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Polygonal N-vortex arrays: A Stuart model
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A class of exact planar solutions of the Euler equations representing statN+olygonal arrays

of vortices are found. The solutions are parametrized by two paranitnd() ... N denotes the
number of vorticity extrema surrounding the origi€,,.x denotes the extremal value of this
vorticity. Except for a point vortex at the origin, the solutions have everywhere-smooth vorticity
distributions and are generalizations of the classic exact solution of $udtuid Mech.29, 417
(1967] for an infinite row of smooth vortices. In the limif),,,,/—=, the solutions reduce to the
pure point vortex problem considered by Morikawa and SwefBtiys. Fluidsi4, 1058(1971)].

The new solutions can be understood as “smoothed-out” counterparts to this point vortex
problem. © 2003 American Institute of Physic§DOI: 10.1063/1.1623766

I. INTRODUCTION literature is more recent. Dritsci&employed a vortex-patch
I . . model to generalize the classic line-vortex problem consid-
The study of equilibrium arrays of vortices, sometimes . .

; ol e " . ered by Thomson. Using a numerical method, he computed
called vortex “crystals” or “lattices,” is a hydrodynamical AP .

. the shapes of co-rotating finite-area patches of uniform vor-

problem of perennial interest. A recent monograph byicit laced in an N-polvaonal arrav. More recentl
Newtor provides a modern and comprehensive survey OF y P polyg Y- Y.

5 . .
the N-vortex problen?.: Classical investigations include the Croyvdyl has generalized .the . problem considered by
. .~ Morikawa and Swensdrand identified a class of exact so-
work of Thomsor and HavelocK. A resurgence of interest in

N-vortex equilibria occurred when it was discovered that su—IlJtlonS to the problem where a central vortex patch of dis-

perfluid helium organizes itself into line-vortex structures. ;[/rcl)brgzeeciumform vorticity is surrounded By co-rotating line

This even inspired the construction of a catalog of vortex o .
attern< More recently, interest in thi-vortex problem has Apart from the Lamb dipofé and some variants thereof
P ' ’ (see, for example, Meleshko and van Héfjstthere cur-

been incited by the discovery of a new classNvortex .
) 1041 rently appear to be no known exact solutions for a general
structures commonly dubbed multipolar vorti¢8<! These . : -
. : lanarN-polygonal array of vortices in equilibrium and hav-
are rotating coherent vortex structures characterized by R e
central core of one signature surrounded bisually sym Ing a smooth distribution of vorticity. A famous exact solu-
9 y sy tion of the steady Euler equation whiatoes possess a

metric) distribution of satellite vortices of opposite Slgnature'.smooth vorticity distribution is that of Stuakt However, this

They are found to form as a result of the nonlinear destabi- : ; P _— .
) . . solution describes an infinite periodic array of co-rotating
lization of shielded monopolar structures and the higher-

. ._vortices and is more relevant to modeling a shear layer pro-
order structures themselves have near-zero total C|rculat|0|]:1Ile than a finite vortex “crystal.” Mallier and Maslo 8

2 ; e ; R
Crowdy”® has identified a class of exact solutions of the pla have generalized Stuart’s solution to an infinite row of vor-

nar Euler equations sharing many of the qualitative Propers ..o of alternating sign.

ties of these multipolar vortices. Beyond hydrodynamics, the : . .
In this paper, new exact solutions representing a general

fact that vortex lattices also emerge as self-organized struc- : .
tures in non-neutral plasmas has added further momentum O—polygor!al array of v ortices are constructed using a.Stuart
the study of such problenf< model which follows in the spirit of the Stuart solutidrin

By far, the problem oN-polygonal arrays of line vorti- assuming an exponential relation between the vorticity and

ces has received the most attention. Since the early work oSTI regmfunc.tion. The solut'ions are globally smooth except for
. S . a single line vortex singularity at the center of the

Thomsor: numerous investigations have been carried outN | |

For example, in any effort to model the polar vortex, “Polygonat array.

Morikawa and Swensdrstudied a generalization of Thom-

son’s configuration in which an additional line vortex is !I. MATHEMATICAL FORMULATION

placed at the center of aN-polygonal array. Work in the In 1967, Stualf introduced an exact solution of the
area of planar line _vortex equilibria continuésee, for ex- steady planar Euler equations which have since become
ample, Aref and Vainchtefr). well-known to the fluid dynamics community as the “Stuart

Beyond line-vortex models, much less is known and the,,tjces » Stuart studied the solution as a model of the free

shear layer. In this solution, the vorticity is exponentially
3Electronic mail: d.crowdy@imperial.ac.uk related to the streamfunctiaof so that
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w=—V?y=—e"? 1)

It is well known' that a solution of the steady incompressible

Euler equations is obtained if the vorticityof an ideal fluid
is purely a function of the streamfunctiaf i.e., if

w=h(y), )

whereh(¢) is some differentiable function af. Mathemati-
cally, Stuart’s choice of relatiofl) between the vorticity and

the streamfunction results in the quasi-linear elliptic partial

differential equation fory known as the Liouville equation.

Stuart’ devotes a portion of his paper to a discussion of

solutions of this equation.
Stuart’s particular solution t¢1) consists of an infinite

periodic array of vortices described by the streamfunction

=log(C coshy+ C?—1 cosx), ©)

whereC is a real parameter satisfying<IC<<e«. WhenC

=1, the solution represents a homogeneous shear layer pro-

file in which all streamlines are parallel to theaxis and the

horizontal velocity varies like a hyperbolic tangent function

with vertical distancey. In the opposite limit,C—o, the

solution reduces to an infinite row of identical point vortices

separated by distancer2each of circulation—4. For all

intermediate values<C<«, the solution has the structure

of an infinite row of (Kelvin) cat's-eye& with a smooth
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to Crowdy*® where the most general solution of the elliptic
Liouville equation is derived using elementary methods.

For purposes of constructing more general vortical solu-
tions, we first make two important remarks on the nature of
the analytic functiorf(z).

(@ If D denotes the domain in which a nonsingular solu-
tion of the Liouville equation is to be found, the func-
tion f(z) need not necessarily be analytic everywhere
in D; rather, it can admit a distribution of isolated
simple pole singularities and still produce a solution of
the elliptic Liouville equation5) that is nonsingular in

D. To see this, note that any simple polef¢k) at a
pointze C would produce a double pole 6f(z) at the
same point. However, the denominator(6) contains
the quantity(1+ f(z) f (z))? which will also, in general,
possess a second-order pole zatThe second-order
poles of both numerator and denominator thus con-
spire, in general, to produce a nonzero and nonsingular
argument of the logarithm leading to a nonsingular so-
lution for .

The derivativef’(z) must not vanish anywhere I if

¢ is to be a nonsingular solution there. This result is
clear by inspection of the formul@).

(b)

The author has not found these facts stated explicitly in

vorticity distribution. The paramete governs the steepness the literature but they prove crucial in the analysis to follow.

of the vorticity profile.
Adopting the Stuart modél, we will seek solutions of

Py Py
gy
(9_XZ+W ce ", (4)

representing a polygonadll-polar array of vortices with a

smooth vorticity distribution surrounding a single vorticity

extremum at the center of the arr@yandd are real con-

stants to be chosen later. It is convenient to complexify thi

equation(i.e., write it in characteristic coordinatelsy intro-
ducingz=x-+iy and its complex conjugae Then(4) can
be written as

b= Ced‘//!

©)

wherec=/4 and subscripts denote partial derivatives.

To find vortical solutions within a Stuart model, we ex-

ploit the fact that the most general solution(&) is known.
Several forms of solution of5) are listed in Stuart’ one of
which is

2f'(2)f' (2)
—cd(1+f(2)f(2))?

wherecd<<0 and wheref(z) is an analytic function. Equa-
tion (6) is the form of solution to be used here. Stbaaiso

1
W(x,y)=—log : (6)

d

records that his solutiof3)—corresponding to the choices

d=—2 and€=1 (implying c=1/4)—can be retrieved from
(6) by the particular choice

f(z)=Atanz/2), (7)

where the constamt is related toC. Appendix A gives more
details. Readers interested in a derivatior(@®fare referred

S

It therefore seems appropriate to emphasize them here. In
accordance with the above two remarks, note that the choice
of f(z) given in (7) and yielding Stuart’s solution has a
countable infinity of simple poles ifi (which is the domain
D relevant in this caselts derivative, A/2)se&(z/2), van-
ishes nowhere irt.. Stuart’s solution is therefore a globally
valid solution of the Liouville equation.

From (6) it is seen that the choice af simply rescales
the vorticity everywhere in the plane. Following Studriye
pick d=—2. The choice oft is inconsequential; altering it
simply changesy) by a constant which does not alter the
velocity or vorticity fields. However, fron6) it is clear that
c>0. We setc=1.

A. N-vortex solutions

To modelN-polar vortices, we choose the functif(z)
be theNth order polynomial,

f(z)=az"+b, (8)

whered, be C are complex constant®l=1 is an integer.
The domairD of interest here is the entire complex plane
f(z) is analytic everywhere i and, if N>1, its derivative
has a zero of orderN—1) atz=0. f(z) also has arNth
order pole at infinity but this singularity is not includedbn
In accordance with the remarks made in the previous section,
the corresponding solution f@r will therefore break down at
z=0 (if N>1) but will be valid everywhere else. The sin-
gularity atz=0 will be examined in detail.

The substitution of8) into (6) reveals that the solution

only depends of#|, |b| and argia—b]. For this reason, with-
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out loss of generality, we choo&e to be real, i.e.d=a (N+1)a?s2N —2abd), — (N—1)(1+b?)=0. (15)

eR. For the time beingb will be taken to be generally This yields
complex. The streamfunction, valid fa+ 0, is then given

explicitly by [ b b
Smax @, b,N)= +
’ 1I N2a2ZN-T5N-1 o e a(N+1) a(N+1) .
= — — Og — - i 1+ b2 1/211/N
2 (1+(aN+b)(aZV+b))? X | 1+ (N2-1) b2 ) (16)

(9) fails to be a valid solution of6) at z=0. However, it is

important to note that (16) gives the distances,,,, of the vorticity extrema as a

function of the three parameteas b andN. It can be veri-
N—1 . fied that the second partial derivative 9f(s,a,b,N) with
y~— —5—logzztregular, asz—0. (10 respect tes is NONZEr0 ab= Sy, SO that a genuine maximum
or minimum exists there.
That is, the singular part is precisely the streamfunction fora  Given that there is no natural length scale associated
point vortex of circulatiol’=27(N—1) atz=0. For a con-  with free vortical motion in the plane, it is natural to study
sistent solution of the Euler equation, the Helmholtz laws ofthe solutions by specifying that the distance of the vorticity
vortex motiorf dictate that the non-self-induced componentextrema from the origin is unity, i.e., we S8ha=1. This
of the velocity field az=0 must be zero. However, in this implies the following quadratic fob:
instance it is clear that this condition is automatically satis-
fied owing to theN-fold rotational symmetry of the stream- b2+ 2_ab+( _ (N+1) az) _ (17)
function about the origin. It can be verified analytically. N—-1 (N-1) ’
We now examine the solutions in detail. Consider first_, . : o :
the caseN=1. The streamlines are given by which yields the explicit solution

- ~ e~ a N<a
1+a?|z|>*+abz+abz+ |b|*=a, (11 b(a,N)z—N_1+\/(N_1)2—1. (18

whereca is a positive constant labeling streamline. These A& a root corresponding to the negative square root branch
clearly circles. This solution is uninteresting even though it is:has been discarded because it does not yield a non-negative
nonsingular everywherg.e., it does not have a point vortex b. (18) yields a real and non-negative solution forwhen

atz=0).
. . , ~ a=a.i(N) where
The solutions forN>1 are more interesting. Leb
=be'® whereb=0 and¢ are real. Sincé(z) has been cho- B IN—1
sen to be purely a function ofY, the associated vorticity Acit(N) = N+1° (19)

distribution has am-fold rotational symmetry about the ori- ) o
gin. It is found (either analytically or by plotting the stream- Solution(18) ceases to be real when the discriminantiof)

lines) thatN vorticity extrema occur along thid rays, vanishes. This occurs whexra, (N) where

N7 — N—1
Owing to the rotational symmetry, it is clear thétcan be

taken equal to zero without loss of generality in the physicaManipulating(19) and(20) it can be shown that
solutions. This means that=b e R. A solution correspond-

ing to ab with non-zero¢ would simply correspond to a agi(N)= %a*(N) (21
rotation of the solutior{with ¢=0) through anglep about VN“—1
the origin. o . so thatag(N)>a, (N) for all N>1. This means that18)
To examine the vorticity profile along one of the rays gives a real non-negative solution forfor all a=ag(N).
(12), let z=sé™N wherese R and letQ)(s,a,b,N) be the Sinceb is now a function ofa andN, in our notation we
vorticity along the ray afg]=/N. Note that the parametsr  henceforth drop the explicit appearancebo$o that, for ex-
is non-negative. Then, ample,Q(s,a,b,N) is now denoted)(s,a,N). It is conve-
AN25252N 2 nient to defineQ) (& N) to be the extremal value of the
Q(s,a,b,N)=— (1+b?—2abd+as®)?’ (13)  vorticity Q(s,a,N) in (13) atsp=1, i.e.,
To find the distance,,, of the vorticity extremum from the Qmaf@,N)=0(LaN). (22
origin, we seek a solution of There should be no confusion in using the same notation
0O haxto denote the extremal value 9f(s,a,N) whether it be
9Q(s,a,b,N) -0 (14) a maximumor a minimum. Explicitly, using13),
as ’
S=Smax 4N2a2
Qmafa,N)=— (23

Some algebra reveals they,, satisfies (1+b(a,N)?—2ab(a,N)+a?)?"
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2 ' - - - ' ' ' - - Limit a=ag;(N): Whena=a.;(N), b=0. This means
that ¢ is purely a function ofz|? so that the streamlines are
8y just circles centered a&=0. This is the analog of th€=1
L6l limit of Stuart’s solution(3), which yields a homogeneous
' shear layer profile with unidirectional streamlines.
al Line vortex limit: a—c: Now fix a value ofN and con-
sider the limita— . Note from(18) thatb—a asa—® so
12} that
a1 1 N2ZN-TZN-1
¢”_ Elog (ZN+ 1)2(7N+ 1)2 ’ as a—x, (24)
0.8
which is irrotational almost everywhere except for line vor-
o6r tex singularities az=0 and at theN roots ofzN+1=0. Let
the circulation of the line vortex a=0 bel’ and that of the
04r N satellite line vortices bé&' (it is clear from symmetry that
02l they all have the same circulatipThen using the fact that a
| line vortex atz, of circulationT’ is
00' ofz

r
b= Elog((z— 20)(Z2—2p)), (25

FIG. 1. b as a function ofa for N=2, 3, 4,5 and 6. The curves begin at

a=a.i(N) as given in(19) and asymptote to the dotted line as-o. we recognize that

A graph of the solution fob is given in Fig. 1 as a function Fo=2m(N=1), I's=—4m. (26)
of a for a=a.(N) for N=2, 3, 4, 5, and 6. A similar graph
of Qa{aN) against is shown in Fig. 2 for the same values
of N. To characterize the solutions, a more nat(aald more
physica) choice of parameter thaam (which has been intro-
duced for purely mathematical reaspris to parametrize
them by the value oN and Q (& N). In Fig. 2 it is clear
from the monotonicity of(),,,(&N) as a function ofa that
such parameters specify a unique solution.

As a check on the above, Morikawa and Swerisbave
considered a polygonal array &f satellite line vortices of
circulation ys with a central line vortex of circulationy,.
For general values of the ratig,/ ys, such a configuration is
a relative equilibrium of the planar Euler equations in which
the polygonal array of satellite vortices rotates about the cen-
tral line vortex with constant angular velocity. For a special
choice of the ratio of central-to-satellite vortex circulations
the angular velocity vanishes and the configuration is station-
ary. A simple exercise in writing down the relevant complex
It is of interest to examine the two limits=a.;(N) and  potential and applying the condition that the local non-self-
a—oo for fixed values ofN: induced component of the velocity field at any of the satellite

B. The limits a=a;(N) and a— o for fixed N

0 f T T T T T T T T
N=2
50}
-100}
é .
a=150r FIG. 2. Qaxas a function of for N=2, 3, 4, 5 and 6.
The curves begin a=a.(N) as given in(19).
—200}
-250}
~300 1 1 1 1 1 1 1 1 1
05 0.6 0.7 08 0.9 1 1.4 12 1.3 1.4 15
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a=a_ rit(2)=0.5774

5
a=0.75

FIG. 3. The vorticity profile()(s,a,2) along the imagi-

N
o nary axis as a function of for various choices oé.
(2] " ..
1] The profile becomes more peaked about the minimum

20 7 value Q..{(a2) with increasinga (tending to a

S&function distribution ag— ).
a=1.25

25| .

30 E

_35 1 1 1 1

0 0.5 1 15 2 25

line vortex positions is zero shows that this special ratio isHere it is understood thab denotes the smooth vorticity
— (N—1)/2. This is consistent with the resul{86). There-  distribution for pointsz#0 so that we do not take into ac-
fore, thea—co limit of the smooth Stuart vortex solution count the é&function distribution of vorticity at the origin.
found here is precisely the stationary case of the point vorteinterestingly, it can be shown that

problem considered by Morikawa and Swenson.

I =—4m, (29

C. General case: aqi(N)<a<ew

For general values ddi(N)<a<w, the solutions de-
scribe a stationary line vortex of circulation’2N— 1) at the . . . . . . .
origin surrounded by an everywhere-smooth distribution of
negative vorticity characterized by vorticity extrema
symmetrically-disposed about the origin. Figure 3 shows a 2[ i
graph of Q(s,a,2)—the vorticity profile along the ray
ard z|=mn/2—for various choices oé&. It is clear that asa 15F 8
increases, the vorticity profile becomes more peaked anc
more concentrated about the extremum. Figures 4—7 shov (| 4
typical distributions of streamline@.e., the y~contourg as-
sociated with thea=1 solutions withN=2 (a tripolg, N
=3 (a quadrupolg N=4 (a pentapoleandN=10 (a “de- 0.5r T
capole”. The Kelvin cat's-eye patterns, familiar from the
Stuart solutioh’ for an infinite row of vortices, are clear. or 1

It is natural to consider the total circulation associated
with each satellite vortex relative to the circulatidry —05} 4
=2m(N—1) associated with the central point vortex. Given
the N-polygonal symmetries of the vortex configuration, it is | )
natural to define the circulatioﬁS to be the total vorticity in
a sectorSy defined as 15

] 2

SNE[ZEC‘Ogarg[zKN, |z|#0;¢, (27 -2t .

so that -25 . : . L L L

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

(28 Qmax=—13.928(to 3 decimal places The vorticity is everywhere smooth

~ FIG. 4. Streamlines and iso-vorticity contours of a tripo=2, a=1,
Is= wdxdy.
SN except for a point vortex of circulation/2at the origin.
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25 T T T T T T T T T 15

—2F

25 L L . L L . L L L _15 ) L ) L 1
-25 -2 -15 -1 -05 0 0.5 1 15 2 25 -15 -1 -0.5 0 0.5 1 1.5

FIG. 5. Streamlines and iso-vorticity contours of a quadrupblez3, a FIG. 7. Streamlines and iso-vorticity contours of a decapble: 10, a
=1, Qa=—27.416. The vorticity is everywhere smooth except for a point =1, Q,,=—206.178. The vorticity is everywhere smooth except for a
vortex of circulation 4r at the origin. point vortex of circulation 18 at the origin.

independent of the choice of eith@ior N. Thus, changing D. The limit N—« for fixed a

simply adjusts the distribution of vorticity within the sector There is another interesting limit to consider in respect

Sy while maintaining the same total circulatidn there.  of this new class of exact solutions, namaly-. It should
This result is established in Appendix B. It is consistent withpe clear that aBl is increased, so that the number of vorticity
the point-vortex limit considered in the previous section.aytrema equispaced about the unit circle gets larger, on a
Stuart’ observed an analogous phenomenon in respect of hiéngth—scale that is small with respect to unitiye radius of
solution (3): the total circulation inside any period of the ¢ypyature of this circular ring of cat's-eye vortigehe solu-
periodic array of vortices is always 4 independent of the i will locally resemble a periodic street of smooth vortices
value of the parameteE; only the distribution of vorticity i the spirit of Stuart’s original solutidf for an infinite pe-

within each period changes witD. riodic array of vortices. This asymptotic limit is now exam-
ined in detail.

2 : . . . : : : Note first, from(18), that

b—a, asN—o», (30
15F 4
On a length-scale of(1/N) near the poinz=1, asN—»

W | we expect the solution to locally resemble the Stuart vortex
solution for an infinite row of vortices extending in a direc-
tion parallel to the imaginary axis. For this reason, we intro-

0sr 1 duce a rescaled complex variaki@efined by
[
of . —
z=1+ -, 31
5! (31
-0.5 7 where thei accounts for the fact that the street of vortices
locally appears parallel to the imaginary axis and thid 1/
at i factor means that the solutidi®) will resemble the Stuart
vortex layer for{=(0O(1). To verify this, note that
-15}F E / |§ N )
lim [ZN]= lim (1+ —| =€t (32
N— N—o N
2 s . . . . . .
-2 -15 -1 -0.5 0 0.5 1 15 ..
Similarly,
FIG. 6. Streamlines and iso-vorticity contours of a pentaphle:4, a=1, -
Qo= —44.166. The vorticity is everywhere smooth except for a point vor- lim[ZN"1]=¢'. (33
tex of circulation &@r at the origin. N—co
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Substituting(32) and (33) into the solution(9) in the limit
N— oo, to within constants, the limit of the solution is

1 elle it
y~—=log - -

2 7 1+a%(ei+1)(e i+ 1))

const

— Iog[e—i§/2ei (/2+ aZ(ei §/2+ e—i(/Z)(ei §/2+ e—i(/Z)] + const

=log[ (1+4a?)cog ¢/2)cod {12) + sin( {/2)sin( £/2)

Darren Crowdy

that only in the cas®&=3, i.e., in the case of “quadrupolar
vortices,” does this ratio lie in the linear stability range com-
puted by Morikawa and SwensGrt will be of interest to
examine whether these linear stability properties are shared
by the smootha<x solutions. It is also worth mentioning
that short-wave instability studies of the planar Stuart vorti-
ces in a rotating frame have been carried out by Godeford,
Cambon, and Leblaft (see also Sipp and Jacqtinhand
such techniques might well be of use in analyzing the stabil-
ity properties of the present class of solutions.

~isin({f2)cod {f2) +i sin({/2)cog £/2)] + const.  (34) Given the exact solutions, additional physical effects can

By modifying the analysis of Appendix A, it can be shown be added either numerically or perturbatively. For example, it

that, to within an appropriate choice of the inconsequentials reasonable to suggest that there is a smooth connected set

constantc, the solution(34) is equivalent to taking of solutions consisting of vortex arrays with similar vorticity
F(£)=Atan(£/2)+ B, (35) distributions that are rotating. The structure of such rotating

vortex arrays might be studied using a perturbation analysis
with A=1/2a and B=i/2a, in (6). This is essentially the

about the exact solutions found herein.
Stuart vortex solution, as discussed in Appendix A.
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of the stationary line vortex configurations considered by
Morikawa and SwensohAt the same time, they can alter-
natively be understood as finité-vortex counterparts to the ppenDIX A: STUART'S (1967) SOLUTION

w-vortex Stuart layer solutioH.

The specific choice of rational functidifz) given in(8) Stuart’s solution(3) solves(4) with ©=1, d=—2 (note
has been shown to correspond to smddtholygonal arrays that this corresponds to=t/4=1/4). Stuart’ records that
of vortices centered around a point vortex at the origin. Thg3) can be derived froni6) by the particular choice
configurations have been shown to be equilibria of the Euler

equations. It should be clear that other choices of rational f(z)=Atanz/2). (AD)
function f(z) are possible, in principle. However, care must Then
be taken in postulating other choices. In general, arbitrary 1
choices of rational functiori(z), even ones possessing just y=log Kcos{z/Z)cos@Z)+Asin(z/2)sin@2) . (A2)
simple pole singularities ifi (which do not result in singular
points of the solutiof) will necessarily have a distribution of With the use of
zeros off’(z) in C. Such zeros will yield singularities of L
corresponding to point vortex singularities. While these are ~ €092/2)cogZ/2)= 3 (coshy+cosx),
physically admissible, each must be stationary under the ef- )
fects of the local non-self-induced velocity field if the solu- sin(z/2)sin(z12) = 3 (coshy —cosx), (A3)
tion is to be a consistent global equilibrium of the Euler (A2) becomes
equations. Such conditions will impose constraints on the
poles and zeros of the rational functibfz). If and only if a Y= Iog( coshy i + é) +cosx(i _ é) ) (A4)
choice off(z) can be made at which all such conditions are 2A 2 2A 2
satisfied, then a consistent steady solution will result. Exploiting the fact that if
Pierrehumbert and Widnal have studied the linear sta-
bility of the planar Stuart vortex solution. The stability of the Cc= i i ﬁ (A5)
new N-polar solutions found here is of interest but is beyond 2A  2°
the scope of the present paper, requiring a detailed analysi‘;;‘{nd 0<A<1 then
Recall, however, that tha— oo limit of the solutions corre-
sponds to the stationary point vortex configurations consid- 1 A ] (A6)

ered by Morikawa and Swens8mnd Table 1 of Ref. 9 gives 2A 2
the range of values df o /T" for which the line-vortex equi-
libria are linearly stable for different values bf. As previ-

ously discussed, in the lima—co the solutions here corre-

spond to the ratid o/T's= —(N—1)/2. Inspection reveals

(A4) is precisely Stuart’'s solutiofB). It is noted that if the
choice(Al) is modified by the addition of a constant, i.e.,

f(z)=Atan(z/2) +B, (A7)
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the resulting solution is qualitatively the same as the solution

given by Stuart’s particular choid@\1).

APPENDIX B: CIRCULATION OF SATELLITE
VORTICES

In this appendix, it is shown that the circulatibh as-
sociated with each satellite vortdas defined in(28)] is
— 41 irrespective of the choice of eithé or a. With the
use of(28), (1) and(9), we obtain

4NZaZN~TZN1

1+ (aV+b)(aZV+ b))

Using the standard wedge prodysee, for example, Sec. 7.6
of Ref. 24 defined so thatlzOdz= —2idxdy, we can write
(28) as

i
STl N M

0= (B1)

4a2(NN (N Hdzodz
(1+(aN+b)(aZV+b))?

(B2)
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aw+b

— 5 lim 1+ (aw+b)(aw+b)

I R

=

.

2a
——lim

I R

ﬁW=R(
2n  (aRe'"+b)iRe?d
f9=01+(a Rd?+b)(aRe '+b)

— 41,

(B8)
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