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1. Quaternions

Problem statement:

(a) De Moivre’s theorem for unimodular complex numbers is

(cos θ + i sin θ)m = (cosmθ + i sinmθ) .

Derive the analog of this theorem for unit quaternions.

(b) If r = [0, r] is a pure quaternion and q̂ = [q0 , q] is a unit quaternion, prove that

under quaternionic conjugation,

r ′ = q̂ r q̂∗ =
[
0, r ′

]
=

[
0, r+ c1q0(q× r) + c2q× (q× r)

]
. (1)

That is, determine the constants c1 and c2.

(c) Prove the Euler-Rodrigues formula for quaternions, from quaternionic conjugation

with q̂ := ±[cos θ
2
, sin θ

2
n̂].

(d) Write the isomorphism between the quaternions and the Pauli matrices.

(e) Use this isomorphism to write out the quaternionic version of the Hopf fibration.
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2. Adjoint and coadjoint actions of semidirect product (Ss v) acting on R

The action of the scaling and translation group (Ss v) on R may be represented by

multiplying an extended vector (r, 1)T with r ∈ R by a 2× 2 matrix, as[
S v

0 1

] [
r

1

]
=

[
S r + v

1

]
for a scaling parameter S ∈ R and a translation v ∈ R.

The group composition rule for (Ss v) is

(S̃, ṽ)(S, v) = (S̃S, S̃v + ṽ) , (2)

which can be represented by multiplication of 2× 2 matrices, as(
S̃ ṽ

0 1

)(
S v

0 1

)
=

(
S̃S S̃v + ṽ

0 1

)
. (3)

Problem statement

(a) Derive the AD, Ad and ad actions for (Ss v). Use the notation (S ′(0), v′(0)) =

(σ, ν) for Lie algebra elements.

(b) Introduce a natural pairing in which to define the dual Lie algebra and derive its Ad∗

and ad∗ actions. Denote elements of the dual Lie algebra as (α, β).

(c) Compute its coadjoint motion equations as Euler-Poincaré equations.

(d) Take the Legendre transform and, hence, find the corresponding canonical Poisson

brackets.

(e) Choose the Hamiltonian H = 1
2
α2 + 1

2
(log β)2 and solve its coadjoint motion

equations.
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3. Momentum maps for cotangent lifts

Recall that the formula determining the momentum map for the cotangent-lifted action

of a Lie group G on a smooth manifold Q may be expressed in terms of the pairings

〈 · , · 〉 : g∗ × g→ R and 〈〈 · , · 〉〉 : T ∗Q× TQ→ R as

〈 J(q, p) , ξ 〉 = 〈〈 p , £ξq 〉〉 ,

where (q, p) ∈ T ∗qQ and £ξq is the infinitesimal generator of the action of the Lie algebra

element ξ on the coordinate q.

Problem statement:

(a) Consider the infinitesimal transformation defined by the Lie derivative action of a Lie

algebra g on a manifold, Q; namely, as ξQ(q) = £ξq, for ξ ∈ g and q ∈ Q.

In terms of appropriate pairings 〈〈 · , · 〉〉 : T ∗Q× TQ→ R and 〈 · , · 〉 : g∗ × g→ R,

determine the corresponding cotangent-lift momentum map J(q, p), J : T ∗Q→ g∗.

(b) Compute the infinitesimal canonical transformations of q and p generated by

Jξ(p, q) =
〈
J(p, q), ξ

〉
for a fixed ξ ∈ g

(c) Use the Clebsch formulation with constraint q̇ − £ξq = 0 imposed on Lagrangian

`(ξ, q) by Lagrange multiplier p with a pairing 〈〈p, q̇−£ξq〉〉 to compute the canonical

Hamiltonian equations in (q, p) phase space.

(d) Use these canonical equations to derive the dynamical equation for the momentum

map J in this case.
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4. The EPDiff(H2) equation is obtained from the Euler-Poincaré reduction theorem for a

right-invariant Lagrangian, when one defines this Lagrangian to be half the H2 norm on

the real line of the vector field of velocity u = ġg−1, namely,

l(u) =
1

2
‖u‖2H2 =

1

2

∫ ∞
−∞

(u− uxx)2 dx .

(Assume u, ux and uxx all vanish as |x| → ∞.)

(a) Derive the EPDiff(H2) equation on the real line in terms of its velocity u(x, t) and

its momentum density m(x, t) = δl/δu = u− 2uxx + u4x in one spatial dimension.

(b) Use the Clebsch approach with N constraints q̇a(t) = u(qa(t), t), a = 1, . . . , N ,

to derive the peakon singular solution m(x, t) of EPDiff(H2) as a cotangent-lift

momentum map in the variables qa(t) and pa(t).

(c) Solve for the velocity for the peakon solution in terms of the Green’s function of the

operator (1− ∂2x)2.

(d) Legendre transform the Lagrangian to determine the Hamiltonian and express it in

terms of the variables qa(t) and pa(t).

(e) Explain why the variables qa(t) and pa(t) are canonically conjugate and derive

Hamilton’s equations for them.
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