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1. (a) For the following Lagrangian L(q) : TR?® — R

) .\
L(q) = —(1 —q~q>
express the velocity ¢ € TR? in terms of the position q € R? and the fibre derivative of
the Lagrangian.
(b) Write the Euler-Lagrange equation for this Lagrangian.

(c) Find the constants of the motion for the Euler-Lagrange equation and give their physical
interpretations.

(d) Legendre transform this Lagrangian to determine its corresponding Hamiltonian and
canonical equations.

(e) Explain the physical meaning of this motion.

Hint: suppose the Lagrangian were written as

L@ =-mo(1-a-a/et)”

for particle rest mass m( and speed of light c.

2. Consider the dynamical system in (1, 7o, 3) € R3 for a smooth function f on the real line,

where f'(x) = df /dxz. The vector field (iy,2,43) € TR? has zero divergence and its flow
preserves the sum Hy = x1 + 23 + 3.

(a) Find the steady solutions of the system and determine their stability.

(b) Write this system in Nambu form, x = VH; x VH,.

(c) Restrict the motion to a level set of Hy, eliminate x3 and write the equations of motion
for 1 and x5 on that level set.

(d) Write the explicit solution of the system when f(z) = z%/2.

(e) Give the geometrical interpretation of the result in the previous part.



3.

Consider the (1,2,3) cyclically symmetric dynamical system,

daj da da

— = asa — = asa — =aia 1
dt 23, dt 33Ul dt 142, ()

where ay,az,a3 € C* and a} denotes the complex conjugate of ay.

(a) Show that this system is Hamiltonian with canonical Poisson bracket {a;, a;} = —2id;.

(b) Find two other constants of motion I; and I, that generate S' symmetries of the
Hamiltonian. Show that they Poisson commute, so that {;, 5} = 0.

(c) Show that the following transformation of variables is canonical,
ay = ze H(P249) ay = |ag|e™? as = |agle’, with 2z =|z[e" € C.

(d) Write the Hamiltonian for the cyclically symmetric system (1) solely in terms of
272*7[2713-



4,

The Hamiltonian H : (ay,at, as,a3) € C2 — R
H = jla1|* = |as|? + 3Im(a;®as)
is invariant under the 1:2 resonance S! transformation,
a; — €% and ay — ¥,
The variables (ay,a}, as, a}) € C? are canonical, with Poisson bracket relation

{aj,ap} = —2i0,, for j k=1,2.

(a) Write the motion equations generated by the Hamiltonian H, in terms of the canonical
variables (ay,al, as, a3) € C2.

(b) Show that the following transformation is canonical:
a; = |ai)e, ag = ze*?, z=|z]e’.

(c) Write the transformed equations in the new canonical variables and solve for Q = |z|?
implicitly up to a quadrature integral for an elliptic function.

(d) Consider the orbit map
7 (a1,a},as,a3) € C* = (X,Y,Z,R) € R*
from C? to new variables that are invariant under the 1:2 resonance S' transformation

R = Lai]’ + |ao]?
Z = a|* - lagf?

X —iY = 24 %a,

Find an algebraic relation among the variables XY, Z, R € R* and characterise the
corresponding set of surfaces in X,Y, Z € R3 parameterised by the value of R.

(e) Transform the Hamiltonian H : C* — R to H o in the new variables X, Y, Z, R € R*.



