A Note on the Linear Stability
of Burgers Vortex

By Darren G. Crowdy

A two-parameter family of analytical solutions of the linearized equations
for axially dependent disturbances to the three-dimensional base strain field
associated with the well-known axisymmetric Burgers vortex is presented.
The solutions are valid asymptotically at large axial distances from the
stagnation point. By a formal perturbation analysis, perturbative solutions
are also found for disturbances to the Burgers vortex for small Reynolds
numbers. The solutions are believed to provide important insights into the
nature of the as-yet-unsolved problem of the linear stability of Burgers
vortex to axially varying disturbances.

1. Introduction

The axisymmetric Burgers vortex represents one of the few known exact
solutions to the full Navier—Stokes equations; however, very little has been
deduced about its stability properties since its discovery nearly 50 years ago
[1]. Given the extensive use of the vortex as a model of the fine-scale
structure of turbulence, its stability properties are of great importance. The
vortex consists of a pure swirl flow superposed on an irrotational base strain
flow. The flow is incompressible. In cylindrical coordinates (in which lengths
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are nondimensionalized with respect to the Burgers length scale /v /a and
times with respect to a~!, where a is the strain rate of the background flow
field) the solution can be written

u(r,0,z) = (—r,Vg(r),2z2), (1.1)
where
Va(r) = g (1= 72) = 2 Vy(r) (12)

and I' is the circulation. We define the Reynolds number to be

r

2wy

Re =

b

where v is the viscosity of the fluid.

Robinson and Saffman [2] and, more recently, Prochazka and Pullin [3]
have investigated the linear stability of the vortex to a general disturbance in
the plane perpendicular to the axial straining direction and found it to be
stable, at least for moderately high Reynolds numbers. Leibovich and
Holmes [4] analyzed the global stability of the vortex and showed it to be
globally unstable for all Reynolds numbers. These results say nothing about
the linear stability of the vortex to the important class of z-dependent
disturbances, and no study of this, either analytical or numerical, seems to
have been carried out before. This is probably due to the difficulty in even
formulating the linear stability problem—the classical notion of “wavenum-
ber” typically associated with Fourier-mode eigenfunctions is not available
owing to the lack of translational symmetries of the base strain flow on
which the Burgers vortex is superposed. Rather than viewing this as a
drawback, this note exploits the nonautonomous nature of the linearized
disturbance equations to glean important analytical information on the
large-z behavior of solutions. We also note that the two-dimensional linear
stability of the related Burgers vortex layer has recently received attention
[5] but again, the important question of the its three-dimensional linear
stability was not broached.

To elucidate our approach, consider the procedure for analyzing the
linear stability of a two-dimensional Blasius boundary layer [6]. Suppose x is
the coordinate along the wall and y is the coordinate perpendicular to the
wall. In this case the linearized equations are also not autonomous in x, but
by use of a parallel-mean flow assumption [6], the equations can be approxi-
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mated by an autonomous set (especially at large Re—see [6]). The approxi-
mate equations then admit the following eigenfunctions for the streamfunc-
tion

P(x,y,t) = f(y)e*e . (1.3)

Fitting the boundary conditions for f(y) (i.e., on the wall at y =0 and at
y =) then provides an eigenvalue relation between k& and w. For Burgers
vortex, owing to the nonautonomous nature of the linearized partial differ-
ential equations, eigenfunctions analogous to the Fourier modes above are
not available in general. However, in this note, we explicitly find a two-
parameter family of self-consistent large-z asymptotic solutions of the lin-
earized partial differential equations for small Reynolds numbers. For
Re = 0 the solutions have an algebraic dependence on z as z —> . Fitting
the appropriate boundary conditions at r =0 and r — % then provides the
eigenvalue relation between the frequency and the exponent of z in the
asymptotic solutions as expected by analogy with the Blasius boundary-layer
analysis.

The principal aim of this note is to present our analytical observations on
the structure of a class of solutions of the linearized disturbance equations
about the Burgers vortex for small Reynolds numbers. However, we go
further and conjecture some possible implications of these observations. In
the discussion in Section 4 we use the evidence of the explicit large-z
solutions found here to put the case for a spatial mode analysis of the linear
stability of the Burgers vortex to axially varying disturbances and conjecture
the possible role played in such an analysis by the solutions found here. In
particular, a spatial mode analysis would essentially involve causing a gen-
eral oscillatory disturbance at some z-station near the stagnation point at
the origin and observing whether the disturbances grow spatially as they are
convected with the flow to z — . Clearly, the possible behavior of solutions
as z = is then of crucial interest and is fundamental to understanding the
linear stability problem. In Section 2 we argue that, for perturbations to the
base strain field with no vortex (corresponding to Re = 0), there are two
fundamental behaviors of solutions as z — o: some solutions grow exponen-
tially with z, while the remainder have milder (less-than-exponential) behav-
ior as z —. The existence of the latter class of solutions is demonstrated by
explicit construction, and the subset of such solutions found here is shown to
have an algebraic dependence on z as z —. It is argued that it is these
solutions (and not the exponentially growing solutions) that are relevant to
the linear stability analysis. By a formal perturbation procedure, similar
explicit large-z asymptotic solutions can be found for perturbations to weak
Burgers vortices (small Re). This is done in Section 3. It does not seem to be
possible to derive explicit analytic forms for the exponential solutions.
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Because the family of solutions presented here is not derived in any
systematic way (so that there may well be other behaviors at infinity that we
have not identified) it is not possible to make any definite statements on the
linear (spatial) stability of the Burgers vortex for small Reynolds numbers,
but some informed speculations on how to formulate a numerical treatment
of the problem can now at least be made on the basis of this analysis.

2. Large-z solutions for Re = 0

It is clearly sufficient to consider the half-space r €[0,%), z €[0,%). The
solution method is straightforward: an ansatz for large-z asymptotic solu-
tions to the linearized disturbance equations is made. Assuming the ansatz,
certain terms in the linearized equations are shown to be asymptotically
negligible at large z. Solutions of the resulting asymptotic equations (satisfy-
ing appropriate boundary conditions at » = 0 and r — ) are then explicitly
found having the form assumed initially. Thus, such solutions are consistent
large-z solutions of the original equations. This is a standard dominant
balance argument [7]. The velocity field is written

u(r,z,t) = (=r+u(r,z,t), Vg(r)+o(r,z,t), 2z +w(r,z,t)) (2.1)
and the pressure field
P(r,z,t) = Pg(r,z) + p(r,z,t), (2.2)

where u(r, z,1),v(r,z,t),w(r, z,t), and p(r,z,t) represent the perturbation
quantities to be determined. Py(r, z) represents the pressure field associated
with the steady Burgers vortex solution. For simplicity (and through lack of
an analogue to Squire’s theorem for this case) we simply assume that the
solutions have no azimuthal dependence. This is permissible by the axisym-
metry of the Burgers vortex and strain field. Substituting into the Navier-
Stokes equations and linearizing, the nondimensionalized evolution equa-
tions become

2V
du _ u_rﬂﬂzﬁ_u_Re(ﬁ)U
ar dz r

dp  d°u 1du u J’u

ar | gr: ' r dr g2 552 (2:3)
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v vy g e (Ve (Ve av Lav v ot
ot ~ VT oy 29z “\ “ar r M T 2 T o T 2T 0
(2.4)
Iw aw aw  dp  d*w 1w | 9w
7+2W—rw+225——5 (97‘2+7W+ Py (25)
1 a9(ru) ow
7 " ar +E = 0. (26)

Note that the solution structure is most clearly seen by working with the
above equations. Thus we have deliberately avoided the alternative stream-
function-vorticity formulation. Any solutions for u, v, and w must be regular
at r=0. Since we seek perturbations to the Burgers vortex where the
vorticity decays exponentially as r —», we require all components of the
perturbation vorticity also to decay exponentially as r — . A sufficient (but
not necessary) condition is that u, v, and w decay exponentially. Thus, for
our purposes, we impose the boundary condition on the perturbation veloci-
ties that they decay exponentially as r — .
We make the following ansatz for large-z asymptotic solutions:

u(r,z,t) ~u(rye

v(r,z,t) ~o(r)e *

Zo.+17 o+1?
(2.7)
w(r,z,[)/\/‘,T;(r)e_”‘t%, p(r5z5t)~ﬁ(r)e_utzzrl+l’

where u,o are some (generally complex) parameters. It is understood
throughout that the real part of all functions should be taken to obtain a
physical solution—by linearity this can always be done. Assuming the
ansatz, it is clear that as z > the d*/dz” terms in Equations (2.3)—(2.5)
can be consistently neglected with respect to the other terms, as can the
dp /dz in Equation (2.5). All neglected terms in each equation are O(1/z?)
(i.e., small for z > 1) compared to the terms retained. Note also that since z
has been nondimensionalized with respect to the Burgers length scale, the
asymptotic solutions are valid for (dimensional) z > /v /a . Note that the
alternative of balancing z-advection with z-diffusion in any of the momen-
tum equations (2.3)-(2.5), e.g.,

Ju d%u
+22$ ~ +F (28)

is likely to lead to perturbation velocities growing exponentially with z as
z >,
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Substituting the above ansatz for w(r, z,¢) into the asymptotic version of
(2.5) yields the following ordinary differential equation (o.d.e.) for w(r)

d*w
— + (r+

1) aw
dr?

p W+(M_2+ZU)W=O' (2.9)
In principle, if w(r) (satisfying the boundary conditions) can be determined
from (2.9), (2.6) must be solved for a u(r), which also satisfies the boundary
conditions. If an appropriate #(r) can be found, the asymptotic version of
(2.4) then provides an o.d.e. for v(r). Finally, if a suitable ©(r), satisfying the
boundary conditions, can be found, the asymptotic version of (2.3) can be
directly integrated to give the corresponding p(r). It remains to see if
appropriate solutions to the o.d.e.’s can be determined. Equation (2.9) can
be identified with a confluent hypergeometric equation and, in the notation
of [8], the solution can be written

2

w(r) = M[w; -5, (2.10)

where M is the confluent hypergeometric function, regular at the origin.
The general asymptotic behavior of this function as r —x is

(2.11)

where [a],, =a(a+1)...(a+ m —1). The requirement of exponential decay
as r > gives the eigenvalue condition I'(b—a)™' =0, ie., (b—a)=—k,
where k =0,1,2... (using well-known properties of I'(z)). Using the param-
eters in (2.10), the eigenvalue condition is

w=2k—20 +4. (2.12)
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Using Kummer’s transformation to identify the solutions in terms of the
generalized Laguerre polynomials L{(r* /2), to within normalization,

VT/’(I’) = e—rz/zL(l?)(rz/Z), k = 0,1,2..., (213)

with w as in (2.12). The function u(r) must now be deduced from (2.6). It is
easily shown that

a(r) = oU(r)  where U(r) = %f()rrTv(F)dF. (2.14)

In general, for arbitrary choices of function w(r), regular at r=0 and
exponentially decaying as r — oo, the function obtained by integration as in
(2.14) clearly cannot be expected to be exponentially decaying. However, we
now illustrate that this is not the case for w(r) having the special form (2.13)
provided k > 1. Substituting from (2.13) in (2.14) yields

b

SI(r), (2.15)

Ly 2y
ro& 2

||'M»

1 22
U(r) =  [Fe " 2LQ(7 2)dF =
0 j

where we denote the coefficients of the kth-order Laguerre polynomial
LO(r? /2) by {b; | j=0..k} so that

k b
LY(r?/2) = .ZO 2—{,.r21 (2.16)
-
and we define
I(r) —[ Pt e 2, (2.17)

It can be shown using integration by parts that
— 2\ ,-r%/2 j ; .
I(r) = f(r)e "2 +2/j1  Vj=0 (2.18)

for some polynomial f,(r*). Thus

u(r) = Z f( e’ /2+— ij' (2.19)
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from which, without further inspection, it might be concluded that U(r) ~1/r
as r — ., But remarkably,

b = (J._!jl!) (k’i!j)!, (2.20)

which implies

fbjj!= f (—1)"(?) =0 Vkx>1, (2.21)
ji=0 j=0

which then implies that U(r) is indeed exponentially decaying as r — o (for
all k£ >1) as required to satisfy the boundary conditions. Also, it is clear that
u(r) is regular at r = 0. It still remains to establish that an appropriate v(r)
can be found. Substituting the ansatz for v(r,z,t) and u(r,z,t) into the
asymptotic form of (2.4) yields

d*o 1\do 1)\_ 2o
F-|-(r+7)E+(/LL+Z’>+2(T—ﬁ v = (Re)e " u. (2.22)

Even more remarkably, it can be shown that the spectrum of the self-adjoint
linear differential operator (LDO) in (2.9) is a subset of the spectrum of the
self-adjoint LDO on the left-hand side of (2.22). Therefore, if (2.12) holds,
the solution to the homogeneous equation (2.22), which satisfies the bound-
ary condition at » =0 and r — o0, is in fact given by

p+4+20 r’

o(ry=rM 5 32 — &5 (2.23)

or, again using Kummer’s transformation (to within normalization),
o(r) = re”" 2L ,(r2/2). (2.24)

Thus, for a v(r) (satisfying the boundary conditions) to exist, a Fredholm
alternative compatibility condition will have to be satisfied by the inhomoge-
neous term of (2.22), namely,

((Re)e™ 2a(r), re™" /2LY), ,(r? /2)) = 0, (2.25)
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where angle brackets denote the inner product defined by

(). g() = [ (g (r)e” Prdr (226)

associated with the self-adjoint LDO on the left-hand side of (2.22). In
general, for Re # 0, (2.25) will not hold and there will be no solution for
0(r) satisfying the boundary conditions and hence no solution having the
form of the assumed ansatz. However, for Re = 0, the equation for (r) can
be solved and is given (to within normalization) by (2.24). The corresponding
p(r) then follows immediately from integration of the asymptotic form of
(2.3). We have therefore succeeded in finding a family of consistent large-z
solutions (for Re =0) parametrized by integers k>1 and the complex
parameter o, with u given by the eigenvalue relation (2.12) having the form
originally hypothesized in the ansatz (2.7) and satisfying the required bound-
ary conditions at » =0 and r — oo,

3. Perturbation theory for small Re

Despite the string of fortuitous circumstances that led to the identification
of the above two-parameter family of solutions, it is not expected that these
represent isolated solutions that exist only for Re = 0. Indeed we expect to
be able to find perturbative solutions about the Re = 0 results valid for small
nonzero Re, although they will clearly not have the simple form, given in
(2.7), as already noted by the failure of such solutions to satisfy the
secularity condition (2.25). The relevant perturbation analysis is now out-
lined in this section. The analysis is not only interesting as an example of a
tractable perturbation analysis on a system of linear partial differential
equations (an analysis with some very interesting properties—in particular
the eigenvalue relation for small Re can be determined to all orders and
summed), but it also provides valuable insights into how the large-z solutions
found in Section 2 change when a weak Burgers vortex is superposed on the
base strain field. The zeroth-order solution is taken to be given by

w(r.z.0) = W(r)e 2

v(r,z,t) = I_J(r)e_“”’—zal+1 (3.1)

u(r,z,t) = crU(r)e‘“O’Z{TJrl

py = 2k =20 +4,
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where we define
w(r) = e*’Z/ZL(,?)(rZ/Z)

o(r) = re*’Z/zL(kllz(rz/Z)

~N| =

U(r) = 5 [7e 7 2LY(7 /2)dF.
0

It is taken to be understood that the solutions sought are asymprotic
solutions valid at large z, although we use = rather than ~ throughout. We
now seek to continue these solutions for small nonzero Re. In the following
analysis, special care must be taken to ensure that we always find a
perturbation to the above zeroth-order solution for given k and o, and that
we do not add onto the perturbed solution any contributions from neighbor-
ing solutions. This will ensure uniqueness of the perturbed solution.

We now attempt to solve the same large-z asymptotic equations as in
Section 2—in other words, the same dominant balance is expected to be
good for solutions for small Re. First it is observed that the large-z
asymptotic equation for w(r, z,¢) is independent of Reynolds number. Thus
the perturbed solution for w(r, z,¢) must also have the form

w(r,z,t) = e"z/zL(,?)(rz/Z)e‘“’%, (3.2)
where we take
w=pm, +Reu, +Re*p, +.... (3.3)
Note also that the eigenvalue condition continues to be
pw=2k—-25 +4, k> 1. (3.4)

Thus we immediately conclude that

- u ®
o= O'—R671—R6272—.... (3.5)

It is seen that the perturbed expression for w(r,z,t) has exactly the same
functional form as the zeroth-order solution but with perturbed parameters.
By continuity, the same is true of the perturbed u(r,z,t), which can be
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written

u(r,z,t) = (i'forfe"'z/ng”(fz/z)df e—mz_l

r g+l °

(3.6)

This is again fortuitous because it means that exactly the same arguments as
used before ((2.15)—(2.21)) can be applied to the perturbed u(r,z,t) to
demonstrate that it is a function decaying exponentially as r — . It remains
to determine w,, u, ..., which are derived from solvability conditions for the
perturbed v(r,z,t). We note at this point that while solving for v(r, z,1),
care is taken not to add into the solution any terms having the following
form

CRe’logzo(r) _

o+1

- (3.7)

for any integer j and any constant C. This is clearly the O(Re’) term in a
small Reynolds number expansion of

o(r A j

%e"“ where ¢ = o — CRe’. (3.8)
z

It is straightforward to show that adding in any such solution would corre-

spond to altering the parameter o in the zeroth-order solution; however, it

is assumed that a particular value of o is specified a priori.

As a convenient shorthand we define the following linear operators:

III
+

d? 1\ ¢ 1 J
]V[(",Z)—dr2 (r—i-?)——i-(,u,-i-l—ﬁ)—lzﬁ—z

|
+

9? 1\ ¢ 1 d
MO(F,Z) = 07}’2 (r+7)ﬁ+(ﬂo+1—r—2)—225 (39)

2
My(r) = d—+(r+%)%+(uo+1—rl2)+2(a +1).

Note that the solution of the ordinary differential equation

My(r)Q(r) =0 (3.10)
is

Q(r) = Av(r) (3.11)

for some constant A.
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Note also how the operator My(r,z) acts on functions such as
Q(r)log” z /(z°*1)) (p an integer):

Mo(r,z)(Q(r) logpz) _ (logp Z)Mo(r)Q(r) —2p(logz(p—1)z)ﬂ(r).

Zo'+l Za'+l o+1

(3.12)
We now write
v(r,z,t) = 0(r,z)e ™,  u(r,z,t) = d(r,z)e ", (3.13)
where it is already known from (3.6) that

u(r)

Z(’r+1 ’

i(r,z) = o

(3.14)

with & given by (3.5). In terms of this notation, the equation for 0(r, z) can
be written

M(r,z)d(r,z) = (Re)e ™" 2i(r,z). (3.15)

This is a partial differential equation for o(r,z) with an O(Re) forcing
depending on #(r, z). Expanding (3.14) for small Re gives

- _aU(r) mlogz
u(r,z) = ZUT 1+RC(T—%)
2, 2 2
pylog” z My M M
+Re? 1T+10g2(72—4—;_)—ﬁ . (316)
We now write
O(r,z) = vy(r,z) + Revy(r,z) + Re* v,(r,z) +.... (3.17)

Substituting the expansions for w, u(r, z,t), and v(r, z,t) into (3.15) gives
(My(r,z) +Rep, +(Re*) p, +...)

X (Uo(r,z) +(Re)v,(r,z) +(Re)’v,(r,z) + )

= U(Re)e’z/z(%)(l+(Re)(— ;—(1’ +M)+ ) (3.18)

o+1 2
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The leading-order equation obviously gives the zeroth-order solution

po(r,z) = 20 (3.19)

At first order in Re we get

w0 (r) N e " 2U(r)

My(r,z)v(r,z) = — s prs (3.20)
To solve this, we try v,(r,z)=0,(r)/(z7"") yielding
My(r)5,(r) = — u,o(r) + ae" 72U(r). (3.21)

This is an ordinary differential equation for the function v,(r) and by the
self-adjointness of the operator M (r), a solution for v,(r) satisfying the
boundary conditions exists only provided that a Fredholm alternative condi-
tion is satisfied by the inhomogenous term in (3.21), namely,

Cu(r) + ae™/2U(r),o(r)) = 0 (3.22)
yielding the result

_ Coe ™ 2U(r),o(r))
M1 (B(r),o(r))

(3.23)

Given this solvability condition, 7,(r) can, in principle, be computed as an
expansion in the complete set of eigenfunctions {rL(r* /2)exp(—r?/2)| p
= 0,1..} if needed. Observe that v,(r) seems to be determined only to within
an arbitrary multiple of ©(r), but adding any amount of the function v(r)
simply alters the normalization of the zeroth-order solution, which is as-
sumed fixed a priori. At second order in Re we obtain

—_ —_ _r2
pioi(r)  mo(r)  mU(r)e /2
- Z(r+l - Zo'+1 - 220+1

My(r,z)v,(r,z) =

o, U(r)e ™" *log z
+ 220'+1 *

(3.24)
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in(r2) = (1EE o) + (185 oy +

Substitution and use of (3.10)—(3.12) yield

)agﬂ)(r) (3.25)

|82 | (1 o)+ (28 oty () 000 + | 7 () 000

logz \(,- (7'I~‘«1U(")‘37r2/2 p0i(r) — pad(r)
=(F)(4U(22)(”)+ 2 I BT

pU(r)e "2 208(r)

220'+1 Z(rJrl

(3.26)

Using linearity and equating coefficients of the three different functions of
Z,

My(r)oP(r) = 0; (3.27)
from this we deduce that
0P (r) = Av(r) (3.28)
for some constant A. Also,

0',u,1U(r)e_rz/2
2

My(r)oP(r) = 4A40(r) + (3.29)

The Fredholm alternative condition that an appropriate 7$(r) should exist
yields the value of the constant 4. We can then solve for the function 7{(r)
as an eigenfunction expansion to within an arbitrary multiple of 7(r), the
kernel function. As previously discussed, if we were to add any of the kernel
function to 7$’(r), we would be adding a term of the form (3.7), which we
have disallowed for reasons discussed earlier. This requirement implies that
059(r) is uniquely determined. Finally

My(r)BO(r) = — uiBy(r) — uad(r) — —“1U(r)e ,2 +205(r). (3.30)
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By construction, the first and fourth terms on the right-hand side are
orthogonal to 7(r) but solvability for 75”(r) uniquely gives the value of w,,
i.e.,

__wU(e o)y o om
Ha 2o(r),o(r)y 20" (331)

Again, v{’(r) can be written as an eigenfunction expansion if required. The
perturbation calculation was carried out to O(Re?) and it became clear that
the procedure could in principle be carried out indefinitely. Indeed, the
perturbation analysis reveals a particularly interesting structure, which in
fact allows the eigenvalue relation to be not only determined to all orders,
but also summed. This is primarily a result of the fact that the form of the
forcing in (3.15) is known at all orders in Re. It becomes clear that

_ R (TU) ()
M, = > 5(r),5(r)) =~ 5gMn-1 Vn > 2 (3.32)
v,(r,z) = ZUIH Z (log z) v(r)  Vn =2, (3.33)
j=0

where v{/(r) are some functions of r that can be determined as eigenfunc-
tion expansions from the perturbation analysis. The results (3.32) and (3.33)
can be formally proved by induction. Using (3.32) in (3.5) it becomes clear
that

o =0 —%(Re,u,ﬁ—Rez,u,2 +Re3[.,t3+...)

R 2
—o - e(l—Reﬂ +Re2(%) + ) (3.34)

2 20

_ 1 Reu,
~ 9\ T 20 +Rep, |-

The final perturbed solution for the velocity field can therefore be written

o

w(r,z,t) = W(r)e””%
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-t

v(r,z,t) = %(l‘)(r)—kReD](r)
z
+Re2(U§2) r)(log z)*+ v®(r)log z + v r))+)
- _ 1
u(r,z,t) = GU(r)e ™ 7 (3.35)
- 1 Rep,
7= 9T 20 +Repy,

w=2k+4-26,

with w, in (3.23) and where the functions {v{(r)|0 < j<n,n>2} can be
found as eigenfunction expansions if needed.

Although the radius of convergence of the expansion in Re is not known,
we do not anticipate any problems with convergence. The fact that the
eigenvalue can be found to all orders and has a finite sum lends credence to
this. It is straightforward to see that the corresponding perturbation pres-
sure will have the large-z asymptotic form

_ (0)
r p(r logz
p(r,z) = IZ)((r+)1 + Re Zlggl) +piP(r) Za%l}
© 2
pPO(r) logz log”z
+Re?| S0+ () TR+ pP(r) T |+ O(Re?),
(3.36)

where the functions of r appearing in (3.36) can be obtained by direct
integration of the asymptotic form of (2.3).

Finally, note that as Re gets larger it is not expected that the large-z
asymptotic assumptions made to simplify the equations will continue to be
valid and a numerical study of the full equations will probably be needed to
see how these solutions continue for larger Re. However, for small Re, we
have shown by explicit construction of self-consistent solutions that the
asymptotic assumptions were the correct ones to make to find those solu-
tions. The two important results of this section are to note that when Re # 0
the solutions become more complicated and do not take the simple separa-
ble form as given in (2.7), and also to note how the eigenvalue relation
changed for small Re, i.e., to first-order

(e 2U(r),0(r))

u=2k+4—-20 +Reo 5(r),5(r)

(3.37)
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4. Discussion

We now discuss the possible relevance of these solutions to the linear
stability problem of Burgers vortex to axially varying perturbations. Using
the results of this note we now argue the case for a spatial mode analysis (see
[9] and references therein). Such analyses are usually more appropriate than
a temporal mode analysis in stability problems where there is an overall
mean flow direction (the z-direction in this case). A suggested stability
problem is to find the large-z asymptotic behavior of disturbances forced by
a general localized oscillatory perturbation near the stagnation point (cf. the
oscillating Schubauer ribbon experiment in boundary-layer stability analysis
[6]. In classical spatial mode analyses for flow problems allowing the usual
Fourier-mode decomposition (cf. (1.3)), the eigenvalue relation is inter-
preted as a relation giving the (generally complex) wavenumber k as a
function of the real frequency w, rather than a relation for the (generally
complex) frequency w as a function of the real wavenumber k (temporal
mode analysis). The existence of spatially growing modes (e.g., a mode with
Im[k]> 0 for some real o in (1.3)) then implies spatial instability provided
the group velocity of the spatially growing modes is such that the waves
travel downstream of the excitation. We conjecture that the proposed
exponentially growing modes suggested by the balance in (2.8) propagate
towards the stagnation point from infinity and thus would be discounted
physically using some generalized radiation condition. Note that it is clear
that if a temporal mode analysis was being carried out, some form of
boundary condition at z — < would be needed. In that case, it is not at all
clear what form this boundary condition should take. We conjecture that the
appropriate boundary condition should be to discount exponentially growing
solutions, although the reason for this choice is more easily understood (if
the radiation condition conjecture is correct) from a spatial mode perspec-
tive. Thus ruling out solutions that grow exponentially with z as physically
irrelevant, then naively inverting the eigenvalue relation (2.12) for o setting
n=Iiw for the class of large-z solutions found explicitly in Section 2 yields

iw
o =k+2—7,

k=1,2.... (4.1)
Since Re[o]=k +2> 0 for k =1,2..., implying algebraic decay as z =« of
all the solutions of the form (2.7) forced by a purely oscillatory excitation of
frequency o (note that the analysis of Section 2 made no a priori assump-
tions on the sign of Re[o]), this suggests spatial stability for Re =0, but
since we have not been able to systematically find all modes, no such
comprehensive statement can be made. However, it can further be specu-
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lated that a possible solution (after transients) for Re = 0 to an initial value
problem (IVP) with, say, no initial disturbance in z >0 and forced by an
appropriate excitation of single-frequency w at some z-station near the
stagnation point could be written

.2
e LY /2)
k22

w(r,z,t) ~ Realle™ " Y A,(w) as z > o (4.2)
k=1

for some {A,(w)|k =1,2.}, with similar expressions for u and v. By the
term “appropriate” we mean a specially manufactured disturbance that will
excite (at large z) only those modes that we have explicitly found. Since we
have not systematically found all modes, we cannot hope to write down the
most general large-z asymptotic solution generated by a general oscillatory
of frequency w. Note that for Re # 0, again naively inverting (3.37) for o
with u=iw implies that

_ 2k+4—iw
2=Re((e " 2U(r), () /(<B(r), B(r))))

o

(4.3)

It is then seen from (3.35) (setting u =iw) that by introducing a weak
Burgers vortex, the real part of the exponent of algebraic decay of the
perturbation swirl velocity v is seen to increase or decrease according to
whether the sign of the real quantity

(e " 2U(r), B(r))
(o(r),o(r))

(4.4)

is positive or negative, while that of u and w remains the same. Thus we
might say that the particular Re = 0 solutions given in (3.1) become more or
less spatially stable by the addition of a weak Burgers vortex according to
whether the real quantity in (4.4) is positive or negative (note that the
quantity in (4.4) depends implicitly on the integer k).

Even if we had systematically found all possible asymptotic behaviors, it
would still be necessary to determine, using perhaps some generalized
notion of group velocity, which modes propagate downstream of the excita-
tion, i.e., toward z >, and in particular that the proposed exponentially
growing modes can be genuinely discounted for the physical reasons just
conjectured. In general, given the complexity of the equations, a numerical
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solution of the full IVP will probably be needed to verify or disclaim these
conjectures. This would constitute a somewhat formidable undertaking,
especially if perturbations with azimuthal dependence are also included, and
this is left for future study. In any event, it will be of great interest to see
precisely what role the explicit asymptotic solutions found here play in the
linear stability problem of Burgers vortex to axially varying perturbations for
small Reynolds numbers.

In summary, the analytical observations presented in Sections 2 and 3
throw light on the structure at large axial distances of a certain class of
solutions of the linearized disturbance equations about the Burgers vortex.
Given the complexity of the equations, it is remarkable that any such explicit
analytical insights can be made at all. In this section it has further been
argued that these observations are important for providing clues for the
formulation of the linear stability problem for the vortex to general three-di-
mensional disturbances. At the very least, the results allow some definite
mathematical questions to be asked, which a future numerical treatment of
the linear stability problem might attempt to answer. Certainly they suggest
that allowance should be made in any numerical treatment for a continuous
spectrum associated with the z-direction and a discrete spectrum associated
with the r-direction (some collocation method using the complete set of
Laguerre polynomials found above seems appropriate). The solutions might
also provide a useful check for a numerical code. Finally we remark that the
results also suggest the possible use of some form of Mellin transform
technique as a tool in the numerical study of this problem.
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