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1. I N T R O D U C T I O N  

This paper presents the most general exact solutions of the quasi-linear partial differential 
equations 

~x~ + ~0yy = ~e aa' (1) 

~0xx - ~0yy = ?e a¢' (2) 

where g and d are real non-zero constants. Equations (1) and (2) are both generally recognised 
as being forms of the two-dimensional Liouville equation [1], and throughout this paper they 
will be referred to as the elliptic and hyperbolic Liouville equations respectively. The 
importance of these equations in various areas of mathematical physics from plasma physics 
and field theoretical modelling to fluid dynamics has made them the topic of many 
investigations for solution. A variety of exact solutions have been reported in the literature, 
many derived using highly sophisticated mathematical techniques [1-16]. For example, most 
recently Popov [16] employed a geometrical method on a Lobachevskii plane to obtain some 
general solutions to (1) from solutions of the two-dimensional Laplace equation, while Bhutani 
et al. [2] recently reported a new general solution of (2), and retrieved all previously known 
general solutions, using a direct method based on the formalism devised by Clarkson and 
Kruskal [17]. Neither of these two solution methods provide the m o s t  general solutions to (1) 
and (2) and solutions of the generality presented in this paper have not, to the best of the 
author's knowledge, been reported before. This paper therefore serves as a unification of many 
disparate results spread throughout the literature, and also provides many previously unknown 
exact solutions. 

The methods employed here are essentially elementary yet the solutions obtained are shown 
to be the most general. It is indicated how to retrieve currently known solutions as special cases 
of these most general solutions. The general solution to (1) is shown to depend on two arbitrary 
analytic functions and some constants while the general solution to (2) depends on four 
arbitrary real functions and some constants. For clarity, the development is presented as a 
series of theorems and proofs but since the purpose of this paper is to disseminate these formal 
solutions to the general scientific community where certain solutions might be recognised as 
having particular physical significance or application, the exposition is non-rigorous. Accord- 
ingly, any deeper mathematical implications of the results will not be treated here. 

2. THE E L L I P T I C  CASE 

To illustrate the method of solution for the elliptic case we solve the elliptic Liouville 
equation in the (x, y)-plane given by 

[llxx "~- Ilt yy = g e a~ (3) 
141 
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where ?, d are real constants which are assumed to be non-zero. By shifting to characteristic 
coordinates, z -- x + iy and ~- = x - iy, we can equivalently solve 

q'zz = ced* (4) 

for real solutions 4' where c = ?/4. It is noted that by the linear change of dependent  variable 

¢b = dq~ + log(Icdl) 

(4) can be written in the canonical form 

6ee = sgn[cd]e*. 

(5) 

(6) 

THEOREM 1. Any function $(z, z-) that is twice differentiable with respect to z and ~ and is a 
solution to 

qJze = ced* (7) 

also satisfies 

d 

where /~  is some analytic function of ~-. 

P r o o f .  Integrating (7) with respect to z gives 

We=c e a * d z + p ( ~ )  
0 

(8) 

Using to(z ,  z7) = f(q¢) then implies 

qJg( f '  - d f )  = 0 (14) 

for some arbitrary analytic function P(Z). On differentiating with respect to ~ and using (7), we 
obtain 

d 
qj~ = 2 ~2 +/~(:?) (9) 

where/~(~)  = P'(~).  Hence Theorem 1 follows. [] 

THEOREM 2. Any real-valued solution ~J(z, :~) to (8) that is sufficiently differentiable with 
respect to ~- and z is also a solution to (7) for some real constant c. 

P r o o f .  A direct proof  of this is possible-- the general real solution of (8) can be found 
directly (see Theorem 3) and it can be checked by substitution that the resulting solutions 
satisfy (7) for some value of c. An alternative approach is to take the second derivative of (8) 
with respect to z giving 

ffe~zz - dC, e~bezz - dC,~z = O. (10) 

Taking the complex conjugate of (10) gives 

- d O z  - z dq'ze = 0. (11) 

We now define to(z, :~) = 0ez. Subtracting (10) from (11) we obtain 

q~ z~O z - qJ ~ toe = 0. (12) 

It follows from (12) that to = f (¢ , )  for some real-valued function f. Differentiating (8) once with 
respect to z yields 

¢'e~z - dqJ~Oe = 0. (13) 
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from which it is concluded that any non-trivial real-valued solution ~b(z, f )  of (8) satisfies (7) 
for some constant c. [] 

THEOREM 3. Every real valued solution to (7) is of the form 

~b = - 2  log[cl yl(Z)Y,(~-) + c4Y2(Z)~f2(z) + c2yl(z).fz(Z) + c2)Tl(z)y2(z)] (15) 

where Yl (z) and )Tz(~-) are two independent solutions to 

d -  
y ~  + ~ E(~)y = 0 (16) 

for some analytic/~(~) while Cl and Ca are real constants and c2 is some complex constant. 

Remark 1. Real solutions are only defined in regions of the (x, y)-plane where the argument of 
the logarithm in (15) is positive. 

Remark 2. The conjugate function f ( z )  is defined as 

i(z) 
Proof. From Theorem 1, it follows that a solution to (7) is also a solution to (8) for some 

/~(~-). Note that (8) is in the form of a Ricatti equation and can be made into the linear 
second order differential equation (16) for y = e -a¢'/2. Therefore, it follows that 

y(z, z-) = EI(Z)yI(z) I- E2(z)y2(e) (17) 

for some functions E,(z) and E2(z). Since @ (and therefore y) is real, by taking the complex 
conjugate of (17), it follows that 

y(z ,  z)  = E , ( z )y , ( z )  +/~2(z-)y2(z). (18) 

Now, since (18) is a solution to (16), it follows that 

/~,(g) = g,37,(~-) + ~-2Y2(k-) (19) 

E2(Z) = c3)71 (Z) q- c4)72(Z-) (20) 

for some constants c,, c2, c3 and c4. On substituting (19) and (20) back into (17) and (18) and 
equating the two different expressions for y, we obtain the condition that c, and c4 are each real 
and that c2 = ~3. Thus, 

y(z ,  g) = c, y,(z)y,(~-) + c4Y2(Z)Y2(z) + ciYl(Z).Y2(z) + c2~7,(e)y2(z). (21) 

Thus, from the definition of y in terms of ~b, (15) follows. [] 

Remark 3. Since/~(~) is some arbitrary analytic function, the requirement that 37,(~) and Y2(z) 
are independent solutions to (16) can be replaced by choosing )7, to be an arbitrary analytic 
function of ~- while determining Y2(z-) from the condition that the wronskian 
~(~-)-=y,(~)y~(~-)-y',(~-)y2(:0=l (this can be done without any loss of generality). 
Clearly, once )7,(g) is chosen, an expression for E(:?) follows from (16). This unwieldy method 
of determining Ya(Z-) from the wronskian can be avoided by use of the following theorem: 

THEOREM 4. Let Y~(z) and Y2(z) be two arbitrary but independent analytic functions of z. 
Denote their wronskian by W ( z )  =- Y, (z)Y~(z)  - Yl(z)Y2(z) .  Then y, (z)  = Y1(z)/V-W-(z) and 
y2(z) = Y2(z)/WV-W-~(z) are two independent analytic functions with unit wronskian. 

Proof. Since 1I, and }'2 are independent, then W ( z )  is not zero. The relation c,y,  + c2Y2 = 0 
clearly implies c, II, + c2Y2 = 0 in some open set; from the independence of II, and 112, this 
implies c, = 0, c2 = 0; i.e. y, and Y2 are independent. On substituting for y, and Y2 in terms of 1"1 
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and Y2, it follows that the wronskian w(z)  of y~ and Y2 is 

r,(z)Y2(z)- r2(z)Y',(z) 
w(z) = = 1. (22) 

w(z) 

Hence Theorem 4 is proved. [] 

THEOREM 5. Any real solution to (7) is of the form 

2 1 
~0 = - ~ log[c~ Y~(z)f'l(~) + C4YR(Z)f'2(f) + c2Y~(z)f'2(f) + g2f'l(f)Y2(z)] + log[W(z)l~(~-)] 

(23) 

for some independent analytic functions Yl(z) and Y2(z), where cl and c4 are real constants and 
c2 is a complex constant, while W(z)  is the wronskian of Yffz) and Y2(z). 

Proof. This follows by substituting for yffz)  and y2(z) in terms of functions Yl(z), Y2(z) and 
W(z),  as defined in Theorem 4, into (15). [] 

THEOREM 6. The most general real solution to (7) is given by (23), where Yffz) and Y2(z) are 
any independent analytic functions of z, W(z)  is their wronskian, with real constants Cl and c4 
and complex constant c2 satisfying the constraint 

ca = -2 (c j  C 4 --  Ic212) (24) 

but which are otherwise arbitrary. 

Proof. Since we know any solution of (7) is of the form (23), by directly substituting (23) 
into equation (7), it is found that (7) is satisfied if and only if the constraint (24) is satisfied. 

[] 

According to Theorem 6 it should be possible to retrieve all known solutions of the elliptic 
Liouville equation as special cases of (23). The well-known general solution given by Liouville 
[1, 14, 15, 18] is trivially retrieved as a special case of this most general solution. Liouville's 
solution of (7) when cd < 0, can be written 

2 ( .2  + u 2) (25) 
ea~" = c d  (/ /2 q_ u2 q_ 1)2 

where u and v are arbitrary conjugate functions. This corresponds to the choice Yffz) = f ( z )  = 
u + iv where f ( z )  is an arbitrary analytic function and Y2(z) = 1 with ct = c4 = V-Z--(cd/2) and 
c2 = 0. The resulting solution [using (23)] is 

~ /  log[f' ( z )f '  ( g) ]. (26) ~ = - 2 1 o g [  -c~d2 ( f ( z ) f ( g ) + l ) ] + ~ l  

2 Observing that f ( z ) f ( f )  = u 2 + v 2 and f ' ( z ) f ' ( g )  = u 2 + Uy we retrieve Liouville's solution (25) 
as a special case of (23). Stuart [15] lists a number of exact solutions of (7) including one that is 
similar to Liouville's solution for the case cd > 0 in the form 

ea~, _ 2 (u~ + u 2) (27) 
cd (u 2 + v 2 - 1 )  2 .  

This corresponds to ~ ( z )  = f ( z )  = u + iv ( f ( z )  arbitrary) and Y2(z) = 1 with cl = VTd-~, 
c4 = -x /Sd-~  and c2 = 0. Stuart [15] also reports a class of solutions (attributed to Varley) for 
the case cd < 0 in the form 

e -a*/2 = a , (z ) f f , (e )  + c~z(z)ffz(g) (28) 

where al(z),  az(z) are independent analytic functions of z satisfying the equation 

fz~ - G(z ) f  = 0 (29) 
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with oq(z)a; (z ) -  a2(z)a[(z)= A and I;tl 2 =  -cd /2  and G(z) is an arbitrary analytic function 
of z. In fact, using the theorems in this paper, it can now be demonstrated that this general 
solution is equivalent to the most general solution for cd < 0. To see this, by combining and 
rewriting the various results of Theorems 1-6, it has now been established that the most 
general solution of (7) can be written 

2 y0( , 
+c, , Zy2 2] (30) 

where yl and Y2 are independent solutions of (16) for some E(z). If cd < 0  it is clear that in 
order for the argument of the logarithm in (30) to be positive then necessarily Cl >0 .  
Iden t i fy ing  O/l(Z ) = ~Cl(Yl + (C2/Cl)y2) and t~2(z) = X / -  cd/2ClY2(Z) it is seen that (28) is in fact 
equivalent to the most general solution for cd < 0. This very important and significant fact is 
not stated in Stuart [15], nor does it seem to have been acknowledged elsewhere in the 
literature. The three types of solution of V2~b--e * (corresponding to c - -1 /4 ,  d - - 1  in our 
notation) recently identified by Popov [16] using geometrical methods can be written 

• r2(vx + v})] 
I/s = tog[- ~-7 _ (31) 

. 

4, = ,og[- s-~n~- (32) 

2 2 • r2(vx + Vy) 1 
= log L- ~-ln~- ff ] (33) 

where v(x, y ) =  Re[f(z)]  and f ( z )  is a general analytic function of z = x + iy. To retrieve (31) 
2 ~_ 2 t - t  -- take cl = c4 = 0, c2 = 1/V~ with Yl(Z) = f ( z ) ,  Ya(z) = 1 in (23). Noting that Vx Vy = f  (z)f (z) 

we retrieve the required result. To obtain (32) we take cl = Ca = 0, c2 = l/X/8 with Yffz)= 
sinh[f(z)/2], Y2(z) = cosh[f(z)/2]. Result (33) is obtained by taking Cl -- c4 -- 0, c2 = l/X/8 with 
YI(Z) = sin[f (z)~2], Y2(z) = cos[f (z)~2]. 

Note that from the canonical form (6) it is clear that there are essentially two distinct types of 
elliptic Liouville equation depending on sgn[cd] which, by (24), is the same as the sign of the 
determinant-like quantity Ic21Z-c~c4. The solutions in each case have somewhat different 
behaviours. In particular it is known from more general analysis [19, 20] that when cd > 0 the 
elliptic Liouville equation possesses no solution valid in the entire plane, while for cd < 0 it 
does possess such solutions. These properties can now be demonstrated explicitly for the 
elliptic Liouville equation using the above general representation of the solutions. For example, 
we briefly sketch a direct proof of the fact that for cd > 0, (7) has no solutions valid in the 
entire complex z-plane. The proof is by contradiction. Suppose there exists a solution of (7) for 
cd > 0 valid in the entire plane. Then by Theorems 1-6, the solution necessarily has the form 
(30) where yl(z) and y2(z) are independent solutions of (16) for some E(z) and, without loss of 
generality, cl >0.  Since the solution is valid everywhere, yffz) and yR(z) must be entire 
functions. Also, in order that the argument of the logarithm in (30) is strictly positive, the 
following inequality must hold everywhere in the finite z-plane: 

X/~cl(y 1 + c2 Y2) > lY21. (34) 
C l  / I  

In addition, y~ + (c2/c~)y2 can have no zeros in the finite z-plane because the argument of the 
logarithm in (30) would fail to be strictly positive at any zero of y~ + (c2/c~)y2. Equation (34) 
thus implies that 

y2(z) . 2 ~  (35) 
yl(z) +(-c2/c,)y2(z) < V cd" 

However, since y~ + (c2/cl)y2 has no zeros and since y~(z) and y2(z) are entire then the function 
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y2(z) / [y l (z )  + (c2/cl)y2(z)] is also entire. But (35) states that it is a bounded entire function 
which implies (by the Liouville theorem) that it must be a constant function. Finally, this then 
implies that y , ( z )  and y2(z) are linearly dependent, which is the required contradiction. It is a 
nice feature that the Liouville theorem proves to be the result from analytic function theory 
needed to prove this result on solutions to the Liouville equation. 

Finally, we remark that the classical Dirichlet boundary value problem in a bounded domain 
with finite boundary values always has a unique solution when cd > 0  (but not when 
cd < 0---see for example [21]). Thus, as one example of the utility of the solutions presented 
here in solving real physical problems, it can be envisaged that the above representation of the 
most general solution, combined perhaps with conformal mapping techniques, might be used to 
solve such classical Dirichlet boundary value problems. The form given in (23) would seem to 
be the most convenient for such purposes. 

3. T H E  H Y P E R B O L I C  CASE 

We now extend this analysis to the two-dimensional hyperbolic Liouville equation in the 
(~, )7 )-plane given by 

~0~ - ~0f; = ee a~ (36) 

where g, d are again real constants, assumed to be non-zero. By shifting to characteristic 
coordinates (x, t) where x = £ + )7 and t = x - y we can equivalently solve 

Ox, =ced¢' (37) 

where x and t are real coordinates, and c = g/4. Note that by the linear change of dependent  
variable (5) the canonical form for the hyperbolic Liouville equation (37) can be written 

4'x, = sgn[cd]e '~. (38) 

We now demonstrate that the general solution of the hyperbolic Liouville equation depends on 
four arbitrary real functions, in contrast to two arbitrary analytic functions as in the elliptic case 
in Section 2. 

THEOREM 7. Any function q,(x, t) that is twice differentiable with respect to both x and t and is 
a real solution to 

~xt =ced¢' (39) 

simultaneously satisfies the two equations 

d 
~bxx - ~ ~b2x = E(x )  (40) 

d 
6,t - -~ ~b 2 = F(t)  (41) 

for some choice of functions E(x )  and F(t).  

Proof. Integrating (39) with respect to t gives 

O x = c  e a~ 'd t+G(x )  
,,t o 

for some arbitrary real function G(x).  Differentiating this equation with respect to x and using 
(39) gives 

d 
~bxx - ~ ~b 2 = E(x  ) (42) 
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where E(x)  = G'(x) .  Hence ~O satisfies equation (40). By the symmetry of (39) in x and t, the 
same manipulations imply that q, also satisfies equation (41) for some F(t). Thus Theorem 7 
follows. [] 

THEOREM 8. Any sufficiently differentiable solution of both (40) and (41) satisfies equation (39) 
for some choice of the constant c. 

Proof. A direct proof  of this is possible--general  simultaneous solutions to equations (40) 
and (41) can be found directly (see Theorem 9), and it can be checked by substitution that 
these are solutions of (39). An alternative approach is to differentiate (40) twice with respect to 
t giving 

O~x,- dOx,AO~ - dqJ2x, = 0. (43) 

Similarly, differentiating (41) twice with respect to x yields 

0,~,,, - d ~ O , ~ x ~ O ,  - d~OZ,  x = O. ( 4 4 )  

Subtracting (43) from (44) implies 

which implies 

O~,Ox - Oo~x~O, = 0 (45) 

~ ,  = f ( ~ )  (46) 

for some real function f(qJ). Differentiating (40) once with respect to t and using (46) gives 

qJx(f' - d f )  = 0 (47) 

thus implying that any non-trivial simultaneous solution of equations (40) and (41) satisfies (39) 
for some value of c. [] 

THEOREM 9. Every solution of (39) is of the form 

2 
= - - ~  log[cl  yl(t)Wl(X) + Czyl(t)W2(X) + c3y2(t)wl(x)  + Cay2(t)w2(x)]. (48) 

There Yl(t), yz(t) are two independent solutions of 

d 
Yt, + ~ F(t)y = 0 Z 

(49) 

and w~(x), w2(x) are two independent solutions of 

Wxx + d E(x )w  = 0 
z 

(5o) 

and cl, c2, C3, C4 are real constants. 

Remark 4. Real solutions are defined in regions of the (x, t)-plane where the argument of the 
logarithm in (48) is positive. 

Proof. From Theorem 7, solutions of (39) simultaneously satisfy (40) and (41) for some E(x)  
and F(t). Note that (40) is of the Ricatti form and can be made into a linear second order 
equation for M(x,  t ) =  e -av'a. Using this transformation the resulting equation for M(x,  t) is 
(50) i.e. 

Mxx + d E ( x ) M  = 0. (51) 
2 

Therefore,  

M(x,  t) = E1 (t)wt(x) + E2(t)wz(x) (52) 
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for some functions El(t) and E2(t). Now since 0 is also a solution of (41) then M(x, t) is also a 
solution to (49) and we deduce that 

El(t) = cl yl(t) + c3Y2(t) (53) 

and 

E2(t) = c2Yl(t) + c4Y2(t) (54) 

for some real constants cl, c2, c3, c4. Substituting (53) and (54) into (52) gives the result (48). 
[] 

THEOREM 10. Any real solution to (39) is of the form 

2 1 
0 = - ~ log[c1Yl(t)W~(x) + czYl(t)W2(x) + c3Y2(t)Wl(x) + c4Y2(t)W2(x)l + log[Y(t)W(x)] (55) 

where Y~(t), Yi(t) are independent sufficiently differentiable functions with wronskian Y(t), 
Wl(X), W2(x) are independent sufficiently differentiable functions with wronskian W(x) and c~, 
c2, c3, c4 are real constants. 

Proof. Analogous to proof of Theorems 4 and 5. 

THEOREM 11. The most general real solution to (39) is given by (55), where Yl(t), Y2(t) are any 
independent functions with wronskian Y(t), W~(x), Wi(x) are any independent functions of x 
with wronskian W(x) and c~, c2, c3, c4 are real constants satisfying the constraint 

cd = -2(CLC4 - c2c3) (56) 

but which are otherwise arbitrary. 

Proof. Since we know any solution of (39) is of the form (55), by substituting (55) into 
equation (39), we find that (39) is satisfied if and only if constraint (56) is satisfied. [] 

Theorem 11 implies that all known solutions of (39) should be retrievable as special cases of 
(55). For example, the choice 

Y,(t) = ~r(t) + zo, Y2(t) = 1, W,(x) = O(x), W2(x) = 1 (57) 

with c~ = c4 = 0, c2 = c3 = 1/V~ and with ~r(t) and O(x) arbitrary real functions and z0 a real 
constant, represents a well-known general solution to the hyperbolic Liouville equation (39) 
(with c = d -- 1) 

{ 20'(x)tr'(t) ] 
¢k(x, t) = log|- . ~ - - - -  2 ] (58) 

L(0(x) o-(t) + zo) 

which coincides with the one obtained by Ibragimov [5] using Backlund transformation 
techniques, by Tamizhmani and Lakshmanan [6] using a Painleve analysis, and by Bhutani et al. 
[2] using a direct method for finding similarity solutions following the Clarkson and Kruskal 
formalism [17]. It is also the general solution which normally appears in text-books [22, 23]. 
The choice 

Yl(t) = c o s h ( - V C ( 2 ( t )  + z°) ), 

: 
W, (x) = sinh~ ~ ), 

Y2(t) = s i n h ( - V ~ ( ~ ( t )  + Zo)) 
2 

,/-V-CO(x h W2(x) = cosn k ] (59) 

with c2 = c3 = l/X/2 and cl = c4 ~ - "  0 and where C is a real constant gives the solution 

t p = l o g [ _  C , , 2 - V C  Zo))] (60) (~ )O  (x)cr (t)sech ( - - - ~ ( O ( x )  + o'(t) + 

which is the solution of (39) (for c = d = 1) discovered recently by Bhutani et al. [2] using 



General solutions to the 2D Liouville equation 149 

different methods and which can be related to that found in [3] using an isovector approach. 
The choice 

Y (t) = cos(V-6(  ) + z°)), 

• 

Wl(x) -- sln  ] ,  
[ x/--dO(x ) 

W (x) = cosk -] 
with c2 = c3 = l /X/2 and c 1 = C 4 = 0 gives the solution 

(61) 

(62) 

which corresponds to a solution of (39) (for c = d = 1) repor ted  in Ibragimov [5] (when C = 4) 
and which was also retr ieved by Bhutani  et al. [2]. 
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