Quadrature domains and fluid dynamics

Darren Crowdy

Abstract. Few physical scientists interested in the mathematical description
of fluid flows will know what a quadrature domain is; just as few mathemati-
cians interested in quadrature domain theory would profess to know much
about fluid dynamics. And yet, recent research has shown that a surprisingly
large number of the by-now classic exact solutions of two-dimensional fluid
dynamics can be understood within the context of quadrature domain theory.

This article surveys a number of different physical applications of quadrature
domain theory arising in the general field of fluid dynamics.

1. Introduction

The simplest example of a quadrature domain is a circular disc. Let z = x + iy
and suppose the disc is centred at the origin z = 0 with radius r. The well-known
“mean value theorem” says that, if h(z) is any function analytic in the disc D,
then

(1) //Dh(z)dxdy = 7r?h(0).

(1) is a simple example of a quadrature identity. The idea of quadrature domain
theory is to consider more complicated domains satisfying more complicated quad-
rature identities. Shapiro [1] gives an illuminating introduction to quadrature do-
main theory. See also Sakai [2].

Perhaps the first connection between quadrature domain theory and applications
was made by Richardson [3] who was interested in understanding the motion of
the free boundaries of blobs of fluid trapped between two plates in a Hele-Shaw
cell. When the flow is driven by a distribution of sources and/or sinks and surface
tension effects on the free boundaries are ignored, this free boundary problem
admits wide classes of “exact solution”, i.e., initial fluid domains can be found
whose evolution under the dynamics of the physical problem can be computed by
tracking a finite set of time-evolving parameters. This constitutes a remarkable
simplification of the problem.
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It is important for our general message to point out that the exact solutions found
by Richardson had, in fact, been found many years before by Polubarinova-Kochina
[4] and Kufarev [5] who were interested in the motion of the interface between oil
and water in porous media (mathematically, this problem is identical to the Hele-
Shaw problem). But even if the solutions were already known, Richardson’s 1972
paper introduced a crucial new theoretical ingredient: an understanding of the
problem within the framework of quadrature domain theory.

Varchenko and Etingof [6] provide a comprehensive review of the impact of this
new perspective in the context of flows in porous media and Hele-Shaw flows. The
purpose of this article is different. The goal is to describe a broad spectrum of
distinct physical problems, all emanating from the field of fluid dynamics, which
can usefully be interpreted within the context of quadrature domain theory. The
history of the Hele-Shaw problem illustrates the power of rephrasing a well-known
problem in a new mathematical language. Here we describe the relevance of quad-
rature domain theory to a variety of different physical applications and describe
its associated impact.

2. Quadrature domains

First, some background on quadrature domains. Consider a planar domain D. Let
h(z) be any function that is analytic in D and integrable over it. Suppose that

N np—1

(2) //Dh(z)da:dy = Z Z cikh (z1)

k=1 =0

where {2 € C} is a set of points strictly inside D, {cjx € C} and h\)(2) denotes
the j-th derivative of h. Here, N and {nj > 1} are integers. Then D is very special
and is known as a quadrature domain because of the remarkable fact, embodied in
(2), that the two-dimensional integral on the left hand side of (2) in fact requires
only the sum of a finite number of terms given on the right hand side for its
evaluation. The quadrature identity (2) generalizes (1).

An alternative way to understand quadrature domains [6] is to consider their
Cauchy transforms C(z) defined as

3) Cz) =t / da'dy’ 4 p.

p 2 —z

This function is well-defined if D is bounded and is analytic for z ¢ D. By Green’s
theorem, we also have

1 dz'
4 = — RS D
(®) CC) = gim § o 2 ¢
and this form can be used to define Cauchy transforms for unbounded domains.
Choosing h(z) = 2™ for n > 0 in the left hand side of (2) defines the geometrical
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moments M, of a domain D, i.e.,

(5) M, = 1 / / Z"dzdy.
™ D

C(z) is a generating function for these moments because its Laurent expansion
coefficients valid as |z| — oo are the moments (5). If the moments of a domain
encode information concerning its shape, then so does C(z). In physical problems,
it is usually the evolution of the Cauchy transform which can be established most
directly from the problem statement. The physical problem then reduces to that
of reconstructing the domain from knowledge of its Cauchy transform. Mathemat-
ically, this is identical to the inverse problem of two-dimensional potential theory
and such a viewpoint offers a helpful perspective. There are deep theoretical con-
nections [1] between quadrature domain theory, potential theory and the concept
of “balayage”, and the theory of the Schwarz function [7].

Quadrature domains come in a variety of flavours. Basically, they are domains
where the continuation of C(z) into the domain has a special set of singularities.
The most common quadrature domains satisfy quadrature identities of the type
(2) and have Cauchy transforms that have a finite set of poles so that C(z) is a
rational function. Varchenko and Etingof [6] call these algebraic domains. They
also introduced an abelian domain to be one where C'(z), rather than C(z), is
rational. An ellipse is a quadrature domain, but it is neither algebraic nor abelian.
Instead, it has a Cauchy transform with two square-root branch points at the foci.
For example, an ellipse D with major and minor axes a and b respectively and
with foci at £1 satisfies the quadrature identity [1]

(6) //D h(z)dzdy = 2ab /_11 h(z)(1 — 22) /2 dz.

A different class of domains, called quadrature domains for arclength [9], satisfy
identities of the form
N np—1
™) § halazl =30 3 e ).
oD k=1 j=0
Remarkably, all these classes of domain have been found to arise in applications,
each having very different physics.

3. Constructing quadrature domains

Suppose C(z) is known, then it remains to reconstruct the associated quadrature
domain. There are various ways to do this. In a number of applications, Crowdy
has made pragmatic use of the fact that the boundaries of quadrature domains
are algebraic curves [10] [11]. Conformal maps from a pre-image (-plane (say) to
the domain can also be used [12] [14]. Here we briefly describe the approach to
reconstructing quadrature domains presented by Crowdy and Marshall [12] (who
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also survey the various other known methods of construction). It is known [6]
[8] that the conformal mappings to a bounded g-connected quadrature domain
is a meromorphic function on a Riemann surface of genus g. One model of such
functions uses a mapping from a pre-image region in a (-plane consisting of the
interior unit {-disc with g smaller interior discs excised. This is the Schottky model.
The associated mappings must be invariant with respect to a group of Mobius
transformations associated with this pre-image region. This group (O, say) is a
classical Schottky group. Mumford, Series and Wright [15] give a very accessible
and modern discussion of Schottky groups and their applications.

Given a Schottky group © the Schottky-Klein prime function is defined as [16)
8) w(¢, ) = (¢ = [[{¢ /76, G
@I

where @ denotes all transformations in © excluding the identity and all inverses
while ¢; and «; denote images of ¢ and « respectively under the i-th map (6;(¢),
say) in this set. {{,v/vi, (i} denotes a cross-ratio. Then one representation for a
function invariant with respect to transformations in © is a ratio of products of
Schottky-Klein prime functions, i.e.,

T3, w(G, B(1))
1Y, w(C (1)

where the N poles {a;|j = 1,..,N} and N zeros {3;]j = 1,.., N} satisfy the g
conditions

N
(Bj — 0:(Bx)) /(o —0:(By)) _ _
(10) jl;[wigak 3 _ei(Ak))/(aj Z0:(Ay) 1, k=1,..,9.

Ay, and By, are the two fixed points of the k-th Mobius map generating the group
and Oy, is another subset of @ (see [12] for a precise definition). Figure 1 illustrates
various multiply-connected square packings of near-circular discs all constructed
using mappings of the general form (9).

9) 2(¢, 1) = R(1)

When the Schottky group is trivial, the associated prime function is w(¢,vy) =
(¢ —~) and the functions (9) are just the rational functions. When 0 is generated
by the single Mobius map 60;(¢) = p?¢ then w((,v) o< P((/v, p) where

o0
(11) P(p) = (1-¢) [[-p*00 -p*/¢)

k=1
which is closely related to the classical Jacobi theta functions. With the choice
(11), (9) then yields the class of lozodromic functions [13]. Such functions have
been used to construct explicit solutions to the rotating Hele-Shaw problem [18],
the viscous sintering problem [19] [20], the problem of finding vortical equilibria
of the Euler equation [21] and the problem of free surface Euler flows with surface
tension [24].
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FI1GURE 1. Three distinct square packings of near-circular parti-
cles constructed using conformal mappings based on the Schottky-
Klein prime function (9). All are quadrature domains. The first
two are doubly-connected, the third is quintuply-connected.

4. Applications in fluid dynamics

This section describes a series of physical problems where quadrature domains
arise.

4.1. Hele-Shaw flows and flows in porous media

This class of problems is where use of quadrature domains and Cauchy transforms
is best known and so we review it only briefly. Consider the two-dimensional flow-
field u of a blob of fluid D(¢) of viscosity u sandwiched between two plates of glass
separated by b. Under appropriate assumptions, the flow is modelled by u = V¢
where

(12) V26 =0, in D(t).

If there is no surface tension then ¢ = constant on each free surface, while it must
also be true that

(13) V, =Vén

where V,, denotes the normal velocity of the free surface and n is the normal to the
boundary. Richardson [3] studied the case of flows driven by sources of strength
Q,(t) at positions z = z;.

The above is a canonical example of a “laplacian growth problem”. An extensive
array of analytic results are known (see a website by Howison [25] for a compre-
hensive list of related references). These equations describe a number of different
physical situations including, for example, flow in porous media, electrodeposition
and the slow solidification in a supercooled liquid. Entov, Etingof and Kleinbock
[26] discuss a number of variants of the Hele-Shaw problem for which there exist
exact solutions. These include flow in a rotating Hele-Shaw cell where the flow is
driven by centrifugal effects, Hele-Shaw flows with gravity and “squeeze flow” in a
Hele-Shaw cell where the plates making up the cell are moved together (or apart).
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Extensions to flows in non-planar cells, multiply-connected fluid regions and to
three dimensions have all been made (see [25] for references).

As an example of how useful it can be to understand such problems in terms of
quadrature domains, we examine the case of Hele-Shaw flows in rotating cells.
Recent experiments have investigated the various interfacial instabilities that can
occur in an initial concentric annulus of fluid placed in a rotating cell [17]. The
time-evolving concentric annulus is a trivial exact solution to this problem, but
it fails to exhibit any of the nonlinear phenomena observed in the experiments.
Knowledgeable of the fact (see [26]) that simply-connected quadrature domains are
preserved in a rotating cell, Crowdy [18] generalized this result to doubly-connected
domains relevant to the experiments involving an annulus. Having derived a general
class of solutions, to mimic the experiments of [17] it was necessary to construct
an initial quadrature domain that is close to a concentric annulus. Gustafsson [8]
showed that multiply-connected quadrature domains are dense (in an appropriate
sense) in the general class of multiply-connected domains so the existence of such
a quadrature domain was guaranteed. Indeed, in [18], it is shown that conformal
maps from the annulus p < |¢| < 1 of the form

Pn(¢p*™Na™t, p)
Py(Ca™t,p)
where 1 < a < p~! (chosen so that the map in univalent) give images that are

quadrature domains getting arbitrarily close to the annulus p < |2| < 1as N — oo.
Here, Pn(C, p) is equivalent to a product of the functions P((, p) and is defined by

(14) z(¢) =¢

o0

(15) Py(¢p) = (1= ¢N) T =N M) (@ = N ¢M).

k=1

Under evolution, the map takes the form

Pr(¢p(t)*Ma(t) ", p(t))

Pn(Ca(t)=1, p(t))
the parameters R,a and p evolving in time according to a coupled system of
ordinary differential equations. In [18], this class of exact solutions is studied and
compared to the qualitative results of the experiments in [17].

(16) z(¢,t) = R(t)¢

4.2. Rotating vortex arrays

A famous exact solution in vortex dynamics is the celebrated Kirchhoff elliptical
vortex patch [27] which rotates, under the dynamics of the Euler equation, at
constant angular velocity without changing its shape. The interior of an ellipse
is a generalized quadrature domain satisfying the identity (1), while the exterior
can be viewed as an unbounded quadrature domain with a Cauchy transform
C(z) which is a linear polynomial. By considering generalizations of these facts
and using ideas involving the Schwarz function, broad new classes of exact solu-
tion have been found [28] for rotating vortex arrays with finite area cores having
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distributed vorticity. These solutions generalize the classic 19th century investi-
gations of polygonal vortex arrays by Thomson [27]. Here, the flow u is given by
u = (¢y, —1),) where ¢ is a streamfunction governed by the steady nonlinear Eu-
ler equation for a two-dimensional incompressible fluid of constant density which
takes the form

oy, V*¥)

) 3(z,9)

=0.

The key observation is that, in a frame of reference co-rotating with the config-
uration, carefully-chosen streamfunctions 4 having the form of modified Schwarz
potentials [1], i.e.,

(18) b(z,y) = —% (zZ - / " S(2dz' — / ’ §(z')dz')

in the fluid region D, where S(z) is the Schwarz function of the boundary 0D
(and S(z) its conjugate function), can represent dynamically-consistent equilib-
rium solutions of the Euler equation (17). (Such potentials also play an important
role in the general theory of quadrature domains [1]). The constant w is the mag-
nitude of the uniform vorticity in the fluid. This new perspective has led to the
discovery of a wide range of new exact solutions of the steady Euler equations,
including those for rotating vortex configurations involving multiple interacting
vortex patches. Some typical configurations are shown in Figure 2. The fluid re-
gions exterior to the five co-rotating vortex patches in Figure 2 are unbounded,
quintuply-connected quadrature domains constructed using conformal mappings
based on the Schottky-Klein prime function. The pre-image region consists of the
unit (-circle with four smaller discs of radius g excised. Figure 2 shows six different
vortical configurations for various values of g.

4.3. Multipolar vortices in the plane and on the sphere

Motivated the observation, experiments and numerical investigations of a class of
coherent structures known collectively as multipolar vortices (e.g. [30]), Quadra-
ture domain theory has been used [29] to construct a class of exact stationary
equilibrium solutions of the Euler equations displaying all the qualitative proper-
ties of the multipolar vortices observed in practice. The essence of the approach
in [29] is to reappraise the classical circular vortex patch known as the Rank-
ine vortex [27]. If one thinks of it instead as the simplest form of quadrature
domain (i.e. a circular disc) then the multipolar vortex solutions correspond to
generalized quadrature domains (subject, of course, to the physical constraints of
the Helmholtz laws of vortex motion [27]). Again, streamfunctions of the form
(18) turn out to be significant. These ideas have proven to be generalizable in a
number of directions including finding multipolar vortices in annular arrays [21],
vortices with more complicated topology [10] as well as finding equilbrium regions
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FIGURE 2. Steadily rotating vortex configuration consisting of 5
vortex patches (one central and four satellite patches) and 4 point
vortices. The point vortices correspond to the singularities of the
global Schwarz function.

of distributed vorticity on surfaces with non-zero curvature [31]. Examples of a
triangular (or quadrupolar) vortices in equilibrium on the plane and on a sphere
are shown in Figure 3. The right-hand diagram in Figure 3 has an interpretation
as a quadrature domain on the surface of a sphere.

Shapiro [32] introduced the notion of a special point of a quadrature domain.
The boundary of a bounded quadrature domain is known to be given by all the
continuous, non-isolated solutions of

(19) P(z,z) =0

where P(z,w) = 0 is an algebraic curve whose order equals that of the quadrature
identity. There are often a number of isolated solutions of (19) occurring inside
the domain and these have been dubbed special points of the quadrature domain.
It is interesting to remark that, in the context of steady vortical flows of the Euler
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FI1GURE 3. Streamlines and shape of a triangular vortex in equi-
librium on the plane [29] (left). A triangular vortex in equilibrium
on the surface of a sphere [31] (right). These are quadrature do-
mains on the plane and on the sphere.

equation, these special points have a physical interpretation; they are precisely the
stagnation points of the flow [10].

4.4. Free surface Euler flows with capillarity

Another famous exact solution known to fluid dynamicists is that for steady deep-
water capillary waves found by Crapper in 1957. By reappraising this solution [33],
broad new classes of exact solution for equilibrium configurations of free surface
irrotational Euler flows with interfacial tension on the free boundaries have been
identified. In the fluid region, the incompressible velocity field is given by u = V¢
where

(20) V¢ =0.

In equilibrium, any free boundary must be a streamline. If there is uniform surface
tension T on the free boundary, the fluid pressure must balance the capillary forces.
Using a well-known theorem due to Bernoulli, we can write

(21) Tk +T = |Vg|?

where k is the surface curvature and T is the Bernoulli constant.

Crowdy [34] has found new exact solutions for the shape deformations of both
a bubble placed in an ambient circulatory flow of circulation v and of a blob
of fluid with internal circulation modelled by a contained line vortex singularity
of strength ~. Non-trivial equilibrium shapes of a bubble in a circulatory flow
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circulatory flow

FIGURE 4. Schematic illustrating the problem of a bubble with
capillarity in an ambient circulatory flow (left). Equilibrium bub-
ble shapes, computed using exact solutions, for different values of
the circulation [34] (right). At a critical circulation, the bubble is
found to pinch.

are shown in Figure 4. In the case of both a bubble and a blob, the conformal
mappings z(¢) from a unit {-circle to the equilibrium shapes are such that z(¢)
and /z¢(¢) are rational functions. This means that the equilibrium shapes are
simultaneously quadrature domains in the sense of satisfying identities of the form
(2) and quadrature domains for arclength in the sense of satisfying identities of
the form (7). Indeed, using the formulae in [34], the fluid domains D exterior to
the equilibrium bubble configurations shown in Figure 4 satisfy both

(22) h(z)|dz| = —z%h(zq) - 2?7rh(—z1) + %(1 + /1 + 2Ty2)h(0).

8D

where h(z) is some function analytic in the fluid domain D, and

(23) //D h(z)dxdy = T%h(z1) + T2h(—2;)

where h(z) is some function analytic in the fluid domain D and decaying sufficiently
fast at infinity. In (22) and (23), 21 = 21(T, ) is some algebraic function of the
physical parameters I and ~.

This new understanding has led to a range of new mathematical results for this
class of flows (e.g. [24]) including a simplified representation of the classic exact
solutions of Kinnersley [23] for waves on fluid sheets. Moreover, all these new results
are automatically applicable to a quite separate physical problem in electrophysics
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involving the shaping of conducting metal jets using electric fields [35] which has
identical governing equations.

4.5. Steady Hele-Shaw flows with surface tension

Exact solutions for the equilibrium shapes of simply-connected blobs and bubbles
in a Hele-Shaw flow where there is non-zero interfacial tension and the flow is
driven by quadrupoles (or higher order poles) have been found by Entov et al.
This problem also admits equilibrium shapes which are images of the unit (-
circle under conformal mappings where /2z¢(() is a rational function so that the
equilibria can be interpreted as quadrature domains for arclength (but are not, in
general, also quadrature domains in the usual sense). The solutions of Entov et al
have been generalized in various directions [36] (for example, to doubly-connected
fluid configurations). The mathematical similarities and differences between the
two physically-distinct problems of §4.4 and 4.5 have also been discussed [36].

4.6. Viscous sintering

Hopper [37] found a remarkable exact solution for the surface tension-driven coa-
lescence of two near-circular viscous fluid blobs. This is the planar analogue of the
two-sphere coalescence “unit problem” which is an important microscale model
of an industrially-important manufacturing process known as wiscous sintering.
Howison [25] has also compiled a comprehensive list of related references.

Hopper’s mathematical model is as follows. In a time-evolving region D(t), of
incompressible fluid of viscosity u, a streamfunction 1 satisfies

(24) Vi =0in D(t),

so that ¢ = Im[Zf(z,t) + g(z,t)] for some f(z,t) and g(z,t) analytic in D(¢). On
the boundary of the fluid,

(25) —pn; + 2ueijn; = kn; and V,, = n.V ¢ on dD(t)

where & is the boundary curvature, p is the fluid pressure and e;; is the fluid
rate-of-strain tensor. V,, denotes the normal velocity of the boundary. Crowdy
[38] [44] has shown explicitly that the dynamics of these equations can, in certain
circumstances, preserve quadrature domains. Reappraising Hopper’s work within
this framework has led to generalizations of his solutions.

As an initial sinter compact of touching particles is heated, the particles coalesce
and the compact densifies as the interparticulate pores close up under the effects of
surface tension. In certain circumstances, the above mathematical problem admits
exact solutions in the form of time-evolving quadrature domains. Figures 5 and
6 show time sequences of the sintering of two doubly-connected packings of near-
circular viscous blobs computed using the methodology presented in [20]. The
sequences are shown up to the time at which the central pore has closed up.
Figures 5 and 6 are calculated using conformal mappings, dependent on just a
finite set of time-evolving parameters, based on the Schottky-Klein prime function
representation (9) [20]. Indeed, Figure 5 was computed using conformal mappings
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FIGURE 5. Viscous sintering of four near-cylindrical viscous blobs
in an initially doubly-connected configuration up to the time of
pore closure. Times shown are t = 0, 0.2, 0.4, 0.6, 0.8, 1.14.

i & O
00O

FIGURE 6. Viscous sintering of a looser square packing of eight
near-circular viscous blobs up to the time of pore closure. Times
shown are t =0, 0.2, 0.4, 0.6, 0.8 and 1.36.

of precisely the form (16) with N = 4, thus by virtue of the association with
quadrature domains, the full dynamics of the problem is reduced to the solution
of just three ordinary differential equations for a(t), R(t) and p(t). The evolution
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in Figure 5 has also been computed using elliptic function theory by Richardson
[40] and using purely numerical methods by Van de Vorst [39].

4.7. Bubbles in Stokes flows

Quadrature domain theory can also be used to understand a range of exact so-
lutions for bubbles in ambient Stokes flows. An example is the work of Tanveer
and Vasconcelos [41] who consider time-evolving bubbles in ambient straining and
shear flows (among others). The latter exact solutions can be generalized to the
case of compressible bubbles [42] and to steady two-bubble configurations [43].
Figure 4.7 shows various steady two-bubble configurations placed in an ambient
flow where the Goursat functions have the far-field form

f(2) ~ f32° + fiz + O(z7),

26
(26) 9'(2) ~ gaz* + 9222 + O(z 1)

where fs, f1,94 and g2 are some parameters dictated by the imposed far-field
conditions. The fluid domains exterior to the various two bubble configurations in
Figure 4.7 are doubly-connected, unbounded quadrature domains corresponding
to Cauchy transforms of the form

27) C@):Amz+é?

where the parameters A, and Ay depend on the far-field parameters in (26).
The domains in Figure 4.7 were constructed using conformal maps based on the
Schottky-Klein prime function (11) for the genus 1 case.

5. Discussion and future directions

It has been seen that quadrature domain theory arises in a surprisingly broad range
of distinct physical contexts, even just within the field of fluid dynamics. It is to
be expected that the same will be true of other disciplines (e.g. plane elasticity,
electrostatics). As a result of this interpretation in terms of quadrature domain
theory, new mathematical results have been found. The abstraction of quadrature
domain theory can immediately give invaluable insight into the scope of what is
possible mathematically.

There is no doubt that there are many other areas where quadrature domain
theory will be found, in future, to have relevance. One unifying observation is
that all of the time-evolving free boundary problems admitting exact solutions
just described, whatever the governing physics, have Cauchy transforms obeying
a partial differential equation of the form

0C(z,1) , Ol(z1)

(28) ot 0z

+ Uz(Z,t)C(Z,t) = R(Z,t), Z ¢ D(t)
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Ficure 7. Configurations of two steady bubbles in an ambient
Stokes flow of the form (26). Different shapes correspond to dif-
ferent choices of the far-field parameters. The domains exterior
to the two bubbles are unbounded doubly-connected quadrature
domains with Cauchy transforms given by (27).
where

(29) I(2,1) // o1 (2, t)da'dy’
D(t) zl -z ’

for various choices of o1(z,t) and o2(z,t) which are analytic in D(t) and R(z,t)
which is meromorphic in D(t). Crowdy [44] gives details as to why such an equation
can be expected to preserve the rational character of C(z,t). The choice o1(z,t) =

o2(z,t) = 0 and R(z,t) = E;VII ?7 (;) gives the case of Hele-Shaw flow driven by

sources/sinks; o1(z,t) = b? ,o02(z,t) = 0 = R(z,t) gives the case with gravity;

2 pg
12p

o1(z,t) = bj‘z";z z, 02(z,t) = R(z,t) = 0 gives flows in a Hele-Shaw cell rotating

with angular velocity w; the choice o1(z,t) = R(z,t) = 0 and 02(z,t) = % gives the
case of “squeeze flow” in Hele-Shaw cell where b(¢) is the separation of the plates;

o1(z,t) = —2f(2,t), o2(2,t) = R(z,t) = 0 gives the case of viscous sintering;
o1(z,t) = —2f(z,t), o2(z,t) = 0 and

1 2
(30) R(z)t) = —— 7{ 29758 g

2mi Japwy 2 —z

corresponds to the case of bubbles placed in singular Stokes flows.

Intriguingly, (28) has recently been found to give rise to a tantalizing theoretical
link between fixed and free boundary problems. Fokas [45] has introduced a flexible
new transform method that is applicable not only to mixed linear boundary value
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problems in fixed domains but also to integrable nonlinear problems. The method
involves the introduction of a differential 1-form which is closed if and only if
the governing field equation holds in the domain. The closure of this form implies
what Fokas calls a “global relation”. If Fokas’s algorithmic method is applied to the
free boundary problems described herein, the corresponding global relation turns
out to be precisely (28). Thus, considering the evolution of C(z,t) in the solution
of these problems is no longer arbitrary but becomes a natural consequence of a
general algorithmic method that applies not only to free boundary problems but
to a broad range of applied mathematical problems. This perspective might very
well prove to be valuable in future.

Another connection to integrable systems theory has recently arisen in the work
of Wiegmann and Zabrodin [46]. They find a theoretical connection between the
problem of reconstructing a domain from its harmonic moments and dispersionless
integrable hierarchies. The connection applies to very general domains but it is
conceivable that quadrature domains have some interpretation as special solutions
or reductions of these hierarchies. A tempting connection of quadrature domains
with “finite-gap solutions” of nonlinear integrable systems is irresistible but still
largely intuitive at present.

Concerning three-dimensional results, there is broad scope for future results there
too. These will be far more important for realistic application. The analysts are
already paving the way for possible applications by determining what is mathe-
matically possible in higher dimensions. See Shapiro [1] for a discussion of this.
As an example, Dritschel and co-workers [47] have recently found a fascinating
practical application to the problem of modelling three-dimensional multi-vortex
interactions in geostrophic flows of the fact that the exterior potential generated by
a uniform ellipsoid is equivalent to that induced by a non-uniform two-dimensional
“focal ellipse” [1] [48]. That is, an ellipsoid satisfies a higher-dimensional analogue
of (6). Such ideas lie at the heart of quadrature domain theory.
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