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Exercise 3.1 (Palais’s Theorem)

(a) Prove that
[X, Y]_Ia: £X(Y_Ia)—Y_I(£Xa).

(b) For a top form « and divergence free vector fields X and Y, use Cartan’s formula £xa =
d(X Ja)+ X dda to show that

X, Y] da=d(X 2(Y da)). (1)
(c) Write the equivalent of equation as a formula in vector calculus.
(d) Show, for vector fields u,v € X(R?) and a 1-form a € A'(R?) that Palais’s theorem holds,
Lu(vda)— £y(uda) =lu,v] da+v Jd(udda).
Hint: the proof follows by simply evaluating left and right sides of the equality.

Exercise 3.2 (Pull-back identities) The family of Lagrangian fluid trajectories x; = ¢(X) with
initial positions X in R? extends to include their deformations as Zre = ¢r(X), where ¢ is time and
¢ is the deformation parameter.

Define three time-dependent vector fields u;(z), wi(z:) and ous(x;) in terms of the following three
different types of tangents of the perturbed trajectories at the identity, € = 0,

o) = %3] _y = [one)]
oo =[] = o],
Sug(we) = (%t(;ixts)} e=0

Thus, for example, the Eulerian vector field u;(2;) = [¢7 o (u¢(X))]e=0 generates the flow ¢ .

(a) By taking the difference of equal cross derivatives

0 O, 9 Oy
9 ot Jo = L0 00 ) o

Os Ot ot Oe
show that
ou ow
(5Ut(l‘t) - 8twt(xt) = — 87:17'; - wg + 87!%; s U = — adutwt

(b) Under the extended flow trajectory x:. = ¢ .(X), advected quantities a;(z+ ) satisfy the pull-
back relation, [<Z5;5at,a]a=0 = ap,, so that a; = a0 = [(cb,;gl)*aop)}gzo.

Prove the following sequence of equalities,

Oray = Oy [at,aL:O =0 {(Qb;gl)*ao,o)] = — Ly, a4

where the vector field wu; is the generator of ¢;. and L is the Lie derivative. (Note the sign.)
Recall the dynamical definition of the Lie derivative, [(%(qbfa(X))L:O = (¢} uta(X)]t:o = Lya.

(c) Likewise, show that
0= (5@070 = |:35(¢;56Lt75)} 0 = 511}75 + Ewtat



M345PA16 Geometric Mechanics DD Holm Assessed Coursework #3 ‘Due on 13 March 2()2()‘ 2

Exercise 3.3 (Diamond)
The operation ¢ : V x V* — X* between tensor space elements a € V*(M) and b € V(M) produces
boa € X(M)*, a one-form density, given by

<b<>a,u>x:—/ b-£ya=: <b, —Eua>v
D

Here, the bracket < , >3€ denotes

<b<>a,u>x:/pu_l(b<>a).

The bracket < -y > x Is the symmetric, non-degenerate L? pairing between vector fields and one-form
densities, which are dual with respect to this pairing. Likewise, (-, - )y represents the corresponding
L? pairing between elements of V and V*. Also, £,a stands for the Lie derivative of an element a € V*
with respect to a vector field u € X(M), and b - L, a denotes the contraction between elements of V'
and elements of V*. E.g., for differential forms, if V* = A¥(M), then V = A" *(M) for dim M = n

and we have
<b<>a,u> :—/b-£ua:—/b/\£ua.
X D D

(a) Compute explicit formulae for the advection equations dia = —L, a in the cases that the set of
tensor fields a € V* consists of elements with the following coordinate functions in a Euclidean
basis on R?,

a€{s, A:=A-dx, B:=B-dS, D := pd’z}.
These apply to the Euler—Poincaré equations for fluids, when the reduced Lagrangian depends on

l(v,s,A, B, D), where v is the fluid velocity.

(b) Compute explicit formulae for the diamond products (momentum maps) in the two cases (s o D, u)
<s, —Ly D>V and <A B, u>3€ = <A, —Ly B>V' Also calculate the results in the two exchanged
cases, D ¢ s and B ¢ A. What conclusion can one draw from these comparisons?

X

Exercise 3.4 (Euler—Poincaré equations for fluids)
(a) Compute the Euclidean components of g—é oa
ac{s, A:=A-dx, B:==B-dS, D :=pdz}.

These apply to the Euler—Poincaré equations for fluids, when the reduced Lagrangian depends on
l(v,s,A, B, D), where v is the fluid velocity.

(b) Write the Euler—Poincaré motion equation

Q—Ff ﬂ—ﬂo
ot V] oév  da “

in vector form for advected quantities a € {s, A:= A -dx, B := B -dS, D := pd3z}.

Exercise 3.5 (EP equations for MHD)
Write the Euler—Poincaré motion equation

ot V)ov  da "
in vector form for advected quantities a € {s, A := A -dx, B := B-dS, D := pd3z}, when the
Lagrangian is given by

D 1
I(v,s,D,B) _/ —|v]* = De(D, s) — -|B*d®z.
D 2 2
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Here, e(D, s) is the fluid’s specific internal energy, whose dependence on the density D and specific
entropy s is given as the “equation of state” and which for an isotropic medium satisfies the ther-
modynamic First Law in the form de = —pd(1/D) + T'ds with pressure p(D,s) and temperature
T(D,s). Taking the variation in D will produce the quantity h = e 4+ p/D which is called the specific
enthalpy. The First Law implies the convenient relation dh = (1/D)dp + Tds. The EP equations for
the Lagrangian [(v, s, A, B, D) describe adiabatic compressible magnetohydrodynamics (MHD).

Exercise 3.6 (Gyrostat: A rigid body with flywheel attached)

Consider a rigid body with flywheel attached along the intermediate principle axis in the body
Just as for the isolated rigid body, the energy in this problem is purely kinetic; so one may define the
kinetic energy Lagrangian for this system L : T'SO(3)/SO(3) x TS — R? as

: 1 1 1 1 :
L(2, ¢) = §>\19% + 51295 + §>\39§ + §J2(¢ + )7,
where Q = (1, Q9,Q3) is the angular velocity vector of the rigid body,  is the rotational frequency
of the flywheel about the intermediate principal axis of the rigid body,, and A1, I2, J2, A3 are positive
constants corresponding to the principal moments of inertia, including the presence of the flywheel.

(a) Perform a partial Legendre transform in the flywheel variables (¢, $) € TSO(2) only. What can
you say about the flywheel degree of freedom and its coupling to the rest of the system? In
particular, prove that the angular momentum N conjugate to the angle ¢ is a constant of motion.

(b) Perform the complete Legendre-transform of this Lagrangian as
H(II,N) = TI-Q+N¢— L(Q, ¢)

2 I 1 2 N?/1 1
1,8 (- N 7(7 f).
2A1+2A3+2IQ( 2= N+ 5 L7
| —
offset along Ilo

to express its Hamiltonian in terms of the angular momenta IT = dL/0Q € R3 and N = dL/d¢ €
R! of the rigid body and flywheel, respectively.

Show that the resulting Hamiltonian H (IT; V) is an ellipsoid in coordinates IT € R3, whose centre
is offset in the Ils-direction by a constant amount equal to the conserved angular momentum N
of the flywheel.

(c) Show that the motion equation in IT = JL/9 € R? can be written as

It
7 = X VnH(ILN) = — Vi |TI> x Vg H(IT; N)

Since the angular momentum N of the flywheel is constant, the full problem is still completely
integrable and can be understood as motion in R? along intersections of the Hamiltonian H (IT; N)
with the angular momentum sphere, |II|? = const,

(d) Qualitative analysis. The presence of the flywheel offsets the Hamiltonian ellipsoid relative to
the angular momentum sphere. What is the effect of this offset on the solution of the original
rigid body, which has N = 0 and thus no offset? In particular, what does the offset do to the
heteroclinic orbits on the angular momentum sphere for the rigid body? D

(e) Show that the equations of motion for (I, ¢, N) can be written in Poisson bracket form in the
variables TI, N, ¢ € so(3)* x T*S' as a direct sum of the rigid-body bracket for IT € so(3)* ~ R?

!Draw some pictures of intersections of an offset ellipsoid and a sphere, thinking about the comparison when there
is no offset, then take a look at Elipe, A., Arribas, M. and Riaguas, A. [1997] Complete analysis of bifurcations in the
axial gyrostat problem. Journal of Physics A: Mathematical and General, 30(2), p.587.
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and the canonical bracket for the flywheel phase-space coordinates (N,¢) € T*S!'. For this
purpose, begin by writing the Hamiltonian equations in Poisson matrix form,

g [ Ox 0 07 [oH/oT
alel=-10 o -1f|om/os
N 0 1 0] |0H/ON
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