models of such vortices, or ideally, some mathematical solu-
Coherent vortical structures are now known to constituteions of the Euler equations which resemble multipolar vor-
an important feature of many two-dimensional and quasitices and which can be studied explicitly. In this vein,
geostrophic flows.They arise in many aspects of astrophysi-Kloosterziel and Carnevaf® have recently examined the
cal, geophysical, and meteorological fluid dynamics. In amossibility of approximating the evolutionary dynamics be-
initial state of randomly distributed vorticity, for example, tween these equilibria by low-order dynamical systems
the cascade of energy to larger scales is responsible for thehile, with a view to extending our theoretical understanding
formation of such vortical structurésWhile monopoles and  of these structures as mathematical solutions of the Euler
dipoles are the most ubiquitous structufebaracterized by equations, the present author recently pointed®dhat there
one and two vorticity maxima respectivglylaboratory exists a class of exact solutions to the steady two-
experiment$® and numerical simulatiois' have shown dimensional Euler equations which share all the qualitative
that higher order structures, such as tripoles angroperties of multipolar vortices observed in practiphysi-
quadrupoles®™ (as well as even higher order structures cal observation, experiments, and numerical simulalions
arise from the instability of isolated circular vorticessually ~ The new solutions are finite-area patches of nonzero vorticity
with zero total circulation A tripole is characterized by and therefore, unlike simple point-vortex models, provide
three vorticity maxima—a central core region with vorticity insight into the shapes of vortical equilibria of the Euler
of one sign surrounded by two satellite vortices both of op-equation.
posite sign. A tripolar-like vortex has been observed in real |t was pointed out in Ref. 16 that the solutions derived
physical flows® and the possibility of its emergence from an there had the intriguing property of being “invisible” in that
unstable monopolar vortex was originally mentioned bythey do not induce any irrotational velocity field outside the
Leith.** A quadrupole has a central core surrounded by &upport of the vorticity. Such vortices therefore only interact
triangular array of three such satellites. The general class afhen the overlap. This prompts a very natural question
vortices of this general kind have been dubbed “multipolarwhich forms the basis of this paper: what happens when such
vortices” and the formation, structure, and stability proper-vorticesdo overlap? In particular, can overlapping of such
ties of such vortices is a topic of much recent research actiwortices produce more coherent vortex equilibria of the 2D
ity. Typically, such vortex structures rotate at a constant anEuler equations, perhaps with vortical regions having even
gular velocity. We refer the reader to Ref. 6 for a detailedmore complex shapes? This paper answers this question and
discussion of the general properties of multipolar vortices. shows that, in certain circumstances, it is possible for such
Owing to the complicated structure of these multipolarvortices to merge in such a way as to form a steady higher
vortices, most investigations of them have involved eitherorder vortical structure. Indeed, our principal result is to
laboratory experiments or full numerical simulations, al-show that, within the class of solutions under consideration,
though simple point vortex models can often capture manywhile (shielded monopoles cannot combine in pairs to form
aspects of realistic flow situatiorie.g., Ref. 14 Itis clearly  compound equilibria, higher-order equilibria can be formed
provided at least three monopoles combine in an annular
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essentially produce a broad new class of exact multipolar By definition, the Schwarz function of a general closed
solutions of the steady two-dimensional Euler equationsanalytic curvedD surrounding a bounded, simply connected
This paper constitutes a natural sequel to Ref. 16. domainD in the plane is théunique function, analytic in an
Many investigators have considered what happens wheannular domain containing the curv®, satisfying the rela-
two or more coherent structures interact. Saffman andion
Szetd’ showed that two patches of like-signed uniform vor- _
ticity (i.e., V-statey cannot get too close together and con- S(z)=z,
tinue to exist in a co-rotating equilibrium, while |n the case in whicD is the circle defined byz=1 it is
Pierrehumbetf considered the case of two opposite-signedcjear that everywhere ofD,
symmetrical vortices. Dritsch¥l later generalized the
Saffman—Szeto scenario to the case when an arré&yiké-
signed uniform vortex patches exist in an annular co-rotating
equilibrium. Dritschel suggested that such equilibria might ]he function ofz on the right hand side is analytic in, for

be the nonlinear saturation states of an unstable annulus 8— e th lar d in ectzl<1 1 which tai
uniform vorticity. Indeed later, Dritsch® computed the example, the annular domain 8-9z|<1.1 which contains

nonlinear evolution of an annulus of uniform vorticity and the unit circle|z|=1. The function also satisfies Ep). We

showed that, under suitable circumstances, it did indeed déherefore recognize it as the Schwarz function of the circle,

stabilize into an annular array of distinct vorticity maxima €.,

which looked very similar to the 5-patch annular configura- 1

tion computed in Ref. 19. The new equilibrium solutions to ~ S(2)= . (4)

be presented here have very strong similarities to the numeri-

cal solutions of annular arrays of co-rotating V-states dis-The following analysis will be self-contained in that all re-

cussed by Dritschéf?° Indeed, we believe our new solu- sults regarding the Schwarz functions needed for the present

tions to be a mathematically exact subclass of this generapplication will be cited here. For more details, however, the

class of equilibria of the 2D Euler equation. interested reader is referred to a monograph by Dziew
consider the velocity field Eq) rewritten in terms ofz
=x+iy and its complex conjugate. Using the fact that the

Il. OVERLAPPING MONOPOLAR VORTICES radial and tangential components of a general two-

dimensional incompressible velocity field (V) is related to

the streamfunction by the formula

everywhere ondD. (2)

1
> (3

Saffman and Szeté explain the nonexistence of a co-
rotating equilibrium when two like-signed vortices draw too
close together as being due to the strain field induced by one 2iy,=€e'’(U—iV), (5)
vortex being too strong for the other vortex to exist as a
separate entity. In the case of the solutions of Ref. 16 whic
induce no straining flow outside the support of the vorticity,

t can be deduced that the streamfunction associated with Eq.
1) is

this mechanism no longer represents a possible reason for the wo — (21 Z1
nonexistence of steady solutions. We therefore suggest that #=— T(ZZ_ ;dZ'—f ?dz’). (6)
such vortices might be able to draw arbitrarily close together
and “merge” to form higher-order compound vortical struc- Using the identification Eq4) this is equivalent to
tures. _

To iIIust_rate the idea, cqnsider the exgct solution (_)f the =— o 77— fZS(z’)dz’— f Zg(z,)dz, , (7)
Euler equations referred to in Ref. 16 astaelded Rankine 4

vortex given, in cylindrical polar coordinates (¢), by the

velocity fieldu=(0V(r)) where the azimuthal velocity field 'ere the conjugate functioi(z) is defined byS(z). For-

mula (7) provides the key route to generalization developed

's given by in Ref. 16.
wol g The velocity field everywhere outside the vortex in Eq.
_l 2 o r<i, (1) is quiescent. The same is true of all the generalized so-
V(r) () . . PRI
0 r>1 lutions found in Ref. 16 where the adjective “invisible” is

used to describe such vortices. Consider two shielded Rank-
and wherew, is the constant uniform vorticity inside the ine vortices sitting close together but not touching. Such a
circular patch. This solution might equally well be referred toconfiguration also constitutes a self-consistent global solu-
as a “shielded line vortex” because the patch of uniformtion of the steady Euler equations precisely because the vor-
vorticity surrounding the central line vortex can be viewed agices do not interact. Indeed, two such vortices can draw so
shielding it. Here, however, we continue to employ the namelose together that they actually touch. This is possible be-
introduced in Ref. 16. This vortex will be a key building cause neither vortex induces any strain field outside the sup-
block in the development. It is from understanding this vor-port of its own vorticity. It is natural to ask whether the two

tex from the point of view of the Schwarz function of the such monopolar solutions can merge, not in a dynamical
circle r=1 that forms the basis of the derivation of the sense, but in the sense that the class of equilibria can be
higher-order multipolar structures of Ref. 16. continued via a continuous sequence of steady solutions
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which form higher-order steady multipolar structures within
the same class of solutions considered in Ref. 16, i.e., non-
rotating and surrounded by quiescent fluid.

There is a further reason to suspect that this idea of
steady merger might be feasible. At a point where two
shielded Rankine vortices touch, the resulting configuration
will have a cusp singularity in its boundary at the point of
contact. The vorticity in the neighborhood of this cusp will
be uniform. Overmait has made a careful study of “limiting
V-states”(i.e., limiting shapes of patches of uniform vortic-
ity) and shown, by means décal arguments in the neigh- aD,
borhood of a point of nonanalyticity in the boundary of a
uniform V-state, that the only possible limiting states posses§IG. 1. Annular patch of vorticityD (shadegt the interior and exterior
either 90° corners or cusps. Overman’s analysis is therefor@gions of irrotatiorlal fluid are denote) an_dDO, respectively. The inte-
consistent with, and does not immediately rule out, the posr_|or boundary ofD is denotedJD; , the exterior boundary denotetD .
sibility of continuously smoothing out a cusped point of con-

tact as two initially disjoint vortex structures come together. o ]
This question of the steady merger of the invisible vor-Causeé the support of the vorticity in the resulting compound

tices of Ref. 16 is not a trivial one. Indeed, the question jusBtructure is now doubly connected, the analysis of Ref. 16
posed of whether just two shielded Rankine vortices cafnust be generalized in a nontrivial way.

merge to form a higher-order, shielded, dipolar structure Ve review and summarize the results of Ref. 16. This
(within the same class of solutionsharacterized by two work pointed out the relevance to multipolar vortex solutions

localized vorticity maxima has a negative answer. This ques?' the steady Euler equations of a streamfunction defined by

tion was answered implicitly in Ref. 16 where it is found that y(z,z)
there does not exist a simply connected dipolar vortical patch B \
surrounded by quiescent fluid. Thus while it is possible for _2f = e ,_JZ_ , ,) ;
two shielded Rankine vortices to approach eachother so = 4\ %% f S(z)dz S(z)dz'}, in D,
closely that they touch, it is not in fact possible to continue 0, outsideD,
these solutions so that the monopoles “overlap” and remain
in equilibrium. (8)
where S(z) is the Schwarz functiorof the boundary of a
finite-area, simply connected patch of nonzero vorticity. The
IIl. ANNULAR CONEIGURATIONS OF VORTICES function Eq.(8) also has relevance in other quite different
(more mathematicatontexts and is sometimes referred to as
Given this observation, it might appear that the propose@ modified Schwarz potenti4t
search for compound vortices formed by the overlapping of  As pointed out in Ref. 16, the special choice of stream-
the canonical monopolar vortices E@) is destined for fail-  function Eq.(8) is remarkable in that it simultaneously sat-
ure. However, many studies reveal that vortices typically arisfies both the kinematic and dynamic boundary conditions
range themselves so that they consist of a finite array obn the boundary oD (i.e., the boundary of the region of
vorticity maxima congregating in a co-rotating annular con-nonzero vorticity. If one then restricts the class of vortex
figuration. The classic studies of a co-rotating ring of linepatches to those which have a Schwarz function which is
vortices by Thomsofand othersare well-knowr£®Itis also  meromorphic inside the patch with just simple pole singu-
known that there exist annular configurations of vorticity larities having real residues, it was discovered that one can
maxima associated with regions of distributed vorticity with apply the non-self-induction hypothesis to obtain exact, self-
central core regions consisting wholly of irrotational consistent solutions of the steady Euler equations. We refer
fluid.1%2° Also, in a typical multipolar vortexe.g., Ref. 11,  the reader to Ref. 16 for more details.
k satellite vortices congregate in an annular configuration Now consider such a patch with an additional interior
and enclose a core region consisting of a region of vorticityregion of enclosed irrotational fluid denot&f. The region
of opposite sign usually also possessing some enclosed ref irrotational fluid outside the vortex patch will be denoted
gions of irrotational fluid. Dy. For convenience, we will refer to the outer boundary
Motivated by this, we explore the situation in which a (betweerD andD,) asdD and the inner boundaifpetween
collection of k shielded Rankine vortices come together inD andD;) asdD;. Figure 1 provides a schematic. The dif-
such a way that they form an annulae., doubly connected ficulty of generalizing Eq.(8) to an annular(i.e., doubly
region of vorticity enclosing a finite region of irrotational connecteglregion of vorticity is immediately seen when one
fluid and surrounded by irrotational fluid. It will be shown considers the fact that such an annular region of vortioity
that such solutions exist and, moreover, that they are preaow has two disjoint bounding curves. In general, béih,
cisely a result of the merging of an annular array of theand dD;, being disjoint closed analytic curves, will each
canonical monopolar vortices E(lL). The solutions will be define an associated Schwarz function dend®gfz) and
found by generalizing the methods presented in Ref. 16. BeS;(z), respectively, i.e.,

D,
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7=Sy(2z), on Dy, dy= g, dz+ Y dz,

_ 9 5 5 (14

2=5(2), on Jb;. =—Z(Z—S(z))dz—z(z—5(z))dz.

For general annular domains, these Schwarz functions are

different. It is therefore not immediately clear how to gener-On the boundaryDo, Egs.(9) and(12) imply thatdy=0

alize the streamfunctior(z,z) as given in Eq(8): follow- SO thatdD is a streamline. Therefore, the kinematic bound-

ing the analysis in Ref. 16 a streamfunction defined by ~ ary condition is satisfied on this boundary. Moreover,
—iv=2i¥,=0 ondD, so that velocities are continuous on
the outer boundary. This implies that fluid pressure is con-

(10 tinuous ondD,,2® and therefore that the dynamic boundary
condition is satisfied. Because of stipulation EtR), exactly

will satisfy both the kinematic and dynamic boundary con-the same arguments hold on the inner bounday. If S(z)

ditions on the exterior boundagD, provided there is qui- IS assumed to have simple pole singularitieDiwith real

escent fluid outside the patch, while a streamfunction definetesidues, then the streamfunction Etf3) will have line vor-

by tex singularities at these points. For a consistent solution of

the steady Euler equations it is necessary, by the Helmholtz

vortex theoremé® to ensure that all such line vortices are

stationary under the effects of the local non-self-induced ve-

locity field. This important physical constraint is discussed

will satisfy the kinematic and dynamic boundary conditionsfurther in Sec. V once we have found a way to construct the

on the interior boundaryD; provided there is quiescent fluid special class of doubly connected domains now of interest to

in the region enclosed by the annular vortical region. Butus (these domains are related to the theory of quadrature

between the two boundaridse., the vortical regionit is domain$*9.

necessary to define a common streamfunction. For general

classes of annular vortical domains, E¢R)) and (11) will

define different streamfunctions.

The key to generalization is to restrict tospecialclass
of doubly connected vortical domains. We now suppose itis  As in Ref. 16, the most convenient way to parametrize
possible to find a doubly connected dom&imwhich has the the class of domains now under consideration is to introduce

_ w| _ [z z—
"[/(Z’Z):_Z zz—f So(z')dz’—f Sp(z')dZ'

(11)

W27)=- 7|27~ fZS(z'>dz'—fz§(z'>dz’

IV. CONFORMAL MAPPING

distinguished property that a conformal mapz({) from a canonical doubly connected
. region. By Riemann’s theoref,for any doubly connected
So(2)=S(2)=S(z), in D, (12 region there exists a conformal map from an annulus

- . ) . p<|{|<1 for somechoice ofp. This parametep (known as
excgpt at afinite numbgrk of smple .po.Ie singularities the conformal moduluf the mapping—see Ref. 2Must
{z]j=1,..k} of S(2) which are strictly insideD. In other ¢ getermined as part of the solution. The cirgle-1 will
words, we consider a special class of domains in which bot ap to the exterior boundary of the pateB,, while |¢|=p
the outer and inner bounding curves of the annular domaig;, map to the interior boundaryD; . Se?e’ Fig. 2 for a
have the same Schwarz function which continues meromors.pomatic. '
phically throughout the vortex patch. In addition, tlé®@m-

o . It is convenient to write the functio8(z) in terms of the
mor) _Schwarz fun_ctlor[Le_z._, S(Z)_] will be assumed to have parametricZ-variable which, henceforth, will be usddiong
only simple pole smgularltle{sz]-lj =

; 1,..k} in D each having with its conjugate variab)eto parametrize all physical quan-
purely real residues.

_ _ _tities associated with the flow. Qg|=1, the Schwarz func-
It has not yet been established that such special domalqﬁ)n So(2) is defined by

exist, however, we now show why such domains are of in-

terest to us. Consider the streamfunction defined by So(2)=z. (15
W(2,2) Using the fact tha?= "t on|g=1 it follows thatSy(z) can
be written
0, in DQ —_—
o _ (2 7— So(z())=2)=2z(¢™Y), on[{=1. (16)
= ——(zz—J’ S(z’)dz’—J S(z’)dz’), in D, _ . . i )
4 Herez({) denotes the conjugate function2(!) defined via
0, in D [
20)=2(%). (17)

(13
) By analytic continuation, Eg(16) also holds off the circle
where §(2) is defined by Eq(12). The vorticity associated |//=1. Using the fact that=p2, "1 on |{|=p the Schwarz
with this streamfunction is equal to a uniforeverywhere  fynction S;(z) can similarly be written as
inside D except possibly at any singularities $(z). Inside _
D, the total derivativedy is given by S(z(0))=z(0)=z(p?¢™Y), (18
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1 FIG. 2. Conformal mapping domains.

z-plane (-plane

which similarly also holds off the circlé|=p by analytic integerk, the conformal map Eq22) with parameters satis-
continuation. Therefore, comparing Eq4.6) and (18), in  fying Eq. (23) exactly satisfies the functional equati¢ib).
order that Eq.(12) should hold, the conformal map must It is important to observe that #({) is known in the
satisfy the functional relation annulusp<|¢{|<p~?, then Eq.(19) provides th2e analytic
— = 2. continuation ofz(¢) into every other annulup? *1<|
200 D=2, (19 <p?~1 wherej is any integer [#0). We therefore ref|er|t0
for all {#0. Functions satisfying such a multiplicative peri- the annulus
odicity property are studied in classical texts on function _
theor p<|¢l<p! (24)
y (e.g., Ref. 28 but all results needed for the present

application will be explicitly stated below. as thefundamental annulughe analyticity/singularity struc-

In order to explicitly construct functions satisfying EQ. tyre ofz(¢) in all other annuli is equivalent to the analyticity
(19 it is necessary to introduce a single special functionstrycture in this fundamental annulus. Note also &)
Consider the functiorP({), indexed by a nonzero positive cannot have singularities in the sub-annubssiz|<1 of the
integerk, defined by the following infinite-product expan- fyndamental annulus because this corresponds to the pre-
sion: image of the mapped vortical region. It is therefore enough

o the consider the singularities af¢) in the single annulus

PUO=1- T @-p?9a-p? ™. (20 1<l<p™™.

n=1 BecauseP,({) is just a function ofZ¥, it is easy to see
This function has some special properties which will enabléhat, for any choice of integes z(¢) as defined in Eq(22)
us to construct a conformal mapping satisfying E#9). 'S |£1v_</3}(rlant under the transformatioft—{wj, where wy
First, observe that some simple direct manipulations of the=€~"  andj is any integer. Thus, the conformal map Eq.

infinite-product definitions reveal th,(¢) has the follow- ~ (22) represents a mapping to a vortical region possessing a
ing transformation properties: k-fold rotational symmetry. Moreover, if we choose all the

parameters in Eq22) to be real, then the annular patch of
vorticity will be symmetric with respect to reflections in the
x-axis. In particular, this means that the conjugate function
2(¢) is equal toz(?), i.e.,

1
Pk((l):Pk(pzé”):—?Pk(é)- (21)

We now pick a positive integek and define the following

conformal map using the special functi®q(?): 2(0)=2(2). (25)
20)=R Pu(¢{m1 ) 22) We will restrict consideration to this class of vortex patches.
f=Re Pt If ¢4 is chosen to be in the real intervakk <p~* (re-

call that, according to the reasoning above, it is enough to
consider the singularity structure af¢) in this particular
annulus along then the conformal mag(¢) will have k

whereR is a real parameter and the real parameterg, ,
and{, are related via

Pzﬂli symmetrically placed simple pole singularities at poitts
—— =1 (23 =0}, j=0,1,2,..k—1. This implies, from Eq(16), that

& S(z(¢)) will have simple pole singularities inside the vorti-
Given this relation, the conformal map E2) contains cal region at points corresponding Zq_lw{(, j=0,1,2,...,

threeindependen(frea) parameters, i.ep, {1, andR. Using  k— 1. From the streamfunction E(L3), it is clear that physi-
Eq. (21), routine algebraic manipulation reveals that for anycally this corresponds to the presencekdihe vortex singu-
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larities at symmetrically distributed points inside an other- It can be verified by straightforward algebra that, by the
wise uniform annular patch of vorticity. In order for the k-fold symmetry of the conformal map and the associated
streamfunction Eq(13) to represent a fully self-consistent velocity field, Eq.(28) is also the condition for the remaining
solution of the steady Euler equation, it is necessary to erk— 1 vortices at pomtz(gﬁl 1), j=1,2,.k—1 to be steady
sure that these line vortices are all steady under the effects oihder the effects of the local non-self-induction terms. The
the local non-self-induced terms of the velocity field. parametelR can be specified by specifying the total area of
The parameters appearing in the conformal map(E2).  the vortical patch region.

must be such that({) is a one-to-one mapping from the If solutions for{,, p and 4 satisfying Eq.(23) and(28)
annulusp<|{|<1 to the vortical region. It turns out that it is which correspond to one-to-one conformal maps from the
impossible to find any one-to-one conformal map of the formannulus p<|{|<1 can be found then we have a solution
Eg. (22) from the annulup<|{|<1 unlessk=3 (the reasons which satisfies all the boundary conditions kaith vortex
for this will not be discussed here but are a result of certairpatch boundaries, and ensured that the line vortices are
mathematical properties of the class of domains to which weteady under the effects of the non-self-induced velocity
have restricted attentié®. It has also been found that al- field.
thoughp necessarily lies in the range®<1, the map Eq. It turns out that such solutions do indeed exist. For any
(22) is not one-to-one from the annulps:|{|<1 for all val-  integerk=3 there exists a continuous one-parameter family
ues ofp within this range. Indeed, for eadf there exists a of solutions parametrized by the conformal modyu®©nce
maximum value of for which one-to-one maps of the form p is specified{; and »; follow from the two conditions Egs.
Eq. (22) exist. Moreover, the maximum value pffor eachk  (28) and (23), while R then follows from a specification of
(which we will denote byp,) provides exactly the case &f the total area of the vortical patch region.
shielded Rankine vortices of the form E() coming into The critical p=p, corresponds to a situation in which
contact and touching in an annular configuration about theeros of the conformal mapping functioa, approach the
origin. Thus the conformal map Ed22) and associated boundary of the annulus<|{|<1 from outside(recall that
streamfunction Eq(13) are precisely the required generali- for conformality, a necessary condition is that all such zeros
zations of the theory of Ref. 16 needed to answer the quedie outside this annulysin fact, the zeros approach this an-
tion posed in the introduction: what happens when multiplenulus along the rays grg= w, wherew, are thek-th roots of
shielded Rankine vortices overlap? —1. The equation providing the critical value pf=p, can

be found by simultaneously solving Eq&8), (23) as well as

V. STEADINESS OF LINE VORTICES the additional equation

R /iy _
Define an auxiliary functioriP () as follows: z,(e™=0, (29)

. Pyl g) * for the three(critical) parameters;, 7,, andp. Note that
Pu(d)= =05 H 1-p®™ 4 (1-p>" %), (26)  the argument of, in Eq. (29) is simply the root of-1 lying
n= in the first quadrant. These critical solutions correspond to a
Now define situation in whichk shielded Rankine vortices just come into
P 1pr ) contact in ak-symmetric annular configuration. The value of
ke T , _ (277 p obtained will be the maximump=p, for which solutions
Pu({ 1 HITC (- o 08 Y of this kind exist, i.e., for eack=3, solutions exist for alp
satisfying

F(d)=

Because line vortices move with the fluid, to ensure station

arity of the line vortices it is necessary to find the Laurent 0<p<
o . . . <p<pg. (30

expansior(in the physical plang) of u—iv about each point

Z; at which a line vortex exists and ensure that all nOﬂ-Se'f-The first few values Otok are found numerica”y, to three

induced contributions to the velocity field vanish at thatdecimal places, to be given by

point. This will mean that there is no net force on the line

vortex—clearly a necessary condition for equilibrium. For p3=0.567, p,=0.671, p5=0.732, psg=0.799.

the class of solutions under consideration, there is always a (32)

line vortex on the physical real axis at tiieeal) point z;

=z({y 1Y. Some algebra reveals that at the painthe con-

dition that this line vortex is steady under the effects of the

non-self-induced velocity terms is given by

Summary of the exact solutionSor convenience, we now
summarize the important formulas. It has been shown that a
class of exact solutions for an annular multipolar array of
vortices is described by a conformal map from the annulus
I . z“(gl_l) 1 P&t h p<|{<1 given by Eq.(22) for any integerk=3 with real
Fr(i)+Fu(dy )22 “hH o P(¢79) =0. parameter, 74, {; andR related via Eq(23) and existing
aet ' (29)  in the ranges

Equation(28) provides a relation between the parameiers O<p<p,, 1<i<pl 1<y<p %, (32)

and {4 in the conformal map Eq22). Note that Eq(28) is

independent of the parametBrwhich is essentially a nor- and also satisfying the nonlinear algebraic constraint Eqg.
malization parameter. (28). Using the fact that
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FIG. 3. Graph of the solution faf; (y-axis) of the stationarity condition Eq.
(28) againstp (x-axis) for k=3, 4, 5, and 10.

A o ay
2'¢Z_2IE_|&7+W_U iv, (33
the associated velocity field insid®is given(as a function
of Zand{) as
ioR

u—iv=2iy,=— >

—P(In Y 1Pk<§-1nzl>>
g ~1. s 1.1, |-
P((rY (P

(39
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BEHE Y

FIG. 4. Vortex boundaries and line vortex positioshown as dofs k
=3; p=0.56, 0.4, 0.3, 0.2, 0.1.

These solutions represent a continuous one-parameter family

of vortices for each integde=3. We can choosg to be the

We first investigate theshapesof the vortices as the

relevant governing geometrical parameter. The paranfeter 980metrical parametey is varied. Note that, although the
is arbitrary but one choice is to specify the total area of theeonformal map Eq(22) is represented as an infinite product,

vortical patch to be, sayy, i.e.,
1 _ _
= z'm{ b A M- jﬁmzpz<§l>zg<z>d4,

{=1

(39

where we have used E@19). To find the criticalp,, we
simultaneously solve Eq$23), (28), and the equation

Zg( e’iTi/k) — 0, (36)
for {1, 71, andpy.

VI. DISCUSSION OF THE SOLUTIONS

In Fig. 3, the graphs of; againstp as determined by
solving Egs.(23) and (28) using a numerical Newton itera-
tive procedure are shown fér=3, 4, 5, and 10 fop-values

because the conformal modulgss less than 1, the vortex
shapes can be plotted by truncating the infinite products Eq.
(20) after a suitably large number of terms. A convenient test
of whether enough terms have been retained is provided by
checking that the functional relation Ed.9) is well satisfied

for arbitrary choices of. In practice, it is found that only a
few terms need to be retained.

In Fig. 4, the shapes of the vortical regions for various
values ofp are plotted for a class of vortices wik= 3. The
positions of the line vortices are also indicated by dots within
the patch. The first plot is a near-critical case with0.56. It
can be seen that this corresponds to a situation in which three
shielded Rankine vortices just come into contact forming a
doubly connected annular region of vorticity enclosing a re-
gion of irrotational flow. Asp decreases, the three initial
shielded Rankine vortices merge to form a compound vorti-
cal structure. It is interesting to note that a domain of this

within the respective range of existence of solutions in eaclparticular kind was first constructed, using very different

case. Giverk andp, the corresponding, is given by these
graphs. The value ofy; then follows from Eq.23). R fol-
lows from the area normalization condition onge{; and
7, are determined.

methods, by Gustafsséi,who was interested in purely

mathematical problems in quadrature domain theory. Here
we have shown the applicability of these abstract mathemati-
cal results to finding physical solutions of the Euler equation.
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FIG. 5. Vortex boundaries and line vortex positiofghown as dobs k

=4; p=0.65, 0.4, 0.3, 0.2, 0.1. FIG. 6. Vortex boundaries and line vortex positioshown as dots k
=5; p=0.72, 0.5, 0.4, 0.3, 0.2.

In Fig. 5, the analogous shapes are given for a class of
vortices withk=4, while Figs. 6 and 7 give the casks 5 package which integrates an interpolated velocity field for
and k=10, respectively. In each case, the first plot corre-the streamlines numerically. This procedure gives very good
sponds to a near-critical value pfso that the configurations results in general. We point out, however, that certain stream-
resemble an annular configuration of touching shieldedines that draw too close to the stagnation points are some-
Rankine vortices. Ap decreases, the size of the enclosedtimes found not to “close” completely due to inaccuracies in
irrotational region decreases until it eventually disappearshe numerical integration. Also, streamlines too close to the
when p=0 resulting in a simply connected region of vortic- boundaries of the patdiwhere the magnitude of the velocity
ity. field gets smallare similarly hard to calculate accurately in

The shapes of these compound vortices have many simthis way. These inaccuracies are purely numerical—in
larities with the shapes computed numerically by Dritsthel theory, these streamlines close. Whiiteprinciple it is pos-
in his calculations of the breakup of a uniform vortical an-sible to use the explicit expression for the Schwarz function
nulus into multiple vortices. In particular, it is interesting to to integrate the expression E§l3) analytically for the
compare the vortical shapes in Figs. 4—7 he@specially streamfunction, there seems to be no simple closed form ex-
those corresponding to smallprvalues to some of those pression for the resulting primitives. The streamfunction
featured in Figs. 3—6 and 10 of Dritsclf8l. could therefore be represented as an explicit set of integrals,

Figures 8—10 show typical streamlines and circulationhowever, to actually plot the streamlines would still require
regions associated with the merged compound vortices. Toumerical quadrature of these integrals.
plot the streamlines, it is found most convenient to use Eq. In Fig. 8, streamlines of the principal circulation regions
(34) to compute the components, ) of the velocity field of a typicalk=4 vortex are shown, while Figs. 9 and 10
for a discretized set of points inside the unit disc in thedepict the circulation regions of a typical multipolar vortex
{-plane. These data are then fed into a data visualizatiowith k=5 andk= 10, respectively. The streamlines shown in
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regardless of the value @f or £;. This result is clear: the
total circulation of the structure is zero while the vorticity
associated with the uniform patch, of total areais w. The
strengths of the line vortices must therefore be given by Eq.
(37) if the combined structure is to have zero total circula-
tion. One can ask the following hypothetical question: in
how many geometrical configurations can one arrange a uni-
form patch of vorticity of arear and strengtho with k line
vortices each of strength (w7/k) such that the combined
structure is a global equilibrium solution of the Euler equa-
tion? The above results reveal that there is at least a continu-
ous one parameter famiparametrized here by) of ways

to do this and therefore a dense set of such multipolar con-
figurations. The apparently dense nature of the class of mul-

FIG. 8. Typical streamlinek=4 (p=0.118 and{;=1.453: the bold
streamlines are the inner and outer boundaries of the vortex patch.

FIG. 7. Vortex boundaries and line vortex positiofghown as dobs k
=10; p=0.85, 0.6, 0.5, 0.4, 0.2.

bold are the inner and outer boundaries of the vortical region.
Typically, one observes that there exiktstagnation points
at which separatrix streamlines converge marking out dis-
tinct regions of recirculation. Due to difficulties in plotting
streamlines through the stagnation points, none of the sepa-
ratrix streamlines are shown in Figs. 8 and 9, but streamlines
drawing close to the separatrix streamlines are featured in
Fig. 10 in the cas&=10. Whenp is close to(but just belovy
the critical p,, for eachk, the area occupied by streamlines
which circulate around the entire structuf@s opposed to
circulating locally around one of the satellifgés small, as is
the area of the streamlines which circulate around the en-
closed region of irrotational fluid. These areas increase as
decreases toward zero, leading to a greater area of stream-
lines circulating around the entire vortical structure and
therefore to greater global interaction between the separate
shielded vortices which have merged to form the compound
structure.

The strengthI', say, of each of thé line vortices su-
perposed on the otherwise uniform patch of vorticity is

r= E (37) FIG. 9. Typical streamlinek=5 (p=0.227 and{,;=1.436: the bold

streamlines are the inner and outer boundaries of the vortex patch.
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nonlinear stability properties can be studied using simple ad-
aptations of existing numerical contour dynamics codes.
The linear and nonlinear stability properties of the mul-
tipolar solutions presented in Ref. 16 has recently been stud-
ied in Ref. 31. Many of the stability properties of the exact
solution class are found to be consistent with previous sta-
bility studies of multipolar vortices. The recent results of
Crowdy and Clok& suggesthat there is a good possibility
that the solutions found here might be robust structures, if
not actually linearly/neutrally stable. This is because the so-
lutions here resemble certain of the multipolar solutions of
Crowdy'® in the case where the satellite line vortices are
well-separated and the central line vortex is comparatively
weak (the solutions here, of course, possess no central line
vortex but the overall qualitative distribution of vorticity is
similar). Recent resulfé reveal that such configurations are
FIG. 1Q. Typical str_eamlinek=10 (p=0.4327_ and¢;=1.333: the bold neutrally stable in the cade=3 while the case&=4 and
streamlines are the inner and outer boundaries of the vortex patch. k=5 are neutrally stable provided the satellite line vortices
are sufficiently separated and, under moderate nonlinear per-
turbation, prove relatively robust. A detailed study would be
tipolar equilibrium solutions of the Euler equation has beernrequired to determine whether the solutions found here in-
pointed out befor€ and we comment further on this point in herit these linear stability traits. The linear stability proper-
the conclusion. ties of a concentric annular vortex of uniform unit vorticity
As mentioned earlier, the limji—0 gives a simply con-  as considered by Michalke and TimfAdave been found to
nected vortical region which hdssatellite vortical regions depend crucially on the conformal modulp®f the annulus.
and a central core regidenclosed by the separatrix stream- Indeed, the annulus becomes linearly stable as the conformal
lines) of uniform vorticity. In fact, as recently discussed in modulus decreases below the critical valugef. We con-
Crowdy and Cloké! this simply connected patch solution is jecture that the linear stability properties of the new annular
contained within the class of solutidfignd can be found by multipolar structures will similarly have an important depen-
using the methods of Ref. 16 and considering conformatlence onp. The dependence of the linear stability on the
maps from the unit-circle which have the rational function symmetry parametek is also of interest.
form

R(a
2(0)= Zk(—_)ag'z' 39 VIl. CONCLUSION
A new class of nontrivial exact solutions of the Euler

Note that this form is different to that considered in Ref. 16.equation possessing regions of distributed vorticity reminis-
Only one single value of the paramet@rin Eq. (38) will cent of the nonlinear multipolar saturation states of an un-
satisfy the associated stationarity condition of the line vorti-stable uniform vortical annulugf. Dritschef®) has been de-
ces in this case and therefore give an exact solution of theved.
steady Euler equation. The new solutions presented here can It has been shown how mathematical properties of the
therefore also be understood as a continuation of the simplgchwarz functioft combine with the physical constraints
connected solutions E@38) into nonzerop (corresponding relevant to steady vortical flows to produce classes of multi-
physically to the formation of an enclosed central region ofpolar equilibria of the Euler equations. The solutions pre-
irrotational fluid). sented here and in Crovvbfy reveal that the modified

A topic of much recent research concerns the stability ofSchwarz potential Eq(8) provides a natural mathematical
multipolar vortex structures. Usually, such stability questionsdevice for understanding how a finite-area patch of uniform
are examined numerically and stability studies often involvevorticity interacts with a finite set of superposed line vortices
first solving numerically for a multipolar equilibrium solu- to form global equilbria of the Euler equation. Furthermore,
tion and then perturbing itnumerically in some way. The Crowdy® has recently extended the same mathematical ideas
class of solutions found both here and in Ref. 16 not onlyto derive a class of exact solutions involvirgating vortex
have the advantage of being describable by means of exactrays with distributed vorticity which generalize Thomson’s
closed-form formulas but also have advantages when itlassic study of co-rotating line vortex configurations.
comes to studying their stability properties. First, the linear  Any two shielded Rankine vortices only interact when
stability matrices associated with sméihear perturbations they overlap and it has been shown that there exists a non-
can be written down in closed form from exact knowledge oflinear superposition property which means that one can con-
the base state solution being perturbed. Second, because #teuct global multipolar equilibria of the Euler equation with
exact solutions consist of a combination of two of the mostan annular doubly connected distribution of nonzero vorticity
well-studied idealizations of two-dimensional vortex by merging these invisible vortical structures in the manner
patches, i.e., line vortices and uniform vortex patches, theidescribed herein. This suggests that it might be possible to
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