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Circulation-induced shape deformations of drops and bubbles: Exact
two-dimensional models
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In this paper simple two-dimensional mathematical models for understanding the fluid dynamical
problem of how circulation affects the free surface shapes of inviscid drops and bubbles with surface
tension are presented. This theoretical paradigm is of interest in many areas of science including
large-scale transport processes in chemical engineering. Exact solutions for the finite-amplitude
steady-state equilibria of the mathematical models are found. Equilibrium states are shown to exist
right up to steady capillary pinch-off in the case of a bubble, the bubbles just before pinch-off
having large perimeter-to-area ratios. ©1999 American Institute of Physics.
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I. INTRODUCTION

An understanding of the free surface dynamics of sin
free liquid drops represents an important theoretical pa
digm in diverse areas of science. Applications arise in clo
physics1 and in containerless processing in low gravity.2 An-
other important area of application is in many large-sc
transport processes in chemical engineering3 involving
multi-phase/multi-component dispersions~e.g., liquid–liquid
extraction, distillation, direct contact heat transfer!. To de-
vise accurate models of such large-scale processes, a
ough understanding of the nonlinear free surface dynam
of singledrops and bubbles is an important first step.

It is known that mass and heat transport processes
tween a liquid and a host fluid can be significantly enhan
by ‘‘atomizing’’ the liquid, i.e., by stretching and deformin
the core liquid until a drop detaches and oscillates bef
reaching equilibrium. The observed increase in transp
rates is believed to be due to the fact that, because of l
shear effects at the interface between a detaching liquid l
ment and the host fluid, or because of relative translatio
velocities between the liquid and host fluid~as well as for
many other physical reasons!, the detached drops can ofte
have significant internal circulations.4 For this reason, it is
desirable to gain a fundamental understanding of the
surface dynamics of single bubbles/drops in the presenc
circulations around and inside them. In this vein, Masha
and Ashgriz4 recently carried out a numerical investigatio
of the dynamics of free drops~in zero gravity! with internal
circulations generated by constant surface velocities.

In this paper, in an attempt to gain someanalytical in-
sight into how circulations inside and around blobs a
bubbles~at large Reynolds number! can affect their free sur
face shapes, we consider simple two-dimensional mathem
cal models. For example, the model of a free drop with c
culation considered here consists of a two-dimensio
inviscid, simply-connected droplet of incompressible flu
surrounded by a constant pressure ambient, in zero gra
2831070-6631/99/11(10)/2836/10/$15.00
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held together by surface tension. This is exactly the phys
scenario considered~in the 3D static case! by Rayleigh.5 The
important extra ingredient of introducing some circulati
inside/around the blobs and bubbles is effected using a
vortex inside the blob. These idealized mathematical mod
thus represent paradigmatic problems in which a free ca
lary surface~in a radial geometry and at high Reynolds num
bers! interacts nonlinearly with a circulatory inviscid flow
field around it.

The first step in studying any dynamical system is
determine its steady-state equilbria. This is the subject of
present paper. Having formulated the models, we dem
strate that the model problems admit exact, finite-amplitu
solutions for their steady-state equilibria. These exact so
tions were derived by extending a new theoretical appro
to the general problem of free surface Euler flows with ca
illarity recently developed by the present author.6 Interest-
ingly, the new solutions have intimate mathematical conn
tions with the classic exact solutions for pure capillary wa
waves as found by Crapper.7

The exact solutions presented here are important
least because exact solutions for free surface Euler fl
with surface tension are rare—although a few are known.7–11

The new solutions provide useful analytical insights and,
a practical level, are expected to be important in provid
checks on numerical codes designed to compute solution
more complicated free boundary problems in a radial geo
etry ~i.e., blobs and bubbles! where more physical effects ar
included ~e.g., viscosity, gravity, thermocapillary/electro
static effects! and exact results are not available.

II. MATHEMATICAL FORMULATION

In order to model the effects of circulation on sha
deformations of bubbles and blobs with surface tension
consider two idealized 2D models. To model the effects
circulation outside a constant pressure bubble we consid
single bubble, with surface tension on its boundary, in
6 © 1999 American Institute of Physics

P license or copyright, see http://pof.aip.org/pof/copyright.jsp



he
r-

lob
ed

ob
he
el
n
c
i

n

a

ro

ry
ha
u
ti

e

.

-

ex

n
ng

-

ob,
n

ree
n-
the
tri-
iate
tion
ex
a

an

is
n

ree
be
r a

-

oth

-

-
if-
of

on
en-
er
thor
his
in

e

2837Phys. Fluids, Vol. 11, No. 10, October 1999 Circulation-induced shape deformations . . .
presence of a line vortex at physical infinity. Except for t
line vortex at infinity, the flow outside the bubble is othe
wise assumed to be irrotational. Similarly, to model a b
with internal circulation, we consider a 2D simply-connect
blob ~with surface tension acting on its boundary! with a
single line vortex placed inside it, the flow inside the bl
being otherwise irrotational. In this paper, we study t
steady-state equilibria of these two mathematical mod
The problem in each case is to identify any circulatio
induced steady-state equilibrium shapes of the free surfa

Both fluid domains are simply-connected, and by R
emann’s theorem, these free boundary problems can be
cast as the problem of finding the functional form of a co
formal map taking the unit circle in a parametricz-plane to
the physical fluid region in each case. This conformal m
will be denotedz(z).

Since the flow is assumed to be irrotational, it is app
priate to define the complex potential to be

w~z!5f~x,y!1 ic~x,y!, ~1!

where f(x,y) and c(x,y) are the velocity potential and
streamfunction, respectively. There will be two bounda
conditions on the free surface—a kinematic condition t
the free surface be a streamline and a dynamic Berno
condition associated with that streamline. The kinema
condition is equivalent to

c~x,y!50, ~2!

on the free surface, while the Bernoulli condition on the fr
surface can be written as

G1k5 1
2 q2, ~3!

whereq denotes the speed of the fluid,

q25Udw

dzU
2

, ~4!

k denotes the surface curvature.G is the Bernoulli constant
We define the composed function,

W~z![w„z~z!…. ~5!

The functional form ofW(z) for both problems under con
sideration here is taken to be

W~z!5 ig logz, ~6!

where g ~real! represents a measure of the point vort
strength. Note that on the free surfaceuzu51,

c~x,y![Im@W#50, ~7!

as required.
After some manipulation, the Bernoulli condition o

uzu51 can be written in terms of the conformal mappi
function. It is convenient to write it in the following form:

2
d

dz S zzz~z!

z21z̄z~z21! D
1/2

1Gzz~z!5
Wz~z!W̄z~z21!

2z̄z~z21!
. ~8!

Note that it will be assumed that the parametersG andg are
specified and that we seek solutionsz(z) corresponding to
these values ofG andg. SpecifyingG corresponds to speci
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fying the pressure inside the bubble or outside the bl
while specifyingg corresponds to specifying the circulatio
of the line vortex.

The above is a general statement of the problem of f
surface potential flow with surface tension in terms of co
formal maps and complex potentials. We now consider
details of the two model problems separately. The geome
cal differences between the two problems require appropr
modification of the analysis in each case. In the next sec
the problem of a single bubble in the field of a simple vort
~swirling flow! is considered, while in Sec. IV we consider
finite droplet~or blob! of fluid containing a circulatory flow
induced by an isolated line vortex.

III. CIRCULATION-INDUCED BUBBLE
DEFORMATIONS

In the case of a single bubble of constant pressure in
infinite fluid, the conformal mapz(z) must have a simple
pole inside the unit circle. Without loss of generality this
assumed to be atz50. The general form of the map is give
by

z~z!5
a

z
1 f ~z!, ~9!

wherea is some constant. There remains a rotational deg
of freedom in the Riemann mapping theorem which will
specified in a convenient way later in the analysis. Fo
physically meaningful solution,z(z) must be a univalent
map from the unitz-circle to the physical fluid region exte
rior to the bubble. Necessarily,zz has no zeros inuzu,1.
Under the assumption that we seek solutions with smo
bubble shapes~i.e., with no corners or cusps!, we also as-
sume thatzz does not vanish anywhere onuzu51.

The nontrivial part of the problem is to find the func
tional form for z(z) that satisfies the Bernoulli condition~8!
on uzu51. Note that the Bernoulli condition is highly non
linear in the conformal mapping function, making this a d
ficult problem in general. In the closely related problem
deep water pure capillary waves, Crapper7 employed a
method of solution involving a hodograph transformati
and a very special separation of variables technique to id
tify exact solutions. The problem of pure capillary wat
waves has recently been reappraised by the present au6

using quite different methods. We now show how to use t
new approach6 to find the required steady-state equilibria
the present case.

We now define an important functionS(z).
Definition: Define the functionS(z) as follows:

S~z![2
d

dz S zzz~z!

z21z̄z~z21! D
1/2

1Gzz~z!. ~10!

Note also that the function on the right hand side of~8! is
known to be analytic everywhere outside the unit circle. W
therefore denote its Laurent expansion~convergent inuzu
>1) as follows:

Wz~z!W̄z~z21!

2z̄z~z21!
5(

j 52

`
cj

z j . ~11!
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2838 Phys. Fluids, Vol. 11, No. 10, October 1999 Darren Crowdy
A finite number of the coefficients$cj% will be important in
the development.

By combining the above, it can be shown by genera
ing the results of Ref. 6 in a straightforward way that t
problem of finding steady solutions for the free surface o
bubble in the presence of a point vortex at infinity~for given
G andg! is equivalent to findingz(z) satisfying the follow-
ing conditions:

~i! z(z) is a univalent conformal map fromuzu<1 to the
fluid region having the general form~9!

~ii ! @zz(z)#1/2 has only simple pole singularities inuzu
.1

~iii ! S(z) is analytic everywhere outside the unit circ
with

S~z!;
c2

z 2 as z˜`, ~12!

wherec2 is defined in~11!.

The reader is referred to Crowdy6 for more detailed in-
formation on this particular mathematical approach to
problem of free surface Euler flows with surface tension.
an Appendix, it is shown how the above analyticity con
tions onz(z) andS(z) are equivalent to~8!.

A. Calculation of the exact solution

The above information@i.e., conditions~i!-~iii !#, in fact,
provides aconstructivemeans of finding solutions. In par
ticular, it allows us to investigate whetherrational functions
~for @zz#

1/2) with a finite number of poles are admitted a
solutions by providing a set ofnecessary and sufficientcon-
ditions that any such function must satisfy. Such solutio
are referred to herein as ‘‘exact solutions’’ in the sense t
they can be written down in terms of a finite set of know
parameters. As shown in Crowdy,6 Crapper’s solution7 for
capillary water waves corresponds exactly to a rational fu
tion solution of this kind.

Since it is known thatz(z) is analytic in the unit circle
except for a simple pole atz50, it follows that zz is also
analytic inside the unit circle except for a second order p
at the origin. Furthermore, outside the unit circle,@zz#

1/2

must have only simple pole singularities. By hypothesiz
solutions@zz#

1/2 which are rational functions having a spec
fied number of simple poles outside the unit circle and th
trying to ensure the required analyticity properties ofS(z)
outside the unit circle@note thatS(z) depends only on@zz#

1/2

and its conjugate function# we can examine directly whethe
~exact! rational function solutions to the problem are adm
ted. If such a function exists, it is then necessarily anexact
solution to the free boundary problem provided only that
satisfies the additional requirement that it is a univalent m
from the unit circle.

More specifically, at any polez j of zz
1/2 in uzu.1, it is

clear that, in general,S(z) will have a second order pole a
the same point. However, for a solution to the problem,S(z)
must be analytic atz j . In general, the requirement that th
principal part ofS(z) vanishes atz j imposes 2 conditions on
the parameters of the mapping@zz#

1/2. Further, under the
assumption thatzz

1/2 is a rational function, it can have, a
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worst, a polar singularity at infinity. Application of the wel
known test-power test12 reveals thatS(z) can only possibly
have the required asymptotic behavior asz˜` if

zz
1/2;pz21, as z˜`, ~13!

for some constantp.
By combining this information, the admissible func

tional structure ofzz
1/2 can be deduced under the assumpt

that it is rational. If there are enough free parameters in
mapping function to satisfy the required analyticity prope
ties of S(z) outside the unit circle~i.e., the counting is con-
sistent! then the problem is reduced to solving a consist
finite nonlinear system. Solutions of the nonlinear systemif
they exist, will constitute steady solutions of the original fre
boundary problem~subject to the additional conditions o
univalency!.

Using this constructive approach, the natural first step
to attempt to find a solution with justone simple pole of
@zz(z)#1/2 in uzu.1. As shown in detail in an analogous re
formulation of the deep water capillary wave problem
Crowdy,6 Crapper’s exact solution7 corresponds to a map
ping with just a single simple pole of@zz(z)#1/2. However, in
the present case, a direct calculation immediately reveals
such a solution is impossible.

Nevertheless, a rational function solution withzz
1/2 hav-

ing two simple poles outside the unit circle can be found, i.

@zz~z!#1/25
R

z S ~z2h1!~z2h2!

~z2z1!~z2z2! D , ~14!

where uh1u,uh2u,uz1u,uz2u.1. By the rotational degree o
freedom,R is assumed real. With@zz#

1/2 given by ~14!, the
correspondingS(z) is given by

S~z!52
d

dz
F ~z2h1!~z2h2!~12zz̄1!~12zz̄2!

z~z2z1!~z2z2!~12zh̄1!~12zh̄2!
G

1
GR2

z2 S ~z2h1!~z2h2!

~z2z1!~z2z2! D 2

. ~15!

The two simple poles ofzz
1/2 at z1 and z2 imposefour

conditions on the parameters in~14!. These result from the
conditions of the vanishing principal part ofS(z) at z1 and
z2 . There is but a single further condition onS(z), namely,
that it has the behavior given in~12!. This imposes a single
additional requirement on the mapping function. In tot
with zz

1/2 of the form~14!, there will befive conditions to be
satisfied for a solution. However, note that there are p
cisely five as yet undetermined parameters in~14!—
z1 , z2 , h1 , h2 andR.

The resultingconsistentsystem of five coupled nonlinea
equations is found, after some simple manipulations, to
satisfied by the following parameters:

h252h1 , z252z1 , h15 i
1

)
z1 ,

GR25
9

2 S uz1u421

uz1u413D , g25R2S S uz1u421

uz1u413D2
2

3D . ~16!
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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B. The question of uniqueness

We have not so far succeeded in identifying any ad
tional solutions having more than 2 simple poles
@zz(z)#1/2 outside the unit circle. While the counting arg
ments for the case of, say,threesimple poles is again con
sistent, the resulting consistent system of seven nonlin
equations in seven unknowns does not appear to be solv
at least, not after extensive searches by the present au
The same appears to be true of the case of four simple p
We do not, however, make any definite statement here a
whether or not solutions withN.2 poles exist. The intrigu-
ing mathematical question of the uniqueness of the ab
‘‘two-pole solutions’’ therefore remains open at this time.

C. Summary of the exact solution „bubble …

We now provide a concise summary of the exact so
tions. It is found thatzz can be integrated to the polar~ratio-
nal! form,

z~z!52AS 1

z
1

8z

~z22z1
2!
D . ~17!

This mapping is a function of the two parametersA andz1 .
z1 is a parameter of the solutions which we now choose to
real. The derivative of this function is given by

zz~z!5
A

z 2 S 3z 21z 1
2

z 22z 1
2 D 2

. ~18!

We choose to fix the area of the bubble to bep. Therefore,
we insist that

p52
1

2
Im R

uzu51
z̄zz dz. ~19!

This provides the following equation relatingA andz1 :

A5
1

A928S 31z 1
4

12z 1
4D 2

. ~20!

With the area of the bubble specified in this way, the abo
represents a one-parameter family of exact solutions~param-
etrized byz1), with the correspondingG andg given by

G5
1

2A
S z 1

421

z 1
413

D , ~21!

g259AS S z1
421

z 1
413

D 2
2

3
D . ~22!

Note that withA related toz1 via ~20!, then ~21! and ~22!
provideG andg as functions of the single parameterz1 .

Note that it is straightforward to make use of a symbo
manipulator~e.g., MATHEMATICA ! to verify that the above
map and corresponding choice of parameters does ind
satisfy the Bernoulli condition~8! on uzu51. This was done
as an explicit check on the solutions.
Downloaded 28 Oct 2004 to 155.198.192.80. Redistribution subject to AI
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We observe that in the limit as the pole positionz1

˜` the shape of the free surface tends to a circular confi
ration andz(z) has the following trivial form:

z~z!52
A

z
. ~23!

This represents a circular bubble and corresponds to an e
solution of the problem noted in Longuet-Higgins.13 The
new exact solutions~17! represent an analytic continuatio
of the circular solution of Longuet-Higgins13 for finite z1 .

The ratio r of the perimeter to the area can easily
calculated analytically and is given by the formula

r 52AF2324S 31z1
4

12z1
4D G . ~24!

A plot of r as a function of the pole positionz1 is given in
Fig. 1. It is clear that the perimeter-to-area ratio gets large
the bubble gets closer to steady pinch-off.

We point out that in the derivation of the solutions it
assumed thatG andg are pre-specified parameters. In pri
ciple, givenG andg, the corresponding values ofA andz1

can be found. However, as seen above, now that the e
form of the solutions is known, it is more natural~and con-
venient! to study them by instead specifying a fixed area
the bubble and examining the solutions as the pole posi
z1 changes.

For the sake of comparison, we record here the ex
solution for deep water pure capillary waves as found or
nally by Crapper.7 We present the solutions in the form a
rederived~using the same general approach as in the pre
paper! in Crowdy:6

z~z!5 iAS logz2
4z1

~z2z1! D , ~25!

FIG. 1. ~Superposed! equilibrium bubble shapes:z153.0, 3.2, 3.7,`.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 2. Perimeter–area ratio~bubble! plotted against
pole positionz1 (x-axis!.
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zz~z!5
iA

z

~z1z1!2

~z2z1!2 , ~26!

with

G5
1

2A

uz1u221

uz1u211
, ~27!

uWzu2

2
5

c2

2k2 5GA2. ~28!

Solutions are again parametrized byz1—the parameterA
being set once the wavelength of the water wave is speci
z1 is a parameter controlling the amplitude of the wave. N
that Crapper’s solutions are comparatively simpler than
new solutions found here (@zz#

1/2 having only one simple
pole in uzu.1). The mathematical relationship between t
solutions~18! and~26! to the two physical problems is clea

In Fig. 2, the solutions for various different values ofz1

are superposed for comparison. It is found that asz1˜3.0,
the bubble becomes vertically elongated, eventually beg
to pinch at which point the conformal mapz(z) ceases to be
univalent. This is not surprising—the analogous pheno
enon in the case of capillary water waves is well-known7,10

and the pinching of the bubble in this case can be though
as the radial analogue to the pinching together of two diff
ent sections of the free surface capillary wave as found
Crapper.7 It is interesting to observe that the same pheno
enon also occurs in the present case of a bubble in a swi
flow. As z1˜`, the bubble tends to a circular shape
expected. Figure 3 shows some typical streamlines of a t
cal solution. In Figs. 4 and 5 the values ofG andg plotted as
a function ofz1 ~for a fixed area of the bubble! are given for
the range ofz1 for which solutions exist. Note that there is
maximum value ofg2 for which exact solutions exist~i.e.,
3.0,z1,`).
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With a view to gaining insight into the fission events
bubbles in a liquid host, Vanden-Broeck and Keller14 have
studied a related two-dimensional model problem of bub
break-up by considering a single constant pressure bu
~with surface tension! and modeling the mean-field effects o
the surrounding liquid host~and any other bubbles! using an
ambient straining flow. They calculated the steady-st
equilibrium shapes of the bubble numerically and obser
that, at sufficiently large strain rates, the bubble pinches
multaneously at four different points on its bounding surfa
Our results clearly show that steady capillary pinch-off~in
fact, as two different parts of the interface come together
single point! can still occur for a bubble in significantly
milder ambient flow conditions—i.e., in an ambient circul
tory flow rather than the much more singular straining flo
considered by Vanden-Broeck and Keller.14 Moreover, near
~steady! pinch-off, the bubble is observed to become ve
elongated and possesses a large perimeter-to-area ratio
shown in Fig 2, the perimeter of the bubble at pinch-off
almost three times the perimeter of the circular bubble so
tion of the same area and it is certainly conceivable,
example, that this much greater surface area of contact m
lead to enhanced transport properties between the bubble

FIG. 3. Typical streamlines around a bubble forz153.15.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp



2841Phys. Fluids, Vol. 11, No. 10, October 1999 Circulation-induced shape deformations . . .
FIG. 4. A plot ofG ~vertical axis! ver-
sus pole positionz1 ~bubble!.
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the host fluid. In addition, the circulation itself is seen
induce ~at least, steady! pinch-off of the bubble into two
smaller bubbles and thus it could be argued on the evide
of the above results that the presence of circulation lead
greater ‘‘atomizing’’~or splitting! events and therefore mor
detached drops in a liquid dispersion. This would simila
provide a mechanism for enhanced transport rates. It is c
however, that the above results are steady and that a
analysis of the unsteady problem is needed for greater un
standing of the circulation-induced free surface dynamics
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IV. CIRCULATION-INDUCED BLOB DEFORMATIONS

We now consider a different but related problem: findi
the steady-state shapes of a finite droplet/blob of fluid c
taining a single point vortex at some point inside it. Th
problem represents a simple paradigmatic example of
nonlinear interaction between a nontrivial circulatory flo
inside a blob and its free~capillary! surface.

In this case, there is no longer a simple pole singula
of z(z) in the unit circle. Without loss of generality, it i
FIG. 5. A plot of g2 ~vertical axis!
versus pole positionz1 ~bubble!.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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assumed that the point vortex is placed at the physical or
z50 and that the position of the point vortex corresponds
z50 in a z-plane, i.e.,

z~0!50. ~29!

In this case, the follow Laurent expansion~convergent in
uzu>1) will be important:

Wz~z!W̄z~z21!

2z̄z~z21!
5(

j 50

` cj

z j . ~30!

As in the previous section, it can similarly be shown th
the problem of finding steady-state shapes for a droplet c
taining a single line vortex~for given G andg! is equivalent
to finding z(z) satisfying the following conditions:

~i! z(z) is a univalent conformal map from the unit circ
to the fluid blob with
z~0!50; ~31!

~ii ! @zz(z)#1/2 has only simple pole singularities outsid
the unit circle;

~iii ! S(z) is analytic everywhere outside the unit circ
with
S~z!;c0, as z˜`, ~32!

wherec0 is defined in~30!.

A. Calculation of the exact solution

The above information on the analyticity structure
solutions again provides an explicit method of construct
them. In exactly the same way as for the case of a bubbl
can be shown that the system admits exact solutions withtwo
poles of the mapping function outside the unit circle. In th
case, the map has the functional form

@zz~z!#1/25R
~z2h1!~z2h2!

~z2z1!~z2z2!
; ~33!

R is again assumed to be real. The correspondingS(z) is
given by

S~z!52
d

dz
F z~z2h1!~z2h2!~12zz̄1!~12zz̄2!

~z2z1!~z2z2!~12zh̄1!~12zh̄2!
G

1GR2S ~z2h1!~z2h2!

~z2z1!~z2z2! D 2

. ~34!

Five conditions result from the requirement that the princi
part ofS(z) vanishes at bothz1 andz2 and from the require-
ment thatS(z) satisfies~32!. Parameters satisfying the fo
lowing system are found to provide all the requirements:

h252h1 , z252z1 , h15 i)z1 ,

GR25
1

2 S uz1u421

3uz1u411D , ~35!

g2518R2S 1

2 S uz1u421

3uz1u411D1
1

3D .

Again, we have been unable to identify any solutio
corresponding to maps with more than 2 polar singulari
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in uzu.1, however, we make no statement about whethe
not additional solutions exist. This question of uniquene
remains open.

B. Summary of the exact solutions „blob …

Solving the system of 5 coupled nonlinear equations
sulting from the required analyticity properties ofS(z), and
fixing the area of the blob to bep, we again have a one
parameter family of solutions~parametrized by the pole po
sition z1). Choosingz1 to be real, the exact solution can b
represented as follows:

z~z!5AS z2
8z1

2z

z22z1
2D . ~36!

This corresponds to the derivative

zz~z!5AS z213z1
2

z22z1
2 D 2

. ~37!

The area of the blob is fixed to bep so that

p5
1

2
R

uzu51
z̄zzdz, ~38!

which givesA as a function of the parameterz1 , i.e.,

A5A 1

918S 113z1
4

12z1
4 D 2 , ~39!

and the correspondingG andg given as functions ofz1 by

G5
1

2A S z1
421

3z1
411D , ~40!

g2518AS 1

3
1

1

2 S z1
421

3z1
411D D . ~41!

The result is a one-parameter family of exact solutions~pa-
rametrized byz1). In Fig. 6, the shapes of the blob for var
ous different values ofz1 are superposed for comparison.

FIG. 6. ~Superposed! equilibrium blob shapes:z151.14, 1.5, 2.1,`.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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is found that solutions exist for all values ofz1.1. As z1

˜`, the shape of the blob tends to a circular shape,
expected. Asz1 moves closer to the unit circle, the shape
the blob resembles two separate~but symmetrical! blobs
joined by a necking region that grows thinner and pinche
towards the point vortex at the origin—the curvature in t
pinching region increases markedly asz1˜1. Some typical
streamlines are shown in Fig. 7. This plot is also a confirm
tion that the mapping functionz(z) is a univalent function
throughout the unit circle. Finally, Figs. 8 and 9 show t
corresponding values ofG and g2 as functions of the pole
positionz1 .

Note that in the preceding analysis we have implici
made use of thenon-self-induction hypothesisthat is usual in
the consideration of steady solutions involving point vortic
~see Saffman15!. However, for the self-consistency of th
steady solutions, it is important to check that the velocity
the point vortex iszero under the assumption of non-sel
induction. In this case, the symmetry of the solutions fo
this to be true. Alternatively, it can be seen from the ex
solutions that

FIG. 7. Typical streamlines inside a blob (z151.5).
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z~z!5z1O~z 3!, for small z, ~42!

and therefore that

zz~z!511O~z2!. ~43!

Thus, the fluid velocity at the point vortex~i.e., atz50 or
z50) is

dw

dz
5

Wz

zz
5

ig

z
„11O~z 2

…!. ~44!

Using ~42! then implies that

dw

dz
5

ig

z
„11O~z2

…!, as z˜0. ~45!

Thus it is clear that, under the non-self-induction hypothe
the velocity isO(z) as z˜0. The point vortex is therefore
steady as required for consistency.

V. DISCUSSION

In this paper the effects of circulations inside and arou
single blobs and bubbles with surface tension have b
modeled using line vortices. Clearly, this idealization is n
physical—real~viscous! blobs with internal circulations gen
erally contain smooth distributions of vorticity. Nevertheles
a line vortex provides a convenient model that is amenabl
mathematical analysis. The class of mathematical mod
used in this paper has been shown to admit exact fin
amplitude solutions for the steady circulation-induced sh
deformations of the bubbles and blobs where surface ten
forces are in exact balance with the hydrodynamic press
forces.

The model problems considered here have assumed
some nonzero circulatory flows have been induced, bysome
physical mechanism, inside or around a blob or bubb
Some examples of physical mechanisms possibly giving
FIG. 8. A plot ofG ~vertical axis! ver-
sus pole positionz1 ~blob!.
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FIG. 9. A plot of g2 ~vertical axis!
versus pole positionz1 ~blob!.
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to such circulations were briefly mentioned in the Introdu
tion: a circulation in a blob can be induced by various mixi
and atomizing events~e.g., blobs formed by tearing an
stretching of liquid ligaments from a core liquid!, by shear
effects between the blob and host fluid, by thermo-capill
effects and various thermodynamics effects such as the p
ence of a nonisothermal host fluid. The precise details
how a blob has gained an internal circulation have not b
modeled here, only the subsequent interaction of the g
circulatory flow with the free capillary surface.

A natural extension of the present work is to study t
time-dependent evolution of the simple mathematical m
els. This might involve a study of complex singularity d
namics and might throw some analytical light on the nat
of shape oscillations of bubbles and drops in the presenc
internal/external circulations. In addition, the stability of t
new equilibria found here is also clearly of interest.

Finally, it is noted that the new mathematical approa
implicit in the presentation herein has wide utility. Indee
the equilibrium solutions found in this paper can be gene
ized to doubly-connected fluid domains and the present
thor has recently identified exact solutions for the problem
steady capillary waves on a fluid annulus.11 Perhaps not un-
expectedly in light of the present results, these new ann
solutions are generalizations of the classic exact solutions
finite amplitude waves on finite sheets of fluid as identifi
by Kinnersley10 ~which are themselves generalizations
Crapper’s7 exact solution!. Moreover, the methods herei
can also be generalized to solve quite different phys
problems, for example, the problem of steady singular
driven Hele-Shaw flows in the presence of surface tension
this problem too, a wide class of new exact solutions16 have
been identified using methods similar to those emplo
here.
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APPENDIX: ANALYTICITY OF S„z…

The following theorem shows that satisfying the Be
noulli condition on the bubble boundary is equivalent to e
suring certain global analyticity properties of the functio
S(z) in the extended complex planeoutsidethe unit circle.

Theorem: The Bernoulli condition on the free surface o
the bubble is equivalent toS(z) being analytic everywhere in
uzu>1 with

S~z!;
c2

z2 , as z˜`, ~A1!

wherec2 is defined in~11!.
Proof: First, assume that the Bernoulli condition hold

on uzu51. This implies

S~z!5
Wz~z!W̄z~z21!

2z̄z~z21!
. ~A2!

By analytic continuation, this also holds off the unit circle.
is clear that this implies immediately thatS(z) is analytic in
uzu>1 and thatS(z); (c2 /z2).

Conversely, assume thatS(z) is analytic outside the uni
circle, including at infinity whereS(z); (c2 /z2). Given
these conditions onS(z) it is clear that it can be written in
the form

S~z!5
H~z!

z̄z~z21!
, ~A3!

for someH(z) ~to be determined! which is analytic inuzu
>1 and tends to a constant asz˜`. This is because
z̄z

21(z21) is analytic outside the unit circle and;z2 as z
˜`. Note that
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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S~z!z̄z~z21!5S~z!z̄z~z21!, ~A4!

on uzu51. This can be seen after some manipulation us
the definition ofS(z). Equations~A3! and ~A4! imply that
H(z) is real on the unit circle, i.e.,

H̄~z21!5H~z!, ~A5!

on uzu51. Equation~A5! furnishes the analytic continuatio
of H(z) into uzu<1 and, in particular, reveals that it is an
lytic everywhere inuzu<1. Thus,H(z) has been shown to b
analytic everywhere in the finite plane, bounded asz˜`
and real on the unit circle. By Liouville’s theorem,H(z) is
necessarily a real constant function. The additional condi
that S(z); c2 /z2 sets this constant and finally implies tha

H~z!5g25Wz~z!W̄z~z21!. ~A6!

Equation~A3! is then equivalent to the Bernoulli conditio
and the theorem is proved.
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