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In this paper simple two-dimensional mathematical models for understanding the fluid dynamical
problem of how circulation affects the free surface shapes of inviscid drops and bubbles with surface
tension are presented. This theoretical paradigm is of interest in many areas of science including
large-scale transport processes in chemical engineering. Exact solutions for the finite-amplitude
steady-state equilibria of the mathematical models are found. Equilibrium states are shown to exist
right up to steady capillary pinch-off in the case of a bubble, the bubbles just before pinch-off
having large perimeter-to-area ratios. 199 American Institute of Physics.
[S1070-663(199)01410-5

I. INTRODUCTION held together by surface tension. This is exactly the physical
scenario considereh the 3D static cageby Rayleigh® The

An understanding of the free surface dynamics of singlémportant extra ingredient of introducing some circulation
free liquid drops represents an important theoretical parainside/around the blobs and bubbles is effected using a line
digm in diverse areas of science. Applications arise in cloudrortex inside the blob. These idealized mathematical models
physics and in containerless processing in low grai§n-  thus represent paradigmatic problems in which a free capil-
other important area of application is in many large-scaldary surface(in a radial geometry and at high Reynolds num-
transport processes in chemical engineérigvolving  bers interacts nonlinearly with a circulatory inviscid flow
multi-phase/multi-component dispersiofesg., liquid—liquid  field around it.
extraction, distillation, direct contact heat trangfefo de- The first step in studying any dynamical system is to
vise accurate models of such large-scale processes, a thaletermine its steady-state equilbria. This is the subject of the
ough understanding of the nonlinear free surface dynamicgresent paper. Having formulated the models, we demon-
of singledrops and bubbles is an important first step. strate that the model problems admit exact, finite-amplitude

It is known that mass and heat transport processes béolutions for their steady-state equilibria. These exact solu-
tween a liquid and a host fluid can be significantly enhancedions were derived by extending a new theoretical approach
by “atomizing” the liquid, i.e., by stretching and deforming to the general problem of free surface Euler flows with cap-
the core liquid until a drop detaches and oscillates befordlarity recently developed by the present autfidnterest-
reaching equilibrium. The observed increase in transporingly, the new solutions have intimate mathematical connec-
rates is believed to be due to the fact that, because of largéons with the classic exact solutions for pure capillary water
shear effects at the interface between a detaching liquid ligavaves as found by Crappér.
ment and the host fluid, or because of relative translational The exact solutions presented here are important not
velocities between the liquid and host fluids well as for least because exact solutions for free surface Euler flows
many other physica] reasdnshe detached drops can often with surface tension are rare—although afew are anﬁﬁlh
have significant internal circulatiofsFor this reason, it is The new solutions provide useful analytical insights and, on
desirable to gain a fundamental understanding of the fre@ Practical level, are expected to be important in providing
surface dynamics of single bubbles/drops in the presence §hecks on numerical codes designed to compute solutions to
circulations around and inside them. In this vein, Mashaye#nore complicated free boundary problems in a radial geom-
and Ashgri? recently carried out a numerical investigation ety (i.e., blobs and bubblgsvhere more physical effects are
of the dynamics of free dropén zero gravity with internal mclt_Jded (e.g., viscosity, gravity, thermogaplllary/electro—
circulations generated by constant surface velocities. static effects and exact results are not available.

In this paper, in an attempt to gain soraealytical in-
sight into how circulations inside and around blobs and
bubbles(at large Reynolds numbecan affect their free sur-
face shapes, we consider simple two-dimensional mathemati- In order to model the effects of circulation on shape
cal models. For example, the model of a free drop with cir-deformations of bubbles and blobs with surface tension we
culation considered here consists of a two-dimensionalconsider two idealized 2D models. To model the effects of
inviscid, simply-connected droplet of incompressible fluid circulation outside a constant pressure bubble we consider a
surrounded by a constant pressure ambient, in zero gravitgingle bubble, with surface tension on its boundary, in the

II. MATHEMATICAL FORMULATION
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presence of a line vortex at physical infinity. Except for thefying the pressure inside the bubble or outside the blob,
line vortex at infinity, the flow outside the bubble is other- while specifyingy corresponds to specifying the circulation
wise assumed to be irrotational. Similarly, to model a blobof the line vortex.
with internal circulation, we consider a 2D simply-connected  The above is a general statement of the problem of free
blob (with surface tension acting on its boundamyith a  surface potential flow with surface tension in terms of con-
single line vortex placed inside it, the flow inside the blobformal maps and complex potentials. We now consider the
being otherwise irrotational. In this paper, we study thedetails of the two model problems separately. The geometri-
steady-state equilibria of these two mathematical modelscal differences between the two problems require appropriate
The problem in each case is to identify any circulation-modification of the analysis in each case. In the next section
induced steady-state equilibrium shapes of the free surfacethe problem of a single bubble in the field of a simple vortex
Both fluid domains are simply-connected, and by Ri-(swirling flow) is considered, while in Sec. IV we consider a
emann’s theorem, these free boundary problems can be rénite droplet(or blob) of fluid containing a circulatory flow
cast as the problem of finding the functional form of a con-induced by an isolated line vortex.
formal map taking the unit circle in a parametéplane to
the physical fluid region in each case. This conformal Mak; cIRCULATION-INDUCED BUBBLE

Since the flow is assumed to be irrotational, it is appro-
priate to define the complex potential to be In the case of a single bubble of constant pressure in an
) infinite fluid, the conformal ma({) must have a simple
W(z)=(xy) +ig(xy), (D pole inside the unit circle. Without loss of generality this is

where ¢(x,y) and ¢(x,y) are the velocity potential and assumed to be dt=0. The general form of the map is given
streamfunction, respectively. There will be two boundaryby
conditions on the free surface—a kinematic condition that

the free surface be a streamline and a dynamic Bernoulli z({)=—+f({), (9)
condition associated with that streamline. The kinematic 4
condition is equivalent to wherea is some constant. There remains a rotational degree
of freedom in the Riemann mapping theorem which will be
¥(xy)=0, 2 specified in a convenient way later in the analysis. For a
on the free surface, while the Bernoulli condition on the freephysically meaningful solutionz({) must be a univalent
surface can be written as map from the unitZ-circle to the physical fluid region exte-
rior to the bubble. Necessarilg, has no zeros in{|<1.
I'+k= 30 (3 Under the assumption that we seek solutions with smooth

bubble shapesi.e., with no corners or cuspswe also as-
sume thatz, does not vanish anywhere ¢f=1.
The nontrivial part of the problem is to find the func-
' (4) tional form forz(¢) that satisfies the Bernoulli conditigB)
on [{|=1. Note that the Bernoulli condition is highly non-
linear in the conformal mapping function, making this a dif-
ficult problem in general. In the closely related problem of
W()=w(z({)). (5) deep water pure capillary waves, Cragpemployed a
method of solution involving a hodograph transformation
and a very special separation of variables technique to iden-
tify exact solutions. The problem of pure capillary water
W({)=iylog¢, (6) waves has recently been reappraised by the present &uthor
i using quite different methods. We now show how to use this
where y (rea) represents a measure of the point vorteXney approachto find the required steady-state equilibria in

whereq denotes the speed of the fluid,

dw]|?

2_ |27
=4z

« denotes the surface curvatuiéis the Bernoulli constant.
We define the composed function,

The functional form ofW(¢) for both problems under con-
sideration here is taken to be

strength. Note that on the free surfd¢g=1, the present case.
J(x,y)=Im[W]=0, 7 We now define an important functid®(¢).
. Definition: Define the functiorS(¢) as follows:
as required.
After some manipulation, the Bernoulli condition on =_i( {z7,0) 1/2+F 10
[¢|=1 can be written in terms of the conformal mapping S(O)= dgl\ ¢z (07t 2(8).
function. It is convenient to write it in the following form: Note also that the function on the right hand side(®fis
d {20 \* W( g)v_vg( oY known to be anaIyFic everywhere outsjde the unit ci.rcle. We
_d_g(—g‘lf(é_l) +Fz§(§)=—2?(g_1) (8  therefore denote its Laurent expansi@onvergent in|{|
¢ ¢ =1) as follows:
Note that it will be assumed that the parametfémsnd y are — w0
specified and that we seek solution§) corresponding to W (HW,(L ): 2 Ejl (11)

these values oF andvy. SpecifyingI" corresponds to speci- 2z,¢{ D) j=2
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A finite number of the coefficienttc;} will be important in  worst, a polar singularity at infinity. Application of the well-

the development. known test-power test reveals thatS(¢) can only possibly
By combining the above, it can be shown by generaliz-have the required asymptotic behaviorfas « if

ing the results of Ref. 6 in a straightforward way that the 1o .

problem of finding steady solutions for the free surface ofa 2y ~P¢{ ~  as {—, (13

bubble in the presence of a point vortex at infinifigr given

I and y) is equivalent to finding({) satisfying the follow-

ing conditions:

for some constarnp.

By combining this information, the admissible func-
tional structure ofz}’2 can be deduced under the assumption
(i) z(¢) is a univalent conformal map frofg|<1 to the that it is rational. If there are enough free parameters in the

fluid region having the general forii®) mapping function to satisfy the required analyticity proper-
(i) [z:¢)1¥? has only simple pole singularities iff|  ties of S(¢) outside the unit circléi.e., the counting is con-
>1 sistenj then the problem is reduced to solving a consistent
(i) S(¢) is analytic everywhere outside the unit circle finite nonlinear system. Solutions of the nonlinear systém,
with they existwill constitute steady solutions of the original free
C boundary problem(subject to the additional conditions of
S~ as {—x, (12 univalency.
} . ) Using this constructive approach, the natural first step is
wherec, is defined in(11). to attempt to find a solution with jusine simple pole of

. — [2,()]¥?in |£|>1. As shown in detail in an analogous re-
The reader is referred to Crowtifor more detailed in- formulation of the deep water capillary wave problem in

formb;atmn fofn this F;art'cgalr n}?themqiﬁal a}ppro?ch _to tTeCrowdy,6 Crapper's exact solutidncorresponds to a map-
problem of free surface Euler flows with surface tension. nping with just a single simple pole @tg(g)]l/z. However, in

?n Appendix, 'tdlsé shown hOW. thle ?E;\g analyticity Condl'the present case, a direct calculation immediately reveals that
lons onz(Z) and$(¢) are equivalen ’ such a solution is impossible.

A. Calculation of the exact solution Nevertheless, a rational function solution w'ﬂﬁz hav-
. - . e ing two simple poles outside the unit circle can be found, i.e.,
The above informatiofi.e., conditions(i)-(iii )], in fact, 9 plep

provides aconstructivemeans of finding solutions. In par- R/ (L= n)(L— 1)
ticular, it allows us to investigate whetheational functions [Zg(Z)]l/2=z(m),
(for [2,]%%) with a finite number of poles are admitted as ! 2
solutions by providing a set afecessary and sufficienbn-  where |74, 75|,/ {1],|{2|>1. By the rotational degree of
ditions that any such function must satisfy. Such solutionfreedom,R is assumed real. Wit[]zg]l’2 given by (14), the
are referred to herein as “exact solutions” in the sense thatorrespondind3(¢) is given by
they can be written down in terms of a finite set of known o o
parameters. As shown in Crow8yCrapper's solutioh for d| ({—n)(¢—n)(1—81)(1—885)
capillary water waves corresponds exactly to a rational func- S(9)=- d_g{ L= (=)A= L) (A=)
tion solution of this kind. 5 )

Since it is known that(¢) is analytic in the unit circle I'R <(5_ 7)({— ’72))
except for a simple pole af=0, it follows thatz, is also N8

analytic inside the unit circle except for a second order pole ) 12 )
The two simple poles o, at {; and {, imposefour

at the origin. Furthermore, outside the unit circle,]*? n
must have only simple pole singularities. By hypothesizingconditions on the parameters ). These result from the
conditions of the vanishing principal part 8{¢) at ¢, and

solutions[z{]l’2 which are rational functions having a speci- i X -
fied number of simple poles outside the unit circle and therf2- 1here is but a single further condition &4¢), namely,
trying to ensure the required analyticity propertiessgt) ~ that it has the behavior given i12). This imposes a single
outside the unit circlgnote thatS(¢) depends only oﬁzg]lm add|t|?/r;al requirement on the mapping function. In total,
and its conjugate functigrwe can examine directly whether

(14)

(15

with z; of the form(14), there will befive conditions to be

(exac) rational function solutions to the problem are admit- Satisfied for a solution. However, note that there are pre-
ted. If such a function exists, it is then necessarilyeaact ~ CiSely five as yet undetermined parameters (04—
solutionto the free boundary problem provided only that it {1y &2, M, 72 @NAR.

satisfies the additional requirement that it is a univalent map 1 N€ resultingconsistensystem of five coupled nonlinear
from the unit circle. equations is found, after some simple manipulations, to be

More specifically, at any polé; of Z}/z in |¢[>1, it is satisfied by the following parameters:

clear that, in general3({) will have a second order pole at

the same point. However, for a solution to the probl&(i)) =_ =— =i i
. ) 2=~ 71, =01, m=i—{1,
must be analytic af;. In general, the requirement that the V3
principal part ofS({) vanishes at; imposes 2 conditions on 4 4
the parameters of the mappirig,]*% Further, under the FRZ:% |44]*—1 2 o2 [G*-1) 2 (16)
assumption thauz}’2 is a rational function, it can have, at 2\|z4*+3)° |z, |*+3) 3/
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B. The question of uniqueness

We have not so far succeeded in identifying any addi-
tional solutions having more than 2 simple poles of
[2,(£)]¥? outside the unit circle. While the counting argu-
ments for the case of, sathree simple poles is again con-
sistent, the resulting consistent system of seven nonlinear
equations in seven unknowns does not appear to be solvable,
at least, not after extensive searches by the present author.
The same appears to be true of the case of four simple poles.
We do not, however, make any definite statement here about
whether or not solutions withi>2 poles exist. The intrigu-
ing mathematical question of the uniqueness of the above
“two-pole solutions” therefore remains open at this time.

C. Summary of the exact solution  (bubble)

We now provide a concise summary of the exact solu-
tions. It is found that, can be integrated to the pol@matio-
nal) form,

FIG. 1. (Superposedequilibrium bubble shapeg;=3.0, 3.2, 3.7,.

1 8¢ ) -

z({)= —A( -+
¢ (P-4
This mapping is a function of the two parameté&rand{; .

¢, is a parameter of the solutions which we now choose to be W€ observe that in the limit as the pole positign
real. The derivative of this function is given by —oo the shape of the free surface tends to a circular configu-

ration andz({) has the following trivial form:
A 3§2+z32

el

We choose to fix the area of the bubble todeTherefore,

(18)

2(4) (23

— 7
This represents a circular bubble and corresponds to an exact

we insist that

1
=—=Im Eﬁ zz,d¢. 19
This provides the following equation relatidgand {; :
1
A= (20

3+¢1 '
9-8| —
1-77

solution of the problem noted in Longuet-HiggitisThe
new exact solution$l17) represent an analytic continuation
of the circular solution of Longuet-Higgififor finite ¢; .

The ratior of the perimeter to the area can easily be
calculated analytically and is given by the formula

3+¢f
1-¢t

r=2A| —-3-4 . (24)

A plot of r as a function of the pole positiofy is given in
Fig. 1. It is clear that the perimeter-to-area ratio gets large as

With the area of the bubble specified in this way, the abovdéhe bubble gets closer to steady pinch-off.

represents a one-parameter family of exact solutipasam-
etrized by{,), with the correspondindl’ and y given by

1/¢7-1
'=2al7irs) (21
, g-1\ 2
¥?=9A is) T 3) (22)

Note that withA related toZ; via (20), then(21) and (22)
provideI" and y as functions of the single parametgy.

We point out that in the derivation of the solutions it is
assumed thal' and y are pre-specified parameters. In prin-
ciple, givenI’ and vy, the corresponding values &f and {;
can be found. However, as seen above, now that the exact
form of the solutions is known, it is more natur@nd con-
venienj to study them by instead specifying a fixed area of
the bubble and examining the solutions as the pole position
{1 changes.

For the sake of comparison, we record here the exact
solution for deep water pure capillary waves as found origi-
nally by Crapper. We present the solutions in the form as

Note that it is straightforward to make use of a symbolicrederived(using the same general approach as in the present
manipulator(e.g., MATHEMATICA ) to verify that the above papej in Crowdy?®

map and corresponding choice of parameters does indeed
satisfy the Bernoulli conditiori8) on |¢|=1. This was done

as an explicit check on the solutions.

(25

4
z(§)=iA<Iog (- (g—gzl))’
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FIG. 2. Perimeter—area ratidubble plotted against
pole position; (x-axis).

Perimeter—Area Ratio

Pole Position
corresponding to With a view to gaining insight into the fission events of
. 2 bubbles in a liquid host, Vanden-Broeck and Kéftenave
A (C+ ) died a related two-dimensional model problem of bubbl
2()=——, (26)  Studied a relate wo-dimensional model problem of bubble
¢ (=8 break-up by considering a single constant pressure bubble
with (with surface tensionand modeling the mean-field effects of
the surrounding liquid hogiand any other bubblgsising an
1 ¢&fP-1 ambient straining flow. They calculated the steady-state
= 2A le (27 equilibrium shapes of the bubble numerically and observed
that, at sufficiently large strain rates, the bubble pinches si-
|W4~|2 c? 5 multaneously at four different points on its bounding surface.
2 = %Z A (28) Our results clearly show that steady capillary pinch-aff

fact, as two different parts of the interface come together at a

Solutions are again parametrized fy—the parameteA  single point) can still occur for a bubble in significantly
being set once the wavelength of the water wave is specifiegnjlder ambient flow conditions—i.e., in an ambient circula-
{1 is a parameter controlling the amplitude of the wave. Noteory flow rather than the much more singular straining flow
that Crapper’s solutions are comparatively simpler than theonsidered by Vanden-Broeck and KelléiVoreover, near
new solutions found here[£,]"? having only one simple (steady pinch-off, the bubble is observed to become very
pole in[¢[>1). The mathematical relationship between theglongated and possesses a large perimeter-to-area ratio. As
solutions(18) and(26) to the two physical problems is clear. shown in Fig 2, the perimeter of the bubble at pinch-off is

In Fig. 2, the solutions for various different values@f  almost three times the perimeter of the circular bubble solu-
are superposed for comparison. It is found thatas 3.0,  tion of the same area and it is certainly conceivable, for
the bubble becomes vertically elongated, eventually begingxample, that this much greater surface area of contact might

to pinch at which point the conformal mag() ceases to be |ead to enhanced transport properties between the bubble and
univalent. This is not surprising—the analogous phenom-

enon in the case of capillary water waves is well-knowh
and the pinching of the bubble in this case can be thought of
as the radial analogue to the pinching together of two differ-
ent sections of the free surface capillary wave as found by
Crapper’. It is interesting to observe that the same phenom-
enon also occurs in the present case of a bubble in a swirling
flow. As {;—0o0, the bubble tends to a circular shape as
expected. Figure 3 shows some typical streamlines of a typi-
cal solution. In Figs. 4 and 5 the valueslofind y plotted as

a function of¢; (for a fixed area of the bubblare given for

the range of/; for which solutions exist. Note that there is a
maximum value ofy? for which exact solutions exigi.e.,
3.0< 1 <>). FIG. 3. Typical streamlines around a bubble fgr=3.15.
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5 FIG. 4. A plot ofI" (vertical axig ver-
© sus pole positiord; (bubble.
0.2F 4
0.1f 4
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Pole Position

the host fluid. In addition, the circulation itself is seen tolV. CIRCULATION-INDUCED BLOB DEFORMATIONS

induce (at least, steadypinch-off of the bubble into two

smaller bubbles and thus it could be argued on the evidence We now consider a different but related problem: finding
of the above results that the presence of circulation leads tihe steady-state shapes of a finite droplet/blob of fluid con-
greater “atomizing” (or splitting) events and therefore more taining a single point vortex at some point inside it. This
detached drops in a liquid dispersion. This would similarlyproblem represents a simple paradigmatic example of the
provide a mechanism for enhanced transport rates. It is cleanonlinear interaction between a nontrivial circulatory flow
however, that the above results are steady and that a fuihside a blob and its freéapillary) surface.

analysis of the unsteady problem is needed for greater under- In this case, there is no longer a simple pole singularity
standing of the circulation-induced free surface dynamics. of z({) in the unit circle. Without loss of generality, it is

~
T
1

FIG. 5. A plot of y? (vertical axi$
versus pole positio, (bubble.

Strength of Line Vortex
w
T

N
T
1

0 L 1 L 1 L 1 L 1 L
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assumed that the point vortex is placed at the physical origil
z=0 and that the position of the point vortex corresponds tc
(=0 in a{-plane, i.e.,

2(0)=0. (29

In this case, the follow Laurent expansi@onvergent in
[£|=1) will be important:

WAOWALY & ¢

— = = (30

2z,¢°7) j=0 &

As in the previous section, it can similarly be shown that
the problem of finding steady-state shapes for a droplet cor
taining a single line vortexfor givenI” andvy) is equivalent
to finding z(¢{) satisfying the following conditions:

(i) z(¢) is a univalent conformal map from the unit circle

to the fluid blob with FIG. 6. (Superposedequilibrium blob shapes;;=1.14, 1.5, 2.1,0.

Z(0)=0; (3D
(i) [25(5)]_1/2 has only simple pole singularities outside i, |£|>1, however, we make no statement about whether or
_ the unit circle; . __ not additional solutions exist. This question of uniqueness
(i)  S(¢) is analytic everywhere outside the unit circle \emains open.

with

S({)~Cy, as {—=, (32 B. Summary of the exact solutions  (blob)

wherec, is defined in(30). _ . :
0 (30 Solving the system of 5 coupled nonlinear equations re-

sulting from the required analyticity properties $§¢), and
A. Calculation of the exact solution fixing the area of the blob to be, we again have a one-
parameter family of solution§parametrized by the pole po-

The above information on the analyticity structure Of gition +.). Choosingz; to be real, the exact solution can be
solutions again provides an explicit method of CO”Str“Ct'ngrepresented as follows:

them. In exactly the same way as for the case of a bubble, it

can be shown that the system admits exact solutionstwith 85?4
poles of the mapping function outside the unit circle. In this 2(0)=A| {— @ : (36)
case, the map has the functional form .
% )¢ ) This corresponds to the derivative
-7 -n
[Zg(@]m:Rm; (33 2+30%\ 2
z () =A ) (37
R is again assumed to be real. The correspond@(g) is !
given by The area of the blob is fixed to be so that
oy ~ 1
S— g[m— m) (L= 7)) (1= L) (1= LL) - §g Z2,d¢, 39
dd| (£=¢({—8)(1=Em)(1—{n2) 2 Jig=1
_ _ 2 which givesA as a function of the parametéy, i.e.,
rrel Y 71)({ 7]2)) _ 34
({={(E—¢4) 1
A= (39

Five conditions result from the requirement that the principal 2!
part of S(¢) vanishes at botlj; and, and from the require-

ment thatS(¢) satisfies(32). Parameters satisfying the fol-
lowing system are found to provide all the requirements:  anq the corresponding and y given as functions of; by

1+3¢7

9+8 ;

== 11, = —{1, 771:i‘/§§1, 1 {‘11—1
1 Jal-1 el “0
IR?=2| 2, (35)
2\ 3[4+ 1 I
2_ el (-E N B
Y 213, % +1) " 3/

The result is a one-parameter family of exact soluti(ue
Again, we have been unable to identify any solutionsrametrized byZ,). In Fig. 6, the shapes of the blob for vari-
corresponding to maps with more than 2 polar singularitieous different values of; are superposed for comparison. It
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2(0)=¢(+0(L®), for small ¢, (42)
and therefore that
z,(0)=1+0(?). (43)

Thus, the fluid velocity at the point vortgxe., at{=0 or
z=0) is
E—Z—g—?(l"‘o(( ). (44)

Using (42) then implies that

FIG. 7. Typical streamlines inside a blolj,& 1.5). (Z_VZ\I = I%/(l-l— 0(z?%), as z—0. (45)
Thus it is clear that, under the non-self-induction hypothesis,

is found that solutions exist for all values 6f>1. As {;  the velocity isO(z) asz—0. The point vortex is therefore
—o, the shape of the blob tends to a circular shape, asteady as required for consistency.
expected. Ag; moves closer to the unit circle, the shape of
fch_e blob resemples tvv_o separafeut sy_mmetrlcal plobs V. DISCUSSION
joined by a necking region that grows thinner and pinches in
towards the point vortex at the origin—the curvature in the  In this paper the effects of circulations inside and around
pinching region increases markedly &s—1. Some typical single blobs and bubbles with surface tension have been
streamlines are shown in Fig. 7. This plot is also a confirmamodeled using line vortices. Clearly, this idealization is not
tion that the mapping functiom({) is a univalent function physical—realviscous blobs with internal circulations gen-
throughout the unit circle. Finally, Figs. 8 and 9 show theerally contain smooth distributions of vorticity. Nevertheless,
corresponding values df and y? as functions of the pole a line vortex provides a convenient model that is amenable to
position{; . mathematical analysis. The class of mathematical models

Note that in the preceding analysis we have implicitly used in this paper has been shown to admit exact finite-
made use of thaon-self-induction hypothestat is usual in  amplitude solutions for the steady circulation-induced shape
the consideration of steady solutions involving point vorticesdeformations of the bubbles and blobs where surface tension
(see Saffmal?). However, for the self-consistency of the forces are in exact balance with the hydrodynamic pressure
steady solutions, it is important to check that the velocity offorces.
the point vortex iszero under the assumption of non-self- The model problems considered here have assumed that
induction. In this case, the symmetry of the solutions forcesome nonzero circulatory flows have been inducedsdiye
this to be true. Alternatively, it can be seen from the exacphysical mechanism, inside or around a blob or bubble.
solutions that Some examples of physical mechanisms possibly giving rise
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to such circulations were briefly mentioned in the Introduc-APPENDIX: ANALYTICITY OF S(¢)

tion: a circulation in a blob can be induced by various mixing ) L

and atomizing eventge.g., blobs formed by tearing and The following theorem shows that satisfying the Ber-
stretching of liquid ligaments from a core liqyjdoy shear noqlh cond|t|_on on the bubbl_e_boundary is equivalent to en-
effects between the blob and host fluid, by thermo-capillary®Uring certain global analyticity properties of the function

effects and various thermodynamics effects such as the prest¢) in the e>.<tended complex plamaitsidethe unit circle.
ence of a nonisothermal host fluid. The precise details of ' neorem: The Bernoulli condition on the free surface of

how a blob has gained an internal circulation have not beef'® bubble is equivalent t§(£) being analytic everywhere in

modeled here, only the subsequent interaction of the gro §|>1 with
circulatory flow with the free capillary surface. c
. . 2
A natural extension of the present work is to study the  g(¢)~ -, as{—x, (AL)
time-dependent evolution of the simple mathematical mod- ¢

els. This might involve a study of complex singularity dy- wherec, is defined in(11).

namics and might throw some analytical light on the nature — pot. First assume that the Bernoulli condition holds
of shape oscillations of bubbles and drops in the presence %fn |¢|=1. This implies

internal/external circulations. In addition, the stability of the '

new equilibria found here is also clearly of interest. Wg(g)v_\lg(g‘l)
Finally, it is noted that the new mathematical approach  S({)= ——=——F— (A2)
implicit in the presentation herein has wide utility. Indeed, 2z,(¢°7)

the equilibrium solutions found in this paper can be generalgy analytic continuation, this also holds off the unit circle. It
ized to doubly-connected fluid domains and the present aus clear that this implies immediately th&(¢) is analytic in
thor has recently identified exact solutions for the problem OM =1 and thatS(¢) ~ (c,/72).

steady capillary waves on a fluid annufdsPerhaps not un- Conversely, assume thg(/) is analytic outside the unit
expectedly in light of the present results, these new annulagjrgle, including at infinity whereS(¢)~ (c,/¢?). Given

solutions are generalizations of the classic exact solutions fahese conditions 0§(¢) it is clear that it can be written in
finite amplitude waves on finite sheets of fluid as identifiedine form

by Kinnersley® (which are themselves generalizations of

Crapper’$ exact solution Moreover, the methods herein H({)
can also be generalized to solve quite different physical S(f):m’
problems, for example, the problem of steady singularity- ¢
driven Hele-Shaw flows in the presence of surface tension. Ifor someH({) (to be determinedwhich is analytic in|{]
this problem too, a wide class of new exact solutfSiave =1 and tends to a constant d@s-»«. This is because
been identified using methods similar to those employe&_gl(g‘l) is analytic outside the unit circle and (? as ¢
here. —oo, Note that

(A3)
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