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2 M3-4-5A16 Assessed Problems # 2:
Do all four problems

Exercise 2.1 (Adjoint and coadjoint actions for SE(2)).

(A) Compute the the adjoint and coadjoint actions AD, Ad, ad, Ad* and ad* for SE(2).

(B) Show that
d

| Adry@ w1 (1 F) = —ad(e oy (1, 6)
t=0

where one takes Ry(t)|1—o = & € R, 0(t)]1—o = a € R? and the pairing
(-, -):se(2)" xse(2) > R
is given by the dot product of vectors in R3,

(0.9, (€0)) =pe+5-a.

(C) Compute the equations of motion for the dynamics on se(2)* resulting from Hamilton’s principle
6S =0 with S = [ (£, ) dt for the Lagrangian

1 1
(& a)= 51452 + §aTC'a

(D) Derive the corresponding Lie-Poisson bracket for the Hamiltonian description of dynamics on
se(2)*.
(E) Sketch the coadjoint orbits in coordinates (u, ) € R3.

(F) Work out the cotangent-lift momentum maps for the action of SE(2) on R2.

Answer.

(A) The special Euclidean group of the plane SE(2) ~ SO(2) ® R? acts on a vector ¢ = (g1, ¢2)7 € R?
in the plane by

(ot o)) = (0 PO [ | - | Rl ],

where v = (v1, v2)T € R? is a vector in the plane and Rj is the 2 x 2 matrix for rotations of
vectors in the plane by angle 6 about the normal to the plane 2,

Ry — < cos —sind )

sinf  cos@

The infinitesimal action is found by taking %\tzo of this action, which yields

o= (5 o ) [ 1] =]

where € = 6(0) and a = 0(0).
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By following Section 6.2 of the text, one computes the actions AD, Ad, ad, Ad* and ad* for
SE(3). By specialising, one finds the se(2) ad-action in vector notation,

ad(ﬁ,a)(gv&) = [(ﬁ,a), ( )]
= (I, €], ga—éa)
- (0, —5:2><o7+£2><a).
This expression is useful in interpreting the ad and ad* actions as motion on R3. In particular,
the pairing between the Lie algebra se(2) and its dual se(2)* is given by the dot product of vectors
in R3,
<(M7/B)a (§7a)> :H€+/8a

Combining this definition of the pairing with the previous result yields an expression for the
pairing of vectors using the dot product,

((1.8), adg (€, G)) = —ax 8- €2 €2 x B4,

which produces an expression for ad?‘5 o) (11, B),

<adz<§,a)(:u'76)’ (éa d)> = (— ax f,—E2x ﬁ) . (527 d) .

From here, one is able to write the Euler-Poincaré equation on se(2)* as

d 4 ol ol
(d? df) =ad; ,(1,8) = (—axp,—ExB) with (1 fB):= ((%’ 8a>

As we shall see, one may then Legendre transform over to the Lie-Poisson Hamiltonian formulation
of motion on se(2)*, by identifying

oh Oh
(£2, a) = (wé, 86)'

The Casimirs of the Lie-Poisson bracket also determine the coadjoint orbits, which turn out to
be concentric cylinders of radius |3| centered on the p-axis, plus fixed points on the p-axis, as we
discuss below.

(B) This is a special case of the following general result.

Co-Adjoint motion equation:
Let g(t) be a path in a Lie group G and pu(t) be a path in g*. Then

%Ad*() p(t) = Adg - Bt —ad,u(t )] : (2.1)
where £(t) = g(t)~'g(t).

(C) The Euler-Poincaré equation on se(2)* is

<d,u ag

H) = adiand) = (- ax g x )

with (u,8) = <§é, gé) = (A&, Ca)

(D) Legendre transforming the Euler-Poincaré equation yields

a2 " R oh oh .
(“Z’ 5) = ad(ah/au,ah/ag)(ﬂzaﬁ) = (— a5 x [, —@z X 6) )
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After taking the time-derivative of an arbitrary function f of the Hamiltonian momentum vari-
ables (2, 8) this yields the Lie-Poisson bracket,

0 oh  Oh, 0
(o mpe == (G 55 -5 55)

(E) The Casimirs for this Lie-Poisson bracket are concentric cylinders of radius

18] =1\/B% + B3

centered on the p-axis, plus fixed points on the p-axis for which pz - 5 = 0.

(F) The infinitesimal action of SE(2) on coordinates q € R? in the plane is
q—q =-{zxq+ta,

where o € R?. The cotangent lift of this infinitesimal action is
JE =p.(-¢axq+a)=pxq-{2+p-a= <(p><q, p), (¢2, oa)>7

for p € T*R? at q € R2. That is, the momentum map .J&% has 2 components.

e The component pz = p X q is the angular momentum of rotations in the plane. It points
normal to the plane.

e The component p = § is the linear momentum in the plane.

e The Euler-Poincaré and Lie-Poisson formulations of the dynamics determines how these two
components of the SE(2) momentum map evolve for a given Lagrangian or Hamiltonian.

A
Exercise 2.2 (GL(n,R)-invariant motions).

Consider the Lagrangian

_Li(es1gg1) 2 Ly g 1g
L_2tr<SS $9 >+2q 5-1g,

where S is an n X n symmetric matrix and q € R” is an n—component column vector.
(A) Legendre transform to construct the corresponding Hamiltonian and canonical equations.

(B) Show that the Lagrangian and Hamiltonian are invariant under the group action
q—Gq and S — GSGT

for any constant invertible n x n matrix, G.

(C) Compute the infinitesimal generator for this group action and construct its corresponding mo-
mentum map. Is this momentum map equivariant? Prove it.

(D) Verify directly that this momentum map is a conserved n x m matrix quantity by using the
equations of motion.

Answer.
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(A) Legendre transform as

oL : oL
P=—=8199" and p=_, =514
PX e PT e 7 1

Thus, the Hamiltonian H(Q, P) and its canonical equations are:
1 1
H(qa,p, S, P) = Str (PS- PS) +5p- Sp,

_oH

9P

. OH 1
SPS, P=-S¢ _—(PSP+§p®p)a
L_OH _ L OH _

S

0.

(B) Under the group actionq -+ Gq and S — GSGT for any constant invertible n x n matrix, G,
one finds SS~! — GSS~!G~'and q-S7'q — q-S7'q4. Hence, L — L. Likewise, P - G~ TPG~!

so PS — G TPSGT and p — G Tp so that Sp — GSp. Hence, H — H, as well; so both L
and H for the system are invariant.

(C) The infinitesimal actions for G(e) = Id + €A + O(€?), where A € gl(n) are

d
Xaq= 2 — A
aq= | Gle)a=Aq
and p
_ T\ _ T
XaS=—| (G(E)SG(G) ) AS + SA

The defining relation for the corresponding momentum map yields

<J? A> = <(Q7P)aXA> = tr (PXAS) +p-Xaq
= tr(P(AS+SA")) +p- Aq

Hence, (J, A) := tr (JAT) =tr ((QSP +q® p)A), SO
J=(2PS+p®q)
This momentum map is a cotangent lift, so it is equivariant.
(D) Conservation of the momentum map is verified directly by:

J=(2PS+2PS+p®q) =0

Exercise 2.3 (Canonical variables for the rigid body on SO(n)).

The Euler-Lagrange equation for the rigid body on SO(n) are given in matrix commutator form

L _ 1, 0] with M=AQ+0h, (22)

where the n x n matrices M, € are skew-symmetric. The tangent lift of the right action of the group
SO(n) on itself is given by

Qi = Qu0; = Q; = QY with Q; = 0,10y

where Q; = 0,10y is left-invariant under O — UO, with U € SO(n).
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(A) Show that equation (2.2) may be derived from Hamilton’s principle 65 = 0 whose action integral
is constrained by the tangent lift of the right-action of the group SO(n) on itself. That is, for

S(Q,Q,P) = /abzm) + <P, 0 QQ> dt
= /b 1(Q) + tr(PT (@- QQ)) dt, (2.3)

derive equation (2.2), in which M = 61/§Q2 = %(QTP — PTQ), and the Q, P € SO(n) satisfy the
following equations,

Q=QQ and P=PQ, (2.4)
as a result of the constraints.

(B) Write these equations in Hamiltonian form and show that they recover the motion equation (2.2).
What is the Hamiltonian in these variables?

(C) Compute the Poisson bracket for functions of M by making the change of variables M : T*Q —
so(n)* given by

M= QTP PTQ).

Answer.

(A) The constraint implies an angular velocity Q@ (£)Q(t) = Q(t), that is left-invariant under Q —
UQ), for any fixed U € SO(n). Thus, the Lagrangian in (2.3) is left-invariant under this action,
too. This invariance sets up the transformation from the (@, P) equations to the M equation.
In terms of the trace pairing for skew-symmetric matrices,

(A, B):=tr(ATB),

we find

b
ss@.0p) = [ <§;2—QTP,5Q>

+ <5P, Q—QQ> - <P—PQ,5Q>dt,
after using the identity
—8(P, Q) = (6P, — QQ) + (P, 6Q) + (— QT P, 69).
Given 2, setting 65 = 0 produces the canonical equations

: 0J% : 0%

for the Hamiltonian J@ = (QT P, Q) with variations
6JY = ((6QT)P +QTsP, Q)
- (PT(SQQ + (5PT)QQ)
- tr((PQT)TaQ + (5PT)QQ>

= (PQT, 5Q) + (6P, QQ)
= (- PQ, Q)+ (6P, QQ)
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Thus, the vector field consisting of the tangent and cotangent lifts

(@, P) = (QQ, PQ)
is the Hamiltonian vector field
XJQ = { y JQ}
for the Hamiltonian
“=Q"P, ) = (3(Q"P-PTQ), )

at fixed Q. The quantity M = %(QTP — PTQ) is called the momentum map M : T*SO(n) —
so(n)* for the right-action of SO(n) on itself.

Extra credit:
Compute the momentum map for the left-action of SO(n) on itself.

(B) To find the Hamiltonian form, set M := 0l/0Q = %(QTP — PTQ) and take ¢ = —£7 € so(n).
Compute the pairing

(Mg) = —(PTQ+PTQ.¢)
= —((PTQ+ PT(QN),¢)
= —(—QPTQ+PTQ,¢)
= (- QM+ MQ,¢)
= (— 2, M],¢)

The Hamiltonian in these variables is found from the Legendre transform,
h(M) = (M,Q) — 1(Q)
which satisfies

Sh(M) = <§]\’2 5M> <M—§é 5Q>+<5M,Q>.

Hence, we have the dual velocity-momentum relations

oh ol
oap = amd M=o
and the equation of motion M = —[Q, M] becomes
. oh
[aM ’ } {M, hirp

with Lie-Poisson brackets given by
df 8f oh B af oh B

(C) A direct computation using the canonical brackets {Q;, P;} = 0;; gives the Lie-Poisson bracket
in terms of matrix components of M € so(n)*,

{My;, M} = HPQ;—QiPj, P.Qi — QpP}
= %( — Moy + M0 — My dj + Mjlfsik:)-
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The motion equation is then obtained from

. oh
M;; = {Mj, h} = { M, Mkl}m =: {M;j, M}y

= (MQ);; — (MQ)j; = [M, Q;;
where the angular velocity components are defined as

oh
Q= ——.
kl My

Exercise 2.4 (Euler-Poincaré equation EPDiff in one dimension).

The EPDiff(R) equation for the H! norm of the velocity u is obtained from the Euler-Poincaré
reduction theorem for a right-invariant Lagrangian, when one defines the Lagrangian to be half the
square of the H' norm ||u||1 of the vector field of velocity u = gg~' € X(R) on the real line R with
g € Diff(R). Namely,

- L[ 2
l(u) = < |lullfpn = = u® +uy dr.
2 2/

(Assume u(x) vanishes as |z| — 00.)

(A) Derive the EPDiff equation on the real line in terms of its velocity w and its momentum m =
dl/du = u — uy, in one spatial dimension for this Lagrangian.

1 1

Hint: Prove a Lemma first, that v = g¢—* implies du = & — ad,& with £ = dgg~.

(B) Use the Clebsch constrained Hamilton’s principle

S(u,p,q) = / (o) dt + / p()(d(t) — u(g(t), ) dt

to derive the peakon singular solution m(z,t) of EPDiff as a momentum map in terms of canon-
ically conjugate variables ¢;(t) and p;(t), with ¢ =1,2,..., N.

Answer.

(A) Lemma

1 1

u = gg~ " implies du = & — ad,& with £ = dgg™.

Proof. Write ¢ = gg~! and n = ¢’¢~! in natural notation and express the partial derivatives

g = 0g/0t and ¢’ = dg/de using the right translations as
g=Eog and ¢ =nog.
By the chain rule, these definitions have mixed partial derivatives
§=¢=Ven and §'=n=Vn-¢.
The difference of the mixed partial derivatives implies the desired formula,

g —n=VE&n—Vn-&=—aden.
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Deriving the EPDiff equation on the real line:

The EPDIff(H') equation is written on the real line in terms of its velocity u and its momentum
m = 6l/du in one spatial dimension as

me +umg + 2mu, =0, where m =u — Uy,

where subscripts denote partial derivatives in x and t.

Proof. This equation is derived from the variational principle with I(u) = 1|lu||%, as follows.

0=05 = /l(u)d 6//u + u dx dt
= //u—um ) dudx dt = / m du dx dt

- / m (& — ad,€) dr dt

= [l ute - un)dnat

- / (e + (um), + muy) € da dt
_ _/ (e + adim) € da dt |

1

where u = gg~! implies du = & — ad,& with € = §gg~". O

Hamiltonian structure for EPDiff:

Legendre transformation:
= / mudx — (u)

6h—/u5mdx+/(m—u+um)6udx

Thus, u = dh/dm, m = §l/d0u — u — uy, and

SO

my = —adgy 5,,m = —(9pm + mﬁx)%
The corresponding Lie-Poisson bracket is
of oh
{f, h}(m) = — %((%m + max)% dx

with Casimir

o:/mdx

(B) The constrained Clebsch action integral is given as

Supea) = [t de+ [ po)(ate) — ula(e). ) de

whose variation in wu is gotten by inserting a delta function, so that
ol
0=05 = S p(t)o(x —q(t)) ) Sudxdt
U

-/ (p(t) + o p(t)) 50— 6p(a(t) — ula(), 1)) dt .
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The singular momentum solution m(z,t) of EPDiff(H!) is written as the momentum map

m(x,t) = 0l/ou = p(t)d(xz — q(t))

/m(w, tu(w,t) dv = /p(t)5(96 = q(t))u(z, t) dz = p(t)u(q(t),?)
Consequently, the variables (g, p) satisfy canonical Hamiltonian equations,

oh ) ou oh
= t t

q(t) =ula®)t) =5 P) = =5 p) = -5

with u(q(t),t) = p(t)G(q(t)) where G(z) is the Green’s function for the Helmholtz operator 1—92.

That is,

1
G(z) = ie_m

Consequently, one may write the Hamiltonian for the canonical parameters of the singular solution
explicitly as

1 1
h(p,q) = inG(q) — Zp(t)zef\q(tn

Note that all of this calculation goes through just the same for the multi-particle case. E.g., for
N particles,

N
S(u, {p},{q}) = /l(U) di+) /pA(t)(Q'A(t) —u(qa(t),t))dt
A=1



