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Calculations, based on exact solutions, of the viscous sintering of simple packings with

unimodal and bimodal distributions of particle sizes with shrinking pores are performed.

The case of square unit cells is considered in detail. It is found that, for the most part, pore

shrinkage times have very weak dependence on the precise details of the pore shape and that

accurate estimates of total pore shrinkage times can be obtained based only on knowledge of

the initial relative density (green density) and unit cell size. An exception is found when the

particle packing is loose, the enclosed pore having a large perimeter-to-area ratio. By studying

two different square packings of equal-sized particles it is shown that the looser packing can

exhibit dilation, rather than densification, in the early stage of sintering.

1 Introduction

Sintering describes a process by which a granular compact of particles (e.g. metal or glass)

is raised to a sufficiently large temperature that the individual particles become mobile

and release surface energy in such a way as to produce inter-particulate bonds. At the

start of a sinter process, any two particles which are initially touching develop a thin

‘neck’ which, as time evolves, grows in size to form a more developed bond. In compacts

in which the packing is such that particles have more than one touching neighbour, as

the necks grow in size, the sinter body densifies and any enclosed pores between particles

tend to close up. The macroscopic material properties of the compact at the end of the

sinter process depend heavily on the degree of densification. In industrial application, it

is crucial to be able to obtain accurate and reliable estimates of the time taken for pores

to close (or reduce to a sufficiently small size) within any given initial sinter body in

order that industrial sinter times are optimized without compromising the macroscopic

properties of the final densified sinter body.

To model the sintering process analytically so that quantitative predictions can be made,

it is usual to divide the process into three distinct stages. These are referred to as the

initial stage, intermediate stage and final stage and models have been devised to study each

separate stage of the process. In all such models, the state of the sinter kinetics is typically

described by isolating a typical unit cell in the matrix and making some geometrical

simplification. With this simplification, it then becomes possible to define the notion of

the relative density of the fluid/solid phase in this unit. The degree of sintering is then
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tracked by using an energy balance argument to give this relative density as a function of

time.

In the sintering of amorphous materials under the effects of surface tension the initial

stage is characterized by rapid interparticle neck growth while in the intermediate stage

these sharp neck regions have been smoothed out leaving a network of inter-connected

pores which, by the final stage, has densified to such a degree that the compact is now

well modelled by a uniform region of fluid containing small isolated pores. An important

initial stage model is the two sphere model due to Frenkel [9]. Frenkel made some major

simplifications regarding the flow field to deduce an equation governing the neck-growth

rate between two initially-touching spheres as they coalesce. This is done using an energy

principle based on equating the viscous flow dissipation with the released surface energy.

Scherer [26] introduced an intermediate stage model, referred to as the ‘cylinder model’,

in which the fluid is modelled by an idealized cubic array of intersecting cylinders in

which densification is described by the cylinders getting shorter and thicker. With these

geometrical simplications, the dynamical evolution of the cylinders is provided by an

energy balance argument similar to that used by Frenkel. To model the final stage,

Mackenzie & Shuttleworth [16] considered an idealized structure consisting of spherical

pores of the same size in a fluid/solid matrix. It is assumed that a concentric shell

consisting of a solid spherical matrix containing an enclosed spherical pore maintains its

form under sintering. With these geometrical simplications, the sinter dynamics is again

provided by an energy balance principle.

The densification of a sinter body is normally tracked using a quantity known as

relative density [18] [1]. Roughly speaking, the relative density is the amount of fluid (as

opposed to pore) contained in a typical unit cell. In a fully densified sinter body a unit

cell contains only fluid and no pores. Both experimental data, and the predictions of

the 3D theoretical models just described typically give rise to a sigmoidal, or S-shaped,

relative density-versus-time curve for the sintering of amorphous materials. One of the

remarkable facts about the 3D models is that while different geometrical assumptions

are made in describing the separate stages of sintering, the various models are in good

agreement over a large range of relative densities and appear to give good estimates of

sinter rates even outside their respective ranges of validity. The conclusion is that the

viscous sintering of amorphous materials is not particularly sensitive to structural features

such as the geometry of the pore shape. One of the objectives of this paper is to use a class

of exact solutions describing simple unit cells with shrinking pores to examine whether

this phenomenon also pertains to a mathematical model of planar sintering based on the

assumption of slow viscous flow driven by surface tension.

In the case of planar sintering the analogue of Frenkel’s two-sphere unit problem is

the coalescence of two equal cylindrical particles. The two-dimensional viscous sintering

problem has received a revival of theoretical interest following the work of Hopper

[11], who analysed this unit problem and showed that it admits exact solutions in the

sense that the full free boundary problem can be reduced to the integration of a set

of coupled nonlinear ordinary differential equations. In a natural extension of Hopper’s

result, Richardson [19] extended the class of exact solutions to the case of two unequal

cylinders coalescing. This provides a unit problem modelling the early-stage neck growth

at the point of contact of two different sized particles in a bimodal distribution of particles.
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Numerical simulations of multiply-connected planar domains by Van de Vorst [28] sug-

gest that Hopper’s unit problem provides an excellent description for the early-stage neck

growth in a doubly-connected packing of equal-sized cylindrical particles, the implication

being that the exact solution will, in general, provide a good model of neck growth rates

between equal-sized particles in an arbitrary compact. The main advantage of Hopper’s

solution is its mathematical simplicity and the fact that both the boundary evolution and

associated flow field are both consistently resolved (i.e. without any a priori geometrical

assumptions). One drawback of Hopper’s unit problem is that the fluid configuration is

simply-connected and thus contains no shrinking pores between the particles so that while

the initial stage neck-growth process is captured by the model, it is not possible to infer

estimates regarding overall shrinkage rates of inter-particulate pores.

In this paper, we study a class of exact solutions corresponding to generalized unit

problems involving shrinking pores which share the virtues of simplicity of Hopper’s

solution but which capture a more global picture of the sinter process. The problems

considered are explicit exact solutions to a class of simple sinter problems involving both

unimodal and bimodal particles size distributions surrounding an enclosed pore. These

generalized unit problems are therefore capable of describing both the early stage neck

growth and the later stage pore shrinkage. The exact solutions are based on a theory

devised by Crowdy & Tanveer [3] in an earlier paper. Even the more complicated bimodal

solutions calculated in § 4 of this paper require little more than the numerical integration

of three coupled nonlinear ordinary differential equations. Given this simplicity, it is easy

to make a large number of calculations in a short time and build a broad picture of the

possible behaviour of the system. A principal objective of this paper is to establish how

the geometry of the pore shape affects pore disappearance times.

It is important to clarify an assumption which underlies the present paper. By studying

exact solutions, various properties of the sintering of isolated unit cells are established. It

is a premise of this paper that the behavioural properties of the pores in the isolated unit

cell may well be qualitatively similar to those of a pore in a similar unit cell immersed in

an extended doubly-infinite lattice. Of course, the extent to which this is true will only be

established once the sintering problem for the full lattice is solved. It seems appropriate,

however, to document the properties of the isolated unit cell in order to facilitate future

comparisons with a cell situated in the full lattice.

We now summarize the class of solutions to be considered and indicate how they

generalize previous work on simply-connected fluid regions. For two equal cylinders,

Hopper [11] showed the fluid domain under the sinter dynamics can be described by

means of a conformal map from a unit ζ-disc of the form

z(ζ, t) =
A(t)

ζ − a(t)
+

A(t)

ζ + a(t)
=

2A(t)ζ

ζ2 − a2(t)
, (1.1)

where a(t) and A(t) are two parameters which evolve according to a coupled system of

two nonlinear differential equations. Richardson [19] extended this to the case of two

unequal cylinders for which the relevant conformal map has the rational function form

z(ζ, t) =
A(t)ζ

ζ − a(t)
+

B(t)ζ

ζ + b(t)
, (1.2)
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where the time-evolving parameters are now a(t), b(t), A(t) and B(t). Later, Richardson

[21] generalized [11] in a different direction by considering exact solutions for arbitrary

simply-connected unimodal particle distributions consisting of more than two particles.

In this paper, two classes of conformal maps generalizing (1.1) and (1.2) are studied in

detail. The maps are now from a parametric annulus ρ(t) < |ζ| < 1. The map

z(ζ, t) = A(t)ζ
PN(ζρ2/Na−1, ρ)

PN(ζa−1, ρ)
, N � 3, (1.3)

where a(t) and A(t) are real parameters generalizes (1.1) to the case of a unimodal

distribution of N equal cylinders in an annular array. The analogous generalization of

(1.2) is given by

z(ζ, t) = A(t)ζ
PN(ζρ2/Na−1, ρ)

PN(ζa−1, ρ)
+ B(t)ζ

QN(ζρ2/Nb−1, ρ)

QN(ζb−1, ρ)
, (1.4)

where a(t), A(t), b(t) and B(t) are real parameters and N � 3 is an integer. (1.4) corres-

ponds to a bimodal distribution of two different sized cylinders in an annular configuration.

PN(ζ, ρ) and QN(ζ, ρ) are special functions to be defined later.

Independently, Richardson [22] has used a different formulation involving elliptic

function conformal mappings from a rectangular parametric region to find exact solutions

for the sintering of a doubly-connected fluid region. Richardson also points out that a

particular illustrative example presented in the original theory of Crowdy & Tanveer [3] is

in error as the chosen initial conditions are not consistent with the underlying assumptions

of the theory [3]. The authors of that paper agree with him on this [4]; nonetheless, the

general theory of Crowdy & Tanveer [3], and the associated evolution equations, remain

valid with appropriate choices of the initial conditions and can be used to determine the

evolution of a variety of doubly-connected domains of physical interest, as shall be seen

in the examples calculated in this paper. Richardson’s alternative formulation [22] can

also be used to calculate the examples considered herein.

2 Doubly-connected exact solutions

Crowdy & Tanveer [3] have presented a theory of exact solutions for the problem of

the viscous sintering of doubly-connected, annular blobs of viscous fluid. The fluid is

modelled as a doubly-connected region D of very viscous incompressible fluid in which a

streamfunction ψ(x, y) is governed by the biharmonic equation

∇4ψ = 0, (x, y) ∈ D, (2.1)

where the velocity field is given by

u = (u, v) = (ψy,−ψx). (2.2)

On the boundary ∂D of D, the tangential stress must vanish and the normal stress must

be balanced by the uniform surface tension effect. In terms of the usual Newtonian stress
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tensor, this condition can be written

−pni + 2µeij = Tκni, (2.3)

where p is the fluid pressure, µ is the viscosity, T is the surface tension parameter, κ is

the boundary curvature, ni denotes components of the outward normal n to ∂D and

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.4)

At each instant, the above boundary value problem defines a global velocity field which

will not, in general, be in equilibrium. The boundary is time-evolved in a quasi-steady

fashion with a normal velocity Vn determined by the kinematic condition

Vn = u.n. (2.5)

The reader is referred to the original theory for doubly-connected domains [3] for a

detailed exposition. Here only a review of the principal results needed for the calculations

of this paper will be presented.

The importance of the theory in Crowdy & Tanveer [3] is to show that, under the

dynamics of viscous sintering with an assumption that two constants of integration

arising in the analysis are equal (denoted A0(t) and AI (t) in Crowdy & Tanveer [3]),

conformal mappings from an annulus ρ(t) < |ζ| < 1 to the time-evolving annular blob

of fluid that are initially meromorphic in the (fundamental) annulus ρ < |ζ| < ρ−1 and

satisfying the relation

z(ρ2ζ, t) = z(ζ, t), (2.6)

remain meromorphic and continue to satisfy (2.6) under evolution. Such functions are

known as loxodromic functions. For more details on loxodromic functions, the reader

is referred to Valiron [31], or a useful appendix modelled on [31] which appears in

Richardson [20].

These results give rise to exact solutions in the sense of closed form formulae for the

conformal mapping functions which depend on a finite set of time-evolving parameters.

One representation of a meromorphic function z(ζ, t) satisfying (2.6) is given by

z(ζ, t) = R

∏n
j=1 P (ζη−1

j , ρ)∏n
j=1 P (ζζ−1

j , ρ)
, (2.7)

where {ζj |j = 1, 2, .., n} are the n poles of the mapping in the annulus ρ2 < |ζ| < 1 and

where {ηj |j = 1, 2, .., n} are the zeros of the mapping in this annulus. The function P (ζ, ρ)

is defined as

P (ζ, ρ) = (1 − ζ)

∞∏
k=1

(1 − ρ2kζ)(1 − ρ2kζ−1). (2.8)

The poles and zeros satisfy the condition

n∏
j=1

ηj =

n∏
j=1

ζj , (2.9)
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and they, along with the parameters R and ρ, are time-evolving functions whose evolution

must be determined as part of the solution. For compactness of notation, explicit depend-

ence of such parameters on time t has been suppressed. The same non-dimensionalization

used in Crowdy & Tanveer [3] is also adopted here.

The general evolution equations for the parameters are derived in Crowdy & Tanveer [3]

although only those relevant to initial conformal maps possessing a finite distribution

of simple pole singularities will be reviewed here. The conformal modulus ρ(t) evolves

according to the real equation

ρ̇ = − ρ

4πi

(∮
|ζ ′ |=1

dζ ′

ζ ′
1

|zζ(ζ ′, t)| +

∮
|ζ ′ |=ρ

dζ ′

ζ ′
1

ρ|zζ(ζ ′, t)|

)
, (2.10)

while all simple poles evolve according to

dζ̄−1
j

dt
= −ζ̄−1

j I(ζ̄−1
j , t), (2.11)

where I(ζ, t) is defined as

I(ζ, t) = I+(ζ, t) − I−(ζ, t) + C(t), (2.12)

with

I+(ζ, t) =
1

4πi

∮
|ζ ′ |=1

dζ ′

ζ ′

(
1 − 2

ζ

ζ ′

P ′( ζ
ζ ′ , ρ)

P ( ζ
ζ ′ , ρ)

)
1

|zζ(ζ, t)|
,

I−(ζ, t) =
1

4πi

∮
|ζ ′ |=ρ

dζ ′

ζ ′

(
1 − 2

ζ

ζ ′

P ′( ζ
ζ ′ , ρ)

P ( ζ
ζ ′ , ρ)

)[
− 1

ρ|zζ(ζ, t)|
− 2ρ̇

ρ

]
, (2.13)

C(t) = − 1

4πi

∮
|ζ ′ |=ρ

dζ ′

ζ ′

[
− 1

ρ|zζ(ζ, t)|
− 2ρ̇

ρ

]
.

Note that the notation I(ζ, t) disguises the fact that this function depends on the paramet-

ers appearing in the conformal map and this should be borne in mind. P ′(ζ, ρ) denotes the

derivative with respect to the first argument. Finally, all remaining evolution equations

follow from what is referred to in Crowdy & Tanveer [3] as a theorem of invariants. This

theorem establishes that the n quantities

Bj =
Jj(t)∏n

p=1
p�j
P (ζpζ

−1

j )
, j = 1, 2, .., n, (2.14)

are invariants of the motion, where

Jj(t) ≡
∮

∂C


 n∏

p=1
p�j

P (ζζ̄−1
j )z̄zζ


 dζ, (2.15)

where ∂C denotes the boundary of the annulus ρ < |ζ| < 1 with the outer circle traversed

in an anti-clockwise direction, the inner circle in a clockwise direction.
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In a different approach to the same problem, Richardson [22] also recognized the need,

if exact solutions are to be found, for two integration constants arising in the integrated

stress conditions (cf. AO(t) and AI (t) in Crowdy & Tanveer [3]) to assume the same value

under evolution. Richardson has further pointed out that a sufficient condition for this

to be valid is that the physical domain possess a rotational symmetry. We therefore now

restrict attention to initial domains described by loxodromic function conformal maps

which possess such a symmetry (see also Crowdy & Tanveer [4]). Such symmetries are

preserved in time and the theory developed in Crowdy & Tanveer [3], and reviewed above,

can be conveniently applied as will now be shown.

We now consider two particular classes of loxodromic conformal maps, namely,

z(ζ, t) = A(t)ζ
PN(ζρ2/Na−1, ρ)

PN(ζa−1, ρ)
, (2.16)

and

z(ζ, t) = A(t)ζ
PN(ζρ2/Na−1, ρ)

PN(ζa−1, ρ)
+ B(t)ζ

QN(ζρ2/Nb−1, ρ)

QN(ζb−1, ρ)
, (2.17)

and show that they constitute exact solutions to the sintering problem. N � 3 is an integer.

Defining ω = e
2πi
N as an N-th root of unity, the special function PN(ζ, ρ) is related to the

function P (ζ, t) already introduced via the formula

PN(ζ, ρ) =

N−1∏
j=0

P (ζωj, ρ)

= (1 − ζN)

∞∏
k=1

(1 − ρ2kNζN)(1 − ρ2kNζ−N), (2.18)

while the function QN(ζ, ρ) is defined as

QN(ζ, ρ) =

N−1∏
j=0

P (ζω̃j , ρ)

= (1 + ζN)

∞∏
k=1

(1 + ρ2kNζN)(1 + ρ2kNζ−N), (2.19)

where ω̃ = e
iπ
N . Note that both PN(ζ, ρ) and QN(ζ, ρ) are purely functions of ζN and

so, with the pre-multiplying factor of ζ common to both (2.16) and (2.17), an N-fold

rotational symmetry is now a built-in feature of the mappings (2.16) and (2.17) for all

choices of the parameters appearing in them.

As mentioned in Crowdy & Tanveer [3], the function P (ζ, ρ) satisfies the following

functional equations:

P (ζ−1, ρ) = P (ρ2ζ, ρ) = −ζ−1P (ζ, ρ). (2.20)

These relations are easily checked. (2.20) implies that PN(ζ, ρ) satisfies

PN(ζ−1, ρ) = PN(ρ2ζ, ρ) = −ζ−NPN(ζ, ρ). (2.21)
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Figure 1. Pole distributions in the fundamental annulus for maps (2.16) (left-most diagram) and

(2.17) (right-most diagram) with N = 4. Bold dots and squares indicate the positions of the (simple)

poles.

Using (2.21), straightforward algebra reveals that mappings (2.16) and (2.17) satisfy the

requirement (2.6) while it is also clear that both functions are meromorphic in the

fundamental annulus ρ < |ζ| < ρ−1. These maps are therefore loxodromic functions and

are consistent with all the assumptions underlying the theory of Crowdy & Tanveer [3].

They are therefore exact solutions of the physical problem.

To briefly motivate the choice of formulae (2.16) and (2.17), note that each simple

pole of the conformal mapping function in the fundamental annulus ρ < |ζ| < ρ−1 can

be understood as corresponding to a particle in the physical domain. In (2.16), N poles

are distributed at equispaced angles about the origin all at radial distance a(t). See the

left-most schematic in Figure 1, where the poles of the mapping (2.16) in the fundamental

annulus for N = 4 are shown as bold dots. It is therefore natural to expect this map to

correspond (for appropriate choices of a and ρ) to an annular array of equal-sized particles

surrounding the origin. In the same way, (2.17) also has N poles at radial distance a(t)

(where 1 < a(t) < ρ(t)−1) from the origin but with N additional poles at radial distance

b(t) (where 1 < b(t) < ρ(t)−1) placed between them at equal angular displacements. See

the right-most schematic in Figure 1, where the poles of the mapping (2.17) at radial

distance a from the origin are drawn as bold dots, but those at distance b are drawn as

bold squares. For suitable parameter choices, the map (2.17) can be expected to give a

bimodal distribution of particle sizes alternating in an annular array about the origin, the

poles shown as dots corresponding to particles of one size, the poles shown as squares to

particles of a different size placed between them.

On a practical note, both maps (2.16) and (2.17) as well as the differential equations

governing their time evolution involve only the special function P (ζ, ρ) (and the closely

related variants PN(ζ, ρ) and QN(ζ, ρ)). The maps and evolution equations can therefore

easily be programmed into a numerical code (or plotting software) without the need

for any pre-programmed special function routines. This can be done by truncating the

infinite products (2.18) after a suitably large number of terms (keeping just the first terms
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corresponding to k = 1, 2,.., 10 is found to provide excellent accuracy in all the calculations

that follow).

3 Unimodal particle packings with pores

The map (2.16) depends upon just three real parameters ρ(t), a(t) and A(t). From § 2, the

three evolution equations required for mappings of the form (2.16) are given by (2.10) –

the usual equation for ρ(t) – along with the two additional equations

ȧ = aI(a−1, t), (3.1)

and

APN(ρ2/N, ρ)zζ(a
−1, t)

NP̂N(1, ρ)
= constant, (3.2)

where the function P̂N(ζ, ρ) is defined as

P̂N(ζ, ρ) ≡ PN(ζ, ρ)

(1 − ζN)
=

∞∏
k=1

(1 − ρ2kNζN)(1 − ρ2kNζ−N), (3.3)

and the constant in (3.2) is simply the value of the left hand side at t = 0. Equation (3.2)

is a consequence of the theorem of invariants of Crowdy & Tanveer [3] and is equivalent

to (2.14). Equations (2.10), (3.1) and (3.2) are solved numerically.

Two of the three example calculations performed by Richardson [22] correspond to

the map (2.16) in cases N = 3 and N = 4. To facilitate comparison with his results, we

choose initial conditions in the same manner. Richardson discusses these initial conditions

in terms of a Hele–Shaw analogy but they amount to choices of initial conditions close to

the case of a rotationally-symmetric array of N touching unit-radius cylinders in which

z(a(0)−1, 0) =
1

sin π
N

− 10−3, (3.4)

and such that the midpoint of the two points on the inner and outer boundaries which

are closest together is precisely at the point of contact of the configuration of N touching

cylinders. The total fluid area is taken to be Nπ. These conditions are enough to uniquely

specify the initial domain.

The calculations are performed using an explicit Euler method with time-step equal to

10−4. The computations are stopped when ρ decreases below a threshold of 10−4 so that

the final area of the remaining pore is of the order of 10−8 (the pore is close to circular

just before it disappears). All integrals are performed using a trapezoidal rule with an

equally-spaced discretization of 1024 points in the angular coordinate of the unit ζ-circle –

this gives super-algebraic convergence for smooth periodic functions (which is the case

here). The order of the global error in the calculation is expected to be of the same order

as the time-step, i.e. 10−4, which is more than adequate for present purposes.

The accuracy of the method is checked by performing some calculations with even

smaller step-sizes and checking that the same results are obtained. It is found that for

the initial conditions chosen, the system of differential equations displays no problematic
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Figure 2. Case N = 4 for times t = 0.2, 0.4, 0.6, 0.8, 1.143.

stiffness problems at any point in the calculations even though this might be expected at

early times when the fluid domain possesses several points of high curvature. An important

check on the numerical method is provided by the following observation. Consider the

map (2.16) with the parameter choices ρ(0) = 0.5, a(0) = 1.5, A(0) = 1 and N = 50. By

plotting the image under this conformal map it is found to be indistinguishable (at least

to the eye) from a concentric annulus 0.5 < |z| < 1.0 even though there are small wrinkles

on each near-circular boundary. Because the mathematical problem is well-posed, we

expect these small wrinkles to smooth out quickly (Kuiken [15] has studied the damping

of small ripples of this general kind on a flat interface and has shown that they die out

exponentially quickly), and the disappearance time for the hole to be well approximated

by the time taken for the disappearance of the hole in the simple concentric annulus

solution which can be written down exactly. Indeed, this very check was performed by

Van de Vorst [28] to test the accuracy of his boundary element method. The theoretical

pore disappearance time based on the exact solution is
√

3 − 1 = 0.73205 . . . (see Van

de Vorst [28]). The value obtained by the numerical procedure described above is 0.732

(correct to three decimal places).

Examples of the evolution of the boundaries in the cases N = 4 and N = 5 are shown

in Figures 2 and 3. This class of calculations is expected to provide important benchmarks

to test future numerical codes or analytical results. We therefore record a table of our

chosen initial conditions along with estimates of the times t∗ at which the pores eventually

disappear. The relevant data are given in the table in Table 1 for N between 1 and

10, while a graph to cases up to N = 50 is shown in Figure 4. As just discussed, t∗

is the time by which the area of the pore has shrunk to the order of 10−8. Using a

different approach and elliptic function conformal mappings, Richardson [22] has also

calculated pore disappearance times for cases N = 3 and 4. Richardson reports t = 0.584

for N = 3 and t = 1.15 for N = 4. These disappearance times are in good agreement

with those found here but are roughly 1% larger. This might be explained by the fact

that Richardson claims to integrate his evolution equations up to the point when the pore



Viscous sintering of unimodal and bimodal cylindrical packings 431

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 3. Case N = 5 for times t = 0.3, 0.6, 0.9, 1.2, 1.637.

Table 1. Table of initial conditions and pore disappearance times t∗

N ρ(0) a(0) A(0) t∗

3 0.3930 1.168 0.916 0.575

4 0.5374 1.168 1.362 1.145

5 0.6250 1.151 1.740 1.639

6 0.6850 1.134 2.092 2.081

7 0.7288 1.120 2.432 2.482

8 0.7623 1.107 2.765 2.853

9 0.7888 1.097 3.093 3.202

10 0.8100 1.088 3.419 3.530

area is as small as 10−20, i.e. somewhat smaller than the final pore areas used here in

calculating t∗.

A graph of the shrinking of the pore area as a function of time is shown in Figure 5. This

graph is in qualitative agreement with similar graphs plotted on the basis of numerical

boundary element calculations made by Van de Vorst [28]. A noteworthy feature of these

results is that, for larger values of N, the shrinkage rate tails off quite dramatically as

time evolves. This is because at the final stage of sintering the pore is observed to be close

to circular with no points of high curvature so that pore shrinkage occurs more slowly.

Figure 6 shows a graph of neck radius defined as

1

2

∣∣∣z(e iπN , t) − z(ρ(t)e
iπ
N , t)

∣∣∣ (3.5)

as a function of time for various values of N. It is interesting that this curve seems to

be universal for all values of N. That is, the interparticle necks develop in exactly the
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Figure 4. Disappearance times (y-axis) against number of particles N (x-axis) (up to N = 50).

Figure 5. Shrinking of the enclosed pore for unimodal cylindrical packings with N = 3, 4, 5, 6, 10

and 20. Areas are normalized with respect to initial pore area.

same fashion regardless of how many particles there are in the closed annular chain. A

similar graph is plotted by Van de Vorst [28] for N = 3, 4, 5 and 6 and he notes that

the development of the neck radii is well described by Hopper’s exact solution, thereby

highlighting the usefulness of considering unit problems in viscous sintering. This universal

behaviour also suggests that the early-stage neck growth might be well modelled locally

by what has been dubbed a codimension-two free boundary problem [13, 10].

It is usual, in the sintering literature, to plot a quantity known as the relative density

against reduced time. The shapes of such density-versus-time curves drawn on the basis
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Figure 6. Evolution of neck radius for N = 3, 4, 5 and 10.

of experiments as well as the model systems described earlier are known to possess a

distinctive sigmoidal shape (i.e. S-shaped). For typical graphs the reader is referred to

Rahaman [18, Chapter 8]. It is of interest to examine whether the present calculations

exhibit similar graphs. To do this, consider the special case N = 4. It is then possible

to identify a square ‘unit cell’ which is defined, at all times in the sinter process, by the

four lines joining the points z(a−1ωk, t), k = 0, 1, 2, 3 where ωk = e
ikπ
2 . See Figure 7 for

a schematic. In a uniform square packing of equal-sized particles, this unit would be

repeated in a regular lattice throughout the plane. As mentioned in the introduction, it

will now be assumed that the global densification of the entire doubly-periodic compact is

well described by considering the single isolated unit just defined (the extent to which this

is true can only be tested by comparison with calculations of the full problem involving

a doubly-infinite lattice – see also further comments in the conclusion section). Let Af(t)

denote the area of fluid in the unit cell at time t. We then define the relative density σ(t)

at time t as the ratio of the area of fluid inside this square unit to the total area of the

square unit at time t, i.e.

σ(t) =
Af(t)

Area of square unit

=

2z(a−1, t)2 − 1
2
Im

[∮
|ζ|=ρ z̄zζdζ

]
2z(a−1, t)2

. (3.6)

where Af(t) has been calculated by subtracting the numerically-computed pore area from

2z(a−1, t)2 which corresponds to the area of the square unit cell at time t. Note that the

total area of the square unit varies in time because the compact as a whole is densifying.

The reduced time tr is the time variable rescaled with the square root of the initial fluid
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Figure 7. Schematic illustrating initial square unit cell for single particle size. Lines joining

particle centres form the square unit cell.

area in the unit cell, i.e.

tr =
t√
Af(0)

. (3.7)

Figure 8 shows a graph of the relative density σ against reduced time tr . This graph

indeed displays the characteristic sigmoidal, S-shape typical of the density-versus-time

data deduced from sinter experiments and models.

4 Bimodal particle packings with pores

As mentioned in the introduction, it is generally recognized that the viscous sintering

of amorphous materials is not particularly sensitive to structural features of the sinter

body such as the specific details of the initial pore shape. In this section, we use the

exact solution class to examine whether this is also true in the model of planar sintering

considered here.

We restrict attention to unit problems typified by a ‘square unit’ like the example

considered at the end of § 3. We now introduce a bimodal distribution of particles

surrounding a single pore in an effort to study a range of square packings with distinct

pore shapes and examine how these differing pore shapes affect the graphs of relative

density against reduced time. The aim is to determine whether empirical estimates of the

disappearance times of pores in arbitrary square planar packings can be obtained in a

simple manner, without the need for detailed calculations in each separate case.



Viscous sintering of unimodal and bimodal cylindrical packings 435

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.75

0.8

0.85

0.9

0.95

1

1.05

re
la

tiv
e 

de
ns

ity

 

Figure 8. Graph of relative density against reduced time for N = 4.

The conformal maps (2.17) provide the required alternating, bimodal distributions of

cylindrical particles surrounding an enclosed pore. The initial configurations chosen are

all close to the scenario depicted in Figure 9 in which four particles of smaller radius

are placed between the particles in the N = 4 case considered in the previous section

in such a way that the centres of all the particles initially lie on the square joining

four points (±1, 0) and (0,±1). The relative radii of the two particle types are varied,

the centre of the larger particles being placed at (±1, 0) and (0,±1) and having radius

r. Ten different cases are considered corresponding to choices of r between 0.5 and 1.

Each initial configuration is chosen by finding the parameters ρ(0), a(0), A(0), b(0) and

B(0) corresponding to the situation of eight touching circular discs (this is done using

Newton’s method to solve a system of nonlinear equations) and then perturbing these

parameters in order to slightly smooth out the high curvature regions in the boundaries

to obtain a connected configuration like that shown in Figure 9. This perturbation of the

parameters in not done in a systematic way as in the previous section, but by simply

tweaking the parameters corresponding to touching circular discs. The parameters used

in the ten test cases (numbered 1–10) are listed in Table 2.

The class of conformal maps (2.17) depend on five real parameters. The five evolution

equations are given by

ȧ = aI(a−1, t),
(4.1)

ḃ = bI(ω−1b−1, t),
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r

Figure 9. Schematic illustrating initial square unit cell with two particle sizes. Lines (not shown)

joining particle centres (shown as dots) form the square unit cell.

Table 2. Table of initial conditions and reduced pore disappearance times

for 10 example cases

Case ρ(0) a(0) A(0) b(0) B(0) r t∗

1 0.737 1.089 0.628 1.165 0.763 0.500 0.929

2 0.669 1.099 0.661 1.210 0.677 0.567 0.886

3 0.686 1.096 0.789 1.200 0.516 0.667 0.905

4 0.709 1.088 0.828 1.184 0.450 0.707 0.901

5 0.713 1.087 0.870 1.180 0.396 0.742 0.890

6 0.696 1.090 0.900 1.184 0.343 0.778 0.854

7 0.759 1.068 0.894 1.134 0.295 0.806 0.853

8 0.700 1.092 1.005 1.187 0.231 0.849 0.810

9 0.726 1.084 1.084 1.181 0.122 0.919 0.751

10 0.811 1.054 1.064 1.117 0.066 0.955 0.718

where ω = e
iπ
4 , the usual equation (2.10) for ρ(t) and the two conserved quantities

APN(ρ2/N, ρ)zζ(a
−1, t)

NP̂N(1, ρ)
= constant,

(4.2)
BQN(ρ2/Nω−1, ρ)zζ(ωb

−1, t)

NQ̂N(ω−1, ρ)
= constant,

where Q̂N(ζ, ρ) is defined as

Q̂N(ζ, ρ) ≡ QN(ζ, ρ)

(1 + ζN)
=

∞∏
k=1

(1 + ρ2kNζN)(1 + ρ2kNζ−N). (4.3)
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Figure 10. Case 1: t = 0.0, 0.2, 0.4, 0.6, 0.8, 1.367.

Plots of the initial conditions corresponding to cases 1, 5 and 9 and their subsequent

evolutions are shown in Figures 10–12. These figures show examples with increasing

disparity between the radii of the two different particle sizes. The calculations were

performed using a forward Euler method with time step 0.00025 and are terminated when

ρ is smaller than this step-size. The reduced shrinkage time t∗ for the ten test cases is

reported in the table in Figure 2.

A graph of initial relative density against reduced shrinkage time of the pores is shown

in Figure 13 as a scatter plot of the results for the ten cases given in the table in Table 2,

as well as the N = 4 case considered at the end of § 3 (this case corresponds to r = 1). It

is clear that, except for a notable outlier corresponding to case 1, all points lie close to a

straight line. This is significant; it suggests that the geometry of the interparticulate pores

in a square packing is of little importance in actually calculating the total shrinkage time

of the pores, which is the quantity of primary interest. Note also that all dots in Figure 13

correspond to different values of r but, as can be seen from Figure 14 which contains a

scatter plot of r against initial relative density, different values of r (and hence different

initial pore shapes) can have similar initial relative densities and thus similar (reduced)

shrinkage times. For example, cases 2 and 5 have very different initial shapes and yet their

initial relative densities are roughly the same. They also have commensurate (reduced)

pore disappearance times.

Under the hypothesis that the above results are presentative of the behaviour of pores

in a general regular square packing of particles, the linear graph in Figure 13 can be used
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Figure 11. Case 5: t = 0.0, 0.2, 0.4, 0.6, 0.8, 1.302.

Figure 12. Case 9: t = 0.0, 0.2, 0.4, 0.6, 0.8, 1.231.
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Figure 13. Graph of initial relative density (y-axis) against reduced shrinkage times (x-axis). Cross

indicates outlier corresponding to case 1, all other data shown as dots. Also shown is a best-fit line

(4.4) through the dots.
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Figure 14. Scatter plot of r against relative density.
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Figure 15. Two distinct square packings of equal-sized particles. If considered as a typical unit cell

in a doubly-infinite lattice, the denser packing on the left has one particle per pore while the looser

packing to the right has three particles per pore.

to provide quantitative predictions of disappearance time for an arbitrary square packing

using nothing more than the initial size of a typical square unit cell and the initial relative

density σ(0). Disregarding the outlier corresponding to case 1 (this case will be studied

in more detail shortly) a least-squares best fit line through the other ten data points in

Figure 13 is found to be given by

tf = 1.416 − 0.982 σ(0). (4.4)

This empirical relation, combined with estimates of the initial relative density (known in

the engineering literature as green density [1, 18]) and initial cell size (usually available

experimentally) can be used to provide estimates of the time required for the sinter body

to have densified so that pores are of negligible size.

Case 1, corresponding to r = 0.5, appears not to lie on the straight line (4.4) but takes

a longer time for the pore to disappear than another configuration with the same initial

relative density. Note that the choice r = 0.5 results in another square unimodal packing

which is distinct from the square unimodal packing considered in § 3. If the square unit

cell of touching circular particles is considered as a unit in a doubly-infinite lattice, the

latter packing corresponds to a cell in which each pore is neighboured by a fluid region

equivalent to one particle (i.e. the cell contains four quarter-particles) while the packing

with r = 0.5 has a pore neighboured by a fluid region equivalent to three particles (i.e. the

unit cell contains four quarter-particles and four half-particles). The latter packing can

therefore be described as being the looser packing because each pore is surrounded by

more particles than the pore in the former packing. These two distinct square packings of

equal-sized particles are shown in Figure 15. It is worth pointing out that 3-dimensional

cubic packings of same-size particles which are analogues of the two distinct unimodal

planar packings in Figure 15 are compared in Scherer [1, 26].

In an attempt to understand why case 1 does not follow the linear relation (4.4)

particularly well, a graph of relative density against (shifted) reduced time for case 1 is
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Figure 16. Relative density against shifted reduced time (abscissa) for case 1. Note the early

period of dilation.

shown in Figure 16. Indeed, the abscissa corresponds to the quantity

t− tf√
Af(0)

. (4.5)

The most important feature of this graph is that, at early times, the relative density

of the unit cell decreases. Indeed, the area of the enclosed pore is found to increase at

early times before it eventually begins to decrease. If relative density is used to track

densification under sintering, it must be concluded that this particular packing dilates,

rather than densifies, in the early stage of sintering. This will have a negative effect

on the densification rate. Van de Vorst [30] observed similar dilational behaviour in

his numerical calculations of a texture model of a base-catalysed aerogel. He noticed

that, in a doubly-infinite lattice of cells each containing a non-uniform distribution of

pores, pores with large concave boundary parts become larger in size before shrinking

and explains this phenomenon as a consequence of the fact that such pores have much

longer boundary length than that strictly required to surround the given pore area. This

argument would similarly explain the dilational behaviour of Case 1 observed here. It is

clear from Figure 15 that the initial enclosed pore has many concave boundary parts.

It is also worth noting that Ross, Miller & Weatherly [25] have performed computer

simulations of two-dimensional sintering problems in order to study the effects of packing

geometry on the sintering behaviour. Their results highlight the fact that in looser

packings, overall densification can be inhibited even though interparticle shrinkage (i.e.
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growth of the necking regions between touching particles) still takes place. They explain

this strong dependence of shrinkage on packing density by means of a ‘chain straightening’

mechanism. The calculations of Ross et al. [25] is based on a simulated model; the above

calculations show that similar phenomena are present in exact integrations of the Stokes

flow model with surface tension even for the simple unit problems considered here.

It is of interest to examine whether after this initial short period of dilation, the

configuration follows the empirical relation (4.4). The following parameter choices describe

the case 1 configuration at some time just after the dilation period:

ρ = 0.624; a = 1.138; A = 0.661; b = 1.229; B = 0.791. (4.6)

The initial relative density of this configuration is σ(0) = 0.530. Relation (4.4) then

predicts a shrinkage time of 0.897. Integration of the exact equations of motion from the

initial conditions (4.6) gives the value 0.906. The empirical relation (4.4) therefore gives

an excellent approximation to the disappearance time once the initial period of dilation

has taken place.

5 Conclusion

Using a class of exact solutions, the results of this paper suggest that, provided one avoids

pores with too many concave boundary parts, pore shrinkage times in the two-dimensional

viscous sintering of a square packing are largely independent of the particular details of

the initial pore shape and can be predicted to good accuracy by an empirical relation

given the initial green density and cell size.

With recent advances in the use of boundary integral methods, there has been a

revival of interest in the numerical calculation of planar viscous sintering. Early computer

simulations of dynamic sintering was performed using finite element methods by Ross

et al. [24]. Kuiken [15] performed some important calculations using boundary element

methods. These calculations were later improved upon by a number of other authors

[27, 28]. Extensive numerical investigations have been performed by Van de Vorst [27]–

[29] whose calculations include the evolution of two different square packings of 16

equal particles [28]. The two packings differed only in their initial green densities. Van

de Vorst [28] points out that the only limitation on the application of the numerical

method is computer resources, i.e. the calculations are computationally intensive. The

importance of the present results is that they suggest that some simple empirical relation

such as (4.4) might be used to obtain estimates for the different pore shrinkage times of

the two different 16-particle packings given only their initial green densities. This could

potentially obviate the need for detailed calculations in the practical matter of estimating

pore shrinkage times for a given packing.

The problems considered here have been isolated unit problems. It has been a thesis

of this paper that such unit problems may, in certain circumstances, be representative

of the behaviour of a typical unit cell in an extended packing and, for this reason, the

mathematical properties of these isolated units have been studied. The next important step

is to establish to what extent this is true and to investigate, for example, how the general

relation (4.4) is affected if the unit is immersed in an infinite lattice of identical units

repeated throughout the plane. Of course, some differences are to be expected. Indeed, in
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numerical calculations of an array of non-uniform pores in both a finite two-dimensional

fluid region [29] and in a doubly-infinite lattice [30], Van de Vorst has observed that pores

vanish in order of their initial size in a doubly-infinite lattice while, in a finite domain, the

larger pores shrink faster than smaller ones. Van de Vorst [30] attributes this difference

to the additional stresses in the fluid caused by the outer boundary in the finite domain

case. Moreover, Jagota & Dawson [14] have remarked on a danger in the use of unit

problems to model viscous sintering. They point out that making incorrect geometrical

assumptions concerning a unit problem, or ignoring far-field effects, can lead to the

conclusion that the sinter body dilates rather than densifies. In the exact planar solutions

above, the evolution of the geometry has been solved self-consistently with the full

flow field and still dilation is observed in the early stages of sintering, at least in the

case of a loose particle packing. Whether this dilational behaviour would persist if the

initial unit cell of test case 1 is repeated in a doubly-periodic lattice is an interesting open

question. Recall that Van de Vorst [30] has already observed dilational behaviour of this

kind in a doubly-periodic packing.

The model of the sintering problem considered here has a number of fortuitous

mathematical properties [11, 19, 2, 3, 5, 6, 22]. For example, Crowdy has advocated the

usefulness of considering the problem in the context of quadrature domain theory [5],

which is closely related to an alternative approach based on the Cauchy transform of the

fluid domains (see Crowdy [6]) – a perspective which has proved particularly useful in

the study of other free boundary problems such as Hele-Shaw flows involving multiply-

connected regions (see, for example, Richardson [23] and Crowdy & Kang [8]). Using

such analytical perspectives, Crowdy [7] has recently identified exact solutions for the

sintering of finite fluid domains with larger numbers of pores. These solutions depend

on just a finite set of time-evolving parameters and provide a wide source of increasingly

complex unit problems which can be studied in a straightforward way to gain insight into

the behavioural features of the model.

There is a more general implication of our results. Historically, experiments and

theoretical models have shown that three-dimensional viscous sintering is well-described

by empirical laws in which the details of the exact pore geometry are not important. This

analytical study based on exact mathematical solutions has revealed the same phenomenon

in the case of a physically-simplistic planar sintering model. This suggests the potential

usefulness of studying planar sintering models possessing the fortuitous mathematical

properties mentioned above. It is plausible that general properties and observations made

in the context of the planar problem might carry over to the full three-dimensional case

which is much less tractable to study either analytically or numerically. In further support

of this conjecture, Nie & Tanveer [17] have studied the axisymmetric problem in the case

of volumetric change and have found that it shares many general features of the planar

problem. Thus while the planar problem may be less physical, it appears to represent a

useful and tractable theoretical paradigm.
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