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A class of exact multipolar vortices

Darren Crowdy
Department of Mathematics, 2-335, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Received 4 November 1998; accepted 14 May 1999

A class of exact solutions to the steady Euler equations representing finite area patches of
nonuniform vorticity is presented. It is demonstrated that the solutions constitute a special class of
steady multipolar vortical structures and have many qualitative similarities with the multipolar
equilibria observed in two-dimensional flows at high Reynolds numbers. The results provide
insights into the mathematical structure of the two-dimensional Euler equation that, it is argued,
underlies the occurrence of such multipolar coherent structures in real physical flows. Moreover, the
new solutions possess the interesting feature of being completely “invisible” in that their presence
cannot be detected anywhere outside the support of the vorticityl 9@d American Institute of
Physics[S1070-663199)00409-3

I. INTRODUCTION bility of monopolar vortical structures called th&o-contour

. N o ... Rankine vortexand thethree-contour Rankine vorteXhese
This paper has two objectives; the principal objective is . L . )
are both examples ofhielded vorticesi.e., axisymmetric

to present a class of exact mathematical solutions to the two-_~ . : . . : S

. . : . - vortices with zero total circulation with a radial distribution
dimensional steady Euler equations representing flnlte-areaT vorticity consisting of an inner core of uniform vorticit
nonuniform vortex patches. The second objective is to argu8 y 9 y

that these solutions represent an instructive mathematicglf one sign surrgunded by & uniform vort_ICIty region of op-
paradigm for a large class of multipolar vortical structuresPOSte sign(unshielded monopoles are uninteresting because

observable in many real physical flows at high Reynoldsthey are stable by the Rayleigh criterjoffripole structures
numbers. generated from a shielded monopole are also found in earlier

investigations. A class of steadyguadrupolarstructures can
A. Background similarly be generatédby the destabilization of a shielded

Coherent structures are now well-known to constitute gnonopole.
dominant feature of a wide range of two dimensional flows  These studies indicate the importance, in high Reynolds
at high Reynolds numbér® The two classes of coherent number flows, of isolated multipolar equilibrium solutions
structure that have received the most attention in the literawhich, in the language of dynamical systems theory, appear
ture are the monopole and the dipole. When isolated moto be important attractors in the dynamics. In view of this, a
nopolar structures become unstable they can be observed tlworough understanding of these multipolar equilbria would
split into two separating dipolar structures. However, it hagherefore seem desirable and this is an important active area
also been observed that isolated monopolar structures caii researcHe.g., Rossi, Lingevitch, and Berndft,have re-
condense into isolated multipolar structures of higher ordercently studied the perturbation thresholfte a Gaussian
The characteristics of these higher order multipolar strucmonopolé separating the domains of attraction of monopolar
tures will be described later in this introduction. The mostand tripolar asymptotic solutiohs However, while
common case is when a monopolar vortical structure nonlinraborator)?"‘ﬁ and numerical experiments continue to pro-
early destabilizes into a single tripolar structure with distrib-vide insights into multipolar equilbria, comparatively few
uted vorticity”**° characterized by 3 vorticity maxima of theoretical investigations have been performed to try to un-
alternating polarity. The natural formation of dipoles and tri- derstand the mathematics behind these coherent structures.
poles from unstable monopoles was observed in laboratorgestions of the existence of multipolar equilibrium solu-
experiment3’ at more or less the same time as they werejons to the 2D Euler equation, and the associated bifurcation
observed in numerical simulations. It has also been showgycture, are clearly of great interest. This paper makes a
that more complexi.e., higher ordervortex structures than .qntribution in this direction.
tripoles (i.e., collectively dubbednultipoles can be formed It is important to define what is meant here by a steady

from more strongly perturbed two-dimensional vortices. _multipolar vortex. There are certain gross features which

A more comprehensive list of references to the experiy,ignt pe said to characterize the multipolar equilibrium so-

mental and numerical observations of multipolar vortex| vions observed in practice. We now list six principal at-
structures can be found in a recent paper by Morel anqributes of a multipolar vortex:

Cartort! who also study numerically the generation, station-
ary forms and stability of multipolar equilibrium solutions of (i) Multipolar vortices are isolatefinite-arearegions of
the two-dimensional Euler equations. Morel and Calrton nonzero vorticity surrounded by irrotational flow;
generate multipolar equilibrigcnumerically from the insta- (i)  The vorticity distribution of a multipolar vortex of
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ordern is characterized by a centrabre vortexof
one sign, surrounded by a distribution ofsatellite
vorticesall of opposite polarity;

(i)  They are steadily-rotating with a constant angular ve-
locity ;

(iv) The approximate shape of a multipolar structure of
ordern (for n=3) is typified by am-polygonal core
region with n semicircular satellitgor “lobe” ) re-
gions on each side of the central polyg@ee Fig. 1
of Carnevale and Kloosterzf

(v)  The multipolar structures calculated in numerical

simulations often have zero total circulatigsince "

they are frequently generated by the instability of B
“shielded” (i.e., zero circulation monopolar vorti- FIG. 1. Two-contour Rankine vortex.
ces.

(vi)  The streamline patterns in the vortical region typically
display saddle points joined by separatrix
streamline$'® as well as regions of closed stream-
lines. Consider the well-known uniform, rectilinear, circular

_ . o vortex filament, also known as thRankine vortex® The
Various attempts to model multipolar equilibria_have beenniform Rankine vortex is given by

made in the past. Because of the attendant analytical advan-

II. MATHEMATICAL FORMULATION

tages, most theoretical models rely on hybrid combinations @ol r<ro

of line vortices and uniform vortex patches of finite area. The 2

most obvious mathematical model of a tripole is the extreme  Us= wor’ @
idealization of a line of three point vortices of appropriate o r=ro

strength—such a model is studied by Carton and Lefjras.
They also devise a more sophisticated model in which they his represents a circular vortex patch with uniform vorticity
replace the central line vortex in the line-vortex tripole wg in r<ry and a vortex jump at=r,. Now consider add-
model by an ellipticaV-state thereby allowing the possibil- ing a single line vortex at the origin, i.e., consider the flow
ity of splitting of the tripole due to instability of the core field given by

vortex. The latter model is based on the formalism of Legras

. . . . r  wgl
and Dritschel* and is an approximate solution of the gov- wTO_ % r<ro
erning equations. Polvani and Cartdrhave modeled the Up= r : @
tripole using a linear array dhreesuchV-states. Even these 0 r>ry

simplified model solutions usually have to be computed NU-g represents a mostly uniform circular vortex patch with a
merically because analytical progress is difficult. superposed line vortex of opposite polarity placed at its cen-
This paper presents a class of exact solutions t0 thg, The dynamical condition of continuity of velocitand

steady Euler equations which can be said to represent multiience continuity of pressures satisfied at the vortex bound-
polar equilibria in that the solutions possess all of the char-ary while a kinematic condition requires that the vortex
acteristic features(i)—(vi) of multipolar equilibria listed  poundary be a streamline, as is clearly the case. Finally, note
above. For every integer=2, we demonstrate the existence {hat this solution is only a consistent solution of the steady
of a continuous one-parameter famifyarametrized by a pa- gyler equation provided that the line vortex at the origin is
rametera) of finite-area coherent vortical structures. Tine steady under thenon-self-induction hypothest& This is

=2 case, for example, represents a tripolar structure, thglearly the case here. The flo@) therefore represents a
solutions fom>2 provide a class of multipolar equilibria of self-consistent exact solution of the steady Euler equations.
ordern. The solutions arspecialcases of multipolar equil- Moreover, since this solution consists of a line vortex with
bria, however, in that they are non-rotatifige., 2=0) and  circulation of one sign surrounded by(fnite area patch of

the irrotational velocity field surrounding the support of theyorticity of opposite polarity such that the combined struc-
vorticity is stagnant. Nevertheless, we conjecture hef®#  ture haszero total circulation, this solution might well be
Sec. ll)) that the new solutions representathematically  dubbed ashielded monopolar vortesor convenience in the
exact subclassf the full class of multipolar equilibrium so- rest of this paper, the solutioi@) will be referred to as the
lutions of the 2-D Euler equations and share all the samehielded Rankine vorteklote that this shielded Rankine vor-
qualitative properties of the more general class. Further, itex solution is a limit of thetwo-contour Rankine vorte’®

will be seen that the bifurcation structure of the new class ofvhere the area of the interior vortex patah-0 in Fig. 1)
steady solutions appears to be consistent, in many respecthrinks to zero with the associated vorticity growing infinite
with transitions between equilibria observed in experimentsn such a way that the total circulation of the enclosed vortex
and numerical simulations. (in the limit, a line vortex remains finite.
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A natural mathematical question arises; Is it possible tdunctionS(z) inside the vortical region are simple poles with
generalize the above solution to find other vortical configu+eal residuesMathematically this corresponds to restricting
rations consisting of finite-area vortical regions with non-consideration to a particular class of closed analytic curves.
trivial shapes containing a finite distribution of line vortices? Physically from (5), it is seen that this corresponds to the
If so, the resulting solutions might serve as useful models opresence of line vortices inside the vortex patch. It is well-
steady(higher-ordey multipolar vortical structures. The an- known that, dynamically, line vortices move with the fldfd.
swer is in the affirmative. Thus, for solution(5) to represent a fully self-consistent

To generalize solution2) to other nontrivial vortex steady solution of the Euler equation, it is necessary to en-
shapes with suitable distributions of line vortices, note thasure that each line vortex is stationary under the non-self-
the stream function associated wiB) can be written as induction hypothesis.
follows:

P(Xy)= %ﬁ— %R% fZS(z')dz'

inside the patch where=x+iy and S(z) is the function As just mentioned, making this special choice of the
given by analyticity properties of the Schwarz functi&gz) inside the

) curvedD corresponds to specializing to a particular class of
) 7 closed, analytic, nonsingular curves. It is necessary to be able
z' to characterize, in a convenient way, the class of curves now

o ) under consideration. This is done by considering the univa-
The key observation is tha(z) is exactly theSchwarz o conformal map ¢z) from the interior of the unit circle

function™ of the curve bounding the region of nonzero vor- in a parametricz-plane to the interior of the vortex patch.
ticity, i.e., in this case, the Schwarz function of a circle of Without loss of generality, we can choose

radius ry. The Schwarz function of a closed curad

bounding a simply-connected regi@nis the unique, locally z(0)=0. (8

analytic, functionS(z) that is equal t@ everywhere on the  rroy this perspective, it is possible to exploit a result from

curvedD. _ _ _ the theory of Schwarz functions of analytic cun4 which
Now consider ageneral closed, analytic nonsingular e meromorphiceverywhere inside a simply-connected re-

curve bounding a simply-connected vortical region in thegion p. The important result states that the conformal map
plane. Let the Schwarz function of the curve be denoted by, the unit¢-circle to the vortical region in this special

S(2). _Since S(z) .is arllally.tic ﬁn the neigththOd of t_h? case isnecessarily a rational function af. This fact will be
bounding curve, its primitive is well-defined there and it is seq to identify an exact conformal representation of the
natural to consider a generalized stream function given by shape of the boundary of the vortex. For more details on the

wo wo | (2 7 mathematical result just mentioned, we refer the reader to
l//(x,y)=727—7(f S(Z’)dZ’+f S(Z’)dZ’), (50  Davis!?

(3 A. Conformal mapping

S(z)=

which is an expression valid inside the patch of vorticity. We

Iﬁjrit(;]er assume that the vortex is surrounded by stagnarg. Exact solutions with twofold symmetry
Consider the total derivative af(z,z), Consider the special choice @htional function confor-
mal map given b
dy=ydz+ yrdz. (6) b gven by .
Using (5) this becomes 2(0)=R¢| 1+ W) (9)
dy= %@_ S(z))dz+ %(Z_g(z)df (7)  where it is assumed tha, b andR are real with|a|>1.

Note that(9) satisfies(8). The parametera andb must be

valid insideD. Note that, on the boundagD, by definiton ~ such that(9) represents anivalentconformal map from the
of the Schwarz functio’$(z) =z, thusdy=0 on the bound- unit circle. Moreover, there are much stronger constraints on
ary and it is therefore a streamline. Furthermore, sincé andb as will be seen. It is noted that there is normalization
2i,=u—iv, the speed of the fluid o@D is zero. If the degree of freedontin the value ofw,) associated with the
flow outside the patch is stagnds has been assumeten magnitude of the vorticity in the patch. For the remainder of
continuity of velocity(and hence of pressurés ensured at this paper, we take,=4.
the boundary of the vortex. In this way, both the kinematic ~ For this mapping, the Schwarz function is given, as a
and dynamic boundary conditions at the vortex boundary aréunction of £, by
satisfied. For more details of the theory of vortex patches, R
see Saffmar® S(z(0)=—

In general,S(z) [and hencel(x,y) as given by(5)] will 4
have singularities insidB. Now we restrict attention to the Sinceu—iv=2iy,, the velocity at any point inside the re-
special case where thenly singularitiesof the Schwarz gion is given, as a function of, by

bs?

1+ 1_—::124,2 . (10
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It is clear that this velocity field has three simple pole singu-
larities inside the vortex—at points in the physical plane cor-
responding t@=0,%+ (1/a). These represent thigpreimages

. . -1 — _
of three line vortices in the flow. In order to ensure that the Now c;)n5|der thehlme ;Qrtexl ezt(ba )'_Ifja. ?orpeh el
line vortices are not moving iphysical spacé is necessary ementary(but somewhat tedioysalgebra yields the follow-

to find local Laurent expansior@ z) of this velocity field ing nontrivial condition for the steadiness of the line vortex

(11 it is clear that the circulation of the line vortex &£ 0 is

b
F0=47TR2( 1- ;). (16)

about the singularities in the velocity field a&0 andz ~ 2tZ(1/a):

=z(*1/a). Setting the constant term in the Laurent expan- 1 ba b b z,(a

ion t ll that the i tex is steady. In o+ 7—ma—at -tz 2 —x =0. 17
sion to zero will ensure that the line vortex is steady. In 5™ 752 42" 422 za %)
general, since there are three conditions to be satisfied, one ) ) ) ) )
might expect that three conditions will need to be imposed td\ote that(17) is more nonlinear than it seems at first sight;
render each of the three line vortices steady. this is because of the dependence of the conformal z0&8p

Consider first the line vortex at=0. First, rewrite the (and its derivativelson the parametes. By symmetry of the

velocity field as follows: chosen conformal map and the velocity fi€ld), this is also

the condition for the steadiness of the line vortex at
) 2iIR  2iRb¢ ) z(—a Y)=-1z,, asis directly confirmed by further algebra.
u—|v:—?— 1—a2§2+2|R§ 1+_2 Nk (12 Equation(17) is a real nonlinear algebraic equation for
(-a given the parametex. Givena, this equation is solved fdy
From the form of the conformal map, it is clear that s UsSing Newton's method. The results foras a function o&
-0, is plotted in Fig. 2 fora between 1.3 and 3.0. Depending on
initial conditions, for a givena, the Newton scheme pro-
duced multiple roots fob, however only the root plotted in
Fig. 2 produces anivalentconformal mapping9). Note that
the nonlinear Eq(17) is independent of the value &.

+0(£%), 13

b
Z(§)=R§(1—¥

thus asz—0, Expanding the velocity field locally in the vicinity of
b\ 1 =z(1/a)=z, yields
_iv=—92iR2[1—- = | =
u—iv 2iR (1 2 Z+O(z,§), (149 ' ina‘zzg(a‘l) _
u—|v=W+O((z—za),(?—za)) (18)
i.e., there are no constant terms in the local velocity field a

and, under the non-self-induction hypothesis, the line vortexrovidedcondition(17) is satisfied. Comparing with the for-
atz=0 is steady. Comparing with the formula for the veloc- mula for the velocity field for a line vortex of circulatidn,
ity field of a line vortex of circulatiod’y atz=0 as given by atz=z,, i.e.,
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o il 19

u—Iiv=— m, ( )

the circulation of the line vortex &, (to be denoted’,) is
found to be

I',=—2mRba %z (a™?). (20
The line vortex az=z(—a )= —z, is found to have the

same strength.

It is seen that fixing an area of the vortex will fix the
parameteR as a function ofa (now thatb is specified as a
function of a). For example, the area of the patch can be
arbitrarily specified to ber so that

7z,d
ﬂgm—l e

For fixed wg=4 and arear of the patch, a one-parameter

family of exact solutions has been identifigoarametrized  roughly speaking, the “core” of the vortical structure has an
by the pole positiora>1), each solution constituting a dif- overall negative circulation while each of the two “satellite”
ferent shape patch, with a corresponding distribution of thregegions has an overall positive circulation. To render what

FIG. 3. Typical tripolar streamlinemE& 2, a=2.0); the outermost stream-

7=—Im ) (22) line is also the boundary of the vortex patch.

2

point vortices inside it. _ we mean by the “core” and the “satellites” more concrete,
Note the important result that, for any choiceaof it is natural to consider the streamline plots. It seems natural
2T+ o=4m. (22) to define the “core” region of the vortex as the central re-

gion enclosed between the two saddle points and bounded by
This is as expected since it is a statement of the fact that thghe separatrix streamlines. This prescription is also suggested
total circulation of the vortical structure is zero. This follows in Carton and Legra¥. Denote the area enclosed in this core
immediately from the fact that the circulatidiy around any  region byA, . Since the total area of the patchssit is then
closedC is given by natural to take the area of each of the two satellite vortices to
be A= 3(7—A,). The total circulation associated with the
I'e= fﬁ u.dx=—|m{ § 2y,dz
c c

, (23)  core region(as defined in this wayis then
Therefore, takingC as thedD (the boundary of the patg¢h
we obtain the following expression for the total circulation
I'; of the structure:

I'e=Ty—4A; (25

since the(constant uniform value of the vorticity in the
patch is—4. Similarly, the total circulation of each of the

two satellite regions is therefore given by

I'i=-—Im 3§ 2(z—S(z))dz|=0. (24
dD

r
[=T,—4A=—

C
The left-hand side of22) is clearly the sum of the circula- o (26)

tions of the three line vortices, while the right-hand side
represents the circulation associated with the finite-are&Jsing this prescription, it is clear that the “core” and the

patch of uniform vorticity(of strength—4) of total areasr. “satellite” regions as defined above always have circula-
Equation(22) was used as a check on the calculation¥' gf tions of opposite polarity. Note also that the ratio of circula-
andl’,. tions of the three vortical regions is-(1,2,—1).

A typical streamline plot is given in Fig. 3. These have Finally, we remark that since({) is a univalent map, it
remarkable similarities with the numerically computedis in principle possible to inver®) to find (z). If one then
streamlines associated with tripoles as shown, for examplesubstitutes{(z) into the expressior(11l) for the velocity
in Figs. 7 and 11 of Carton and LegrdsNote, in particular, field, a very complicated function af andZ results. It is
the existence of separatrix streamlines which separate thdear that while the present theoretical approach has led to a
three finite subregions of closed streamlines. Note also thattraightforward parametric representation of the solutions,
the outermost streamline in Fig. 3 is also the boundary of thé¢he resulting solutions for the velocity field are highly non-
vortex patch. trivial functions of the spatial variablesandy.

One .01.‘ the adva}ntages of possessing e_xact soluno_ns B Solutions with threefold symmetry
that explicit expressions can be simply obtained for various
quantities of interest. For the tripolar vortices, plotsIaf Consider now a conformal mapping having the follow-
andI’, as functions of the parametarare shown in Fig. 4, ing rational function form
while a plot of the distance between the central line vortex
and each satellite vortex is given in Fig. 5. Note the impor-
tant fact thatl’;,>0 for all a while I'3<<0 for all a thus,

L) o

2(0)=R@)¢| 1+ 73
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FIG. 4. Plot of 'y (dotg and I', (crosses againsta
(abscissgfor tripolar solutions.
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Defining 7=e(?7" it is clear that there will be three satel- quired for the solution to be physigalA plot of the physi-
lite line vortices at points in the physical plane correspondingcally admissibleb(a) is not given here but is found to be
toz(a 1Y), z(pa 1), andz(n?a"1). By the symmetry of the qualitatively similar to Fig. 2R(a) is again determined from
conformal mapping function and the associated velocitythe area conditio21) onceb(a) is determined frong28). A
field, it can be shown that the condition ttedt three of the  typical streamline plot and vortex shape is depicted in Fig. 6.
satellite line vortices are steady is provided by the singleThese solutions represent a spetiaie-parametgifamily of
nonlinear algebraic equation relatibganda, quadrupolar vortices. It is instructive to compare the qualita-
3 1 tive features of the streamline plots in Fig. 6 with those de-
! ba b b z,(a ") -0 28)  picted in Carnevale and Kloosterzfel
allt i) Tz e gy > (9 '

a
while the line vortex at the origin turns out to be automati-D Solut ith  n-fold ;
cally steady under the non-self-induction hypothesis. Again,” olutions with— n-lold symmetry
given a value ofa (1<a<), a Newton solver produced More generally, it can be shown that the formulation
multiple roots forb, however only one of these roots pro- admits a generalization to a one-parameter family of solu-
duces a univalent conformal mapping functipf?) (as re- tions with any integer numbear=2 of line vortices super-

0.7 T T T T T T T T

065 O b
0.6 9

055 o :

o FIG. 5. Distance between central and satellite line vor-
051 7 tices as function of parameter (abscissafor tripolar
solutions.
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FIG. 6. Quadrupolar streamlines=3, a=2.0 (cf., Fig. 9 of Ref. §; the FIG. 7. Pentapolar streamlines=4, a=2.0 (cf., Fig. 12 of Ref. §; the
outmost streamline is also the boundary of the vortex patch. outermost streamline is also the boundary of the vortex patch.

posed on a uniform vortex patch of appropriate shape. The Limiting vortex shapes as-a1: The opposite limita

relevant conformal mapping function is provided by —1 corresponds to the singularities of the conformal map-
ba:n) ping function outside the unig-circle drawing closer to the
a;n

(29 unit circle, leading to more distorted boundary shapes. Fig-
"—=an)’ ure 8 shows the boundary shapes of vortices corresponding
As before, the line vortex at the origin is automatically

to n=3 andn=4 for values ofa close to 1. These shapes
steady and there is a single nonlinear equation relating th ave remarkable similarities with the schematic geometrical
parametetb to the parametea which is enough to ensure

rawings of multipolar vortex structures plotted in Fig. 1 of
that all the satellite line vortices are steady and therefore thaQarnevale and Kloosterzil.e., a regulan-polygonal core
the solution is a consistent solution of the steady Euler equ

6{'_egion surrounded by semicircular satellites.
tions. Some algebra reveals that the nonlinear equation, the

z(O)=R(a;n)¢| 1+

solution of which implicitly defines the functiob(a;n) is F. Nonexistence of isolated dipole
ba" b(n—1) b z“(afl) Given the results above, it is natural to ask whether there
a 1—a> 2a" I ' 2na" za %) exists a solutiorwithin the same clasé.e., nonrotating an

(30) surrounded by quiescent flyidorresponding to an isolated
dipolar structure, i.e., a structure characterized by two vor-

Ar? an Eehxamtple Or. an ?rder t4 mu£'20|a: f_trUCt#_'r:e’ F'?' 7ticity maxima. The answer appears to be negative. For a
shows the streamiines for a typiaa=2 solution. ‘The out- dipolar solution within the present class of solutions, it is
ermost streamline corresponds to the boundary of the vorte

. : . ) §(traightforward to deduce that the corresponding conformal
patch. Agaln, comparison with .Flg. 12 of Carnevale ",’mdmap must have the following form:
Kloosterzief shows remarkable similarities in the streamline
plots.

E. Limiting vortex shapes

It is of interest to examine the limiting shapes of the
vortical structures as the paramegetends to the two limits
© and 1;
Limiting vortex shapes as-a«: In the limit a—o it
can be shown that, for all integers=2, the shape of the
vortical region becomes circular and thdine vortices con-
verge onto the line vortex at the origin. It becomes clear that
the shielded Rankine vortex solution is retrieved in the limit
asa—o for all n. FIG. 8. Limiting vortex shapes as—1 (n=3,4, cf., Fig. 1 of Ref. B
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b Rather, such solutions have been shown herein to nate
—a, + —a,) (3D rally as a mathematical generalization using Schwarz func-
tion theory, i.e.,(5) of the shielded Rankine vortex solution
where|a,|,|a,|>1. The conditions that the two line vortices (3). |t is intriguing that this naturahathematicatelationship
be steady gives twehighly nonlinea) algebraic equations exists between these higher-order multipolar vortical struc-
that must be satisfied by the parametysa, ,b (these equa-  tyres and the shielded monopolar Rankine vortex given the
tions are independent of the normalizatiBh. We have so seemingly naturaphysicalrelationship that is by now well-
far been unable to find any solutions to this system which dgnown to exist between such structuré., that higher-
not either(i) reduce to the shielded Rankine vortex solutionorger multipolar equilibria result from the nonlinear destabi-
or (i) yield nonunivalent conformal mappingshich cannot  |ization of shielded monopolar structujes
bg ?‘dmitt.ed physically This result is'not particularly sur- There are, of course, differences between the mathemati-
prising: dipoles are usually characterized by a total nonzergy) soutions found here and the multipolar vortices observed
linear or angular momentuser both while the present class iy practice. In particular, thdetailedstructure of the vortic-
of solutions clearly admits neither possibility. ity distribution of the exact solutions is unrealistic; the mul-
tipoles observed in practice are typically “multicontour”
vortices, the core and satellite vortices often having well-
defined boundaries separated by stretches of irrotational
The exact mathematical solutions just described reprefluid. Furthermore, most physically-observable multipoles
sent fully self consistent, steady, coherent vortical structuresotate with anonzeroangular velocity{) # 0. On this point,
characterized by a finite distribution of vorticity maxima. we remark that there is no reason to expect that the present
The structures have zero total circulation and correspond tolass of mathematical mode(ise., using a finite distribution
finite-arearegions of nonvanishing vorticity surrounded by of line vortices superposed on a uniform vortex patch to
irrotational flow(that happens to be stagnanthe solutions model multipolar vorticescannot be generalized tQ #0,
are steady(i.e., 2=0). The streamline plots are character- although such solutions only seem to be available at a price;
ized by the presence of saddle points joined by separatrike., the loss of mathematical exactness. Ongoing investiga-
streamlines. Furthermore, using the prescription for definindgions by the author show that perturbative solutions about the
the “core” and “satellite” regions(using separatrix stream- new exact solutions for non-zel6)|<1 can be found. In
lines) described earlier, it is clear that the approximatethis case, itis necessary to find irrotatio@gl()) corrections
shapes of these vortical regions are consistent with thost the velocities interior and exterior to the patch as well as
generally observed in practiogend described explicitly in  O() corrections to the conformal mapping function. These
Carnevale and Kloosterzf#) i.e., ann-polygonal core re- perturbative corrections only seem to be available numeri-
gion with circulation of one sign surrounded by semicircularcally. A spectral method based on Taylor and Laurent expan-
satellite regions of opposite polarity to the core region. Thesions similar to the numerical approach used by Meiron,
general features just described are exactly those listed in th®affman, and SchatzmaHrcan be used to find these pertur-
introduction as characterizing multipolar equilibria as ob-bative solutions. Physically, it is easy to imagine that moving
served in laboratory experiments and numerical simulationghe two satellite line vortices in the tripolar solution slightly
An important observation is that in the limg—co all inwards towards the central line vortex with a corresponding
solutions tend to the shielded Rankine vortex solution whichadjustment of the bounding shape of the patch might lead to
as mentioned earlier, is a limit of thevo-contour Rankine a steadily-rotating, self-consistent configuration. We also re-
vortex considered in Morel and Cartdh.The preceding mark that calculating the perturbative solution fr<1
analysis therefore suggests that, for each intege?, there  seems to require almost as much numerical effort as solving
exists a steady solution bran@hith nth order symmetry and the general fully-nonlineaf = O(1) problem, and a full nu-
continuation parameter) bifurcating from the shielded merical study of these model multipolar solutions for general
Rankine vortex solution. This bifurcation picture is highly Q will be presented in a future paper.
reminiscent of physical observation; the formation of higher  The solutions found here can be viewed asathemati-
order multipolar equilibria from the nonlinear destabilization cally exact subclasef the full class of multipolar equilibria
of shielded monopolar structures with zero total circulation.of the 2D Euler equations and, as we have seen, they share
The many qualitative similarities between the class ofall the same gross features and qualitative properties of the
exact solutions found in this paper and multipolar vorticesmore general class. Significantly, we point out that perhaps
lead us to suggest that the new solutions provide importantne of the principal benefits of the new exact solutions of
insights into the mathematical structure of the 2D Eulerthis paper(as with any exact solutions that they provide
equation which gives rise to the multipolar vortical structuresclosed form solutions that can be numerically, or perturba-
observed in experiment and in numerical simulations. Weively, “continued” into parameter regimes where exact re-
believe the mathematical solutions found herein represent asults are not availablén this case, intd)#0).
instructive theoretical paradigm. Naturally, the linear and nonlinear stability of these new
From a mathematical point of view, it is interesting that equilbrium solutions is a matter of enormous interest. An
no deliberateattempt has been made to construct solutiongexamination of the stability of multipolar structures is of
which consist of a central core with vorticity of one sign great importanc€ and it might be hoped that the stability
surrounded byn satellite vortices of opposite polarity. analysis of the mathematically exact subclass of solutions

z({)=R¢

Ill. DISCUSSION
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found here might have many of the same stability propertieperspective, we have herein demonstrated that it is possible
as the more general class of multipolar equilibria of the two-to superposewo different(but specially constructedlistri-
dimensional Euler equations. Moreover, the availability ofbutions of image vorticity in such a way as to obtain exact
exactbase-state equilibrium solutioris.g., for a linear sta- equilibrium solutions of the Euler equatiofthat happen to
bility analysig might be expected to simplify any such sta- share many of the qualitative features of physically-
bility analysis. This important problem is left for the future. observable multipolar equilibria

Generally speaking, the solutions reveal that, for certain
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