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Hele-Shaw flows and water waves
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By adapting a new mathematical approach to the problem of steady free-surface
Euler flows with surface tension recently devised by the present author, it is demon-
strated that exact solutions for steady, free-surface multipole-driven Hele-Shaw flows
with surface tension can be constructed using similar methods. Moreover, a (one-
way) mathematical transformation between exact solutions to the two distinct free-
boundary problems is identified: known exact solutions for free-surface Euler flows
with surface tension are shown to automatically generate steady quadrupolar-driven
Hele-Shaw flows (with non-zero surface tension) existing in exactly the same domain
with the same free surface. This correspondence highlights the essential dynamical
differences between the two physical problems. Using the transformation, the exact
Hele-Shaw analogues of all known exact solutions for free-surface Euler flows (includ-
ing Crapper’s classic capillary water wave solution) are catalogued thereby producing
many previously unknown exact solutions for steady Hele-Shaw flows with capillarity.
In particular, this paper reports what are believed to be the first known exact solutions
for Hele-Shaw flows with surface tension in a doubly-connected fluid region.

1. Introduction
The study of Hele-Shaw flows and of water waves are two areas in which Philip

Saffman has made many remarkable contributions throughout his career. Water wave
theory involves the study of solutions of the two-dimensional Euler equations and it is
well-known that Euler flows and Hele-Shaw flows have some unexpected similarities.
For example, it is by now a standard textbook fact (e.g. Batchelor 1967; Acheson
1990) that Hele-Shaw cells can be used as an apparatus for visualizing the streamline
pattern of two-dimensional Euler flows of an ideal fluid past an obstacle. Indeed, such
a visualization constitutes the very first photograph in Van Dyke’s Album of Fluid
Motion (Van Dyke 1982) and it is annotated with the comment that ‘It is at first
sight paradoxical that the best way of producing the unseparated pattern of plane
potential flow past a bluff object, which would be spoiled by separation in a real fluid
of even the slightest viscosity, is to go to the opposite extreme of creeping flow in a
narrow gap, which is dominated by viscous forces.’

These unexpected similarities between the two very different physical problems
do not seem quite so unexpected when one writes down the mathematical problem
statement in each case. Indeed, after the various approximations and assumptions,
in the bulk fluid both Euler flow and Hele-Shaw flow reduce to a Laplacian field
equation for a velocity potential φ with the fluid velocity given as u = ∇φ, i.e. the
problems are kinematically equivalent. The essential (and only) difference between the
problems is dynamical in nature – in the (suitably non-dimensionalized) Hele-Shaw
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problem, the pressure p(x, y) in the fluid is linearly related to the potential function
via

p(x, y) = −φ(x, y) (1.1)

while for steady potential flows, integration of the Euler equations yields Bernoulli’s
theorem which states that the fluid pressure p(x, y) is given as a nonlinear function
of the velocity potential via the condition that

p+
|u|2
2
≡ p+

φ2
x + φ2

y

2
(1.2)

is constant on streamlines.
For this reason, as soon as one starts to consider free-surface problems in which

the fluid pressure usually enters the boundary conditions explicitly, one no longer
anticipates any kind of connection, either physical or mathematical, between Euler
and Hele-Shaw flows. It is the purpose of this paper to illustrate that, in fact, there
continues to exist some rather surprising mathematical similarities and connections.

More specifically, it is shown herein that there is a mathematical connection between
the problem of finding steady free-surface Euler flows with surface tension on the
free boundaries, and the problem of finding steady quadrupole-driven free-surface
Hele-Shaw flows with surface tension. By generalizing, in a natural way, an approach
recently developed in Crowdy (1999a) for identifying exact solutions to the problem
of Euler flows with free capillary surfaces, it is demonstrated that the problem of
free-surface Hele-Shaw flows with surface tension and driven by multipoles can be
tackled using similar ideas, and that exact solutions to the latter problem can thus be
found.

While there exist many known exact solutions for multipole-driven free-surface
Hele-Shaw flows with zero surface tension, few exact solutions for the much more
challenging problem with non-zero surface tension are known, even in the steady case.
Vasconcelos & Kadanoff (1991) identified perhaps the first exact solutions for a steady
Hele-Shaw flow in the presence of surface tension, but despite their mathematical
significance, the resulting solutions are rather artificial and appear to be of limited
physical interest. Later, using Schwarz function theory, Entov, Etingof & Kleinbock
(1993) found a class of exact solutions for steady Hele-Shaw flows in a radial (i.e.
blob or bubble) geometry driven by a single quadrupole either at the origin (in the
case of a simply-connected blob) or at infinity (in the case of a single bubble). To
the best of the author’s knowledge, these two studies represent the only known exact
solutions to steady free-surface Hele-Shaw flows with surface tension.

The present method of solution of the free boundary problem (and that of Crowdy
1999a) relies on several important mathematical ideas – in particular, the considera-
tion of an analytically continued boundary condition, and the determination of the
singularity structure of the conformal mapping function by writing this analytically-
continued equation in such a way that an identification with a well-studied differential
equation can be established. These same mathematical ideas have proved remarkably
versatile and have been effective in tackling a wide range of free-surface problems, e.g.
free-surface capillary flows (Crowdy 1999a–c; Tanveer 1996) and deep water gravity
waves (Tanveer 1991) as well as the problem of unsteady Hele-Shaw flows with
small non-zero surface tension (e.g. Tanveer 1993). This, we believe, demonstrates the
importance of the mathematical ideas. We remark that the present paper provides
an alternative approach to the Schwarz function method presented by Entov et al.
(1993). The present approach is, however, particularly flexible and readily generalizes
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to unveil previously unknown exact solutions for flows in different flow geometries
and, in particular, to flows in doubly-connected fluid regions (where the extension of
a Schwarz function approach is not obvious).

The general technique for solving the general free-boundary problem is illustrated
explicitly in § 2 in a ‘water-wave geometry’. While this new approach provides a flexible
method which can readily be adapted to find exact solutions to a given multipole-
driven Hele-Shaw flow in various geometries and in domains of various connectivities,
we choose not to employ this method to generate any new exact solutions (although
this is easily done). Rather, we prefer to generate illustrative exact solutions to the
Hele-Shaw problem by pointing out an intriguing mathematical transformation that
automatically produces an exact solution to a quadrupole-driven Hele-Shaw flow with
surface tension corresponding to known exact solutions to the problem of free-surface
Euler flow with surface tension. This transformation is presented in § 4. The exact
solutions produced by this transformation are surprisingly instructive in illustrating
the essential dynamical differences between the two distinct free-boundary problems
because the two ‘corresponding’ (yet physically-distinct) flows take place in the same
flow region, bounded by the same free-surface. This transformation thus provides an
explicit demonstration of the physical differences between the two classes of flows
by showing the streamline distribution for each flow necessary to sustain exactly the
same free-surface force distribution (due to surface tension) in a state of equilibrium.
A number of ‘corresponding’ solutions to each problem are plotted and juxtaposed
in this paper.

It is important to emphasize that the mathematical transformation only works in
one direction. This is because, as just seen, the pressure condition for the problem of
free-surface Euler flow with surface tension is significantly more nonlinear in the field
variable φ, and therefore much more difficult to solve, than the steady Hele-Shaw
problem. It is only to be expected that it is not possible to automatically generate
exact solutions to a more difficult problem by solving an easier one, even though the
converse is indeed possible, as demonstrated herein.

2. Solution of the free-boundary problem
2.1. Hele-Shaw flows with surface tension

We illustrate the general method by finding solutions to a steady quadrupole-driven
Hele-Shaw free-surface flow in a ‘water-wave’ geometry. Suppose there exists a regular,
spatially-periodic array of quadrupoles separated by distance λ = 2π/k at some
distance beneath the free surface of a layer of viscous fluid of infinite depth in a
Hele-Shaw cell. Uniform surface tension forces act on the free surface. It is reasonable
to expect that there might exist solutions for the steady shape of the free surface that
are also periodic with spatial period λ. We now seek such solutions. In this case, it
is enough to seek a conformal mapping from the cut unit circle in figure 1 to one
period of the free surface. Such a map will therefore have the general form

z(ζ) =
2π

k
+

i

k
(log ζ + g(ζ)) (2.1)

where, for smooth waves with no corners or cusps, g(ζ) is analytic everywhere inside
|ζ| 6 1. The point ζ = 0 maps to the point at infinite vertical depth, while the two
sides of the logarithmic branch cut (taken along the positive real axis) map to the
two vertical sides (separated by a horizontal distance λ) of the fluid region of interest.

Since the velocity potential is harmonic inside the fluid (except at the quadrupole)
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1

Figure 1. Parametric ζ-plane.

we can define a composed complex potential W (ζ) for this problem:

W (ζ) = w(z(ζ)) (2.2)

where w(z) = φ + iψ is the usual complex potential. Defining ζq as the point inside
the unit circle such that

zq = z(ζq) (2.3)

is the physical location of the quadrupole, it is clear that the Laurent expansion of
W (ζ) about ζq has the form

W (ζ) =
Q−2

(ζ − ζq)2
+

Q−1

(ζ − ζq) + · · · (2.4)

for some constants Q−2 and Q−1. For a flow driven by a single quadrupole, ζq is the
only allowable singularity of W (ζ) inside the unit circle. We remark, however, that
the general approach presented here readily extends to incorporate any distribution
of multipole singularities (of any order n > 2).

The kinematic condition on the free-surface |ζ| = 1 is that it should be a streamline,
i.e. ψ = 0. In complex notation, this condition is given by

Im [W (ζ)] = 0. (2.5)

The symmetry constraints also imply that this same condition also holds on the real
axis between 0 < ζ < 1. The (non-dimensionalized) pressure condition on the free
surface is that the pressure φ(x, y) is exactly balanced by the surface tension due to
curvature, i.e.

−φ = κ. (2.6)

Since W (ζ) = φ+ iψ and since ψ = 0 on |ζ| = 1, the pressure condition is equivalent
to

−W (ζ) = κ =
1

zζ

d

dζ

(
ζzζ(ζ)

ζ−1z̄ζ(ζ−1)

)1/2

on |ζ| = 1 (2.7)

or equivalently

− d

dζ

(
ζzζ(ζ)

ζ−1z̄ζ(ζ−1)

)1/2

−W (ζ)zζ(ζ) = 0. (2.8)

From the fact that there is just a single quadrupole inside the fluid region at the
point ζq , the most general admissible form of the composed complex potential W (ζ)
can now be deduced using the boundary condition (2.5), specifically

W (ζ) = Q

(
(ζ − η1)(ζ

−1 − η̄1)(ζ − η2)(ζ
−1 − η̄2)

(ζ − ζq)2(ζ−1 − ζ̄q)2

)
. (2.9)
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Q is related to the strength of the quadrupole, and is expected to be specifiable. This
strength will be specified in a natural way later in the analysis.

Define the function q1(ζ) as follows:

q1(ζ) ≡ −W (ζ)z̄ζ(ζ
−1)

ζ2
. (2.10)

Note that outside the unit circle (i.e. for |ζ| > 1), the only singularity of q1(ζ) is a
single second-order pole at ζ̄−1

q . We also define the function Ψ (ζ) as follows:

Ψ (ζ) =

(
ζzζ(ζ)

ζ−1z̄ζ(ζ−1)

)1/2

. (2.11)

Note that exactly the same function is used to develop the theory of Crowdy (1999a).
Then the pressure condition on the fluid boundary implies that

−dΨ (ζ)

dζ
−W (ζ)zζ(ζ) = 0. (2.12)

Equivalently

−dΨ (ζ)

dζ
+ q1(ζ)Ψ

2(ζ) = 0. (2.13)

Equation (2.13) has the analytical form of a Riccati equation (or, more precisely,
a Bernoulli equation – not to be confused with the free-surface Bernoulli pressure
condition!). For references, see Hille (1976). The coefficient function q1(ζ) is analytic
everywhere outside the unit circle except for the known fixed singularity at ζ̄−1

q . It
can be shown – either by a linearization-type procedure (see Crowdy 1999a) or by
adapting the standard results of Painleve (see the chapter on Riccati equations in
Hille 1976) – that the movable singularities of Ψ at the regular points of equation
(2.13) in |ζ| > 1 are generically simple poles. From the definition of Ψ (ζ), this is
clearly also true of [ζzζ(ζ)]

1/2 since [ζ−1z̄ζ(ζ
−1)]−1/2 is known a priori to be analytic

everywhere in |ζ| > 1.
The above result does not hold, however, at any fixed singularities of equation

(2.13). To determine the behaviour of Ψ in the neighbourhood of the fixed singularity
ζ̄−1
q it is appropriate to exploit the well-known fact that Bernoulli equations can be

linearized: defining M = Ψ−1 it is clear that

Mζ + q1(ζ) = 0. (2.14)

Note that (2.14) is not, of course, linear because the coefficient function q1(ζ) is itself
a nonlinear function of the dependent variable M(ζ). However, the important point is
that, outside the unit circle, the solutions to equation (2.14) for M share all the analytic
properties of solutions of a linear equation with meromorphic coefficients having
known, fixed singularities. It can be immediately deduced that the only singularity
of M(ζ) outside the unit circle is at ζ̄−1

q which implies (from the structure of M)
that [ζzζ]

1/2 necessarily has zeros at these points. By association with this linear-type
equation, we conclude that M has no other movable singularities in |ζ| > 1. We also
note in passing that this ‘linearization’ of the Bernoulli-type equation (2.13) can be
used to deduce the result (already established above) that the singularities of Ψ are
generically simple poles.

Next, note that the tangent T to the free surface can be written in complex form
as

T = xs + iys = zs (2.15)
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where, in terms of ζ on the unit circle, it is known that

zs =
iζzζ
|zζ | . (2.16)

But from this equation it can be seen that

Ψ =
ζz

1/2
ζ (ζ)

z̄
1/2
ζ (ζ−1)

= −izs. (2.17)

By the assumed periodicity of the free surface of the fluid (and therefore the periodicity
of its tangent as one goes around the unit ζ-circle), it can be concluded that Ψ (and
hence M) is a single-valued function on the unit circle |ζ| = 1. This, in turn, implies
that the singularity of M at ζ̄−1

q outside the unit circle must be a simple pole. Thus
we conclude that M is meromorphic everywhere in |ζ| > 1.

However, it can easily be verified that M satisfies the following functional equation:

M(ζ−1) =
1

M(ζ)
(2.18)

which provides the analytic continuation of M(ζ) inside the unit circle and, in
particular, shows that M is a meromorphic function everywhere in the plane (including
at infinity). M is therefore a rational function.

From this, it is readily deduced that [ζzζ(ζ)]
1/2 is also rational, analytic in |ζ| 6 1

(with no zeros there) and with known zeros (i.e. there is only one in this case –
at ζ̄−1

q ) in |ζ| > 1. It has also been deduced that [ζzζ(ζ)]
1/2 has movable simple

pole singularities in |ζ| > 1 although precisely how many remains to be determined.
However, this can now be done using the well-known test-power test (see Hille 1976).
Since [ζzζ(ζ)]

1/2 is rational, it is necessarily either analytic as ζ →∞ or, at worst, has
a polar singularity there. Hypothesizing that

[ζzζ(ζ)]
1/2 ∼ ζδ (2.19)

as ζ → ∞ for some integer δ and applying the test-power test to (2.13) leads
conclusively to the fact that [ζzζ(ζ)]

1/2 is necessarily analytic at the point at infinity.
A local analysis of the equation shows that, in fact, [ζzζ(ζ)]

1/2 tends to a constant
function as ζ →∞. Thus, we conclude that

zζ(ζ) =
A

ζ

(
ζ − ζ̄−1

q

ζ − ζ1

)2

(2.20)

for some ζ1 – a single movable pole.
The admissible functional form of [ζzζ(ζ)]

1/2 has now been deduced, to within
a (finite number) of unknown parameters. The question of whether there exists an
equilibrium solution is now reduced to the question of the existence of parameters
{A, ζ1, ζq} (appearing in (2.20)) and {Q, η1, η2} (appearing in (2.9)) for which equation
(2.13) is an identity for all ζ. Since both terms in equation (2.13) are known to
be rational functions which are real on the unit circle with second-order poles at
ζq and the inverse point ζ̄−1

q , the finite system of nonlinear equations to be solved
result from equating the principal parts of both terms at the single second-order
pole at ζq (the principal part at the inverse point ζ̄−1

q will automatically vanish by
reflection). This involves three conditions to be satisfied by the six parameters. It is
clear that there remains three degrees of freedom in this finite system. It is most
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natural, perhaps, to specify (i) ζq which can be thought of as specifying the position
zq of the quadrupole (see equation (2.3)), (ii) Q which corresponds to specifying the
strength of the quadrupole and, finally, (iii) the parameter A which corresponds to
specifying the wavelength of the surface disturbance (and hence the inter-quadrupole
spacing λ). If a solution exists, the three conditions necessary for (2.13) to be an
identity then determine the three remaining parameters ζ1, η1 and η2.

The above prescription is now straightforward. Using it, we might well expect to
find either no solution, a single solution or indeed multiple solutions for {ζ1, η1, η2}
given any specified values of {ζq, A, Q}. The above analytical arguments have reduced
the full nonlinear free-boundary problem to the problem of solving a (consistent)
finite system of nonlinear algebraic equations for a finite set of parameters.

3. Capillary waves
The methodology described in the previous section can be used to construct

exact solutions to the free-surface problem of Hele-Shaw flows in a fluid of infinite
depth (with surface tension) driven by a periodic array of quadrupoles. Rather than
use the above methodology however, we choose to produce new exact solutions to
this Hele-Shaw problem by a more intriguing, and theoretically interesting, route.
There are many general similarities in the above methodology and that presented in
Crowdy (1999a) to address the problem of inviscid Euler flows with surface tension.
The problem of inviscid Euler flows with surface tension is, in fact, a significantly
more difficult problem to solve – the pressure condition on the interface being more
nonlinear (in the conformal mapping function) than in the analogous Hele-Shaw
problem. However, in § 4 it will be demonstrated that to every exact solution to
the more difficult problem of free surface potential flow with capillarity, an exact
quadrupolar-driven Hele-Shaw analogue can be found.

First, in this section, we review the Crapper (1957) exact solution for pure capillary
waves on deep water as retrieved recently in Crowdy (1999a). Unlike Crapper’s original
paper, Crowdy (1999a) employs conformal mapping considerations. The form of the
conformal mapping for a spatially periodic wave of wavelength λ = 2π/k (relative to
a frame moving with the wave at a speed c to the right) is taken to be

Z(ζ) =
2π

k
+

i

k
(log ζ + f(ζ)) (3.1)

where f(ζ) is taken to be analytic in the unit circle |ζ| = 1.
The complex potential is defined as

ŵ(Z) = φ(x, y) + iψ(x, y) (3.2)

where φ(x, y) is a velocity potential and ψ(x, y) is the streamfunction. Infinitely far
from the free surface, the flow is uniform. The kinematic boundary condition on the
fluid interface is

Im [ŵ] = ψ = 0 (3.3)

on the boundary. These requirements dictate the functional form for the composed
function W(ζ) = ŵ(Z(ζ)). In particular, for the water wave problem considered here
we take

W(ζ) =
2πc

k
+

ic

k
log ζ (3.4)

where c is the velocity of the fluid at large depths (with respect to a frame of
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reference in which the fluid boundary is stationary). The non-dimensionalized Bernoulli
condition on the fluid interface can be written

− d

dζ

[
ζZζ(ζ)

ζ−1Zζ(ζ−1)

]1/2

+ ΓZζ − Wζ(ζ)Wζ(ζ
−1)

2Zζ(ζ−1)
= 0. (3.5)

For water waves on a fluid of infinite depth, Γ = c2/2. Note that (3.5) must hold
globally by analytic continuation. By direct inspection and comparison of (3.5) and
(2.8) it is seen that it is likely to be much harder to find functions Z(ζ) satisfying
(3.5) than it is to find functions z(ζ) satisfying (2.8).

3.1. Crapper’s (1957) solution for capillary waves

The approach to this problem presented in Crowdy (1999a) obviates the need for
many of the unwieldy algebraic manipulations of the original paper, Crapper (1957).
In Crowdy (1999a), Crapper’s solution is retrieved in the following form:

Z(ζ) = iA

(
log ζ − 4ζ1

ζ − ζ1

)
(3.6)

and

W(ζ) =
2πc

k
+

ic

k
log ζ (3.7)

with

ΓA2 =
c2

2k2
, (3.8)

ΓA =
1

2

|ζ1|2 − 1

|ζ1|2 + 1
. (3.9)

It is important for what follows to note, from (3.6), that

Zζ(ζ) =
iA

ζ

(
(ζ + ζ1)

(ζ − ζ1)

)2

. (3.10)

4. Mathematical transformation
We now make the following identification between the conformal maps and complex

potentials (Z(ζ),W(ζ)) 7→ (z(ζ),W (ζ)) of the respective physical problems:

z(ζ) =Z(ζ), (4.1)

W (ζ) = Γ − Wζ(ζ)Wζ(ζ
−1)

2Zζ(ζ)Zζ(ζ−1)
, (4.2)

and make the important observation that if [ζZζ(ζ)]
1/2 happens to be a rational

function (i.e. as in Crapper’s solution above – see (3.10)) with simple zeros outside the
unit circle, then the corresponding W (ζ) also turns out to be a rational function with
second-order poles at the inverse points to these zeros inside the unit circle. Thus,
W (ζ) (as given by the above transformation) corresponds to physically-admissible
complex potential for a quadrupole-driven Hele-Shaw flow, the number of driving
quadrupoles being exactly equal to the number of zeros of the derivative of the
conformal map Z of the ‘corresponding’ free-surface Euler flow problem. In fact,
it follows from the general theory (Crowdy 1999a) that [ζZζ(ζ)]

1/2 is generically a
meromorphic function. Exact solutions to this problem correspond to the case where
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Figure 2. Crapper’s (1957) solution.

this meromorphic function is a rational function (we refer the interested reader to
Crowdy 1999a for more details) and therefore has a finite set of zeros outside the
unit circle. In the context of the transformation (4.1)–(4.2) it would therefore seem
that, in general, any exact solution of the problem of free-surface Euler flows with
surface tension will generate an exact solution to a quadrupole-driven Hele-Shaw
flow with surface tension. Moreover, because the conformal maps are the same, the
corresponding Hele-Shaw flow takes place in exactly the same domain as the Euler
flow, and has exactly the same free surface.

In figures 2 and 3, the streamline plots for the special limiting form of Crapper’s
water wave (i.e. the critical ‘pinching’ case where two sides of the interface draw
together to form an enclosed bubble) are shown for both Crapper’s solution and
the analogous Hele-Shaw flow taking place in exactly the same domain. The latter
solution is new. Note that while the free surface shapes for these very different physical
problems are exactly the same, the streamline distribution (i.e. the flow) keeping that
free surface in equilibrium is very different in each case. This provides a rather explicit
illustration of the differing dynamics of the two kinematically-equivalent problems.

In the light of the well-known fact that Hele-Shaw cells can be used as an apparatus
to realize ideal Euler flows past fixed obstacles, another view of our results is to show
that it is possible to use a Hele-Shaw cell to realize the shape of pure capillary wave
profiles (by suitably placing a quadrupole, of appropriate strength, beneath an infinite
free surface in such a cell). Note, however, that while the free-surface streamline is
exactly the same as for pure capillary waves, the internal streamline distributions
are clearly very different due to the intrinsic dynamical differences between the two
problems.

5. Hele-Shaw flows in fluid layers
Given the mathematical connection between Crapper’s (1957) solution, and the

newly-derived solutions for quadrupolar-driven Hele-Shaw flows, it is natural to ask
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Figure 3. Hele-Shaw analogue of Crapper’s (1957) solution.

whether a steady, exact Hele-Shaw solution can be found in a layer of fluid of finite
thickness. The same question was asked by Kinnersley (1976) who explicitly identified
finite-depth extensions of Crapper’s solutions.

5.1. Quadrupole-driven Hele-Shaw flows in a fluid layer

First, we indicate briefly the natural extension of the theory in § 2, i.e. we outline how
to solve the free-boundary problem in the general case when the layer of fluid in a
Hele-Shaw cell has finite thickness. The presence of two disjoint free surfaces requires
some non-trivial (but natural) modifications of the analysis. Consider an infinitely
long sheet of fluid of finite thickness in a Hele-Shaw cell containing a spatially-
periodic array of quadrupole singularities. Surface tension forces act on both fluid
interfaces. We will seek symmetric solutions where the shape of both the upper and
lower fluid interfaces are spatially periodic in x with wavelength λ ≡ 2π/k. Under
this assumption, it is enough to consider the structure of a conformal map from a
standard parametric region (in a ζ-plane) to a window of the fluid sheet of length
2π/k. Therefore, consider the conformal mapping function z(ζ) from the annulus
ρ < |ζ| < 1 (as shown in figure 4) in a parametric conformal mapping plane (ζ-plane)
to a one-period window of the finite sheet of fluid.

Without loss of generality, it can be assumed that the upper interface of the fluid
sheet is the image of the circle |ζ| = 1. We assume that the second free surface of
the fluid sheet maps from |ζ| = ρ where 0 < ρ < 1. It is clear that in this case the
conformal mapping function can be written in the form

z(ζ) =
2π

k
+

i

k
(log ζ + f(ζ)) (5.1)

where f(ζ) is analytic everywhere in the annulus ρ < |ζ| < 1. The branch cut is
taken along the positive real axis. Note that it is assumed that zζ vanishes nowhere
in ρ 6 |ζ| 6 1. This corresponds to seeking smooth surface waves with no corners or
cusps.
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1ρ

Figure 4. Parametric ζ-plane.

The complex potential is defined to be

w(z) = φ(x, y) + iψ(x, y). (5.2)

The kinematic conditions on the boundaries are satisfied if the complex potential
W (ζ) satisfies

W (ζ−1) = W (ζ) on |ζ| = 1, (5.3)

W (ρ2ζ−1) = W (ζ) on |ζ| = ρ. (5.4)

For symmetric solutions, it is also necessary that the real axis ρ < ζ < 1 corresponds
to a streamline. Furthermore, if ζq is the point inside the annulus ρ < |ζ| < 1
corresponding to the pre-image of the quadrupole, i.e. zq = z(ζq), then the only
singularity of W (ζ) inside ρ < |ζ| < 1 is a second-order pole at ζq .

On |ζ| = 1, the condition of constant pressure is taken to be

− d

dζ

(
ζzζ

ζ−1z̄ζ(ζ−1)

)1/2

−W (ζ)zζ = 0. (5.5)

Assuming the pressure on both sides of the sheet of fluid to be the same, the pressure
condition on the other free surface becomes

+
d

dζ

(
ζzζ

ρ2ζ−1z̄ζ(ρ2ζ−1)

)1/2

−W (ζ)zζ = 0. (5.6)

Note the change of sign in the curvature terms. Steady solutions only exist provided
that (5.5) and (5.6) are mutually consistent. This is seen to require that the conformal
mapping z(ζ) satisfies the following functional equation:

[ρ2ζzζ(ρ
2ζ)]1/2 = −[ζzζ(ζ)]

1/2 (5.7)

for all ζ 6= 0. The problem is to find a function z(ζ), analytic everywhere in the
annulus ρ < |ζ| < 1 such that (5.6) and (5.7) hold globally.

The analysis of § 2 can be readily generalized to this new geometrical situa-
tion. The analysis follows in essentially the same way that the analysis of Crowdy
(1999a) is extended to retrieve Kinnersley’s symmetric sheet wave solutions in Crowdy
(1999c). By a natural extension of the approach in Crowdy (1999a), Crowdy (1999c)
rederived Kinnersley’s symmetric sheet wave solutions and found a much simpler
representation for them. The formulation utilizes the theory of loxodromic functions
(Valiron 1947), and the fundamental region of interest (as in the present case) be-
comes the annulus ρ2 < |ζ| < 1. A loxodromic function g(ζ) is a function that is
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meromorphic for all ζ 6= 0 and which satisfies the multiplicative periodicity condi-
tion

g(ρ2ζ) = g(ζ), ζ 6= 0. (5.8)

It turns out that one can deduce that steady solutions of the problem of quadrupole-
driven Hele-Shaw flows in a finite fluid sheet are such that [ζzζ]

1/2 is meromor-
phic everywhere in the sub-annulus ρ2 < |ζ| < ρ with just simple pole singular-
ities there (it is necessarily analytic in the sub-annulus ρ < |ζ| < 1) and that
the function ζzζ is, in fact, a loxodromic function. Note that it is clear from
(5.7) that ζzζ must satisfy the functional equation (5.8). Loxodromic function the-
ory has recently been found to be useful in a number of different free-boundary
problems (see, for example, Crowdy & Tanveer 1998; Richardson 1996; Crowdy
1999c, d). For purposes of brevity, we simply refer the interested reader to the
analysis of Crowdy (1999c) for an idea of how to make the appropriate gen-
eralization of the theory in § 2 when the conformal mapping for the Hele-Shaw
problem is from the annulus shown in figure 4. The necessary steps should be
clear from a comparison of Crowdy (1999c) and given the detailed analysis of
§ 2.

While the earlier mathematical arguments can indeed be extended to derive a
systematic approach to solving the above free-boundary problems we again choose
here to produce new exact solutions by exploiting the mathematical transformation
described in § 4. This time we establish the ‘Hele-Shaw analogue’ of Kinnersley’s
symmetric sheet wave solutions.

6. Capillary waves on fluid sheets
We briefly describe the formulation of the problem of pure capillary waves on

fluid sheets as presented in Crowdy (1999c). Denote the conformal map by Z(ζ) and
the complex potential by W(ζ). The non-dimensionalized Bernoulli condition ζ on
|ζ| = 1 gives

Wζ(ζ)Wζ(ζ
−1)

2Z̄ζ(ζ−1)
= − d

dζ

[
ζZζ(ζ)

ζ−1Zζ(ζ−1)

]1/2

+ ΓZζ . (6.1)

Assuming the same value of the surface tension on both free-surfaces, the Bernoulli
condition on |ζ| = ρ can be written in a similar fashion:

Wζ(ζ)Wζ(ρ
2ζ−1)

2Z̄ζ(ρ2ζ−1)
= +

d

dζ

[
ζZζ(ζ)

ρ2ζ−1Zζ(ρ2ζ−1)

]1/2

+ ΓZζ . (6.2)

Note further that Γ = c2/2.

6.1. Kinnersley’s (1976) symmetric sheet waves

We now present Kinnersley’s symmetric sheet wave solutions using the much-
simplified representation recently derived by Crowdy (1999c).

The conformal map Z(ζ) and corresponding complex potential W(ζ) are given by

Z(ζ) =

∫ ζ

1

iA

ζ ′

(
P (−ζ ′ζ−1

1 )

P (ζ ′ζ−1
1 )

)2

dζ ′, (6.3)

W(ζ) =
2π

k
+

ic

k
log ζ, (6.4)
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Figure 5. Kinnersley’s (1976) solution (ρ = 0.1, ζ1 = 3.11).

where A and ζ1 are real parameters. Specifying the wavelength of the waves leads to
the condition that A = 1/k. The parameter ζ1 controls the wave amplitude. Further
details of this solution can be found in Crowdy (1999c). The function P (ζ) is defined
via the infinite product expansion

P (ζ) = (1− ζ)
∞∏
k=1

(1− ρ2kζ)(1− ρ2kζ−1). (6.5)

It is straightforward to check that P (ζ) satisfies the following functional equations
for all ζ 6= 0:

P (ζ−1) = −ζ−1P (ζ) = P (ρ2ζ). (6.6)

It is also clear from (6.3) that

[ζZζ]
1/2 ∝ P (−ζ ′ζ−1

1 )

P (ζ ′ζ−1
1 )

(6.7)

so that using (6.6), it is easy to check that this solution satisfies the functional equation
(5.7) required for consistency.

6.2. Corresponding Hele-Shaw solutions

As was done in previous sections, we now make the identification between the complex
potentials for the two physical problems and their respective conformal mappings.
These are exactly as given in (4.1)–(4.2).

In this way, we automatically derive a two-parameter family of exact solutions to
the problem of finding the equilibrium shapes of waves on a sheet of fluid of finite
thickness in a Hele-Shaw flow containing a periodic array of quadrupoles. Some
typical streamline plots for the water wave and Hele-Shaw problems are shown in
figures 5 and 6 for the arbitrary choice of parameters ζ1 = 3.11, ρ = 0.1. Intuitively,
ζ1 provides a measure of the wave amplitude and ρ a measure of the thickness of the
fluid sheet.

Finally we remark that, although they have not been explicitly presented here, we
anticipate that the anti-symmetric sheet wave solutions of Kinnersley also have an
anti-symmetric Hele-Shaw analogue.
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Figure 6. Hele-Shaw analogue of Kinnersley’s (1976) solution.

7. Other exact solutions in different geometries
The mathematical transformation described in § 4 which generates exact solutions

for free-surface Hele-Shaw flows driven by quadrupoles is clearly applicable, in
principle, to any known exact solution for free-surface Euler flows with surface
tension. Unfortunately, because of its high degree of nonlinearity, exact solutions to
the latter problem are rare. In this section, we record the ‘Hele-Shaw analogues’ (via
this transformation) of the only other exact solutions for free-surface Euler flows
with surface tension known to the present author. These are (i) the exact solution
of McLeod (1955) for uniform flow past a bubble, (ii) the solutions found recently
by Crowdy (1999b) for circulation-induced shape deformations of free drops and
bubbles, and (iii) the solutions found by Crowdy (1999c) for steady capillary waves
on a fluid annulus induced by an irrotational swirling flow inside the annulus. It is
emphasized, however, that while the transformation (4.1)–(4.2) immediately generates
a subclass of exact solutions for Hele-Shaw flows with surface tension, the solution
schemes outlined in § 2 and § 5 can be extended in a straightforward fashion to each
of the following flow configurations to find much more general classes of solution. All
the Hele-Shaw solutions which follow are new and have not been previously reported
in the literature.

7.1. Hele-Shaw analogue of McLeod’s (1955) solution

In McLeod (1955) an exact solution for a very special choice of Bernoulli constant
was identified for the shape of a steadily-translating bubble with surface tension on
its boundary. This exact result is, in fact, a non-generic situation as illustrated in some
detail in Tanveer (1996) and Crowdy (1999a). This solution is plotted in figure 7 along
with some typical streamlines. The analogous exact solution for a quadrupolar-driven
Hele-Shaw flow with surface tension is shown in figure 8. It is clear that exactly two
quadrupoles, of appropriate strength and suitably positioned, are required to maintain
the McLeod (1955) free surface in equilibrium in a Hele-Shaw cell. We note that this
solution, discovered originally by McLeod (1955), was later rediscovered by Shankar
(1992) using power series methods. See also the even earlier work of Vanden-Broeck &
Keller (1980). We also note that for any other (generic) choice of Bernoulli constant,
the corresponding Hele-Shaw solution is not exact and corresponds to a flow driven
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Figure 7. McLeod’s (1955) solution.

Figure 8. Hele-Shaw analogue of McLeod’s (1955) solution.

by an infinity of quadrupole singularities forming a cluster-point essential singularity
at ζ →∞.

7.2. Hele-Shaw analogues of solutions of Crowdy (1999b)

Crowdy (1999b) has recently studied the problem of circulation-induced shape defor-
mations of capillary drops and bubbles by considering some simple two-dimensional
models which incorporate the essential physics. Such paradigmatic problems are of



238 D. G. Crowdy

Figure 9. Crowdy (1999b) solution (blob).

Figure 10. Hele-Shaw analogue of Crowdy (1999b) solution (blob).

great interest in various chemical engineering processes and in the study of the heat
and mass transport properties of liquid dispersions. In the model of a droplet with
circulation, a circulatory flow inside a droplet of fluid is modelled by placing a line
vortex inside a droplet, the free surface of which is assumed to have a non-zero
surface tension. Apart from the line vortex, the flow is assumed otherwise irrotational
and inviscid. Using methods similar to those described in § 2, this free-boundary
problem was solved for its equilibrium configurations. The problem is found to admit
a one-parameter family of exact solutions. A typical solution is plotted in figure 9 and
has the Hele-Shaw analogue consisting of flow in a simply-connected blob of fluid
driven by two quadrupoles with surface tension on the free-surface. The Hele-Shaw
flow corresponding to figure 9 is given in figure 10. Crowdy (1999b) also derives a
one-parameter family of exact solutions for irrotational swirling flow (due to a point
vortex at infinity) outside a single constant-pressure bubble with surface tension on
its boundary. A typical streamline plot is given in figure 11 and the Hele-Shaw flow
corresponding to it is plotted in figure 12. In this case, the corresponding Hele-Shaw
flow keeping the same free surface in equilibrium consists of two suitably-placed
quadrupoles driving the fluid outside the constant-pressure bubble.

7.3. Hele-Shaw analogues of solutions of Crowdy (1999c)

In the same way that Kinnersley extended Crapper’s deep-water exact solution
to find a class of solutions for waves on fluid sheets (where there are two free
capillary surfaces), the analysis of Crowdy (1999b) can similarly be extended to a
(doubly-connected) annular fluid region. In this vein, Crowdy (1999c) identified a
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Figure 11. Crowdy (1999b) solution (bubble).

Figure 12. Hele-Shaw analogue of Crowdy (1999b) solution (bubble).

two-parameter family of exact solutions for steady capillary waves on a fluid annulus
induced by an irrotational swirling flow inside it. A typical solution is plotted in
figure 13. These also have a Hele-Shaw analogue (although, in this case, the values of
the constant surface tension parameter on each surface are different). The Hele-Shaw
analogue (of figure 13) is plotted in figure 14 and consists of flow in an annulus
driven by two quadrupoles. We remark, however, that it is straightforward to apply
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Figure 13. Crowdy (1999c) solutions (ζ1 = 1.6, ρ = 0.2).

Figure 14. Hele-Shaw analogue of Crowdy (1999c) solutions.

the general method of solution to the free boundary problem (as outlined in § 5) to find
a it much wider class of exact solutions to this doubly-connected Hele-Shaw problem
driven by two quadrupoles, including solutions where the value of the surface tension
parameter on each boundary is the same. These solutions (an example is plotted in
figure 14) are believed to be the first-known examples of exact Hele-Shaw flows with
non-zero surface tension taking place in a doubly-connected fluid domain. On the
subject of Hele-Shaw flows in doubly-connected fluid regions, it is interesting to point
out that Richardson (1996) has recently identified exact solutions for time-evolving
Hele-Shaw flows (with zero surface tension) in a fluid annulus driven by a distribution
of sources and sinks, while Crowdy (1999d) has recently identified exact solutions for
the evolution of a fluid annulus (again with no surface tension) under the effects of
centrifugal forces in a rotating Hele-Shaw cell.

8. Summary and discussion
In this paper, a new approach to solving the free-boundary problem of steady

Hele-Shaw flows with surface tension driven by a periodic array of quadrupoles in
a water-wave geometry has been presented. The mathematical approach to finding
a conformal map corresponding to a given flow hodograph W (ζ) is described. The
methodology is related to a new mathematical approach to the problem of free-
surface irrotational Euler flow with capillarity presented in Crowdy (1999a). While
the particular problem considered has been quite specific, we emphasize that the
approach is flexible enough to be generalized to (a) other geometries, (b) other
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distributions of multipoles of order n > 2, and (c) genuinely doubly-connected fluid
domains. In addition, by introducing a mathematical transformation between Euler
and Hele-Shaw flows, it has been possible to illustrate the dynamical differences
between the two kinematically equivalent problems in an unexpectedly direct way.
Thus, while it is well-known (e.g. Batchelor 1967) that the streamline distribution for
steady Hele-Shaw flow past a circular cylindrical obstacle is exactly the same as the
streamline distribution for steady irrotational Euler flow past the same obstacle, the
presence of free surfaces forces this analogy between the two types of flow to break
down in a rather dramatic way, as our figures show.

Perhaps one of the most important reasons why knowledge of exact solutions is
useful is that they can be used to check the accuracy of numerical codes written to
solve more difficult problems where exact results are not available. Indeed, there has
been much recent numerical interest in the problem of Hele-Shaw flows with surface
tension, and as is often the case, knowledge of special classes of exact solutions is
valuable in providing checks on numerical codes as well as being of theoretical interest.
For example, Kelly & Hinch (1997a, b) recently solved an initial value problem in a
radial geometry, and time-evolved the evolution equations for a quadrupolar-driven
flow in an initially circular blob of fluid to examine whether the solutions eventually
relax into the exact steady solutions found by Entov et al. (1993). It would be of some
interest to examine similar questions here: will an initially flat interface driven by a
periodic array of quadrupoles relax to the steady states derived in § 4 of this paper?
Similarly, will a layer of fluid of finite thickness in a Hele-Shaw flow containing a
periodic array of quadrupoles relax to the steady solutions found in § 6? A study of
the basins of attraction of the new exact solutions might help in understanding more
complicated Hele-Shaw flows with surface tension. We also remark that Ceniceros,
Hou & Si (1999) and Nie & Tian (1998) have recently performed numerical studies
of the evolution of Hele-Shaw interfaces driven by sinks and with small but non-
zero surface tension. The Hele-Shaw solutions found here take place in a variety of
different geometries and, although they represent quadrupole-driven flows which are
perhaps not as physically relevant as, say, sink-driven flows, the solutions are expected
to be of use in checking numerical codes written to resolve more physically-realistic
Hele-Shaw flows taking place in the same geometry.

Finally, we note that the analysis of this paper has interesting ramifications for the
‘inverse problem’ of finding a multipole distribution leading to a particular steady
state. Indeed, it is easy to generate arbitrary exact solutions for steady boundary
shapes driven by some distribution of multipoles (i.e. determined a posteriori as
opposed to specified a priori) (Crowdy & Hill 1999).

The author acknowledges many useful discussions with Dr David Hill, and partial
financial support from the National Science Foundation (Grant Numbers DMS-
9803167 DMS-9803358). The author would like to especially thank Philip Saffman
for his personal support and generosity over the last few years.
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