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1 M3-4-5A16 Un-assessed homework to discuss Spring Term 2020

Exercise 1.1 Find any errors in computing the Euler-Lagrange equations from Hamilton’s principle
for the following simple mechanical systems: L(q,q) =T(4) —V(q) = KE — PE.

1.

10.

Planar isotropic oscillator, (x,%) € TR?:
L= %]x\Q — %\X\Q = %X=-w?’x with w?=k/m

Planar anisotropic oscillator, (x,%) € TR?:
L="2%- %x% kfa:% = ¥ =-wlr; with w?=k/m i=1,2

Planar pendulum in polar coordinates, (6, 0) € TS":
= mR202 —mgR(1 —cos) =— 6=—w?sinf with w?=g/R

. Planar pendulum, (x,%) € TR?, constrained to T'S' = {x,%x € TR?|1 - x> =0 & x- % = 0}:

L=2%*-mgés -x—L(1—[x*) = mx=—-mgé(ld —x®x)— m[x|’x, (gravity &
centripetal force). Hint: Find Lagrange multiplier u by requiring that the constraint is preserved.

Charged particle in a magnetic field, (x,%) € TR?:
L="2%%4%-Ax) = %x=-2%xxB with B=culA

Kepler problem in Cartesian coordinates, (r,#) € TR3:
L(r,i) = 3[#> = V(r) with V(r) = —p/r and r := [r| = /T 1. = ¥+ & =o.

Kepler problem in polar coordinates, (r,7,6, 9) € TRy x TS |#]2 =72 + r262
Lz%(?ﬁ—i-r?&?)—&-% == i"':—T%—&-;L; with J = 720 = const

Free motion on a sphere, (x,%) € TR3, with T7S%? = {(x,%) € R% : |x|> = 1 and x - X = 0}:
L=3%2+501-x?) = x=-%

Spherical pendulum (b), set x(t) = O(t)xg, %x(t) = O(t)xo for (O, O) € TSO(3), where
xo = x(0) is the initial position of the particle and OT = O~!

m, . m, - .
L(x,%) = §!X|2 —mgés X = E\O(t)x0|2 —mg 0" (t)&; - xo .

Setting x(t) = O(t)xo avoids the need for the constraint |x|? = 1, since rotations preserve length.
=

M+ QxII=—glxxy with IT:=xyx (2 xx0)=Qx0|? —x0(x0- Q).
Set g = 0 to get free motion on the sphere. Finally, from its definition, T' := O~!(¢)é3 satisfies

= _Or=—-Qxr.

Rotating rigid body, @ = O~10 € T(SO(3) ~50(3): R )
Q) =10 10 with Qx =0, thatis, —epQ=0;. = IQ+QxIQ=0.
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Exercise 1.2
(a) Find any errors in computing the Legendre transforms

oL

Pi= 56 H(q,p) = (p, 4) — L(¢,¢9) =T(p) +V(¢g) = KE+ PE

for the simple mechanical systems in Exercise
(b) Compute the canonical Hamiltonian equations for each system and show equivalence with their
corresponding Euler-Lagrange equations.

1.

10.

Planar isotropic oscillator, (x,p) € T*R%:  H = ;L |p[2 + &|x|?

Planar anisotropic oscillator, (x,p) € T*R?: H = ﬁ]pﬁ ’“21 x? + k22 x5

Planar pendulum in polar coordinates, (6,pp) € T*S': H = ﬁpz + mgR(1 — cos®)

. Planar pendulum, (x,p) € T*R?, constrained to S = {x € R? : 1 — |x|? = 0}:

H = g |p* +mgés - x + (1 — |x?).

Charged particle in a magnetic field, (x,p) € T*R?: H = %]p — %A(X)]2 p = 0L/0q =
mx + $A(x) € T*M

Kepler problem, (r,p,,0,pg) € T*R, xT*S*:  H = p* =t GMm  with pg = r20 = const

2mr2 r

Free motion on a sphere, (x,p) € T*R3, constrained to S? = {x € R3: 1 — |[x|? = 0}:
H = 5. Ipl* = u(1 = |x%)

Spherical pendulum (a), (x,p) € T*R3, constrained to S? = {x € R3: 1 — |x|?> = 0}:
H=3|p?+mgés-x—p(l—|x|?)

Spherical pendulum (b), (0, O) € TSO(3), £ = 0710 € T(S0(3 ) ~ s50(3), IT = 00/00N €
T*(SO(3) ~s0(3)* ~R® H =11 .T'TII+gT -xo with II= 55 =1 Setg=0 to get
freely rotating rigid body motion.

Rotating rigid body, IT € T*(SO(3) ~ s0(3)* ~R? H = I1-I'II with II= % =IQ.
Classical mechanics relations may be visualised as equivariant transformations.

Legendre Transform

L:TM — R« » H:T*"M — R
A variational principle Aﬂ variational principle
Euler-Lagrange eqns Hamilton’s eqns

Figure 1: Framework for Classical Mechanics
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Exercise 1.3 (Examples of Noether’s theorem)

(a) What conservation law does Noether’s theorem imply for symmetries of the action principle given
by S = 0 with

b
S:/L(q(t),q(t),t)dt, for qeR® and L:TR?®—R,

when the Lagrangian L({(t),q(t),t) is invariant under infinitesimal azimuthal rotations about Z
given by
d
q(t,e) = q(t) + ez x q(t) + O(*) so that 6q = d—q =z xq(t).
€

(b) What additional conservation law is implied by Noether’s theorem when the Lagrangian in the

form L(q(t),q(t)) is translation invariant in time, t — t 4 €; that is, 9;L = 0.

Hint: What does this question have to do with Exercise [1.2]’

(c) What are the symmetries and corresponding Noether conservation laws of the Lagrangians for the
simple mechanical systems in Exercise [1.1]/
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