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2 MPA16 Assessed Problems # 2 Due 26 Nov 2018

Please budget your time: Many of these problems are very easy, but some of the more interesting ones
may become time consuming. So work steadily through them. Don’t wait until the last minute!

Exercise 2.1 The fish: quadratically nonlinear oscillator

Consider the Hamiltonian dynamics on a symplectic manifold of a system comprising two real
degrees of freedom, with real phase-space variables (x, y, θ, z), symplectic form

ω = dx ∧ dy + dθ ∧ dz

and Hamiltonian
H = 1

2y
2 + x

(
1
3x

2 − z
)
− 2

3z
3/2

(a) Write the canonical Poisson bracket for this system.

(b) Write Hamilton’s canonical equations for this system. Explain how to keep z ≥ 0, so that H and
θ remain real.

(c) At what values of x, y and H does the system have stationary points in the (x, y) plane?

(d) Propose a strategy for solving these equations. In what order should they be solved?

(e) Identify the constants of motion of this system and explain why they are conserved.

(f) Compute the associated Hamiltonian vector field XH .

(g) Write the Poisson bracket that expresses the Hamiltonian vector field XH as a divergenceless
vector field in R3 with coordinates x = (x, y, z) ∈ R3. Explain why this Poisson bracket satisfies
the Jacobi identity.

(h) Identify the Casimir function for this R3 bracket. Show explicitly that it satisfies the definition of
a Casimir function.

(i) Sketch a graph of the intersections of the level surfaces in R3 of the Hamiltonian and Casimir
function. Show the directions of flow along these intersections. Identify the locations and types of
any relative equilibria at the tangent points of these surfaces.

Figure 1: Phase plane for the saddle-node fish shape arising from the intersections of the level surfaces in R3 of the
Hamiltonian and Casimir function.

(j) Linearise around the relative equilibria on a level set of the Casimir (z) and compute its eigenval-
ues.

(k) If you found a hyperbolic equilibrium point in the previous part connected to itself by a homoclinic
orbit, then reduce the equation for the homoclinic orbit to an indefinite integral expression.
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Exercise 2.2 Matrix rigid body equations & cotangent lift momentum maps

This is the SO(n) version of our calculation in class for the SO(3) rigid body.

(a) Let the Lie group SO(n) act on itself with infinitesimal transformation

ΦΞ(Q) = QΞ for Q ∈ SO(n) and Ξ = −ΞT ∈ so(n)

Compute the cotangent lift (CL) momentum map for this action and its CL infinitesimal action
on T ∗SO(n).

(b) Compute the variations in Hamilton’s principle δS = 0 with Clebsch-constrained action integral

S(Ω, Q, P ) =

∫ b

a
l(Ω) + tr

(
P T
(
Q̇−QΩ

))
dt .

Discuss the relation between these variational equations and the equations for the infinitesimal
Lie algebra actions associated with CL momentum maps.

(c) Show that the Clebsch-constrained Hamilton’s principle implies that M = ∂l/∂Ω satisfies the
Euler-Poincaré equation

dM

dt
= ad∗

ΩM = −
[

Ω, M
]
.

Exercise 2.3 1:2 resonance

The Hamiltonian C2 → R for a certain 1:2 resonance is given by

H = 1
2 |a1|2 − |a2|2 + 1

2 Im(a∗1
2a2) ,

in terms of canonical variables (a1, a
∗
1, a2, a

∗
2) ∈ C2 whose Poisson bracket relation

{aj , a∗k} = −2iδjk, for j, k = 1, 2 ,

is invariant under the 1:2 resonance S1 transformation

a1 → eiφ and a2 → e2iφ.

(a) Write the motion equations in terms of the canonical variables (a1, a
∗
1, a2, a

∗
2) ∈ C2.

(b) Show that the transformation

a1 = |a1|eiφ, a2 = ze2iφ, z = |z|eiζ

is canonical. Write the transformed equations in the new canonical variables and explain how to solve
them by quadratures.

(c) Introduce the orbit map C2 → R4

π : (a1, a
∗
1, a2, a

∗
2)→ {X,Y, Z,R)}

and transform the Hamiltonian H on C2 to new variables X,Y, Z,R ∈ R4 given by

R = 1
2 |a1|2 + |a2|2 ,

Z = 1
2 |a1|2 − |a2|2 ,

X − iY = 2a∗1
2a2 ,

that are invariant under the 1:2 resonance S1 transformation.
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(d) Show that these variables are not functionally independent, because they satisfy a cubic algebraic
relation C(X,Y, Z,R) = 0.

(e) Use the orbit map π : C2 → R4 to make a table of Poisson brackets among the four quadratic 1:2
resonance S1-invariant variables X,Y, Z,R ∈ R4.

(f) Show that both R and the cubic algebraic relation C(X,Y, Z,R) = 0 are Casimirs for these Poisson
brackets.

(g) Write the Hamiltonian, Poisson bracket and equations of motion in terms of the remaining vari-
ables X = (X,Y, Z)T ∈ R3.

(h) Describe this motion in terms of level sets of the Hamiltonian H and the orbit manifold for the
1:2 resonance, given by C(X,Y, Z,R) = 0.

(i) Restrict the dynamics to a level set of the Hamiltonian and show that it reduces there to the
equation of motion for the fish plot for the quadratically nonlinear oscillator in problem (2.1).
Explain its geometrical meaning.

Figure 2: The phase plane for the 1:2 resonance recovers the fish shape from the intersections of the level surfaces in
R3 with coordinates (X1, X2, X3) = (X,Y, Z) of the Hamiltonian and the reduced orbit manifold. At the hyperbolic
point the Hamiltonian plane intersects the reduced orbit manifold C(X,Y, Z,R) = 0 at its corner singularity.

Exercise 2.4 Three-wave equations

The three-wave equations of motion take the symmetric form

iȦ = B∗C , iḂ = CA∗ , iĊ = AB , for (A,B,C) ∈ C× C× C ' C3 . (1)

(a) Write these equations as a Hamiltonian system. How many degrees of freedom does it have?

(b) Find two additional constants of motion for it, besides the Hamiltonian.

(c) Use the Poisson bracket to identify the symmetries of the Hamiltonian associated with the two
additional constants of motion, by computing their Hamiltonian vector fields and integrating their
characteristic equations.

(d) Set:

A = |A| exp(iφ1) , B = |B| exp(iφ2) , C = Z exp(i(φ1 + φ2)) .

Determine whether this transformation is canonical.

Hint: How is this transformation related to part (b) of exercise (2.3) for the 1:2 resonance?

(e) Express the three-wave problem entirely in terms of the variable Z = |Z|eiζ , reduce the motion to
a single equation for |Z| then reconstruct the full solution as,

A = |A| exp(iφ1) , B = |B| exp(iφ2) , C = |Z| exp
(
i(φ1 + φ2 + ζ)

)
.

That is, reduce the motion to a single equation for |Z| then write the various differential equations
for |A|, φ1, |B|, φ2 and φ2.


