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This paper demonstrates that two well-known equilibrium solutions of the Euler equations—the
corotating point vortex pair and the Rankine vortex—are connected by a continuous branch of exact
solutions. The central idea is to “grow” new vortex patches at two stagnation points that exist in the
frame of reference of the corotating point vortex pair. This is done by generalizing a mathematical
technique for constructing vortex equilibria first presented by CrofyG. Crowdy, “A class of

exact multipolar vortices,” Phys. Fluidkl, 2556(1999]. The solutions exhibit several interesting
features, including the merging of two separate vortex patches via the development of touching
cusps. Numerical contour dynamics methods are used to verify the mathematical solutions and
reveal them to be robust structures. The general issue of how simple vortex equilibria can be
continued continuously to more complicated ones with very different vortical topologies is
discussed. The solutions are examples of exact solutions of the Euler equations involving multiple
interacting vortex patches. @004 American Institute of Physics.
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I. INTRODUCTION patches. Elcrat and Millérhave proved the existence of

. equilibrium vortex patches close to a stable configuration of
Point-vortex models and vortex-patch models are by fat oint vortices. Converting point vortices to patches, or vice
the most popular and well studied in vortex dynantiés. P ' 9p P '

Point-vortex models have the advantage of reducing thﬁiﬁaéjsancorg:;zn method of producing modified equilibria
problem to that of tracking a discrete point set while vortex- Other mgethods' of constructing modified equilibria from

patch models reduce the problem to that of tracking a curve . h v b d A il
(or set of curves Such mathematical simplifications prove any given one have recently been proposed. A given steadily

to be of great advantage rotating equilibrium of point vortices, for example, often ex-
In studying any dynamical system, an important firstNibits points of relative rest in a frame of reference corotating

step is to gain a thorough understanding of the possible equi¥ith the equilibrium. In the context of point-vortex dynam-
librium configurations since they are often attractors in thd®S: Aref and Vamchteﬁ‘j have proposed the idea of con-
dynamics. For this reason, the subject of “vortex statics” isStructing more complicated point-vortex equilibria by
an important oné.One of the very simplest nontrivial point- “9rowing” new point vortices at any such corotating points.
vortex equilibria is the corotating point vortex pair in which A Zero-circulation point vortex is dynamically inactive and
two equal point vortices corotate about the central point offan be placed at any such corotating points without affecting
their line of centers. On the other hand, the simplest examplthe equilibrium. The idea of Aref and Vaincht&iis to per-
of a vortex-patch equilibrium is undoubtedly the Rankineform a continuation in the circulation of any such nascent
vortex solutiod? which describes a circular patch of uniform point vortices in an attempt to create new equilibria involv-
vorticity in solid-body rotation. In this paper, a vortex patch ing more complicated vortical configurations. While there is
is understood to be a region of fluid in which the vorticity is no guarantee that such continued solutions exist, in cases
a uniform constant. where they do, newand even asymmetpi@quilibria can be
Point vortices and uniform vortex patches are closelyconstructed.
related. The limit in which the radius of a Rankine vortex Here, we develop this idea in a natural way and consider
vanishes while its vorticity tends to infinity in such a way the possibility of growing new vortex patchéss opposed to
that the circulation is fixed is known to yield a point-vortex point vortice$ at the corotating points of an existing vortical
solution. At the same time, the idea of desingularizing, orequilibrium. This paper illustrates that this is sometimes pos-
regularizing, a point vortex by smearing out the vorticity to asible and an explicit example is presented in detail using
uniform patch of nonzero area is well known. Dritschéy  perhaps the simplest nontrivial equilibrium—the corotating
example, smeared out the vorticity in the rotatingpoint-vortex pair. The mathematical construction is based on
N-polygonal point vortex arrays considered by Thomson extensions of ideas originally presented in Crowepd de-
to find modified equilibria involvingN corotating vortex veloped in Crowdy{:° A consequence of the analysis is to
show that the corotating point-vortex pair is, in fact, con-
3Electronic mail: d.crowdy@imperial.ac.uk nected by a continuous branch of nontrivial vortex equilibria
DElectronic mail: jonathan.marshall@imperial.ac.uk to the classical Rankine vortex solution. Moreover, the entire
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means of analytical formulgalthough one of the parameters
appearing in these formulas must be determined numeri:
cally).

While this result is of theoretical interest in its own right,
perhaps more important is the more general question which
provokes concerning how different vortical equilibria, per-

D
haps with very different vortical topologies, might be con-
nected and how a given equilibrium might be “continued,”
in a continuous fashion, to a more complicated one. The
explicit example presented here starts with a vorticity distri-
bution consisting of a simple two-point set. This is contin-
ued, continuously, to a distribution consisting of a hybrid
combination of two-point vortices and two-vortex patches.
The latter configuration is then smoothly continued to a dis-
tribution involving four-vortex patches which, finally, coa-
lesce into a single isolated Rankine vortex. Being inherently

nonlinear, the steady Euler equation is renowned for being
difficult to solve. For this reason, a thorough understanding
of how complicated vortical equilibria can be systematically
constructed by continuous deformations of simpler ones is
desirable and is discussed in Sec. VIII.
It should be remarked that the class of solutions involve
vortex patches that are in pure solid-body rotation and are .
not the only pOSSIbIF.' rOtatI.ng equilibria consisting Qf twq FIG. 1. Schematic illustrating the vortex configuration of interest. Two-point
patches and two-point vortices. More general solutions Nyortices are at (6;1) while two rotationally symmetric uniform vortex
which the fluid in the vortex patches has a nontrivial irrota-patches are located on the positive and negative real axis.
tional component are also possible, but it is likely that this
more general class is not describable in analytical form.

branch of solutions is describable in mathematical form by / point vortex

patch

w z z_
2(27_f S(z’)dz’—J S(z')dz’) zeD
Il. THE COROTATING POINT-VORTEX PAIR = .

0 z¢D
where D is some fluid region and(z) is the Schwarz
unctiont! of the boundary curve)D. For certain special
choices of fluid domaiD, such a streamfunction can repre-
sent an equilibrium solution of the Euler equation. Moreover,
W(z)=—lwIn(z=i)—iwin(z+i). (1) in many cases, these special classes of domains can be pa-

It is straightforward to show that such a configuration rotateg@Metrized using conformal mappings thus effectively lead-
about the origin with angular velocity equal @/2. In a N9 10 exact solutions of the Euler equation.

frame of reference corotating with this angular velocity, the This (_:onstructive_ methc_)d appears t_o be quite_ gene_ral,
configuration is stationary and the complex velocity fiald and we will use a variant of it here. Consider a configuration

Consider two-point vortices, each of circulationra,
initially at points (0;1). Introducing the usual complex
coordinatez=x+1y, the associated instantaneous comple
potentialw(z) for this flow is

—iv has the form in which, in addition to the two-point vortices at=*i,
two-vortex patches are located symmetrically on the positive
U—iv— dw _ _iw(i+ 1z @ and negative real axis. A schematic is shown in Fig. 1. The
dz z—i z+i 2 irrotational fluid region containing the two-point vortices is

. . . e denotedD, the two-vortex patches are denotegd andD,.
A simple calculation shows that this velocity field has stag Let the boundaries of the two patches 4@, and dD,. It

nation points atz=0,+v3. Equivalently, because these .
. . LT ; .~ will be assumed that the vortex patches have the same angu-
points are stagnation points in a corotating frame, one mig . . . . .
ar velocity w/2 as the rotating point vortex configuration

equally well refer to these as “corotating points” following . : . .
Aref and Vainchteifi (see also Mortol). In the following and, moreover, are in pure solid-body rotation about the ori-
) in. The uniform vorticity of each patch is therefogeand

section, it is shown how to grow two new vortex patches a . . oL .
9 P he assumption of solid-body rotation implies that, in the

the corotating points located at-=v3. corotating frame, the fluid inside the two patches is stagnant.
Now pose that the streamfunction of the flow, in a frame
Ill. MATHEMATICAL CONSTRUCTION of reference corotat?ng with angular veloci&yg, ig pf the
form (3) whereS(z) is now the Schwarz functiofif it ex-
Crowdy?® has demonstrated the theoretical advantageists) of both boundaries ob, i.e.,dD; anddD,. Recall that
of considering streamfunctions of the form the vorticity is given by—4,;where subscripts denote par-
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tial differentiation. This means that, in the corotating frame,V. EXACT SOLUTIONS

the vorticity insideD associated with the streamfuncti¢8)

is a uniform constant. Note also that the functi§(z),

which is locally analytl_c in annular neighborhoods of both P(_g\/;—l)P(_g\/;)P(g\/;)

dD, anddD,, must satisfy 2(0)=R — ” — (10)
P({\p HP(Lpe ) P(¢\pe ')

where R and 6 are some real parameters and the special

function P(¢) is defined as

Consider now the conformal mapping given by

S(2)=7 (4)

on bothdD, anddD,,. If there are just two-point vortices in
D, it is clear that an additional restriction on the function °°
S(z) is that it must only have two simple poles n P =1-0 1] (a-p%0)(1—p2¢ 1. (12)
The associated velocity field is k=1
) This is the same special function used by CroWity con-
ey, @ struct exact solutions for annular arrays of vortices. It is re-
u-lv=2iy,= 2 [2=S(2)]. © lated to the first Jacobi theta functibhNote that the map
o o ) has a simple pole at the poiti \/p which therefore maps to
If S(z) satisfieq4) on 9D, anddD,, it is easy to verify that physical infinity, while it has a zero dt= — \/; which there-

this streamfunction satisfies the kinematic and dynamigg o maps ta=0. The conformal mag10) depends on just
boundary conditions on both boundari&3,; anddD, of D. three real parameteR, p, and 6.

The kinematic boundary condition is that b, and D It is straightforward to show, by use of its definitiéht),
are streamlines, the dynamic boundary condition is that thﬂwatP(g) satisfies the functional relations

velocity field must vanish everywhere on these boundaries in

order to be continuous with the stagnant flow inside the P(p°{)=—{"'P(Q),

patches. Continuity of velocity on the boundary of a steady

—1y_ _ #—1
vortex patch implies that the hydrodynamic pressures are P& £P. (12
continuous: These relation$12) are all that are needed to verify directly
thatz({) satisfies
2(pL™ M =-2), (13

V. CONFORMAL MAPPING which implies that for every poin{ on the unit circle map-

As in Crowdy’® the most effective way to construct the Ping toz;, say, there is a point{ ~* on thep-circle mapping
relevant fluid domain® is to employ conformal mapping t© —Z1. This means that the mapping produces two rotation-
techniques. Here is an unbounded doubly connected do- ally symmetric vortex patches, as required. Alk®) can be
main. The Riemann mapping theorem guarantees that arijged to verify directly that({) satisfies the requirement
such domain can be conformally mapped from some annulugiven in (9) which is essentially the condition that the
p<|Z|<1 in a parametri¢ plane. The parametgrrelevant Schwarz functions of the two separate bounda#ies and
to any given domain must be determined as part of the prob?D2 are the same. Finally, noting that

lem. S2)=2¢ ")
Let the conformal map be({) and suppose that the

circle |{|=1 maps todD, while |¢{|=p maps todD,. Note B P(—¢ Np HP(— ¢ Wp)P( HWp)

that OnﬁDl, P(g*l\/ﬁ*l)P(g*l\/;ei())P(é«fl\/;e*iﬁ)’
S(2)=7=2)=7¢ Y, (6) (14

it is clear thatS(z) has just two simple poles in the annulus
p<|{|<1, at the points’=pe'?,Jpe '’. This means that
S(z) has just two simple poles iD at the corresponding
conformally mapped points(\/pe'?) andz(\pe '), again

where we have used the fact that {1 on |{|=1 and the
conjugate functiore(?) is defined by

20)=2(%). (M as required. The scaling paramefeis fixed by insisting that
the two-point vortices are ati which is equivalent to the
Note also that oD, equation
S(2)=7=2(0)=2p* "), ® i=2(\pe'’). (15

The conformal map10) therefore satisfiealmostall of the

requirements for a mapping to an appropriate equilibrium
domainD. The only outstanding condition is to ensure that
the two-point vortices are stationary under the effects of the

where we have used the fact that p22~* on |{|=p. In
order for (6) and (8) to be consistent it is clear that the
conformal map must satisfy

Z(p%0)=2(0) (9) local non-self-induced velocity field. By symmetry, it is only
necessary to ensure that this condition of stationarity is sat-
for all . isfied at one of the point vortices. Substituti(id) and(14)
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I,=6.255,T_=0.028 [ =6.011,T <0272 into (5) one obtains a formula for the complex velocity field,
in the corotating frame, as a function pfand . This is
' ' (O o _1oR[ P(—Tp HP(—Tp)P@Vp)
. . —ip=

2 \P@p )P(£Vpe )P pe ")

PN HP(= )P )
‘0 ‘ ’ P(¢Np HP(C pe")P(¢ Vpe )

I =5.530,T_=0.754 T =4.620,T_=1.663
s sp s sp

(16)
Lr8sR L2 [=8.142,T=8142 On use of the conformal mapping function it can be shown
that, asz—1i, the velocity field(16) locally has the form
| iv= T +V+o(1 1
; u—iv= 2m(z=1) 0(1), (17)

[=8.142,T_=3.142 Rankine vortex wherel’; is the circulation of the point vortex at=i andV

is the local non-self-induced velocity. The condition that the
two-point vortices are stationary under the non-self-induced
velocity field is equivalent t&/=0. The Appendix gives ex-
pressions foll'g and the condition tha¥ =0 in terms of the
conformal mapping parameters. By the symmetry, this con-
FIG. 2. A continuous branch of rotating vortex arrays connecting the corodition also ensures that the vortexzat —i is stationary. As
tating point-vortex pair to the Rankine vortex. The figures illustrate theseen in the Appendix, this equation is independemRof
“growing” of two-vortex patches at the two stagnation poilds =v3 in the (which is simply a scaling parame)ebut depends 0n|y op
corotating framgof the corotating point-vortex pair. The sixth figure is the do. B Vi Newton’ thod to thi fi

limiting state of the solutiori10) wherep= p,;; and where the two patches and 6. by app yll?lg ewlon's metho 0_ IS equa an, we-
develop cusps and touch at three distinct points enclosing circular irrotah@ve found that it can be solved numerically tbfor given

tional regions centered on the point vortices. The last two figures illustratq) in the interval
the desingularization of the point vortices to form a single Rankine vortex.
The circulationd’s and ', are also shown. pPE [O,Pcrit], (18

—~
f:m FIG. 3. Graph of satellite patch circu-
@ lations I's, and satellite point-vortex
L circulationsI'g againstp. The sumlg
‘—:‘,’ - +I's, is found to equal 2 for all val-
g ues ofp. As p— perit s I's . Tsp— 7

2 - -

T
sp
1 - -
0 - 1 1 | 1 | 1 1 1
0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9
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p. Different values ofp correspond to different values of the
circulations of both the point vortices and the patchesILet
denote the point-vortex circulations and Ig§, denote the
circulation of each of the vortex patches. The expresgién

can be used to derive analytical expressiondfoandl’s, in
terms of the conformal mapping parameters. Figure 2 anno-
tates each configuration with the corresponding values of
these circulations. Whep— 0, I's, tends to zergbecause it

is proportional to the patch area superposed graph df
andT’s, is shown in Fig. 3 and displays a surprising feature.
To within numerical accuracin the solution of the station-
arity condition for 6 given a value of), it is found that all

the equilibrium configurations satisfy

o+ Tgp=21. (19

Thus, while the values of ¢ and I's, both change wittp,

their sum remains constant. We can offer no explanation for

this unexpected result.

Perhaps equally surprising is the nature of the limiting

configuration ap— p.,i;=0.735. This is shown in the sixth
FIG. 4. Critical configuration for two satellite patches and two satellite pointdla‘gra‘m of Fig. 2. In thls, “mltm,g state the, two-vortex
vortices for p=p,;;=0.735 (drawn in solid liney shown with the three patches touch at three distinct points, the points of contact
circles |z=xi|=1 and|z|=2 superposeddrawn with dashed lingsThe  taking the form of three cusp singularities in the patch
solid.and dashed curves are indistinggishablg. In this critical case, the ciboundaries. Ap— peit , the curvature of the near cusps gets
cul_ittlonr?f each satellite patch s, as is the circulation of each satellite Iarger as the distance between Corresponding near cusps on
point vortex. the two-vortex patches gets smaller. g p,i , Within nu-

merical accuracy, it is found that the patches touch and en-

wherep.,;; yields a limiting configuration to be discussed in Close two exactly circular regions of irrotational fluid with
the fo”owing section. The solution to this equation is Verythe pOInt vortices located at their centers. To test th|S, F|g 4

straightforward since it is a Newton iteration on just a singleShows the critical configuration superposed with the three
unknown parameter. circles|zxi|=1 and|z|=2. The boundaries of the limiting

configuration are indistinguishable from these three circles.
It was also noticed that in the limiting configuration, the
values ofl's andI's, become equal. By19), they both tend
The conformal ma10), with the three parameteR p,  to 7. This can be seen clearly in Fig. 3.
and 6 constrained by the two conditions of stationarity of the  This feature of the limiting two-patch solutions suggests
point vortices and the normalizatid@5) yield a continuous that the class of solutions can be continued, in a continuous
one-parameter family of two-patch equilibria. Without loss fashion, even past this limiting state. In view of the fact that
of generality, we setb=1. In the limitp—0, it is found that the streamlines around the point vortices are exactly circular,
the two-vortex patches become invisibly small and essenthe two-point vortices can be desingularized in the usual way
tially disappear az= +v3 in this limit. This is precisely the and replaced by two Rankine vorticésith the same total
location of the corotating points in the pure point-vortex con-circulation as the original point vorticebut with gradually
figuration discussed in Sec. Il. For this reason, the construdncreasing radius. If o, denotes the vorticity of a Rankine
tive procedure just described essentially effects the job ofortex of radiusr and total circulationr then
growing two-vortex patches at these corotating points.
As p increases, so does the size of each vortex patch. 1 (20)
Figure 2 shows several configurations for different values of ~ " r2’

VI. CHARACTERIZATION OF THE SOLUTIONS

1=0 1=0.5 =1 =15 1=2
2 2 2 2 2
1 . 1 O 1 . 1 Q .
0 0 . . 0 0 . . 0 <> <>
-1 . -1 -1 . -1 -1 .
S L <= |, L <<= |,
-2 0 2 -2 0 2 -2 0 2 -2 0 2 -2 0 2

FIG. 5. Contour dynamics simulation of a single revolution of the equilibrium shown in the fourth figure of Fig. 2" yith.620,1";,= 1.663.
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05F
FIG. 6. Superposition of the initial

configuration and final configurations
after 10 turnover time§i.e.,t=20) as
or 7 computed by contour dynamics. The
curves sit on top of each other. The
initial configuration is the equilibrium
05+ - shown in the fourth diagram of Fig. 2.

The value ofr=0 is arbitrary provided it is less than, or vortices seems to induce this occurrence. This appears to be
equal, to unity which is where the enclosed Rankine vorticegn example of a limiting equilibrium exhibiting touching
meet the circular boundaries of the satellite patches. The seecusps. Note that, owing to the presence of these dugpsh

enth diagram in Fig. 2 shows the configuration fet0.4. have infinite curvatung it is likely that the limiting states
Indeed wherr =1, by the previously observed fact that the would be challenging to compute using any numerical
limiting circulation of I'g is , the uniform vorticity of the scheme which relies on a discretization of the patch bound-
enclosed circular Rankine vortices tends exactly to the valuaries. The existence of a closed-form formulas for the solu-
of the uniform vorticity of the satellite vortex patches imply- tions is therefore of great value.

ing that, whermr =1 thenw,=1 by (20) and the equilibrium
e_ssentlally become_s a single circular Rgnklne_ vortex of 31| CONTOUR DYNAMICS SIMULATION
dius 2, uniform vorticityw=1, and total circulation 4.

Overmart® showed that points of nonanalyticity in the As a check on the mathematical solutions, the contour
boundary of a steady vortex patch can either be right-anglegurgery code of Dritsch# for computing the evolution of
corners or cusps. It is known that two corotating vortexvortex patches was modified to include the effect of two-
patches reach a limiting configuration at which they touch apoint vortices interacting with the patches. This code was
the same time as a corner develops in the boundary of eaghitialized using the equilibrium configurations just derived
patch. Saffman and Széfoand Kamni® have investigated in order to check that they simply rotate without change of
such problems. The equilibrium solutions found here exhibiform under the dynamics of the Euler equation. Figure 5
the feature of two equal corotating vortex patches touchinghows snapshots of the evolution of the equilibrium in the
(in this case, simultaneously at three distinct poimts the  fourth diagram of Fig. 2 during a single turnover time. Here,
boundaries of the two patches develop cusps, as opposedtime has been rescaled with respect 0D, sincew=1 so
corners. The presence of the straining flow due to the pointhat the angular velocity is 1/2, thdér=2 corresponds to a

1=0 1=0.5 =1 =15 1=2
2 2 2 2 2
1 1 1 . 1 1 .
0 0 . . 0 0 . . 0
-1 -1 -1 . -1 -1 .
-2 -2 -2 -2 -2
-2 0 2 -2 0 2 -2 0 2 -2 0 2 -2 0 2

FIG. 7. Contour dynamics simulation of a single revolution of the critical equilibrium.
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t=0 t=1 t=2 =3 t=4
2 2 2 2 2
1 . 1 . 1 . 1 . 1 .
0 0 0 0 0
—1 . -1 . -1 . 1 . 1 .
-2 -2 -2 -2 -2
-2 0 2 -2 0 2 -2 0 2 -2 0 2 -2 0 2

FIG. 8. Contour dynamics simulation of a perturbed equilibrium. The upper point vortex in the equilibrium of the fourth figure of Fig. 2 is displacdd upw
by 0.05. The configuration is robust, but its overall angular velocity of rotation is affected.

single revolution of the array. The snapshots are takein at replaced by a radius 1/2 Rankine vortex each of vorticity 4.
=0.5,1,1.5 and=2 and, indeed, these are clearly found to Similarly, Fig. 10 shows a case in which the point vortices
correspond to quarter revolutions of the configuration. As arare replaced by Rankine vortices of different radii: the upper
additional check, Fig. 6 features a superposition of the initiapoint vortex is replaced by a Rankine vortex of radius 2/3
condition and the final configuration after 10 turnover timesand vorticity 9/4 while the lower point vortex is replaced by
(i.e., att=20). Within numerical errors associated with the a Rankine vortex of radius 1/3 and vorticity 9. These simu-
simulation, the initial condition is verifiably an equilibrium lations corroborate the fact that the vortex configurations are
of the equations. Figure 7 shows a simulation of a singléndeed equilibria of the Euler equation.

revolution of the critical case in which the two patches touch.
This too appears to be a robust equilibrium of the equation
even though the numerical evolution of the cusp regions o
the interface is a little unsteady. It should be mentioned that, This paper has demonstrated that the corotating point-
owing to the presence of these high curvature regions, a largeortex pair can be continuously deformed, through a series
number of points must be given in the initial conditions for of equilibria describable using exact mathematical formulas,
the contour dynamics simulation in this case. to the classical Rankine vortex. This has been done by the

The preceding calculations also suggest that the equilibdevice of growing two new vortex patches at the corotating
ria might well be linearly stable since if unstable, growth of points atz= *+v3 of the corotating point-vortex pair.
any small numerical inaccuracies might be expected to de- It should be noted that, as in the point-vortex case con-
stabilize the array after sufficiently long times. A detailedsidered by Aref and Vainchtefhthe success of growing
investigation of the stability properties of this class of solu-patches at corotating points is not guaranteed. Indeed, in the
tions remains to be performed, however, some preliminarpresent example, one could contemplate adapting the same
investigations using contour dynamics suggests that the equinethods used here to grow a new central vortex patch at the
libria are robust structures. Figure 8 shows the initial con-corotating point az=0 instead of az= =v3. However, this
figuration given in the fourth diagram of Fig. 2 but perturbedattempt would fail as can be concluded immediately from the
by displacing the upper point vortex vertically upwards by afact that such a generalized equilibrium would fall within the
distance 0.05. The overall structure remains robust but thelass of equilibria consisting of a central vortex patch sur-
angular velocity of rotation is affected. After two revolutions rounded byN satellite point vortices considered recently by
of the unperturbed equilibrium, the configuration has not reCrowdy? In the latter study, it was found that equilibrium
turned to its original orientation but is displaced throughsolutions of this kind can be found for a&ll=3 but the case
some angle. N=2 does not yield solutions.

As a check on the equilibria constructed by desingular- Remarkably, using numerical methods, Cerretelli and
izing the point vortices to Rankine vortices, Fig. 9 shows aWilliamson'’ have recently found a completely distinct
contour dynamics simulation of two revolutions of the criti- branch of equilibria connecting the corotating point vortex
cal configuration in which the two-point vortices are eachpair to the Rankine vortex. Instead of growing new vortex

Ill. DISCUSSION

t=0 t=1 t=2 t=3 t=4
2 2 2 2 2
1 @ L TON 1/ TON 1/ TON /7O
0 0 0 0 0
) @ NN/ BN ENGYVEINGC
-2 -2 -2 -2 -2
-2 0 2 -2 0 2 -2 0 2 -2 0 2 -2 0 2

FIG. 9. Contour dynamics simulation of two revolutions of the continued critical equilibrium in which the two-point vortices are replaced by twe Rank
vortices each of radius 0.5.
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=0 1=0.5 t=1 t=1.5 =2
2 2 2 2 2
1 @ 1 1 O 1 1 Q
0 0 O O 0 ofi O O 0
-1 @ -1 -1 O -1 -1 O
-2 -2 -2 -2 -2

-2 0 2 -2 0 2 -2 0 2 -2 0 2 -2 0 2

FIG. 10. Contour dynamics simulation of a single revolution of the continued critical equilibrium in which the upper point vortex is replaced bpex Rank
vortex of radius 2/3 and vorticity 9/4 while the lower point vortex is replaced by a Rankine vortex of radius 1/3 and vorticity 9.

patches at the corotating points and then later desingularizindpeory of conformal mappings of multiply connected do-
the point vortices as done here, the latter authors’ approach mmains. In the doubly connected case considered here, the
to start by desingularizing the two corotating point vorticesmappings have been constructed by implicit use of the well-
by replacing them with two finite-area patches. The area ofleveloped theory of elliptic functiorfsnanifested in the use
the two(noncirculay patches is gradually increased until the of P(£) which is related to Jacobi theta functidfis For
patches touch. Thereafter, Cerretelli and William$azon-  more than two patches, the situation becomes much more
tinue the class of equilibria even beyond thiapparently challenging and details remain to be worked out. Finally,
limiting) state to construct a class of simply connected patclanother interesting generalization is to the case where vortex
equilibria variously dubbed “dumb-bells” and “sausages” patches are grown at the corotation points of a corotating
before the truly limiting “cat's-eye” state is reached. En point-vortex pair with different strengths, however, we have
route to this limiting state, the patch becomes a Kirchhoffnot studied this case in any detalil.

ellipse which, it is well-knowr:? can be continuously de-

formed(through a sequence of equilibrium ellipses of gradu-

ally increasing aspect radiack to the circular Rankine vor-

tex. By this path of solutions, the corotating point-vortex pairACKNOWLEDGMENTS

is again continuously connected to the classical Rankine vor-
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. . I in the United Kingdom. J.M. acknowledges the support of an
All this evidence suggests powerful possibilities for theEPSRC studentship

future construction of new vortical equilibria based on com-
bined point-vortex and vortex-patch models. By procedures
such ag(i) the desingularization of point vortices to uniform

vortex patchegor vice versg, (ii) the growing of new point  APPENDIX: THE STATIONARITY CONDITION
vortices at corotation points of existing equilibria as done

recently by Aref and Vainchteif,(iii) the growing of new The velocity field associated with the exact solutions is
vortex patches at corotation points of existing equilibria ag16) which, near;=a=\pe'’ can be written in the form
done here, an@dv) the smooth continuation of touching vor- iwR ([ A(Q) .

tex patches to a merged equilibrium as done here and re- u_iU:T g—_a+B(§) , (A1)

cently by Cerretelli and Williamsot, it appears that even

basic equilibria with simple vorticity distributions can be whereA(¢) is analytic at{=« and where explicit formulas

continuously continued to more complicated ones with mordor A(¢) and B(Z) can be derived front16).

elaborate vortical topology. Let z; denote the position of the point vortex on the
In general, any such continuations must be performedmaginary axis. Therz; =z(«) and

using numerical methods. However, it appears that there ex-

ist special cases where exact solutions can be identified. Ex- z-2,=7,()({~a)+ (@) (= )2+ (A2)

act solutions of the steady Euler equation are rare, yet con- 2

sideration of streamfunctions of the for(8) seems to be gq that, with some manipulations, we deduce that

unusually successful in producing them as evinced both here

and in previous studie’s.® Moreover, the resulting solutions 1 _ Z(a)  Zy4(a) +O(z—2y) (A3)

appear to have a number of surprising characteristics that {—a z—z; 2z(a) =

have yet to be explained. This is left for future work as the

potential of the streamfunctiof8) is examined further.
Finally, we mention that the two-patch solutions herein  I's= —moRA(@)z/( @) (A4)

are examples of exact solutions of the Euler equations ingile the stationarity conditioW=0 is equivalent to

volving more than one vortex patch. The possibility of ex-

tending the general methods to find equilibria involving A(a)+Ala) 2y (@)

more than two vortex patches is intriguing but involves the ¢ 2z, )

It follows that the circulatiod”g of the point vortex is

+B(@)=0. (A5)
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