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Summary. We present a new general theory of exact solutions for a simply connected,
plane, slow viscous fluid blob with surface tension. The formulation reveals the existence
of an infinite number of conserved quantities associated with the exact solutions. This
new theoretical approach simplifies the calculation of concrete solutions.
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1. Introduction

This paper presents a reformulation of the problem of the slow viscous quasi-steady flow
of a two-dimensional, simply connected fluid blob with surface tension. Many exact
solutions for special cases of this problem have already appeared in the literature [1] [2]
[3] [4] [9] and rely on a complexification of the problem first exploited by Richardson
[5]. The closely related problem of the Stokes flow around a single bubble in a strain
field has also received much attention recently [8] [10] [11]. It is noted that the general
theory presented in this paper for the case of a viscous blob is readily extended, with
only minor changes in detail, to the case of Stokes flow around a single bubble.

The approach adopted in this paper, while employing the same formulation in terms
of complex analytic functions, is essentially different from previous methods in that the
problem for the boundary evolution of the blob is recast in terms of the time evolution of a
very general set of purely geometrical line integral quantities defined around the boundary
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of the blob. This approach seems to simplify greatly much of the unwieldy analysis
that has characterized previous treatments. The reformulation also reveals important
mathematical properties of the equations—in particular, the evolution equations for
the specially defined line integral quantities all have a very specialupper-triangular
structure. With suitable initial conditions, this special structure of the evolution equations
can be shown to lead to the existence of an infinite number of conserved quantities
associated with a very general class of exact solutions. The existence of such conserved
quantities has not been generally recognized using previous methods. Another general
result that is easily demonstrated using the new approach is a “theorem of invariants”
which automatically provides a further finite set of invariants for a subset of solutions
in this general class of “exact solutions.” It is noted that the phrase “exact solutions”
is used to refer to solutions of this free boundary value problem that can be described
exactly in terms of afiniteset of first-order ordinary differential equations (as opposed to
an infinite set). While this paper was in preparation, the authors learned of recent related
work of Cummings, Howison, and King [7] who employ some of the same ideas to a
more restricted class of exact solutions (described by polynomial maps) for the simpler
problem of a blobwithout surface tension.

Finally, since many examples of the slow viscous flow of simply connected fluid blobs
have already been explicitly calculated using alternative solution methods, we do not
attempt to calculate further examples in this paper. The purpose of this paper is to present
a novel theoretical approach. We do, however, give details of a special class of exact
solutions with a particularly appealing mathematical structure that comes to light as a
result of the reformulation in this paper. This example is presented as a case study and
represents a generalization of solutions found by Richardson [1]. Again, while this paper
was in preparation, the authors learned that Richardson [6] has also recently produced
this generalization of Richardson [1] but using the more traditional techniques.

The paper is organized as follows: In Section 2 the equations and boundary conditions
are rewritten in complex form. In Section 3 a conformal mapping representation is
introduced and the complexified problem is now rewritten in terms of an appropriately
defined conformal mapping function. Section 4 introduces the new conservation law
approach to finding exact solutions to the (complexified) problem. This section contains
the important details of the new method. Section 5 presents what is herein called a
“theorem of invariants”—a general result which can be deduced immediately from the
new mathematical formulation. Finally, in Section 6 a case study is presented to show
the utility of the reformulation in deducing the appropriate evolution equations for the
time-dependent parameters appearing in the exact solutions.

2. Mathematical Formulation

We consider the unsteady evolution of a general simply connected plane blob of fluid of
viscosityµ under the assumptions of no inertial effects and no gravitational effects or
effects from other body forces. The equations of motion of the fluid are

µ∇2u = ∇ p, (1)

∇.u = 0, (2)
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whereu(x, y) is the fluid velocity,p(x, y) is the pressure, andµ the fluid viscosity.
We choose to nondimensionalize the problem usinga as a typical length-scale (e.g., an
effective radius whereπa2 is the initial area of the blob). Ifσ is the surface tension
parameter, we nondimensionalize velocities byσ

µ
, the pressure byσa , length bya, and

time by aµ
σ

. Introducing a streamfunctionψ(x, y) such that

u = (ψy,−ψx), (3)

it is well-known that the two-dimensional Stokes flow can be reformulated in terms of
this streamfunction, which satisfies a biharmonic equation in the fluid region, i.e.

∇4ψ = 0. (4)

On the blob boundary we must ensure continuity of shear stress and satisfy the require-
ment that the jump in the normal stress across the interface equals the product of the
surface tensionσ and the curvatureκ. These two conditions can be written as

− pnj + 2ejknk = −κnj , (5)

whereejk are given by

ejk = 1

2

(
∂uj

∂xk
+ ∂uk

∂xj

)
. (6)

Additionally, there is a kinematic boundary condition that the normal velocityVn of a
point on the boundary equals the normal fluid velocity at that point, that is,

u.n = Vn. (7)

It will also be seen that further conditions will need to be imposed at any singularities
within the fluid in order to specify a solution completely.

To complexify the problem, all fields are written as functions ofz1 = x + iy and
z̄1 = x − iy. According to the Goursat representation for biharmonic functions, we can
then write

ψ(z1, z̄1) = Im[z̄1 f1(z1)+ g1(z1)], (8)

where f1(z1) andg1(z1) are two functions which are analytic in the fluid region. Note
that since the blob boundary evolves with time, each off1 andg1 also depend on time
t , though this dependence is suppressed in (8) for purposes of brevity. All physically
relevant quantities can now be written in terms of these two functionsf1(z1) andg1(z1).
In particular,

p

µ
− iω = 4 f ′1(z1), (9)

u1+ i v1 = − f1(z1)+ z1 f̄ ′1(z̄1)+ ḡ′1(z̄1), (10)

e11+ ie12 = z1 f̄ ′′1 (z̄1)+ ḡ′′1(z̄1), (11)

where f̄1 denotes the conjugate function,̄f1(z1) = f1(z̄1), andu1, v1 represent the
components of velocity in thex andy directions, respectively.
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The stress condition must be rewritten in a more convenient form. To do this, we
define a complex normal as

N ≡ n1+ in2 = −i (xs + iys) = −i z1s = −i exp(i θ), (12)

wheres is the arclength around the blob traversed in the anticlockwise direction andθ

is the angle between the tangent and the real positive axis. The stress condition can then
be rewritten as

− pN+ 2(e11+ ie12)N̄ = −κN, (13)

whereκ is the curvature. Substituting for the various quantities in this equation, a straight-
forward calculation reveals that it can be written as

∂S(z1, z̄1)

∂z1
z1s +

∂S(z1, z̄1)

∂ z̄1
z̄1s = −i

z1ss

2
, (14)

where

S(z1, z̄1) ≡ f1(z1)+ z1 f̄ ′1(z̄1)+ ḡ′1(z̄1). (15)

(14) can be integrated immediately to give

f1(z1)+ z1 f̄ ′1(z̄1)+ ḡ′1(z̄1) = −i
z1s

2
+ B(t), (16)

whereB(t) is a complex constant of integration.
There is a certain amount of arbitrariness in the functionsf1(z1), g′1(z1), which pro-

vide a given stress distribution on the blob boundary. Physically, the choices off1(z1)

andg′1(z1) that leave the pressure and stresses in (9) and (11) invariant correspond to
velocity fields that differ from each other by time-dependent, uniform translations or
rotations. However, such changes of velocity field clearly cannot affect the shape of the
blob boundary in any fundamental way—they simply translate or rotate it. In light of
this, a judicious transformation off1(z1) andg′1(z1) will be made in order to simplify
the resulting evolution equations as much as possible, as seen below.

Consider the following (time-dependent) change of origin in physical space and ro-
tation of the physical plane expressed via

z1 = z0(t)+ eiφ(t) z, (17)

wherez0(t) is a complex function of time, andφ(t) is a real function of time. Given
this transformation ofz1, the transformations off1(z1), g′1(z1) that leave the stress and
pressure expressions in (9) and (11) invariant can be written

f1(z1) = eiφ [ f (z)+ iC(t)z] + γ (t), (18)

g′1(z1) = e−iφg′(z)− z̄0 f ′1(z1)− γ̄ + B̄, (19)

whereC(t) is real, butγ (t) is generally complex. The boundary condition (16) then
becomes

f (z)+ z f̄ ′(z̄)+ ḡ′(z̄) = −i
zs

2
. (20)
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Under this same transformation the velocity field becomes

u1+ i v1 = eiφ
[− f (z)+ z f̄ ′(z̄)+ ḡ′(z̄)− 2iCz

]− 2γ + B

= eiφ [u+ i v − 2iCz] − 2γ + B, (21)

whereu + i v denotes the velocity field in thez-reference frame. It is clear from (21)
that the arbitrariness expressed by the transformation above corresponds to a velocity
field that is determined only up to a rigid body motion, i.e., an arbitrary translation
and rotation. The suitability of the transformations (17)–(19), and the choices of the
remaining degrees of freedom in the choice ofφ(t), z0(t), andγ (t) will become clear
once the kinematic condition (7) is recast in terms of a conformal mapping representation
as in the following section.

3. Conformal Mapping Representation

Consider the conformal mapz1(ζ, t) from the interior of the unit circle in theζ plane
into the simply connected region occupied by the fluid so thatζ = 0 is mapped to a
pointz0(t) inside the fluid blob. The existence of such a map is guaranteed by Riemann’s
Theorem. We choosez0(0) to be any convenient point inside the blob initially. The choice
of ż0(t) will be made to simplify the problem appropriately, as will be seen shortly. It
is clear that, for sufficiently small timet , z0(t) will remain inside the blob wheṅz0(t)
is finite. A priori, that is all that is needed to derive the dynamical equations and the
exact solutions—examination of the exact solutions themselves will then determine the
time of validity of a particular solution. The remaining rotational degree of freedom of
the Riemann mapping theorem will be used later by fixing a rotational freedom in theζ

plane in a convenient way.
The kinematic boundary condition on the blob can be written as the following bound-

ary condition on the unit circle,ζ = ei ν :

Im

[
(z1t − (u1+ i v1))

z1ν

]
= 0. (22)

If we now use the substitution (17), wherez is now viewed as a function oft andζ (or
ν on the circular boundary), then it is clear that (22) is equivalent to

Im

[
(zt + i (φ̇ + 2C)z− e−iφ(u+ i v + 2γ − B)+ e−iφ(ż0+ 2γ − B))

zν

]
= 0. (23)

We now choose

φ̇(t) = −2C(t), (24)

ż0(t) = B(t)− 2γ (t), (25)

so that on using (21), (23) simplifies to

Im

[
zt − {− f (z)+ z f̄ ′(z̄)+ ḡ′(z̄)}

zν

]
= 0. (26)
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Note that since the functionz(ζ, t) is simply a translation and rotation ofz1(ζ, t) then
z(ζ, t) is also a conformal map. Sinceζ = 0 corresponds toz1 = z0, it follows from
(17) that

z(0, t) = 0. (27)

We further make the arbitrary but convenient specification that

γ (t) = f1(z0(t)); (28)

then it is clear from (18) that

f (0) = 0. (29)

Note also that the specific choice of real functionC(t) is unimportant in the simplification
to (20) and (26), with auxiliary conditions (27) and (29), provided thatφ(t) evolves
according toφ̇ = −2C. It is found that the above conditions are enough to uniquely
determine the velocity field, with the evolution equations given by (20) and (26).

Previous authors [1] [9] have suggested various physical arguments that might be
used to specify uniquely the velocity field rather than the purely mathematical condition
used above (namely, the choiceγ (t) = f1(z0(t))). The most plausible suggestion is
the requirement of conservation of global momentum. Although we are considering the
zero Reynolds number asymptotic limit of the Navier-Stokes equation where,locally,
inertial effects (momentum transfer) have been neglected in comparison with the viscous
stresses, it is argued [9] that this does not obviate the need to respectglobal conserva-
tion of momentum. Assuming that global momentum conservation is the appropriate
physical principle to invoke, unless the solutions are suitably symmetric, in general the
mathematical condition leading to (29) above doesnot provide conservation of global
momentum. However, in the case when there are no flow singularities in the blob, this
is of no consequence as there are then no special points in the fluid and an appropriate
rigid body motion can be added a posteriori to the solution (so that global momentum
is conserved) without affecting any other aspect of the flow. Thus, in that case, there is
really no need to appeal to any physical principle to specify uniquely the velocity field,
and the convenient mathematical condition above serves perfectly well. The case where
there does exist a distribution of singularities in the flow is discussed in later sections.

Using (20) and the fact that on|ζ | = 1,

zs = i ζzζ
|zζ | , (30)

the kinematic boundary condition (26) becomes the following condition on|ζ | = 1:

Re

[
zt + 2F(ζ, t)

ζzζ (ζ, t)

]
= 1

2|zζ | , (31)

where we define

F(ζ, t) ≡ f (z(ζ, t), t). (32)

We also define

G(ζ, t) ≡ g′(z(ζ, t)). (33)
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Formally, in the following analysis, we assume thatF(ζ, t) is analytic in|ζ | ≤ 1, but
we allow G(ζ, t) possibly to have a pole of orderr0 at ζ = 0 and poles of orderr j at
ζ = ζ̄−1

j inside the unit circle, with

0≤ r0 ≤ M − M0, 0≤ r j ≤ γj , j = 1 . . . N, (34)

whereζj , j = 1 . . . N, are the poles of orderγj of the conformal mapz(ζ, t) outside the
unit circle (see (39)), and we define

M0 =
N∑

j=1

γj . (35)

Physically, these singularities represent general multipoles (e.g., a source/sink, dipole)
at z0 and atz-locations corresponding toζ = ζ̄−1

j .
We now convert the boundary condition (31) into a differential equation forz valid

everywhere in|ζ | ≤ 1. Because of the restriction (29) (which impliesF(0, t) = 0) and
(27), it is easily seen thatζ = 0 is a removable singularity of the expression within the
square parentheses on the left-hand side of (31). The left-hand side of (31) is clearly
the real part of an analytic function in|ζ | ≤ 1. Using the Poisson integral formula for
|ζ | < 1,

zt + 2F = ζ I (ζ, t)zζ , (36)

where

I (ζ, t) = 1

2π i

∮
|ζ ′|=1

dζ ′

ζ ′

[
ζ ′ + ζ
ζ ′ − ζ

]
1

2|zζ | + i D(t) (37)

andD(t) is a real function of time. The remaining rotational degree of freedom of the
Riemann mapping theorem is used by insistingD(t) = 0. That such a freedom exists
can be observed readily by replacingζ by ζei θ(t) in (36), with θ̇ = D(t). Thus, without
any loss of generality,

I (ζ, t) = 1

2π i

∮
|ζ ′|=1

dζ ′

ζ ′

[
ζ ′ + ζ
ζ ′ − ζ

]
.

1

2|zζ | . (38)

Sincez(ζ, t) must be analytic in|ζ | ≤ 1, it is possible to express it in the form

z(ζ, t) = h(ζ, t)∏N
j=1, (ζ − ζj (t))γj

, (39)

whereN, γj are arbitrary positive integers and the corresponding polesζj are all outside
the unit circle (i.e.,|ζj | > 1), whileh(ζ, t) is analytic for|ζ | ≤ 1.

The principal result of this paper is to demonstrate the important fact that, ifh(ζ, 0)
is an arbitrary polynomial of sufficiently high order, thenit remains a polynomial of
the same order for all times that the solution exists(provided the polesζj (t) evolve in
an appropriate manner). Thus, it will be shown that the conformal mappings of certain
initial blobs as they evolve under Stokes flow with surface tensionremain describable
in terms of afinite set of time-evolving parameters for as long as the solution exists. It
is in this sense that we refer to such solutions asexact. Moreover, the conservation law
approach used here is seen to simplify the computation of the evolution of the coefficients
of h(ζ, t) (in comparison to other known methods), while simultaneously producing a set
of conserved quantities—the existence of which was not explicit in previous methods.
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4. Conservation Laws and Exact Solutions

To demonstrate the existence of exact solutions and the conserved quantities associated
with them, the problem is now reformulated in terms of a set of very general line integral
quantities given by

JK (t) =
∮

C
K (ζ, t)z̄(ζ̄ , t)zζ (ζ, t) dζ, (40)

whereK (ζ, t) is a general function ofζ andt which will be taken to be analytic on and
within the unit circle andC denotes the boundary of the unit circle|ζ | = 1 traversed
anticlockwise. Later, special choices of the functionK (ζ, t) will be made in order to
establish various results. Notice that these line integral quantities can be defined at any
instant of time givenonly the conformal map representing the fluid region at that time. In
this sense, such quantities arepurely geometricaland do not depend on the flow within
the blob. The time evolution of such quantitiesdoes, however, depend on the flow within
the blob. First we state and prove a theorem about howJK (t) evolves in time, assuming
that the blob evolves under the equations of Stokes flow with surface tension:

Theorem 4.1. For JK (t) defined as in (40), where z(ζ, t) is the conformal mapping
function as defined earlier,

J̇K (t) =
∮

C
K (ζ, t)2G(ζ, t)zζ (ζ, t) dζ

+
∮

C

[
Kt (ζ, t)− ζ I (ζ, t)Kζ (ζ, t)

]
z̄(ζ̄ , t)zζ (ζ, t) dζ. (41)

Proof. DifferentiatingJK (t) with respect to time gives

d

dt

∮
C

K (ζ, t)z̄(ζ̄ , t)zζ (ζ, t) dζ =
∮

C
K (ζ, t)

[
z̄t zζ + z̄zζ t

]+ Kt (ζ, t)z̄zζ dζ. (42)

Using (36) (and its complex conjugate) to substitute forzt , z̄t gives

J̇K (t) =
∮

C
K (ζ, t)

[
−2F̄(ζ̄ , t)zζ + 1

ζ
Ī (ζ̄ , t)z̄ζ (ζ̄ , t)zζ (ζ, t)

+ z̄[−2F + ζ I (ζ, t)zζ ]ζ

]
+ Kt z̄zζ dζ. (43)

Rearranging terms and integrating one of the terms by parts, this becomes

J̇K (t) =
∮

C
K (ζ, t)

[
−2F̄zζ − 2z̄Fζ + 1

ζ
[ I (ζ, t)+ Ī (ζ̄ , t)]zζ z̄ζ

]
dζ

+
∮

C

[
Kt − ζ I (ζ, t)Kζ

]
z̄zζ dζ. (44)

Using the stress condition (20), which using (30) can be written as

F̄(ζ̄ , t)zζ + z̄Fζ (ζ, t)+ G(ζ, t)zζ = 1

2ζ
z1/2
ζ z̄1/2

ζ , (45)
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and the fact that onC

I (ζ, t)+ Ī (ζ̄ , t) = 1

z1/2
ζ z̄1/2

ζ

, (46)

we then obtain the required result.

In order to demonstrate the existence of exact solutions of the form (39), withh(ζ, t)
a polynomial, we will make special choices of the functionK (ζ, t).

Definition. Define integralsJ0
k0
(t) for eachk0 = 0, 1, 2, . . . as

J0
k0
(t) =

∮
C

K0(ζ, t; k0)z̄(ζ̄ , t)zζ (ζ, t) dζ, (47)

where

K0(ζ, t; k0) = ζ k0

N∏
p=1

(ζ − ζ̄−1
p )γp . (48)

We now state a theorem that connects the properties of the functionh(ζ, t) to the
properties ofJ0

k0
(t). It is noted that the following theorem has nothing to do with any

dynamics of the physical problem at hand.

Theorem 4.2. Assume M is an integer such that M≥ M0. Then,

J0
k0
(t) = 0 for all k0 ≥ M − M0, (49)

if and only if h(ζ, t) is a polynomial of degree at most M.

Proof. First, assume thatJ0
k0
(t) = 0 for k0 ≥ M − M0. Then, from (39) and the

definition of J0
k0

in (47), it follows that∮
C
ζ j H(ζ, t) dζ = 0 for j = k0− M + M0 ≥ 0, (50)

where

H(ζ, t) = ζ Mh̄(1/ζ, t) zζ . (51)

SinceH(ζ, t) is known to be analytic on|ζ | = 1, it must have a Laurent series convergent
for |ζ | = 1 (and locally in an enclosing annulus). Writing this as

H(ζ, t) =
∞∑

j=−∞
Hn(t) ζ

n, (52)

it is clear that (50) implies thatH− j−1 = 0 for j ≥ 0, i.e., all negative coefficients of
the Laurent expansion forH(ζ, t) are zero. Thus,H(ζ, t) is analytic in|ζ | ≤ 1. Since
it is known thatzζ is analytic and nonzero there, then it follows thatζ Mh̄( 1

ζ
, t) is also

analytic in|ζ | ≤ 1. We conclude thath(ζ, t) must be polynomial of degree at mostM .
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Conversely, assume thath(ζ, t) is a polynomial of degreeM or less. It follows that
ζ Mh̄(1/ζ, t)zζ is analytic for|ζ | ≤ 1. By Cauchy’s theorem, we deduceJ0

k0
(t) = 0 for

k0 ≥ M − M0, and the proof of Theorem 4.2 is complete.

Using Theorem 4.1, the following theorem concerningJ̇0
k0

is useful:

Theorem 4.3. Define{dj | j ≥ 0} as the Taylor series coefficients of the following
analytic function in|ζ | ≤ 1:

− k0I (ζ, t)+
N∑

p=1

γp

ζ I (ζ, t)− ζ̄−1
p I (ζ̄−1

p , t)

ζ − ζ̄−1
p

=
∞∑

j=0

dj ζ
j . (53)

Also, assume that eachζj (t) evolves according to

d

dt
ζ−1

j = −ζ−1
j (t) I (ζ−1

j (t), t). (54)

Then, for each integer k0 ≥ 0,

J̇0
k0
=
∞∑

j=0

dj J0
(k0+ j ) +

∮
|ζ |=1

dζ K0 2 G zζ . (55)

Further, if k0 ≥ r0,

J̇0
k0
=
∞∑

j=0

dj J0
(k0+ j ). (56)

Proof. On substitutingK0(ζ, t; k0) for K in Theorem 4.1, it follows that

J̇0
k0
=
∮
|ζ |=1

dζ K0z̄zζ
N∑

p=1

γp

(ζ − ζ̄−1
p )

[
− d

dt
ζ̄−1

p − ζ̄−1
p I (ζ̄−1

p , t)

]

+
∮
|ζ |=1

dζ K0z̄zζ
N∑

p=1

γp

ζ − ζ̄−1
p

[−ζ I (ζ, t)+ ζ̄−1
p I (ζ̄−1

p , t)
]

+
∮
|ζ |=1

dζ K0 zζ (2 G− k0I z̄). (57)

On taking the complex conjugate of (54) and using the property that the complex conju-
gate ofI (ζ−1

p , t) is I (ζ̄−1
p , t) (which follows from (38)), the first integral in (57) vanishes.

Using the series representation (53) (which is uniformly convergent for|ζ | ≤ 1) in
(57), the result (55) immediately follows. It is readily seen that ifk0 ≥ r0, thenK0 zζ G
must be analytic for|ζ | ≤ 1. So, the result (56) follows.

It is important to point out theupper-triangularnature of the evolution equations (56).
Note that the evolution of eachJ0

k0
(t) (for givenk0) dependsonly on the values ofJ0

j (t)
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for j ≥ k0. This observation opens up the possibility that if the initial configuration of
the blob is such that all theJ0

j (0) vanish for j greater than (or equal to) some sufficiently
large integer, then these line integrals canremain zero for all times that the solution
exists. We now show that this is, in fact, the case.

Remark 1. From the definition ofI (ζ, t) in (38), it is clear that on|ζ | = 1, Re I is
given by the right-hand side of (31), which is always positive. SinceRe I is a harmonic
function for |ζ | ≤ 1, it follows from the maximum principle thatRe I(ζ, t) > 0 in
that domain for as long as the integral (38) exists. From (54), this immediately implies
that Re

[
ζ̇j /ζj

]
> 0, which shows that all pole singularities of the conformal mapping

function (39) move away from|ζ | = 1. Earlier, Tanveer and Vasconcelos [8] presented
a more general argument to show that any initial singularity ofz(ζ, t) in |ζ | > 1 moves
outward with time.

Remark 2. If surface tension effects are ignored in the analysis, then it is clear that
I (ζ, t) ≡ 0 and, in that case, all thedk coefficients are zero. Therefore from (54)–(56),
it follows that the singularitiesζj (t) and all but a finite number of the line integral
quantities are time invariant even whenh(ζ, t) is not restricted to a polynomial. Such
results for zero surface tension whenz(ζ, t) is a general analytic function have been
derived systematically by Cummings et al. [7] in a manner similar to Theorem 4.1,
although these results follow directly from earlier work of Tanveer and Vasconcelos [8]
(Xk in the notation of Section 4 of [8]), who found such invariants in anad hocmanner
for the closely related problem of a single bubble in an arbitrary strain field.

Theorem 4.4. If J 0
k0
(0) = 0 for k0 ≥ M − M0, then J0k0

(t) = 0 for t > 0.

Proof. This crucial theorem contains the essential dynamics of the problem. Note that
sinceM − M0 ≥ r0 by (34), then (56) gives the appropriate evolution equation forJ0

k0

whenk0 ≥ M − M0. By inspection of (56),J0
k0
(t) = 0 for k0 ≥ M − M0 is clearly

a solution of the initial value problem. However, this does not address the question of
uniqueness. In order to show uniqueness for|ζ | ≤ 1, it is convenient to express

I (ζ, t) =
∞∑

n=0

In ζ
n, (58)

N∑
p=1

γp

ζ I (ζ, t)− ζ̄−1
p I (ζ̄−1

p , t)

ζ − ζ̄−1
p

=
∞∑

n=0

Tn ζ
n = T(ζ ). (59)

It is clear from (53) that

dn = −k0In + Tn, n ≥ 0. (60)

Note thatIn andTn are not dependent onk0, unlike dn as defined in (53). (56) can be
then be rewritten as

J̇0
k0
= −

∞∑
j=0

k0I j J0
(k0+ j ) +

∞∑
j=0

Tj J0
(k0+ j ). (61)
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It is convenient to extend the definition ofI j andTj for j < 0 by setting them to zero.
Then, fork0 ≥ M − M0,

J̇0
k0
= −

∞∑
j=−∞

k0I j J0
(k0+ j ) +

∞∑
j=−∞

Tj J0
(k0+ j ). (62)

We define new variables

Uk(t) = J0
k (t) for k ≥ M − M0. (63)

Then, fork ≥ M − M0,

U̇k = −
∞∑

j=−∞
k Ij U(k+ j ) +

∞∑
j=−∞

Tj U(k+ j ). (64)

We extendUk to k < M − M0 by requiringUk(0) = 0 and demanding that it satisfies
(64), even fork < M − M0. If we now define

U (ζ, t) =
∞∑

k=−∞
Uk(t)ζ

k, (65)

Î (ζ, t) =
∞∑

n=−∞
Inζ
−n = I (ζ−1, t), (66)

T̂(ζ, t) =
∞∑

n=−∞
Tnζ
−n = T(ζ−1, t). (67)

By multiplying (64) byζ k and summing overk from−∞ to∞, it is clear thatU (ζ, t)
satisfies the following partial differential equation:

Ut + ζ( Î U )ζ − T̂ U = 0. (68)

We know that as long aszζ 6= 0 in |ζ | ≤ 1, I (ζ, t) defined by (38) is analytic for
|ζ | ≤ 1. This impliesÎ (ζ, t) = I (ζ−1, t) is analytic for|ζ | ≥ 1. Further, by inspection,
it is clear thatT̂(ζ, t) is analytic in this domain as well. The initial conditions onJ0

k0

for k0 ≥ M − M0 imply Uk0 = 0 for all k0, and henceU (ζ, 0) = 0. From the well-
known theory of first-order partial differential equations, whose coefficients are known
a priori to be analytic over some domain, it follows from (68) that the unique solution
is U (ζ, t) = 0. This implies allUk(t) (and hence allJ0

k (t)) for k ≥ M − M0 are zero.
Thus, Theorem 4.4 is proved.

Remark 3. If J0
k0
(0) = 0 for k ≥ M − M0, as is true whenh(ζ, t) is a polynomial of

degreeM , then the summation indexj in (55) ranges only from 0 toM −M0− k0−1 .

Theorem 4.5. If h(ζ, 0) is a polynomial of degree at most M, then so is h(ζ, t).
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Proof. If h(ζ, 0) is a polynomial of degree at mostM , it follows from Theorem 4.2
that J0

k0
(0) = 0 for k0 ≥ M − M0. From Theorem 4.4, it follows thatJ0

k0
(t) = 0 for

t > 0. Theorem 4.2 impliesh(ζ, t) is a polynomial of degree at mostM . The proof is
then complete.

From this point onwards we will only be concerned with initial conditions for which
h(ζ, 0) is a polynomial of orderM , whereM ≥ M0. From Theorem 4.5, if follows that
as long as the solution exists,h(ζ, t) will remain a polynomial of degreeM , and this
will be assumed henceforth. While the evolution of the poles of the conformal mapping
outside the unit circle is known, it remains to determine the evolution of the (finite set
of) coefficients of powers ofζ in the polynomialh(ζ, t). It will now be shown that the
evolution of the coefficients ofh(ζ, t) can be deduced by considering further sets of line
integral quantities whose evolution equations also have an upper-triangular structure.

Definition. For each integerj between 1 andN, and integerkj = 0, 1, 2, . . . ,we define
J j

kj
(t) as

J j
kj
(t) =

∮
C

Kj (ζ, t; kj )z̄(ζ̄ , t)zζ (ζ, t)dζ, (69)

where

Kj (ζ, t; kj ) = ζ M−M0(ζ − ζ̄−1
j )kj

N∏
p=1
p6= j

(ζ − ζ̄−1
p )γp . (70)

We now introduce a theorem about the evolution ofJ j
kj
(t).

Theorem 4.6. Assume that{d̂ j
n | n ≥ 0} are defined as the Taylor series coefficients of

the following analytic function aroundζ = ζ̄−1
j :

−(M − M0) I (ζ, t)+ kj

[− d
dt ζ̄
−1
j − ζ I (ζ, t)

ζ − ζ̄−1
j

]

+
N∑

p=1
p6= j

γp

−ζ I (ζ, t)+ ζ̄−1
p I (ζ̄−1

p , t)

ζ − ζ̄−1
p

=
∞∑

n=0

d̂ j
n (ζ − ζ̄−1

j )n. (71)

Also, assume that eachζj (t) evolves according to (54). Then, for each integer kj ≥ 0,

J̇ j
kj
=
∞∑

n=0

d̂ j
n J j

(kj+n) +
∮
|ζ |=1

Kj (ζ, t; kj ) 2 G zζ dζ. (72)

Further, if kj ≥ r j ,

J̇ j
kj
=
∞∑

n=0

d̂ j
n J j

(kj+n). (73)
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Proof. We use Theorem 4.1 and the expression forKj in (70) to conclude that

J̇ j
kj
(t) = kj

∮
C

Kj (ζ, t; kj )

[− d
dt (ζ̄

−1
j )− ζ I (ζ, t)

ζ − ζ̄−1
j

]
z̄(ζ̄ , t)zζ (ζ, t) dζ

+
N∑

p=1
p6= j

γp

∮
C

Kj (ζ, t; kj )

[
− d

dt ζ̄
−1
p − ζ I (ζ, t)

ζ − ζ̄−1
p

]
z̄(ζ̄ , t)zζ dζ

− (M − M0)

∮
C

Kj (ζ, t; kj )I (ζ, t)z̄(ζ̄ , t)zζ dζ

+
∮

C
Kj (ζ, t; kj )2G(ζ, t)zζ (ζ, t) dζ. (74)

Using (54), the integrands in (74) are seen to be analytic for|ζ | ≤ 1, except possibly
at ζ = ζ̄−1

j . We deform the contour and rewrite (74) as

J̇ j
kj
(t) = kj

∮
|ζ−ζ̄−1

j |=ε
Kj (ζ, t; kj )

[− d
dt (ζ̄

−1
j )− ζ I (ζ, t)

ζ − ζ̄−1
j

]
z̄(ζ̄ , t)zζ (ζ, t) dζ

+
N∑

p=1
p6= j

γp

∮
|ζ−ζ̄−1

j |=ε
Kj (ζ, t; kj )

[
− d

dt (ζ̄
−1
p )− ζ I (ζ, t)

ζ − ζ̄−1
p

]
z̄(ζ̄ , t)zζ (ζ, t) dζ

− (M − M0)

∮
|ζ−ζ̄−1

j |=ε
Kj (ζ, t; kj )I (ζ, t)z̄(ζ̄ , t)zζ (ζ, t) dζ

+
∮
|ζ |=1

Kj (ζ, t; kj )2G(ζ, t)zζ (ζ, t) dζ, (75)

whereε is chosen small enough to ensure that the series in (71) is convergent for|ζ −
ζ̄−1

j | ≤ ε. Using (71), and carrying out term by term integration (valid since the
convergence is uniform), the result (72) immediately follows. Further, ifkj ≥ r j , it is
clear that the integrandKj (ζ, t; kj )2G(ζ, t)zζ (ζ, t) is analytic everywhere in|ζ | ≤ 1,
and hence (73) follows. The proof of the Theorem 4.6 is then complete.

We can now state an important lemma concerning the line integral quantitiesJ j
kj
(t) for

kj ≥ γj .

Lemma 4.1. J j
kj
(t) = 0 for kj ≥ γj .

Proof. On substituting (39) into (69) and usingζ̄ = 1/ζ on |ζ | = 1, as well as using
the definition ofKj in (70), it is observed easily that the integrand in (69) is analytic in
|ζ | ≤ 1 for kj ≥ γj , and therefore the Lemma follows by Cauchy’s theorem.

Remark 4. Note that the result in the Lemma is consistent with (73).

Remark 5. Because of the Lemma above, the summation indexn in (72) ranges from 0
to γj − kj − 1.
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We now discuss some ramifications of all the theorems above. An immediate ob-
servation is that an infinite set of integral invariants associated with solutions for which
h(ζ, 0) is a polynomial of degreeM have been identified. Associated with such solutions,
only afiniteset of integral quantities will be (in general) nonzero and time evolving in a
nontrivial fashion, namely,

{J j
kj
| kj = 0, 1 . . . γj − 1}; j = 1 . . . N, (76)

{J0
k0
| k0 = 0, 1 . . .M − M0− 1}. (77)

These are determined by solving the differential equations (55) and (72). (Note simpli-
fications due to Remark 4 and Remark 5 above). Thus there are in general

∑N
p=1 γp +

M − M0 = M nonzero time-evolving line integral quantities. Writing the polynomial
h(ζ, t) as follows,

h(ζ, t) =
M∑

n=0

hn(t)ζ
n, (78)

condition (27) then implies thath0(t) ≡ 0, leaving onlyM as yet undetermined functions
h1(t) . . . hM(t). We now state a conjecture that is so far supported only by numerical
evidence.

Conjecture. For givenζ1(t), ζ2(t), . . . ζN(t) outside the unitζ circle, the set ofM
quantities in (76)–(77), as defined in (47) and (69), implicitly determineh1(t) through
hM(t).

Remark 6. It is clear from the definition ofJ0
k0
(t)andJ j

kj
(t) in (47), (69) and the relations

(39), (78) that these are quadratically dependent onh1(t) throughhM(t); hence, a globally
unique relation between the set ofJ’s andh’s is unlikely. However, a Newton iterative
procedure gives a unique solution locally when subjected to the constraint thathj (0) are
as specified.

5. A Theorem of Invariants

For a certain subset of the solutions (39), it is possible to deduce immediately a further
finite set of invariants which greatly facilitates the calculation of such solutions. We now
state and prove a theorem involving solutions in which the mapping functionz(ζ, t) has
simplepoles outside the unit circle.

Theorem 5.1. (Theorem of Invariants)If the initial conformal map for a viscous blob
has the form

z(ζ, 0) = h(ζ, 0)∏N
j=1(ζ − ζj (0))γj

, (79)
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where h(ζ, 0) is a polynomial of degree M≥ M0, then for any j for whichγj = 1 and
r j = 0 (so that G(ζ, t) has no singularity atζ = ζ̄−1

j ), there exists an invariant of the
motion given by

Bj =
J j

0 (t)ζ̄
M−M0
j∏N

p=1
p6= j
(ζ̄−1

j − ζ̄−1
p )γp

. (80)

Proof. It is clear from the results of previous sections that the evolution of the blob is
given by

z(ζ, t) = h(ζ, t)∏N
j=1(ζ − ζj (t))γj

, (81)

whereh(ζ, t) remains a polynomial of degreeM , and the polesζj , j = 1 . . . N, evolve
according to (54). Suppose there exists an indexj such thatγj = 1 with r j = 0, i.e.,
G(ζ, t) is free of any singularity atζ = ζ̄−1

j . Considerkj = 0 in (72); it is clear from
(72) that sincer j = 0,

J̇ j
0 = −d̂ j

0 J j
0 . (82)

Using (54) and (71), it follows that

d̂ j
0 =

N∑
p=1
p6= j

γp

[− d
dt (ζ̄

−1
p )+ d

dt (ζ̄
−1
j )

ζ̄−1
j − ζ̄−1

p

]
− (M − M0)I (ζ̄

−1
j , t). (83)

From (82) and (83),

d

dt
log(J j

0 (t)) =
N∑

p=1
p6= j

γp
d

dt
log(ζ̄−1

j − ζ̄−1
p )− (M − M0)

d

dt
log(ζ̄j ). (84)

Integrating with respect to time yields.

Bj =
J j

0 (t)ζ̄
M−M0
j∏N

p=1
p6= j
(ζ̄−1

j − ζ̄−1
p )γp

, (85)

where the complex constantsBj are determined from initial conditions. Hence the the-
orem is proved.

6. Case Study

Since the aim of this paper is to present a reformulation of the theory of exact solutions for
the problem of Stokes flow of a simply connected viscous blob, and since previous studies
in the literature have already computed specific examples illustrating the behaviour of
viscous fluid blobs, we do not intend to compute further examples here. We do, however,
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include details of a case study with a particularly appealing mathematical structure
that becomes clear as a result of the preceding analysis. We consider the special class
of solutions havingn simplepoles (and no other poles) outside the unit circle, i.e.,
{γj = 1 | j = 1 . . .n} giving

z(ζ, t) = h(ζ, t)∏n
j=1(ζ − ζj )

, (86)

whereh(ζ, 0) is taken as a polynomial of degreen. [Note that we could equally well
find a solution withh(ζ, t) as any polynomial of degree at leastn by taking a suitable
initial condition.] We assume the flow is driven purely by surface tension so that there
are no flow singularities in the blob andr j = 0 for all j = 1 . . .n. The results of this
paper allow the evolution equations for the parameters in this map to be written down in
a particularly concise and mathematically appealing way. From Theorem 4.3, we deduce
that provided the poles{ζj | j = 1 . . .n} evolve according to the equations,

d

dt
ζj
−1 = −ζj

−1I (ζj
−1, t), j = 1 . . .n, (87)

then a solution of the form (86) can be found. It only remains to determine then coeffi-
cients ofh(ζ, t), i.e.,{hk(t) | k = 1 . . .n} (since we knowh0(t) ≡ 0). However, Theorem
5.1 tells us that there aren invariants (or first integrals) of the motion associated with
this solution given by

Bj = J j
0 (t)∏n

p=1
p6= j
(ζ̄−1

j − ζ̄−1
p )

, j = 1 . . .n. (88)

The invariants{Bj | j = 1 . . .n} are determined by initial conditions. Thesen equations
then providen nonlinearalgebraicequations for the coefficients{hk(t) | k = 1 . . .n}
once the pole positions are known. Thus, the 2n equations, (87) and (88), provide a
complete and concise set of equations for this problem.

Finally, we remark that the special case of this example wheren = 2 includes the
problem of the coalescence of two viscous cylinders of unequal radius analysed by
Richardson [1], using a direct approach of combining the kinematic boundary condition
and the stress condition and adjusting the time evolution of the parameters in the map
z(ζ, t) to give the required analyticity properties ofG(ζ, t) in the unit circle. Such a
solution is obtained by making appropriate choices of initial conditions. After extensive
algebraic manipulation, Richardson [1] also deduces the existence of two invariant quan-
tities that can be shown to be equivalent to (88) in the casen = 2. He also deduces two
evolution equations for the poles of the mapping, which can be shown to be equivalent
to the more concise equations (87). The above case study represents a generalization of
these results to generaln. After this work was completed, the present authors became
aware that recently Richardson [6] has also identified the generalization of Richardson
[1] presented in the case study above by studying maps of the form

z(ζ, t) =
n∑

j=1

βj ζ

1− γj ζ
. (89)
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However, the method he used is different from that presented here and is, in essence,
a simplified version of the method used in Richardson [1]. Richardson [6] goes on to
study numerically a class of solutions with initial conditions corresponding ton touching
circular cylinders.

7. Discussion

With no flow singularities present in the blob, the results of this paper essentially provide
exact solutions, describable in terms of a finite set of parameters, for the physical problem
of the time evolution of certain initial boundary shapes for viscous blobs driven by
surface tension. The solutions are given by conformal maps of the form (39) withh(ζ, t)
a polynomial (of sufficiently high order).

Mathematically, the analysis also allows for a distribution of multipole singularities
to exist within the blob, and again exact solutions for the evolution can also be found in
this case. It has been found that while it is possible to specify externally the nature and
strength of such singularities (i.e., specify the strength of the residue contributions from
the last integral in (55) and (72)), it is not in general possible to specify externally the
singularity positions after the initial time (the singularities necessarily evolve according
to (54)). Thus, except in very special cases (for example, a single singularity at the
origin or at infinity [4] [7] [8] [10] [11]), these mathematical solutions are physically
untenable in that they are solutions to a problem where the singularities must move in
very special ways determined implicitly by the solution itself. While this is something
of a drawback in the use of these solutions to solve particular initial value problems with
a given distribution of known singularities at specified points in the flow, such solutions
may be adequatequalitativemodels of this physical scenario.

In summary, a new theoretical approach to the problem of the slow quasi-steady
viscous flow of a two-dimensional simply connected blob of fluid with surface tension
has been presented, which improves upon and unifies those used by previous authors. The
central result is that it is possible to find an infinite set of conserved quantities associated
with a very general class of rational conformal maps describing the boundary evolution
of the blob and a finite set of line integral quantities which implicitly determines the
evolution of such maps.
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