
M3/4A16 Assessed Coursework 3 Darryl Holm
Due in class Tuesday December 15, 2009

Ask in class about clarifying the exact meaning of a question if you’re unsure.

#1 Exercises in exterior calculus operations

Vector notation for differential basis elements:
One denotes differential basis elements dxi and dSi = 1

2
εijkdx

j ∧ dxk, for i, j, k =
1, 2, 3, in vector notation as

dx := (dx1, dx2, dx3) ,

dS = (dS1, dS2, dS3)

:= (dx2 ∧ dx3, dx3 ∧ dx1, dx1 ∧ dx2) ,

dSi :=
1

2
εijkdx

j ∧ dxk ,

d 3x = dVol := dx1 ∧ dx2 ∧ dx3 .

(1a) Vector algebra operations

(i) Show that contraction with the vector field X = Xj∂j =: X · ∇ recovers the
following familiar operations among vectors

X dx = X ,

X dS = X× dx ,
(or, X dSi = εijkX

jdxk)

Y X dS = X×Y ,

X d 3x = X · dS = XkdSk ,

Y X d 3x = X×Y · dx = εijkX
iY jdxk ,

Z Y X d 3x = X×Y · Z .

(ii) Show that these are consistent with

X (α ∧ β) = (X α) ∧ β + (−1)kα ∧ (X β) ,

for a k-form α.

(iii) Use (ii) to compute Y X (α ∧ β) and Z Y X (α ∧ β).

(1b) Exterior derivative examples in vector notation
Show that the exterior derivative and wedge product satisfy the following rela-
tions in components and in three-dimensional vector notation

df = f,j dx
j =: ∇f · dx

0 = d2f = f,jk dx
k ∧ dxj

df ∧ dg = f,j dx
j ∧ g,k dxk =: (∇f ×∇g) · dS

df ∧ dg ∧ dh = f,j dx
j ∧ g,k dxk ∧ h,l dxl =: (∇f · ∇g ×∇h) d 3x
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Likewise, show that

d(v · dx) = (curl v) · dS
d(A · dS) = (div A) d 3x .

Verify the compatibility condition d2 = 0 for these forms as

0 = d2f = d(∇f · dx) = (curl grad f) · dS ,
0 = d2(v · dx) = d

(
(curl v) · dS

)
= (div curl v) d 3x .

Verify the exterior derivatives of these contraction formulas for X = X · ∇
(i) d(X v · dx) = d(X · v) = ∇(X · v) · dx
(ii) d(X ω · dS) = d(ω ×X · dx) = curl (ω ×X) · dS
(iii) d(X f d 3x) = d(fX · dS) = div (fX) d 3x

(1c) Use Cartan’s formula,

£Xα = X dα + d(X α)

for a k−form α, k = 0, 1, 2, 3 in R3 to verify the Lie derivative formulas:

(i) £Xf = X df = X · ∇f
(ii) £X (v · dx) =

(
− X× curl v +∇(X · v)

)
· dx

(iii) £X(ω · dS) =
(
curl (ω ×X) + X div ω

)
· dS

=
(
− ω · ∇X + X · ∇ω + ω div X

)
· dS

(iv) £X(f d 3x) = (div fX) d 3x

(v) Derive these formulas from the dynamical definition of Lie derivative.

(1d) Fourth year students Verify the following Lie derivative identities both by

using Cartan’s formula and by using the dynamical definition of Lie derivative:

(i) £fXα = f£Xα + df ∧ (X α)

(ii) £Xdα = d
(
£Xα

)
(iii) £X(X α) = X £Xα

(iv) £X(Y α) = (£XY ) α + Y (£Xα)

(v) £X(α ∧ β) = (£Xα) ∧ β + α ∧£Xβ

#2 Operations among vector fields
The Lie derivative of one vector field by another is called the Jacobi-Lie bracket,
defined as

£XY := [X , Y ] := ∇Y ·X −∇X · Y = −£YX

In components, the Jacobi-Lie bracket is

[X , Y ] =
[
Xk ∂

∂xk
, Y l ∂

∂xl

]
=

(
Xk ∂Y

l

∂xk
− Y k ∂X

l

∂xk

)
∂

∂xl

The Jacobi-Lie bracket among vector fields satisfies the Jacobi identity,

[X , [Y , Z] ] + [Y , [Z , X] ] + [Z , [X , Y ] ] = 0
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Verify the following formulas

(2a) X (Y α) = −Y (X α)

(2b) [X , Y ] α = £X(Y α) − Y (£Xα), for zero-forms (functions) and one-
forms.

(2c) £[X ,Y ]α = £X£Y α−£Y £Xα, as a result of (b). Use 2(c) to verify the Jacobi
identity.

(2d) Fourth year students

Derive the formula corresponding to 2(b) for arbitrary k-forms. Hint: Pick a
basis of k linearly independent vectors (v1, v2, . . . , vk) and use the chain rule for
the Lie derivative of a k-form.1

Problems #1 and #2 are solved in the text. Most of the various parts of these
problems were also discussed in class.

Fourth year students the formula corresponding to 2(b) for an arbitrary

k−form ωk follows by using the chain rule for the Lie derivative to write,

£X

(
ωk(v1, v2, . . . , vk)

)
= (£Xω

k)
(
v1, v2, . . . , vk)

)
+ ωk(£Xv1, v2, . . . , vk)

+ ωk(v1,£Xv2, . . . , vk) + · · ·+ ωk(v1, , v2, . . . ,£Xvk)

#3 A steady Euler fluid flow

A steady Euler fluid flow in a rotating frame satisfies

£u(v · dx) = − d(p+ 1
2
|u|2 − u · v) ,

where £u is Lie derivative with respect to the divergenceless vector field u = u · ∇,
with ∇ · u = 0, and v = u + R, with Coriolis parameter curl R = 2Ω.

(3a) Write out this Lie-derivative relation in Cartesian coordinates.

With π := p+ 1
2
|u|2 − u · v, the steady flow satisfies

0 = £u(v · dx) + dπ

=
(
u · ∇v + (∇u)T · v +∇π

)
· dx

=
(
−u× curl v︸ ︷︷ ︸
Lamb vector

+ ∇
(
p+ 1

2
|u|2
)︸ ︷︷ ︸

Bernoulli function

)
· dx

upon (1) expanding the Lie derivative and (2) using a vector identity.

A level set of H satisfying −u× curl v = ∇H is called a Lamb surface .

1R. Palais, Definition of the exterior derivative in terms of the Lie derivative. Proc. Am. Math. Soc. 1954; 5:
902-908.
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(3b) By taking the exterior derivative, show that this relation implies that the exact two-
form

curlv d 3x = curlv · ∇ d 3x = curlv · dS = d(v · dx) =: dΞ ∧ dΠ

is invariant under the flow of the divergenceless vector field u.

Taking the exterior derivative of £u(v · dx) + dπ = 0 using d 2f = 0 for any
continuous function f yields

0 = d£u(v · dx) + d 2(p+ 1
2
|u|2 − u · v)

= £ud(v · dx)

Hence, by d2 = 0 & commutation of d and £u, the 2-form d(v · dx) is invariant
under the flow of the vector field u. Moreover, we have

d(v · dx) = curl v · dS = (curl v · ∇) d 3x = curlv d 3x

so the other statements follow, too; the last one by setting v · dx = ΞdΠ + dΘ.

(3c) Show that Cartan’s formula for the Lie derivative in the steady Euler flow condition
implies that

u
(

curlv d 3x
)

= dH

and identify the function H.

Cartan’s formula for the Lie derivative

£u(v · dx) = u d(v · dx) + d(u v · dx) ,

when inserted into the steady Euler flow condition yields

0 = £u(v · dx) + d(p+ 1
2
|u|2 − u · v)

by Cartan’s formula = u
(

curlv d 3x
)

+ d(p+ 1
2
|u|2) .

Hence, H = − (p+ 1
2
|u|2), up to a constant. That is,

u curlv d 3x = dH = − d(p+ 1
2
|u|2)

(3d) Set (curlv ·dS) = dΞ∧dΠ and use the results of (3b) and (3c) to write £uΞ = u ·∇Ξ
and £uΠ = u · ∇Ξ in terms of the partial derivatives of H.
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Since the 2-form curlv d 3x = d(v · dx) is exact, it may be written as

curlv · dS = curlv d 3x = dΞ ∧ dΠ

The result of 3(c) then implies

dH(Ξ, Π) = u (curlv · dS)

= u (dΞ ∧ dΠ)

= (u · ∇Ξ) dΠ− (u · ∇Π) dΞ

=
∂H

∂Π
dΠ +

∂H

∂Ξ
dΞ .

Upon identifying corresponding terms, the steady flow of the fluid velocity u is
found to imply the canonical Hamiltonian equations,

(u · ∇Ξ) = £uΞ =
∂H

∂Π
,

(u · ∇Π) = £uΠ = − ∂H
∂Ξ

.

(3e) What do the results of (3d) mean geometrically? Hint: Is a symplectic form involved?

The results of 3(d) may be written as

(u · ∇Ξ) =
{

Ξ, H
}
,

(u · ∇Π) =
{

Π, H
}
,

where { · , · } is the canonical Poisson bracket for the symplectic form dΞ ∧ dΠ.
This means geometrically that the steady Euler flow is symplectic on level sets
of H(Ξ,Π). That is, Lamb surfaces are symplectic manifolds for the
motion of fluids in incompressible steady flows.

#4 Lie derivative formulas for the Lamb vector

Euler’s equation for the incompressible motion of a fluid in a rotating frame of
angular frequency Ω is expressed in Lie-derivative form as

(∂t + £u)(v · dx) =
(
vt − u× curlv +∇(u · v)

)
· dx = −dπ = −∇π · dx . (1)

Here v = u + R with Coriolis parameter curl R = 2Ω, augmented pressure π :=
p+ u2/2− u · v and incompressibility condition div u = 0.
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Straightforward substitution of definitions.

(4a) Show that for incompressible flows div u = 0 that (1) implies the following equation
for pressure,

∗ d ∗£u(v · dx) = − ∗ d ∗ dπ = −4π ,

which reduces to div(u · ∇u) = tr((∇u)T · ∇u) = |∇u|2 = −4p.

Again straightforward substitution of definitions.

(4b) Show that the spatial exterior derivative of equation (1) yields the vorticity equation,

(∂t + £u)d(v · dx) = (∂t + £u)(ω · dS) =
(
ωt + curl(ω × u)

)
· dS = 0 ,

in which for ω = curl v denotes the total vorticity.

Also straightforward.

Remark 1 (An Analogy of Fluids with Electricity & Magnetism)
We introduce the Roman d to denote the space-time differential, as in

d
(
v · dx− (p+ 1

2
u2)dt

)
= −

(
vt +∇(p+ 1

2
u2)
)
· dx ∧ dt+ ω · dS

=
(
ω × u

)
· dx ∧ dt+ ω · dS , (2)

where we have substituted the Euler fluid motion equation (1).
This expression is reminiscent of

d(A · dx + A0dt) = −(At −∇A0) · dx ∧ dt+ curlA · dS
= −E · dx ∧ dt+ B · dS ,

for Maxwell fields E = At −∇A0 and B = curlA in terms of the 4-vector potential
Aµ = (A, A0), although here we are using the R4 space-time metric, so that Aµdxµ =
A · dx + A0dt.

(4c) The E & M gauge transformation is

Aµdxµ → Aµdxµ + dψ = (A +∇ψ) · dx + (A0 + ψt)dt .

What is the corresponding gauge transformation for fluids?
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The analogous gauge transformation is

v · dx− (p+ 1
2
u2)dt → v · dx− (p+ 1

2
u2)dt+ dψ

=
(
u +∇ψ + R

)
· dx−

(
p+ 1

2
u2 − ψt

)
dt

This apparently corresponds to a Galilean shift u→ u+∇ψ and a corresponding
change in pressure p in the Bernoulli function B := p+ 1

2
u2 for the Euler fluid,

p+ 1
2
u2 → p+ 1

2
u2 + 1

2
|∇ψ|2 + u · ∇ψ − ψt

(4d) Take another space-time differential of formula (2) and invoke equality of cross
derivatives so that d2 = 0 for the space-time differential, thereby showing that

ωt + curl(ω × u) = 0 and div ω = 0,

which recovers Euler’s equation for total fluid vorticity.

Following the directions yields

d2
(
v · dx− (p+ 1

2
u2)dt

)
= 0

= curl(ω × u) · dS ∧ dt+ ωt · dS ∧ dt+
(
div ω

)
dV

=
(
ωt + curl(ω × u)

)
· dS ∧ dt+

(
div ω

)
dV

(4e) Show that Euler’s formula for the evolution of vorticity implies an equation remi-
niscent of Faraday’s Law for Maxwell’s equation

d

dt

∫
S

ω · dS = −
∮
∂S

ω × u · dx

by which a time-changing flux of vorticity ω through a fixed surface S generates
an opposing “emf” of the Lamb vector

` = ω × u

on its boundary ∂S.

For a fixed surface we have

d

dt

∫
S

ω · dS =
d

dt

∮
∂S

v · dx =

∮
∂S

∂tv · dx

= −
∮
∂S

(
£u(v · dx) + dπ

)
= −

∮
∂S

ω × u · dx
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Remark 2 Thus, the Lamb vector arises naturally as the 1-form ` ·dx = ω×u ·dx.
This coincidence suggests a superficial analogy with electromagnetism, in which the
vorticity ω plays the role of magnetic field B and the Lamb vector ` = ω × u plays
the role of the electric field E. The analogy is only partial because, unlike the electric
and magnetic fields, the vorticity and Lamb vector are not independent. Therefore,
at some point, the analogy must break down! Even so, as we shall see, the formulas
resulting from this analogy of fluid flow with electromagnetism and charge flow may
still be interesting from the fluids perspective.

(4f) Show that the evolution of the Lamb 1-form ` · dx is given by

(∂t + £u)(` · dx) = −ω ×
(
` +∇(p+ 1

2
u2)
)
· dx = −ω × (ut) · dx

Upon using the Euler fluid equations for velocity and total vorticity

ut = −
(
` +∇(p+ u2/2)

)
and ωt = − curl ` ,

one finds

(∂t + £u)(u× ω · dx) =
(
ut × ω + u× ωt − u× curl(u× ω)

)
· dx

= ut × ω · dx

Thus, combining the definition u × ω · dx = − ` · dx with Euler’s equation for
ut implies the formula in the statement of the problem.

(4g) The formula in (4f) may be expanded out to pursue its electromagnetic analogy a
bit farther. (

∂t + £u

)
(` · dx) = (`t − u× curl` +∇(u · `)

)
· dx

= −ω ×
(
` +∇(p+ 1

2
u2)
)
· dx

I forgot to set this part as a problem.

Remark 3 If there were a viable analogy with electromagnetism, this equation would
represent the electromagnetic analogue of the displacement current in hydrodynamics.
The rhs of this equation contains the term (` × ω), which is reminiscent of the
Poynting vector.

To pursue the electromagnetic analogy still farther, one defines the flux of the Lamb
vector ` = ω × u as the 2-form,

` · dS = (ω × u) · dS = ∗d(v · dx) ∧ u · dx

and one computes the formula in the next part of the problem.
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(4h) Show that the flux of the Lamb vector satisfies

(∂t + £u)(` · dS) = −
[
u× (2S · ω) + ω ×

(
2` +∇(p+ 1

2
u2)
)]
· dS

where 2S := ∇u + (∇u)T is twice the strain-rate tensor, S.

The proof is a direct calculation

(∂t + £u)(` · dS) = (∂t + £u)
[
(ω · dx) ∧ (u · dx)

]
= (ωt + u · ∇ω + ωj∇uj) · dx ∧ (u · dx)

+(ω · dx) ∧
(
ut + u · ∇u +∇u

2

2

)
· dx

= (ω · ∇u + ωj∇uj) · dx ∧ (u · dx)

+(ω · dx) ∧
(
−∇p+ u× 2ω +∇u

2

2

)
· dx

=
[
− u× (2S · ω)

]
· dS + ω ×

(
−∇p+ u× 2ω +∇u

2

2

)
· dS

as was to be shown.

Remark 4 This formula states that the evolution of the flux of the Lamb vector
following a fluid parcel depends partly on the alignment of the total vorticity with
the strain-rate tensor and partly on its alignment with the total force. The proof is
a direct calculation.

(4i) Show that the divergence of the Lamb vector satisfies

∂t(div`) + div
[
u div` + u× (2S · ω) + ω ×

(
2` +∇(p+ 1

2
u2)
)]

= 0 .

Take the spatial differential of the formula in (4h) and commute with the Lie
derivative to find

(∂t + £u)
(

div` d3x
)

=
(
∂tdiv` + div(udiv`)

)
d3x

= − div
[
u× (2S · ω) + ω ×

(
2ω × u +∇(p+ 1

2
u2)
)]
d3x

whose rearrangement yields the desired formula.

Remark 5 To finish the electromagnetic analogy, the second term is the divergence
of the current density for the conserved “charge” div` = −∆(p+u2/2). The equation
is potentially interesting as an evolution equation. In turbulence, such as in the
exhaust of jet airplane, the jet noise is due to correlations that produce a mean
div` 6= 0. That is, the divergence of the Lamb vector is the source of turbulent jet
noise.
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