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Abstract. An abstract class of two-dimensional geometry-driven free boundary problems is
considered in which the evolution of the Cauchy transform of the time-evolving domain satisfies a
partial differential equation of conservation type. This idea generalizes an association between free
boundary problems and the inverse gravitational problem. It is shown that this class of free boundary
problems admits exact solutions expressible in terms of a finite set of time-evolving parameters. In
addition, even when exact solutions are not available, a theorem is established which shows that
solutions corresponding to certain initial conditions possess nontrivial conserved quantities. Two
distinct problems of physical interest are shown to fall within this abstract class: the evolution of a
fluid blob in a rotating Hele–Shaw cell and the evolution of highly viscous fluid under the effects of
surface tension. Various aspects of these two problems are discussed.
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1. Introduction. Consider a time-evolving region of fluid D(t). Now define the
Cauchy transform C(z, t) of the fluid domain D(t) as

C(z, t) =
1

π

∫ ∫
D(t)

dx′dy′

z′ − z
.(1)

A physical interpretation of the Cauchy transform is in terms of gravitational poten-
tials; note that

C(z, t) = − ∂

∂z

2

π

∫ ∫
D(t)

log |z − z′|dx′dy′,(2)

where the double integral in (2) is the two-dimensional gravitational potential of
a uniform mass occupying the region D(t), and so the Cauchy transform can be
interpreted as the gravitational force due to that mass at the point z.

It has been known for some time that certain classes of free boundary problems
involving singularity-driven Hele–Shaw flows can be tackled by first deducing explicit
expressions for the Cauchy transform C(z, t) of the fluid domain [22], [23]. In this
problem a known distribution of flow singularities (e.g., sources or sinks) explicitly
determines the Cauchy transform of the evolving fluid domain. The free boundary
problem then reduces to the mathematically analogous inverse gravitational potential
problem: Can the shape D(t) of a domain be reconstructed from known gravitational
information C(z, t) in the far field?

The inverse gravitational problem has been well-studied and continues to provide
an important theoretical perspective for understanding the analogous free boundary
problem [13], [18]. Recently, for example, Tian has used a Cauchy integral approach
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to the sink-driven Hele–Shaw problem to derive results on the breakdown of solu-
tions when surface tension is nonzero [29] and to establish short-time existence and
uniqueness of classical solutions to the zero surface tension problem when the initial
boundary shapes are analytic [28].

In this paper, we extend the association of free boundary problems with the in-
verse gravitational potential problem by considering a generalized inverse gravitational
problem. This generalized problem corresponds to an abstract class of geometry-
driven free boundary problems for which the Cauchy transform of the domain is not
determined explicitly by a distribution of imposed flow singularities but instead satis-
fies a partial differential equation of conservation type. The free boundaries in these
problems are not driven by an imposed distribution of singularities but rather by their
own intrinsic geometry.

The reason for considering this class of problems from an abstract point of view
is predicated on the fact that two well-studied free boundary problems of physical
importance, which have been the subject of much recent investigation, fall within this
abstract class. Interestingly, this class can include not only Laplace-governed free
boundary problems but also biharmonic-governed flows. In section 4 it is shown that
both the harmonic-governed problem of the evolution of a blob of fluid in a rotating
Hele–Shaw cell evolving under the effects of centrifugal forces and the biharmonic-
governed problem of the sintering of a viscous droplet evolving under the effects of
surface tension fall within the abstract class. Given that the two problem statements
are so different both mathematically and physically, this mathematical connection is
quite unexpected but can provide useful insights and is one of the important new
results of this paper.

The fact that both of the above physical problems fall within this abstract class
leads to the sharing of certain mathematical properties. For example, both admit
classes of exact solutions for the evolution of a simply connected blob of fluid. The
exact solutions themselves are not new; such solutions were first found for the rotat-
ing Hele–Shaw problem by Entov, Etingof, and Kleinbock [10] and for the viscous
sintering problem by Hopper [14], [15] (who used methods very different from those
employed here). However, while the exact solutions for simply connected fluid do-
mains might already be known, the unexpected mathematical connections between
the two problems (as demonstrated herein) have led the present author to establish
new results [8] for the evolution of a fluid annulus in a rotating Hele–Shaw cell—a
problem of much recent experimental interest [2], [3], [4]. The new solutions for rotat-
ing annuli in Hele–Shaw cells are intimately related (as seen by the results herein) to a
class of exact solutions for sintering viscous annuli found by Crowdy and Tanveer [6].
It is clear that an understanding that two problems share an underlying analytical
structure can lead to a fruitful cross-collateralization where results from the study of
one problem can be imported into another.

For the purposes of the present paper, we restrict consideration to simply con-
nected fluid regions. However, it is important to point out that this study is the
first to formulate the viscous sintering problem using the mathematical perspective
of Cauchy transforms (although this perspective is naturally related to a formulation
in terms of quadrature identities recently discussed by the present author [7]). This
formulation is potentially important from the point of view of generalizing exact solu-
tions to the viscous sintering problem (and, indeed, the rotating Hele–Shaw problem)
to the case of domains with connectivity greater than two.

A further consequence of the shared mathematical structure is that both problems
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admit certain nontrivial conserved quantities as a result of what is herein referred to as
a “circulation theorem.” This theorem yields many previously unrecognized conserved
quantities for both problems, including cases where exact solutions are not available.
These conserved quantities might be useful for checking the accuracy of numerical
codes.

Given all the mathematical similarities, it is also important to emphasize that
the two problems do have some important differences. Such distinctions are made in
section 5 by means of a series of examples. It turns out that the rotating Hele–Shaw
problem has additional mathematical structure not shared with the viscous sintering
problem—a fact which leads to wider classes of exact solutions. The paradigm of an
initial ellipse as it evolves under the dynamics of both problems is an instructive ex-
ample presented in detail in section 5. First we demonstrate the (previously unknown)
result that the rotating Hele–Shaw problem admits an exact solution for this initial
condition. The sintering problem does not. Even so, it turns out to be possible to
use the new approach using Cauchy transforms to propose an approximation scheme
for the boundary evolution of a sintering ellipse. A low-order, finite-dimensional ap-
proximation of the exact dynamics is found to agree very well with full numerical
simulations using boundary integral methods [19].

2. A Riemann–Hilbert problem. Consider the following Riemann–Hilbert
problem. On the closed analytic curve ∂D(t) bounding a simply connected fluid
region D(t),

z̄ = Ci(z, t) − Co(z, t),(3)

where Ci(z, t) is analytic inside D(t) and Co(z, t) is analytic outside D(t). This is
a standard Riemann–Hilbert problem, and it is well known [1] that the solution for
Co(z, t) can be written as the following integral:

Co(z, t) =
1

2πi

∮
∂D(t)

z̄′dz′

z′ − z
,(4)

where z = x + iy is taken outside D(t). By Green’s theorem [1], this becomes

Co(z, t) =
1

π

∫ ∫
D(t)

dx′dy′

z′ − z
.(5)

The function Co(z, t) is exactly the Cauchy transform of the domain D(t) as defined
in (1). Henceforth, the subscript will be dropped and it will be called C(z, t).

Suppose we now introduce the conformal map z(ζ, t) from the unit circle in a
parametric ζ-plane to the region D(t). Such a function exists by the Riemann mapping
theorem. Then (3) can be written

z̄(ζ−1, t) = Ci(z(ζ, t), t) − Co(z(ζ, t), t).(6)

As an equation relating functions of ζ, (6) holds everywhere that the functions can be
analytically continued. The composed function Ci(z(ζ, t), t) is analytic everywhere in
the unit circle, so (6) indicates that the singularities of z̄(ζ−1, t) are determined by
those of the Cauchy transform Co(z(ζ, t), t) inside D(t). If the Cauchy transform is
known to be meromorphic inside D(t) (with poles of known position and strengths),
then the corresponding conformal map will be a rational function, and a comparison
of principal parts at the poles yields a set of equations for the conformal mapping
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parameters. This method has been used by a number of authors in the study of
variants of the Hele–Shaw problem [22], [23], [24], [10], [11], [12].

This paper generalizes this approach in a different direction and demonstrates
that similar ideas can be applied to wider classes of free boundary problems—not
just those governed by a Laplace-type field equation, or just singularity-driven flows.
It will be shown how the methodology can be applied to study curvature-driven,
biharmonic-governed problems such as the viscous sintering of fluid blobs.

3. A class of free boundary problems. We introduce a generalized inverse
gravitational problem. Suppose that the Cauchy transform of a uniform gravitating
mass D(t) is not known explicitly but instead is known, everywhere outside D(t), to
satisfy a partial differential equation of conservation type having the general form,

∂C

∂t
+
∂I

∂z
= 0, C(z, 0) = given,(7)

where I(z, t) is the function, analytic outside D(t), defined by the inhomogeneous
Cauchy transform

I(z, t) =
1

π

∫ ∫
D(t)

σ(z′, t)dx′dy′

z′ − z
(8)

for some known function σ(z, t) assumed analytic in D(t). The function I(z, t) corre-
sponds to the solution Io(z, t) of the following Riemann–Hilbert problem:

Ii(z, t) − Io(z, t) = σ(z, t)z̄ on ∂D(t),(9)

where again Ii(z, t) and Io(z, t) denote functions analytic inside and outside D(t),
respectively. Following the gravitational interpretation of C(z, t), the function I(z, t)
might be interpreted as the force due to a nonuniform mass density σ(z, t) occupying
the region D(t).

The above specification can refer equally well to a free boundary problem: Define
an abstract class of free boundary problems to be those in which the Cauchy trans-
form C(z, t) of the time-evolving domain D(t) satisfies (7) for some choice of σ(z, t).
Different free boundary problems within this abstract class correspond to different
choices of the analytic function σ(z, t).

Now consider points z inside D(t) and assume that the boundary ∂D(t) is an
analytic curve. The integrals (1) and (8) defining C(z, t) and I(z, t) outside D(t)
are nowhere analytic inside D(t). However, suppose that C(z, t) and I(z, t) can be
extended as analytic functions into the domain D(t). In general, these continuations
will have singularities inside D(t). Tian [28] has shown that C(z, t) can be ana-
lytically continued inside D(t) if and only if ∂D(t) is an analytic curve (which has
been assumed). The same is true of I(z, t). By the continuation principle [1], (7) is
the equation satisfied by these analytic continuations of C(z, t) and I(z, t) for points
z ∈ D(t).

If ∂D(t) is an analytic curve, then there exists a Schwarz function S(z, t) [9] of
∂D(t) defined by

S(z, t) = z̄ on ∂D(t).(10)

S(z, t) is analytic in an annular region surrounding ∂D(t). In terms of this Schwarz
function, the Plemelj formulae [1] can be used to deduce that

C(z, t)= Ci(z, t) − S(z, t),(11)

I(z, t)= Ii(z, t) − σ(z, t)S(z, t).(12)
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Equation (12) reveals that C(z, t) and I(z, t) possess exactly the same distribution of
singularities inside D(t) although the singularities of I(z, t) have different strengths
owing to the multiplication by the analytic function σ(z, t).

The following theorem reveals something about the singularity structure of the
Schwarz function S(z, t) inside D(t) under evolution.

Theorem 3.1. If C(z, 0) is initially such that it has a finite set of isolated (polar
or branch-point) singularities at points zj(0) (j = 1, . . . , N) inside D(0) and if C(z, t)
satisfies (7) outside D(t) for some σ(z, t) analytic in D(t), then (provided a solution
exists) C(z, t) continues to possess a finite set of isolated (polar or branch-point)
singularities at points zj(t) (j = 1, . . . , N) inside D(t). Furthermore, the singularities
move according to the ordinary differential equation

−żj(t) + σ(zj(t), t) = 0.(13)

Proof. First note that (8) can be written in the form

I(z, t) =
1

π

∫ ∫
D(t)

σ(z′, t) dx′dy′

z′ − z
− 1

π

∫ ∫
D(t)

σ(z, t) dx′dy′

z′ − z
(14)

+
1

π

∫ ∫
D(t)

σ(z, t) dx′dy′

z′ − z

or, equivalently,

I(z, t) =
1

π

∫ ∫
D(t)

σ(z′, t) − σ(z, t)

z′ − z
dx′dy′ + σ(z, t)C(z, t).(15)

Define the function Σ(z, t) as

Σ(z, t) =
1

π

∫ ∫
D(t)

σ(z′, t) − σ(z, t)

z′ − z
dx′dy′.(16)

The singularity of the integrand in (16) is removable so that Σ(z, t) is deduced to be
analytic in D(t). Thus,

I(z, t) = Σ(z, t) + σ(z, t)C(z, t)(17)

which, when substituted into (7), yields the following partial differential equation for
the Cauchy transform:

∂C

∂t
+ σ(z, t)

∂C

∂z
+
∂σ

∂z
(z, t)C +

∂Σ

∂z
(z, t) = 0, C(z, 0) = given.(18)

By the continuation principle, (18) is the relevant equation for the analytic continu-
ation of C(z, t) inside D(t). However, inside D(t), (18) has the form of a first-order
linear equation for C(z, t) with coefficients that are known a priori to be analytic in
D(t). Solutions for C(z, t), if they exist, will therefore have the same analytic struc-
ture inside D(t) as solutions of a first-order linear partial differential equation with
analytic coefficients. In particular, using the well-known theory of such equations, it
can immediately be deduced that polar and branching singularities are preserved and
move on characteristics, i.e.,

−żj(t) + σ(zj(t), t) = 0.(19)
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The theorem is proved.
Corollary 3.2 (exact solutions). If the Cauchy transform C(z, 0) of a sim-

ply connected region D(0) is initially meromorphic inside D(0), then C(z, t) remains
meromorphic in D(t) under evolution and the abstract class of free boundary problems
(7) admits exact solutions in which the conformal map z(ζ, t) from a unit ζ-circle to
the fluid domain D(t) satisfying z(0, t) = 0 is a rational function of ζ.

Proof. From Theorem 3.1 we deduce that a Cauchy transform that is initially
meromorphic inside D(0) remains meromorphic in D(t) under evolution. Using (12),
it can be deduced that the Schwarz function S(z, t) of ∂D(t) is meromorphic inside
D(t). Using a standard theorem from the theory of Schwarz functions [9], the result
on the rational function form of the conformal mapping function follows immediately
(see Chapter 14 of [9] for more details). As discussed in section 2, the evolution of
the poles and zeros of the mapping function can be found, for example, by equating
principal parts in (6).

3.1. A circulation theorem. We now show that the conservation-form of the
evolution equation for C(z, t) combined with the special structure of the flux function
I(z, t) leads to the existence of some conserved quantities for the dynamics.

Theorem 3.3. Consider a closed contour γ fixed strictly inside a fluid region
D(0). Pick a point z0 on γ and suppose that the Cauchy transform C(z, 0) of the
domain has a single-valued analytic continuation around the path defined by γ, begin-
ning and ending at z0. Then, at least for sufficiently short times so that γ remains
strictly inside D(t), the circulation-type quantity∮

γ

C(z, t)dz(20)

is conserved by the dynamics.
Proof. Consider

d

dt

∮
γ

C(z, t)dz =

∮
γ

∂C(z, t)

∂t
dz,(21)

where we have used the fact that the contour γ is fixed. However, (7) implies∮
γ

∂C(z, t)

∂t
dz = −

∮
γ

∂I(z, t)

∂z
dz = −

[
I(z, t)

]
γ

.(22)

Provided sufficiently short times have passed so that all the singularities that were
initially inside γ are still inside γ (note from (19) that singularities move at finite
speed) and that γ is still strictly inside D(t), we can deduce

d

dt

∮
γ

C(z, t)dz = −
[
I(z, t)

]
γ

= 0(23)

because I(z, t) is a single-valued function of z around γ, a fact which follows from (12),
valid for the analytic continuation of I(z, t) inside D(t), and use of the fact that C(z, t)
has, by assumption, a single-valued analytic continuation around γ. Recall that (12)
shows that I(z, t) has the same singularity distribution inside D(t) as C(z, t) (although
with different strengths), and so I(z, t) also has a single-valued analytic continuation
around γ. Thus ∮

γ

C(z, t)dz(24)
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Pole

Branch Cut

γ2
γ5

γ1

γ3 γ4

Fig. 1. Singularity structure of C(z, 0) for an example initial blob.

is a quantity conserved by the dynamics.
Remark. If γ is chosen so that it encloses a set of singularities of C(z, t), then the

circulation-type quantity (24) will, in general, be a nontrivial conserved quantity.
Remark. If the curve γ is chosen to be uniformly close to the boundary of the

fluid region so that it encloses all singularities of C(z, t), the associated conserved
quantity is precisely the area of the fluid domain. Other choices of γ enclosing, for
example, a subset of isolated singularities, will in general produce independent (and
nontrivial) quantities conserved by the dynamics.

Remark. In the special case of the exact solutions in which C(z, t) is meromorphic
inside D(t) with a distribution of N poles at points zj(t), j = 1, . . . , N , the circulation
theorem states that there exist N independent conserved quantities which result from
choosing γ to encircle each isolated singularity zj , j = 1, . . . , N, individually. If the
contour surrounding only the singularity at zj is denoted γj , the associated conserved
quantity is ∮

γj

C(z, t)dz.(25)

Remark. As an example, consider an initial domain D(0) which has a Cauchy
transform C(z, 0) having a distribution of isolated polar and branch-point singularities
as shown in Figure 1. In order that ∂D(0) be a closed, analytic curve, a choice of
branch cuts within D(0) must be made. Suppose they are as given in Figure 1. Then
Theorem 3.3 states that there are five nontrivial conserved quantities associated with
this free boundary problem given by∮

γj

C(z, t)dz,(26)

where γ1, . . . , γ5 are shown in Figure 1. The contours γj are chosen to either encircle
the poles or each choice of branch cut. Note that the existence of these conserved
quantities has been established without knowing any details of the solution, and cer-
tainly without knowledge of an exact form of the solution, which may not even exist.
Indeed, for general σ(z, t), the free boundary problem evolving from an initial con-
dition such as that in Figure 1 (where there are branching singularities and not just
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poles) will not, in general, admit an exact solution describable in terms of a finite set
of parameters.

4. Two physical examples. The previous sections considered an abstract class
of free boundary problems. We now show that two well-studied free boundary prob-
lems of physical interest fall within this class of flows. The following two problems
are “geometry-driven” in that their evolution at any time is determined purely by
its configuration at that time (and not, for example, by some distribution of driving
singularities).

4.1. A droplet in a rotating Hele–Shaw cell. Consider a simply–connected
blob D(t) of fluid in a Hele–Shaw cell which will be assumed to be rotating with a
(possibly time-dependent) angular velocity ω(t). This problem has been well-studied
over the last few years, numerically [27], analytically [10], and experimentally [2], [3],
[4]. Everywhere inside the fluid, its velocity u is determined from a velocity potential
φ, i.e.,

u = ∇φ,(27)

where

∇2φ = 0(28)

everywhere in D(t). The pressure condition on ∂D(t) becomes

φ =
A(t)

2
zz̄ on ∂D(t),(29)

where A(t) = ρω2(t)k
µ , in which ρ is the fluid density, µ its viscosity, and k = b2/12,

where b is the plate separation. A kinematic condition on each interface also requires
that the local normal velocity of the boundary Vn equal the local normal velocity of
the fluid, i.e.,

u.n = Vn.(30)

The evolution of the boundary is driven here by centrifugal effects.
Complex reformulation. Because the domain is simply connected, the general

solution of (28) can be written

φ = Re[g(z, t)],(31)

where g(z, t) is analytic (in z) everywhere in D(t). The time dependence of g(z, t)
derives from the fact that the boundary D(t) is evolving in time. In terms of this
analytic function, the kinematic boundary condition (30) can be written as

Im

[
dz

dt
z̄s

]
= Im[(u + iv)z̄s] = Im[2φz̄ z̄s] = Im[ḡ′(z̄)z̄s] on ∂D(t).(32)

Condition (29) can similarly be written, in complex notation, as the condition

φ =
g(z) + ḡ(z̄)

2
=

A(t)

2
zz̄ on ∂D(t).(33)

We now define the linear functional L:

L[h(z, t);D(t)] ≡
∫ ∫

D(t)

h(z, t)dxdy,(34)
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where h(z, t) is a function analytic everywhere in D(t) and continuous on ∂D(t).

Theorem 4.1. In the free boundary problem just described, the following expres-
sion holds for the time evolution of L[h(z, t);D(t)]:

d

dt
L[h(z, t);D(t)] = L[ht(z, t) + A(t)zhz(z, t);D(t)],(35)

where h(z, t) is analytic in D(t) and continuous on ∂D(t).

Proof. Using the complex form of Green’s theorem in the plane,

L[h(z, t);D(t)] =
1

2i

∮
D(t)

h(z, t)z̄dz.(36)

Taking the time derivative,

dL[h(z, t);D(t)]

dt
=

1

2i

∮
∂D(t)

htz̄dz + hzztz̄dz + h (z̄tdz + z̄dzt) .(37)

However, from (32),

z̄tdz = ztdz̄ + 2φzdz − 2φz̄dz̄(38)

which, when substituted into (37), gives

dL[h(z, t);D(t)]

dt
=

1

2i

∮
∂D(t)

htz̄dz+hzztz̄dz + hz̄dzt + hztdz̄(39)

+2h (φzdz − φz̄dz̄) .

However,

hzztz̄dz + hz̄dzt + hztdz̄ = d(zth(z)z̄)(40)

is a total (spatial) differential and therefore gives zero contribution, while it is known
from (33) that on ∂D(t)

φz̄dz̄ = d

(
A(t)

2
zz̄

)
− φzdz(41)

which, when substituted into (40), gives

dL[h(z, t);D(t)]

dt
=

1

2i

∮
∂D(t)

htz̄dz + 2h

(
2φzdz − d

(
A(t)

2
zz̄

))
.(42)

However, 2φz = g′(z), which is analytic everywhere in D(t), which leaves, after an
integration by parts,

dL[h(z, t);D(t)]

dt
=

1

2i

∮
∂D(t)

htz̄dz + A(t)zhz z̄dz,(43)

which, using Green’s theorem, provides the required result.
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4.2. A sintering viscous droplet. Now consider a very different physical prob-
lem: the unsteady evolution of a simply connected plane blob of very viscous (Stokes)
fluid evolving purely under the effects of surface tension. Introducing a streamfunction
ψ(x, y) such that

u = ∇⊥ψ,(44)

it is well known [5] that

∇4ψ = 0 in D(t).(45)

On the blob boundary the stress condition is

−pnj + 2ejknk = κnj ,(46)

where κ is the surface curvature. Again, the kinematic condition is that

u.n = Vn(47)

at each point on the interface. It is clear that this problem is mathematically (and
physically) very different from the rotating Hele–Shaw problem.

Complex reformulation. The general solution of (45) at each instant can be
written as

ψ = Im[z̄f(z, t) + g(z, t)],(48)

where f(z, t) and g(z, t) are analytic everywhere in the fluid region D(t). In terms of
these Goursat functions, the following relations can easily be established:

p− iω = 4f ′(z, t),(49)

u + iv = −f(z, t) + zf̄ ′(z̄, t) + ḡ′(z̄, t),(50)

e11 + ie12 = zf̄ ′′(z̄, t) + ḡ′′(z̄, t).(51)

Defining s to be the arclength traversed in an anticlockwise direction around the blob,
it is known [5] that the stress boundary condition can be written in the form

f(z, t) + zf̄ ′(z̄, t) + ḡ′(z̄, t) = −izs
2
.(52)

Using (52), the kinematic condition can be written as

Im [(zt + 2f) z̄s] = −1

2
.(53)

Theorem 4.2. Under the evolution equations for Stokes flow, the following ex-
pression holds for the time evolution of the linear functional L defined over the simply
connected time-evolving domain D(t):

d

dt
L[h(z, t);D(t)] = L[ht(z, t) − 2f(z, t)hz(z, t);D(t)],(54)

where h(z, t) is analytic in D(t) and continuous on ∂D(t).
Proof. Using the complex form of Green’s theorem in the plane, it is clear that

L[h(z, t);D(t)] =
1

2i

∮
D(t)

h(z, t)z̄dz.(55)
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We now compute the time derivative of this quantity.

dL[h(z, t);D(t)]

dt
=

1

2i

∮
∂D(t)

htz̄dz +
1

2i

∮
∂D(t)

hzztz̄dz +
1

2i

∮
∂D(t)

h (z̄dz)t .(56)

It is necessary to compute (z̄dz)t from the equations of motion. The stress condition
provides that

2f̄ + 2z̄
df

dz
+ 2

dg

dz
= iz̄s;(57)

equivalently,

2f̄dz + 2z̄df + 2dg = iz̄sdz = ids,(58)

using the fact that zsz̄s = 1. The kinematic condition can be written in the form

Im [(zt + 2f) z̄s] = −1

2
(59)

or

ztz̄s + 2fz̄s − z̄tzs − 2f̄ zs = −i(60)

which is equivalent to

ztdz̄ + 2fdz̄ − z̄tdz − 2f̄dz = −ids.(61)

Combining (61) and (58) provides the expression

(z̄dz)t = 2dg + 2d(z̄f) + z̄dzt + ztdz̄(62)

which, when substituted into (56), gives the equation

dL[h(z, t);D(t)]

dt
=

1

2i

∮
∂D(t)

htz̄dz + 2hdg + 2hd(z̄f)(63)

+ [hzztz̄dz + hztz̄dz + hztdz̄] .

Note, however, that the terms in square brackets represent a total (spatial) differential
and therefore give a zero total contribution to the integral. Note also that the second
term on the right-hand side of (63) gives zero contribution since both h(z, t) and
g(z, t) are known to be analytic inside D(t). Finally, using integration by parts, we
obtain

dL[h(z, t);D(t)]

dt
=

1

2i

∮
∂D(t)

(ht − 2fhz) z̄dz(64)

which, with a final application of Green’s theorem, completes the proof.

4.3. Evolution of the Cauchy transforms. It is clear that (35) and (54) have
the same general form, i.e.,

d

dt
L[h(z, t);D(t)] = L[ht(z, t) + σ(z, t)hz(z, t);D(t)],(65)
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where σ(z, t) is analytic in D(t). Now consider a point Z lying strictly outside the
domain D(t). Equations (35) and (54) can be used to derive the evolution of the
Cauchy transforms C(z, t) for each problem. Consider the special choice of (arbitrary)
function h(z, t) given by

hC(z, t;Z) =
1

π

1

z −Z ,(66)

where another complex variable Z enters as a parameter. This function is analytic
(as a function of z), provided that Z is outside D(t). Moreover, note that

L[hC(z, t;Z);D(t)] = C(Z, t).(67)

Therefore to find the time evolution of C(Z, t) for each of the physical problems just
discussed we can use Theorem 4.1 and Theorem 4.2, respectively:

∂

∂t
L[hC(z, t;Z);D(t)] =

∂C(Z, t)
∂t

= − 1

π

∫ ∫
D(t)

σ(z)

(z −Z)2
dxdy(68)

≡ − ∂

∂Z I(Z, t),

where

σ(z, t) =

{ −2f(z, t) for sintering Stokes flow,
A(t)z for rotating Hele–Shaw flows.

(69)

Note crucially that σ(z, t) is analytic inside D(t) in both problems. Therefore both
the rotating Hele–Shaw problem and the viscous sintering problem fall within the
abstract class of geometry-driven free boundary problems considered in section 3.

Remark. Corollary 3.2 immediately implies that both the rotating Hele–Shaw
problem and the viscous sintering problem admit exact solutions for initial domains
whose Cauchy transforms are meromorphic inside D(0). These are the exact solutions
already found by previous authors (cf. [14], [10]). The circulation theorem also holds
for both problems; by taking γ as successively encircling each pole inside D(0), we
find as many nontrivial conserved quantities for each problem as there are distinct
poles (of any order). These conserved quantities are the same as those following from
the “theorem of invariants” of [5]. Richardson [25] has also found these invariants
using different methods involving conformal maps.

Remark. The circulation theorem (Theorem 3.3) leads to some previously un-
known conserved quantities for the viscous sintering problem—in particular, even in
situations in which the problem does not admit exact solutions, we have shown there
still exists, in general, a set of nontrivial conserved quantities associated with the flow.
Suppose an initial domain D(0) has a Cauchy transform C(z, 0) which has not only a
finite distribution of poles inside D(0) but also a finite set of branching singularities
as shown in Figure 1. For this initial condition, there is no known exact solution for
its evolution under the dynamics of viscous sintering; nevertheless, the dynamics pre-
serves five nontrivial circulation-type quantities given in (26) with contours γj shown
in Figure 1.

5. Examples. We now examine various explicit examples in order to highlight
the similarities and differences between these two problems. As a result, we gain some
important new insights into both.
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5.1. Example 1. The following example highlights the similarities between the
two physical problems stated above. Consider the evolution both in a rotating Hele–
Shaw cell and due to viscous sintering of a blob described by a conformal mapping
function having the rational function form

z(ζ, t) =
R(t)ζ

ζ2 − a2(t)
.(70)

This corresponds to a Cauchy transform that is a rational function with two simple
poles, at z1(t) and z2(t) = −z1(t) say, inside D(t).

For flow in a rotating Hele–Shaw cell, the evolution of the conformal map (70) of
such blobs is given implicitly by the set of equations

ż1(t)= A(t)z1(t),(71)

z2(t)= −z1(t),(72) ∮
γ1

C(z, t)dz=

∮
γ1

C(z, 0)dz,(73) ∮
γ2

C(z, t)dz=

∮
γ2

C(z, 0)dz,(74)

where γ1 is chosen to be a small circular contour enclosing z1(t), while γ2 similarly
encloses z2(t) = −z1(t). Note that, due to symmetry,

∮
γ1
C(z, 0)dz =

∮
γ2
C(z, 0)dz,

so that (74) in fact constitutes just two independent equations for the two unknowns
a(t) and R(t) in (70). The analogous equations for the viscous sintering problem are
given by

ż1(t)= −2f(z1(t), t),(75)

z2(t)= −z1(t),(76) ∮
γ1

C(z, t)dz=

∮
γ1

C(z, 0)dz,(77) ∮
γ2

C(z, t)dz=

∮
γ2

C(z, 0)dz.(78)

Note how similar these equations are to those governing the rotating Hele–Shaw prob-
lem.

Using the above evolution equations for the rotating Hele–Shaw problem, it can
be deduced that for a blob of area π with the parameter A(t) = 1 (so that the blob
rotates with constant angular velocity) the evolution equations for R(t) and a(t) are
given by

a(t)=

√
e−2t

2z2
0

(
1 +

√
1 − 4z4

0e
4t

)
,(79)

R(t)=

√
(1 − a(t)4)2

(1 + a(t)4)
,(80)

where z0 is the initial position of the point z1(t) = z0e
t. For a near-circular initial

blob we take z0 = ε � 1. A plot of the blob at a later time t = 5.3 is shown in
Figure 2. Note that after a finite time, the solution breaks down via the formation of
two cusps in the free surface leading to a “splitting” event. The solution (70) for a
sintering blob has been calculated by various previous authors and we refer the reader
to those papers [14], [15], [25], [26] for plots of the solution in this case.
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5.2. Example 2: The ellipse.

5.2.1. Rotating Hele–Shaw cell. The example just given illustrates the math-
ematical similarities between the two problems. Next we consider the case of an ellipse,
which illustrates some important differences between the two problems while at the
same time showing the usefulness of the Cauchy transform approach.

Consider an initial elliptical blob of fluid (with major and minor axes coincident
with the x- and y- axes) as it evolves both in a rotating Hele–Shaw cell and also in
the context of viscous sintering. The Cauchy transform of an ellipse (D(0), say) is
given by

C(z, 0) = R

(
z −

√
z2 − z2

0

)
(81)

for some constants R, z0. This Cauchy transform is not meromorphic inside the do-
main but has two square root branch-point singularities (and no other singularities in
D(0)). Corollary 3.2 on the existence of exact solutions does not apply to this initial
condition and, in general, we do not expect to find exact solutions to either prob-
lem for this initial condition. Nevertheless, we do have some information concerning
the evolution of the elliptical blob. First, we know how the two square root branch
points must evolve, i.e., we know the evolution of points z1(t) and z2(t) (say), with
z1(0) = z0 and z2(0) = −z0. Second, the circulation theorem does pertain to this
initial condition, and we immediately deduce the existence of a nontrivial conserved
quantity given by ∮

γ

C(z, t)dz,(82)

where γ is any contour surrounding the branch cut joining z1(t) and z2(t). In this
case, this conserved quantity corresponds to the blob area.

It turns out that the rotating Hele–Shaw problem still admits an exact solution
which is expressible explicitly in terms of a finite set of parameters. By virtue of the
particular choice of σ(z, t) in this case (7) can be integrated in closed form. Indeed,
it can be checked that

C(z, t)= e−AtC(ze−At, 0)(83)

= Re−At

(
ze−At −

√
z2e−2At − z2

0

)

is the unique solution of (7). This C(z, t) is also the Cauchy transform of an ellipse
but with different foci. For the viscous sintering problem, this will not be the case.

It is now expedient to consider the conformal map z(ζ, t) from the exterior of the
unit circle to the exterior of the elliptical blob. Such a conformal map is given by

z(ζ, t) =
a(t)

ζ
+ b(t)ζ,(84)

where a(t) and b(t) are taken to be real for an ellipse that is symmetrical about both
the x- and y-axes. This is easily checked. It is possible to find a simple expression
for the Cauchy transform C(z, t) of the ellipse in terms of these conformal mapping
parameters. To do this, note that on |ζ| = 1,
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z̄= a(t)ζ +
b(t)

ζ
(85)

= a

(
z

b
− a

bζ

)
+

b

ζ

=
a

b
z +

(
b− a2

b

)
1

ζ
.

Now observe that b
az is analytic inside the ellipse so that the Cauchy transform is

given by

C(z, t) = −
(
b2 − a2

b

)
1

ζ
.(86)

It can be shown that the area of the ellipse is given by π(b2 − a2), so choosing the
area to be π, we deduce that b2 − a2 = 1 for all times (this is a conserved quantity).
Thus

C(z, t) = − 1

bζ
.(87)

However, from (84)

ζ =
z +

√
z2 − 4ab

2b
,(88)

so that

C(z, t) = − 1

2ab

(
z −

√
z2 − 4ab

)
.(89)

For an ellipse that is symmetrical about the x- and y-axes, there will be square
root branch points at z1(t) ≡ 2

√
ab, z2(t) = −2

√
ab. However, the evolution of a

branch point z1(t) is known to be z1(t) = z0e
t (with A = 1). Thus, the conformal

mapping parameters satisfy the system

a(t)2=
−1 +

√
1 +

z4
0e

4t

4

2
,(90)

b(t)=
√

1 + a(t)2.(91)

For a near-circular initial blob, we take z1(0) = z0 = ε, where ε � 1. The subsequent
shape of this initial near-circular blob at a later time t = 5.3 is shown in Figure 3.
Note that this solution does not break down at finite time, but rather the solution
exists globally in time, and the blob becomes increasingly elongated in the x-direction.

Remark. Entov, Etingof, and Kleinbock [10] considered the case of an elliptical
bubble in a rotating Hele–Shaw cell (as opposed to an elliptical blob) and established
that an initially elliptical bubble tends to a circle as t → ∞. We have shown that
an elliptical blob of fluid becomes infinitely elongated along one of its axes under
evolution. The latter exact solution is new and is not reported in [10].

Remark. Comparison of Figures 2 and 3 illustrates that the rotating Hele–Shaw
problem is ill-posed with respect to initial conditions. The initial value of z0 in
each problem can be made arbitrarily small so that the initial near-circular blobs in
Figures 2 and 3 are virtually indistinguishable. The subsequent evolution of each
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Fig. 2. Splitting of a near-circular blob in a rotating Hele–Shaw cell. Area = π; A(t) = 1.0;
z0 = 0.01; t = 0, 5.3.

Fig. 3. Elongation of a near-circular blob in a rotating Hele–Shaw cell. Area = π; A(t) = 1.0;
z0 = 0.01; t = 0, 5.3.

blob is, however, drastically different: One breaks down (by “splitting”) in finite
time while the other exists globally in time and degenerates into a “line” as t → ∞.
Entov, Etingof, and Kleinbock [10] note the fact that blobs of fluid in a rotating
Hele–Shaw cell can break down by “splitting” or by “cusp formation” at finite times
(which they estimate for certain classes of initial condition). The above example shows
that there are additional possibilities. There is therefore need for care in using this
mathematical model to explain experiments in rotating Hele–Shaw cells. Some form
of regularization of the model is needed to ascertain which, if any, of the solutions to
this idealized mathematical problem are physically relevant. The ill-posedness of the
standard (i.e., nonrotating) Hele–Shaw model is well known [17] and also possesses
solutions which exist globally and remain smooth for all times (e.g., the Saffman–
Taylor finger). However, the regularized problem has many subtleties and the smooth
zero-regularization solutions need not necessarily be the physically relevant solutions
in the limit that the regularization parameter is taken to zero [30]. We expect similar
surprises to occur in the rotating Hele–Shaw problem.

5.2.2. A sintering elliptical blob. An initial elliptical blob does not remain
elliptical under evolution due to viscous sintering; Hopper [16] demonstrated explicitly
that the hypothesis that an initial ellipse circularizes through a sequence of ellipses is
false. Using a boundary integral method, Kuiken [19] has numerically calculated the
evolution due to viscous sintering of an initial elliptical blob given by

x2 + 10y2 = 1.(92)
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By t ≈ 2.0 the ellipse has become very nearly circular, and examination of Kuiken’s
Figure 3 shows the evolution to be via a series of “ellipse-like” shapes (even though
Hopper’s result [16] shows that this is not strictly true). The calculation is compu-
tationally intensive, and there are various numerical difficulties involved which are
discussed and analyzed in some detail by Kuiken [19].

In light of this research the following question seems natural: Exactly how accu-
rate is an approximation of the dynamics of a sintering ellipse under the assumption
that the evolution is via a series of ellipses? This question does not appear to have
been previously examined in the literature, but our present methods suggest a way
to do this.

Given that the fluid volume is conserved, the only unknown parameter in such
an approximating solution would be the positions of the branch points of the Cauchy
transform. However, Theorem 3.1 provides exactly the ordinary differential equation
needed to determine the evolution of these singularities, specifically,

σ(z1(t), t) = −2f(z1(t), t).(93)

Denoting the conformal map from the unit circle to an ellipse by the map z(ζ, t),
it can be shown [5] that

−2f(z, t) = zt(ζ, t) − ζI(ζ, t)zζ(ζ, t),(94)

where the Poisson integral I(ζ, t) is given by

I(ζ, t) =
1

4πi

∮
|ζ′|=1

dζ ′

ζ ′

(
ζ ′ + ζ

ζ ′ − ζ

)
1

z
1/2
ζ (ζ, t)z̄

1/2
ζ (ζ−1, t)

.(95)

Using the fact that z1(t) = z(ζ1(t), t), where ζ1(t) is the preimage of the branch point
z1(t), we deduce

ż1(t) = zt(ζ1(t), t) + ζ̇1(t)zζ(ζ1(t), t),(96)

but from (94) and (13)

ż1(t) = −2f(z1(t), t) = zt(ζ1(t), t) − ζ1(t)I(ζ1(t), t)zζ(ζ1(t), t);(97)

thus the evolution of ζ1(t) is deduced to be

ζ̇1(t) = −ζ1(t)I(ζ1(t), t).(98)

From [20], the mapping from the unit circle to an ellipse with semimajor and
semiminor axes a and b, respectively, is given by

ζ =
√
κ sn

(
2K

π
sin−1

(
z√

a2 − b2

))
,(99)

where

eiπτ=

(
a− b

a + b

)2

,(100)

κ=

(
Θ2(τ)

Θ3(τ)

)2

,(101)

K= F
(
κ,
π

2

)
,(102)
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Fig. 4. Sintering ellipse: t = 0.0, 0.2, 0.5, 1.0, 1.5, 2.0 (cf. Figure 3 of [19]).

where F denotes an elliptical integral of the first kind. The two branch points of the
Cauchy transform are at points ±√

a2 − b2.
The following numerical procedure was adopted to compute required approxima-

tion: a simple explicit first-order Euler time-stepping integration scheme was used to
solve the differential equation (98) for ζ1(t). This equation, along with the conser-
vation of area result, stated as πab = A (where A is the initial area), is enough to
determine the evolution of parameters a(t) and b(t) describing the ellipse at each time.
Initial parameters corresponding to the same initial ellipse (92) studied by Kuiken [19]
were used. The subsequent (approximate) shapes at times t = 0.2, 0.5, 1.0, 1.5, 2.0 are
plotted in Figure 4. These are exactly the subsequent times plotted by Kuiken [19].
Kuiken did not include in his paper any numerical data, and thus we have not been
able to compare the results quantitatively to any degree. However, a simple visual
comparison by superposition of (suitably rescaled) versions of Figure 4 with Figure 3
of [19] shows remarkable closeness of the successive curves throughout the evolution.
This closeness of the curves appears to improve as the solution evolves. Most impor-
tantly, both computations retrieve the same nondimensionalized time (i.e., t � 2.0) by
which the system has very nearly equilibrated to the asymptotic circular domain. This
is perhaps the most important quantity from a physical point of view, and it is well
captured by our two-dimensional approximation to this complicated free boundary
problem. Even more, our approximation method encounters none of the numerical
problems of the full boundary integral method [19].

6. Summary. The analogy between Hele–Shaw free boundary problems and the
inverse gravitational problem has been a useful one and has led to many physical and
mathematical advances in the study of free boundary problems. This includes results
on the existence, uniqueness, and regularity of solutions (e.g., [18], [28], [29], and
references therein). A generalized inverse gravitational problem of a specific type
has been introduced in this paper and has been shown to be analogous to both the
rotating Hele–Shaw problem and the viscous sintering problem. These mathematical
connections have led to new results and insights presented both here and elsewhere [8].
Also of interest is the question of whether there exist other free boundary problems
of physical importance which fall into the class of problems considered here (i.e., for
other choices of σ(z, t)). It is important to point out that the evolution of the Cauchy
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transform in the case when the rotating Hele–Shaw problem has nonzero surface
tension is not given by a conservation-type equation of the simple form considered in
this paper, and therefore none of the conclusions reached in this paper pertain to this
case.

Extension of the approach to cases in which the fluid domains are simply con-
nected but unbounded (infinite) can be made and similar results obtained (e.g., re-
garding exact solutions). Finally, the Cauchy transform is readily defined for multiply
connected domains of arbitrary finite connectivity. The formulation of the two phys-
ical problems considered herein in terms of Cauchy transforms is therefore expected
to provide important insights into finding exact solutions to these two problems for
fluid regions with more complicated topological structure than the simply connected
domains treated here.
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