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1 M3-4-5 A16 Assessed Problems # 1 Due 2pm 16 Nov 2011

Please budget your time: Many of these problems are very easy, but some of the more interesting ones
may become time consuming. So work steadily through them, don’t wait until the last minute.

Exercise 1.1

(a) Consider the zero locus map in the space of 3× 3 real matrices,

SK = {O ∈ GL(3,R)|OTKO − K = 0}.

Explain why SK is a manifold for K = KT ∈ GL(3,R). Hint: Is it a submersion?

(b) Assuming that SK is a manifold, prove that it is a matrix Lie group.

(c) Write the defining relation for the tangent space to SK at its identity, TeSK. This relation defines
the matrix Lie algebra sK.

(d) Show that for any pair of matrices X̂, Ŷ ∈ TeSK, the matrix commutator [X̂, Ŷ ] ≡ X̂ Ŷ − Ŷ X̂ is
in TeSK.

(e) Suppose the 3× 3 matrices X̂ ∈ TeSK and K = KT satisfy

X̂TK + KX̂ = 0 .

Show that exp(X̂T t)K exp(X̂t) = K for all t.

Explain what this result means. Is it surprising? Why, or why not?

(f) Define the following hat map from basis vectors (ê1, ê2, ê3) ∈ sK to basis vectors (e1, e2, e3) ∈ R3,

̂ : sK → R3 is defined by (Kê )ij = − εijkKklel = − cij lel = − [ei, ej ]K .

Under what conditions on K is the hat map ( ·̂ ) a linear isomorphism? (This is easy.)

(g) For any vectors x = xiei, y = yjej ∈ R3 with components xj , yk, where j, k = 1, 2, 3, show that
the Lie algebra structure [ei, ej ]K is represented on R3 by the vector product

[x,y]K = K(x× y) . (1)

(h) Compute the Euler-Poincaré equation on R3 for a Lagrangian ` : sK → R by using the hat map
representation of sK on R3.

(i) Legendre transform to the Hamiltonian side and compute the corresponding Lie-Poisson bracket
{F (x), H(x)}K for smooth real functions F,H : x ∈ R3 → R.

(j) Rewrite this Lie-Poisson bracket as a triple scalar product of gradients of smooth real functions
on R3 and find its Casimir(s) C : {C(x), H(x)}K = 0, for all H.

(k) Compute the corresponding equations of motion for the Hamiltonian H = 1
2‖x‖

2. How are the
resulting equations related to Euler’s equations for rigid body motion?
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Exercise 1.2

(a) Gauge invariance Show that the Euler-Lagrange equations are unchanged under

L(q(t), q̇(t))→ L′ = L+
d

dt
γ(q(t), q̇(t)) ,

for any function γ : R6N = {(q, q̇) | q, q̇ ∈ R3N} → R.

(b) Generalized coordinate theorem Show that the Euler-Lagrange equations are unchanged in
form under any smooth invertible mapping f : {q 7→ s}. That is, with

L(q(t), q̇(t)) = L̃(s(t), ṡ(t)) ,

show that
d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0 ⇐⇒ d

dt

(
∂L̃

∂ṡ

)
− ∂L̃

∂s
= 0 .

(c) How do the Euler-Lagrange equations transform under q(t) = r(t) + s(t), when r(t) and s(t) are
independent of each other?

(d) State and prove Noether’s theorem that each continuous symmetry of Hamilton’s principle imples
a conservation law for the corresponding Euler-Lagrange equations on the tangent space TM of a
smooth manifold M .

(e) Show that conservation of energy results from Noether’s theorem if, in Hamilton’s prin-
ciple, the variations of L(q(t), q̇(t)) are chosen as

δq(t) =
d

ds

∣∣∣∣
s=0

q(t, s) ,

corresponding to symmetry of the Lagrangian under reparametrizations of time along the given
curve q(t)→ q(τ(t, s)).

Exercise 1.3 (Example Lagrangians)
Write the Euler-Lagrange equations, then apply the Legendre transformation to determine the

Hamiltonian and Hamilton’s canonical equations for the following Lagrangians.
Determine which of them are hyperregular. (A Lagrangian is hyperregular if its fibre derivative is

invertible, so that the velocity may be expressed in terms of the position and canonical momentum.)

(a) The kinetic energy Lagrangian K(q, q̇) = 1
2gij(q)q̇

iq̇j with i, j − 1, 2, . . . , N

(b) L(q̇) = −
(

1− q̇ · q̇
)1/2

(c) The Lagrangian for free motion of a particle of unit mass in a moving frame of velocity R(q, t) is
obtained by setting

L(q̇,q, t) =
1

2
‖q̇ + R(q, t)‖2 .

For example, a frame rotating with time-dependent frequency Ω(t) about the vertical axis ẑ is ob-
tained by choosing R(q, t) = q× Ω(t)ẑ.
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(d) The Lagrangian for a charged particle of mass m in a magnetic field B = curlA is

L(q, q̇) =
m

2
q̇ · q̇ +

e

c
q̇ ·A(q),

for constants m, e, c and prescribed function A(q).

How do the Euler-Lagrange equations for this Lagrangian differ from those of the previous part
for free motion in a moving frame of velocity e

mcA(q)?

(e) Let Q be the manifold R3 × S1 with variables (q, θ). Introduce the Lagrangian L : TQ ' TR3 ×
TS1 7→ R as

L(q, θ, q̇, θ̇) =
m

2
‖q̇‖2 +

e

2c

(
q̇ ·A(q) + θ̇

)2
.

The Lagrangian L is positive definite in (q̇, θ̇); so it may be regarded as the kinetic energy of a
metric. Interpret the motion as geodesic.

How do the Euler-Lagrange equations for this Lagrangian differ from those of the previous part
for a charged particle with mass moving in a magnetic field?

Remember in each part to apply the Legendre transformation to determine the
Hamiltonian and Hamilton’s canonical equations for all of these Lagrangians.

(f) Consider the Lagrangian

Lε(q, q̇) =
1

2
‖q̇‖2 − gez · q−

1

4ε
(1− ‖q‖2)2 +

π

ε
(q · q̇)

for a particle with coordinates q ∈ R3, constants g, ε and vertical unit vector ez. Let γε(t) be the
curve in R3 obtained by solving the Euler-Lagrange equations for Lε with the initial conditions
q0 = γε(0), q̇0 = γ̇ε(0).

Show in either spherical coordinates or stereoscopic coordinates that

(i) In the limit
lim

g→0,ε→0
γε(t)

the motion is along is a great circle on the two-sphere S2, provided that the initial conditions
satisfy ‖q0‖2 = 1 and q0 · q̇0 = 0.

(ii) For constant g > 0 the limit
lim
ε→0

γε(t)

recovers the dynamics of a spherical pendulum.

(g) How does the motion in the previous part differ from that obtained via Hamilton’s principle for
the following Lagrangian?

Lε(q, q̇) =
1

2
‖q̇‖2 − gez · q− µ(1− ‖q‖2)

where µ is called a Lagrange multiplier and must be determined as part of the solution.
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Exercise 1.4 (Poisson brackets)

(a) Show that the canonical Poisson bracket is bilinear, skew symmetric, satisfies the Jacobi identity
and acts as a derivation on products of functions in phase space.

(b) Given two constants of motion, what does the Jacobi identity imply about additional constants of
motion associated with their Poisson bracket?

(c) Compute the Poisson brackets among the R3-valued functions of (q,p) ∈ T ∗R3

Ji = εijkpjqk or J = p× q in vector notation.

(d) Answer the following questions about these Poisson brackets.

(i) Do the Poisson brackets {Jl, Jm} close among themselves?

(ii) Write the Poisson bracket {F (J), H(J)} for the restriction to functions of J = (J1, J2, J3).

(iii) Write in vector notation the equation J̇ = {J, H(J)} for any Hamiltonian function H(J).

(iv) Compute the dynamical equation for the Hamiltonian function

H(J) = Jξ = ξ · J

for any vector ξ ∈ R3. Interpret the solutions for this flow geometrically.

Exercise 1.5 (Nambu Poisson brackets on R3)

(a) Show that for smooth functions c, f, h : R3 → R, the R3-bracket defined by

{f, h} = −∇c · ∇f ×∇h

satisfies the defining properties of a Poisson bracket. Is it also a derivation satisfying the Leibnitz
relation for a product of functions on R3? If so, why?

(b) How is the R3-bracket related to the canonical Poisson bracket in the plane?
Hint: restrict R3-bracket to a level set of c.

(c) The Casimirs (or distinguished functions, as Lie called them) of a Poisson bracket satisfy

{c, h}(x) = 0 , for all h(x)

Part (a) verifies that the R3-bracket satisfies the defining properties of a Poisson bracket. What
are the Casimirs for the R3 bracket?

(d) Write the motion equation for the R3-bracket

ẋ = {x, h}

in vector form using gradients and cross products. Show that the corresponding Hamiltonian vector
field Xh = { · , h} has zero divergence.
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(e) Show that under the R3-bracket, the Hamiltonian vector fields Xf = { · , f}, Xh = { · , h} satisfy
the following anti-homomorphism that relates the commutation of vector fields to the R3-bracket
operation between smooth functions on R3,

[Xf , Xh] = −X{f,h}.

Hint: the commutator of divergenceless vector fields does satisfy the Jacobi identity.

(f) Show that the motion equation for the R3-bracket is invariant under a certain linear combination
of the functions c and h. Interpret this invariance geometrically.

mg

Figure 1: Spherical pendulum: x1 = ` sin θ cosφ, x2 = ` sin θ sin θ, x3 = − ` cos θ.

Exercise 1.6 (Spherical pendulum)
A spherical pendulum of length ` swings from a fixed point of support under the constant downward

force of gravity mg.
Use spherical coordinates with azimuthal angle 0 ≤ φ < 2π and polar angle 0 ≤ θ < π measured

from the downward vertical defined in terms of Cartesian coordinates by (note minus sign in z)

(a) Find its equations of motion according to the approaches of

(i) Newton,

(ii) Lagrange and

(iii) Hamilton.

(b) Transform the Hamiltonian equations to quadratic variables that are invariant under rotations
about the vertical.

(c) Find a Nambu bracket on R3 in these quadratic invariant variables.

(d) Reduce the equations of motion to a level set of the Hamiltonian and classify their solutions.
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Exercise 1.7 (The Hopf map)
In coordinates (a1, a2) ∈ C2, the Hopf map C2/S1 → S3 → S2 is obtained by transforming to the

four quadratic S1-invariant quantities

(a1, a2)→ Qjk = aja
∗
k , with j, k = 1, 2 .

Let the C2 coordinates be expressed as

aj = qj + ipj

in terms of canonically conjugate variables satisfying the fundamental Poisson brackets

{qk, pm} = δkm with k,m = 1, 2.

(a) Compute the Poisson brackets {aj , a∗k} for j, k = 1, 2.

(b) Is the transformation (q, p)→ (a, a∗) canonical? Explain why or why not.

(c) Compute the Poisson brackets among Qjk, with j, k = 1, 2.

(d) Make the linear change of variables,

X0 = Q11 +Q22 , X1 + iX2 = 2Q12 , X3 = Q11 −Q22 ,

and compute the Poisson brackets among (X0, X1, X2, X3).

(e) Express the Poisson bracket {F (X), H(X)} in vector form among functions F and H of X =
(X1, X2, X3).

(f) Show that the quadratic invariants (X0, X1, X2, X3) themselves satisfy a quadratic relation.

How is this relevant to the Hopf map?


