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Abstract

These lecture notes discuss various representations and approximations of ideal shallow
water dynamics in a rotating frame. These rotating shallow water (RSW) equations pos-
sess a slow + fast decomposition in which they reduce approximately to quasigeostrophic
(QG) motion (conservation of energy and potential vorticity) plus nearly decoupled equa-
tions for gravity waves in an asymptotic expansion in small Rossby number, ε� 1. The
solution properties of the RSW equations are discussed, and some alternative represen-
tations of the RSW equations which highlight the slow + fast interactions are given.
At the conclusion, the RSW equations are re-derived as Euler–Poincaré equations from
Hamilton’s principle in the Eulerian fluid representation.
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1 Rotating shallow water (RSW) equations

1.1 RSW motion equations

We consider dynamics of rotating shallow water (RSW) on a two dimensional domain with
horizontal planar coordinates x = (x, y). This RSW motion is governed by the following
nondimensional equations for horizontal fluid velocity vector u = (u, v) and the total depth η,

ε
D

Dt
u + f ẑ × u + ∇h = 0 ,

∂η

∂t
+ ∇ · (ηu) = 0 , (1.1)

with notation, cf. (??)

D

Dt
:=

(
∂

∂t
+ u ·∇

)
and h :=

(
η − b
εF

)
. (1.2)

These equations include variable Coriolis parameter f = f(x) and bottom topography b = b(x).
We will have more to say about the structure of these equations later, but for now we just think
of them as nonlinear evolutionary PDEs in time and two-dimensional space, with homogeneous
or periodic boundary conditions.

Dimensionless scale factors for RSW The dimensionless scale factors appearing in the
RSW equations (1.1) and (1.2) are the Rossby number ε and the squared external Rossby ratio
F , given in terms of dimensional scales by

ε =
U0

f0L
� 1 and F =

L2

L2
R

= O(1) with L2
R =

gb0

f 2
0

, (1.3)

where LR is the Rossby radius, which, as we will see in section 2.3, occurs at the peak of the
dispersion curve for Rossby waves arising from perturbations of quasigeostrophic fluid at rest.

The dimensional scales (b0, L,U0, f0, g) in RSW dynamics denote equilibrium fluid depth
(b0) horizontal length (L), horizontal fluid velocity (U0), reference Coriolis parameter (f0) and
gravitational acceleration (g). Dimensionless quantities in equations (1.1) are unadorned and
are related to their dimensional counterparts (primed), according to

u′ = U0u, x′ = Lx, t′ =

(
L

U0

)
t, f ′ = f0f,

b′ = b0b, η′ = b0η, and η′ − b′ = b0(η − b). (1.4)

Here, dimensional quantities are: u′, the horizontal fluid velocity; η′, the fluid depth; b′, the
equilibrium depth; and η′ − b′, the free surface elevation.

For barotropic horizontal motions at length scales L in the ocean for which F is order
O(1) – as we shall assume – the Rossby number ε is typically quite small (ε� 1) as indicated
in equation (1.3) and, thus, the Rossby number is a natural parameter for making asymptotic
expansions. For example, we shall assume |∇f | = O(ε) and |∇b| = O(ε), so we may write
f = 1 + εf1(x) and b = 1 + εb1(x).

1.2 Geostrophic balance

At leading order in ε� 1 the pressure gradient force in (1.1) may balance the Coriolis force, as

ẑ × u = −∇h . (1.5)
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Taking the cross product of the vertical unit vector ẑ with this geostrophic balance yields
the geostrophic velocity,

uG = ẑ ×∇h . (1.6)

Thus, it makes sense to assume that the velocity has an ε-weighted Helmholtz decomposi-
tion,

u = ẑ ×∇ψ + ε∇χ with ψ = h+O(ε) . (1.7)

In the oceans and atmosphere the geostrophic balance tends to be stable and small disturbances
of it lead to waves, called Rossby waves. In seeking to establish the properties of these Rossby
waves (such as their propagation velocity) we will analyse the linearised RSW equations. For
this purpose, we first rewrite the nonlinear equations in their RSW curl form

∂t(εu + R(x))− u× curl(εu + R(x)) + ∇
(
h+

ε

2
|u|2
)

= 0 , (1.8)

where curl R(x) = f(x)ẑ = (1+εf1(x))ẑ, so that R(x) is the vector potential for the divergence
free rotation rate about the vertical direction.

1.3 Crucial vector calculus identities

To check that the RSW motion equations (1.1) and (1.8) are equivalent, one may use the
fundamental vector identity of fluid dynamics,

(curl a)× b + ∇(a · b) = (b ·∇)a + aj∇bj . (1.9)

Taking the curl of (1.8) yields the equation for vorticity dynamics,

∂t$ − ẑ · curl
(
u×$ẑ

)
= 0 , with $ := εẑ · curlu + f(x) (1.10)

where we have defined the ε-weighted total vorticity as

$ := εẑ · curlu + f(x) = εẑ · curl(ẑ ×∇ψ + ε∇χ) + f(x) = ε∆ψ + f(x),

whereas the fluid vorticity is denoted as ω := ẑ · curlu.
Expanding out the curl in equation (1.10) yields

∂t$ + u ·∇$ +$∇ · u = 0 . (1.11)

by virtue of the vector identity,

curl(a× b) = −(a ·∇)b− (∇ · a)b + (b ·∇)a + (∇ · b)a . (1.12)

One may also write the RSW total vorticity equation (1.11) as a continuity equation,

∂$

∂t
+ ∇ · ($u) = 0 , (1.13)

which implies conservation of integrated total vorticity
∫
$d2x, provided u · n̂ = 0 on the

boundary with unit normal vector n̂.
Order by order in an expansion in powers of ε� 1, the total vorticity equation (1.11) and

the ε-weighted Helmholtz decomposition (1.7) combine to yield,

O(1) : ∇ · u = ∇ · (ẑ ×∇ψ) = 0 ,

O(ε) : ∂t∆ψ + (ẑ ×∇ψ) ·∇(∆ψ + f1(x)) + ∆χ = 0 ,

O(ε2) : ∇ ·
(
(∆ψ + f1(x))∇χ

)
= 0 .

Later, we will deal with the terms at each order, which will be important in deriving a se-
quence of approximations first at the level of the O(ε) quasigeostrophic approximation (QG)
for Rossby waves and later at order O(ε2) in discussing Poincaré gravity waves in two different
decompositions of the fluid velocity.
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1.4 Conservation laws for RSW

Exercise. Verify the following four properties of the RSW equations (1.1)

1. Energy conservation

E =

∫
ε

2
η|u|2 +

(η − b)2

2εF
d 2x (1.14)

2. Kelvin circulation theorem

d

dt

∮
c(u)

(εu + R(x)) · dx = 0 , where curl R(x) = f(x)ẑ , (1.15)

and c(u) is a closed planar loop moving with the fluid velocity u(x, t).

3. Conservation of potential vorticity (PV) on fluid parcels

Dq

Dt
= ∂tq + u · ∇q = 0 (1.16)

where PV (q) is defined by

q :=
$

η
, and $ := ẑ · curl(εu + R(x)) . (1.17)

4. Infinite number of conserved integral quantities

d

dt

∫
ηΦ(q) d 2x = 0 , (1.18)

for any differentiable function Φ.

Hints: The following alternative form of the RSW motion equation (1.1) may be
helpful in verifying these four properties:

∂t(εu + R(x))− u× curl(εu + R(x)) + ∇
(
h+

ε

2
|u|2
)

= 0 , (1.19)

where curl R(x) = f(x)ẑ and h := (η − b)/(εF).

You might also keep in mind the fundamental vector identity of fluid dynamics,

(curl a)× b + ∇(a · b) = (b ·∇)a + aj∇bj . (1.20)

F
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Answer.

1.

dE

dt
=

∫
D
ηt(εu

2/2 + h) + ηu · εut dx dy

= −
∫
D

(
div (ηu)

)
(εu2/2 + h) + ηu · ∇(εu2/2 + h) dx dy

= −
∫
D

div
(
η(εu2/2 + h) u

)
dx dy = −

∮
∂D
η(εu2/2 + h) u · n̂ ds = 0 ,

which vanishes for u tangent to the boundary ∂D of the domain of flow D.

2.

d

dt

∮
c(u)

(εu + R(x)) · dx

By (1.9) =

∮
c(u)

(
ε∂tu + εu ·∇u + εuj∇uj − u× curl R + ∇(u ·R)

)
· dx

By (1.1) =

∮
c(u)

∇
(
ε|u|2/2 + h+ u ·R

)
· dx = 0 ,

which vanishes because the integral of a gradient over a closed loop is zero, by
the fundamental theorem of calculus.

3. The curl of the alternative form of the RSW motion equation in (1.8) yields

0 = ∂t$ − curl(u×$) = ∂t$ + u ·∇$ +$divu

=
D$

Dt
−$η−1Dη

Dt
= η

D

Dt

(
$

η

)
= η

Dq

Dt

which verifies (1.16).

4. PV conservation on fluid parcels in (1.16) implies that the time derivative

d

dt

∫
ηΦ(q) dx dy =

∫
∂η

∂t
Φ(q) + ηΦ′(q)

∂q

∂t
dx dy

= −
∫

div(ηu) Φ(q) + ηu ·∇Φ(q) dx dy

= −
∫

div
(
ηΦ(q)u

)
dx dy

= −
∮
ηΦ(q) n̂ · u ds

= 0

vanishes, because n̂ · u vanishes on the boundary.

N
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2 The Quasigeostrophic (QG) approximation

2.1 Derivation of QG

In this section, we derive the well known quasigeostrophic (QG) approximation [14] of the equa-
tions for RSW motion in a rotating frame into a form. Consistent with the QG approximation,
we assume f(x) = 1 + εf1(x) and b(x) = 1 + εb1(x), with x = (x, y). We return to the RSW
motion equation in (1.1), rewritten as

ε
Du

Dt
= −f ẑ × u−∇h , (2.1)

where
D

Dt
=

∂

∂t
+ u ·∇, h =

η − b
εF

. (2.2)

Operating with ẑ× on equation (2.1) and expanding in powers of ε yields

u = ẑ ×∇h− ε f1 ẑ ×∇h− ε
(
∂

∂t
+ uG ·∇

)
∇h+O(ε2)

= uG + εuA +O(ε2), (2.3)

where the geostrophic and ageostrophic components of the velocity are defined, respectively,
by

uG = ẑ ×∇h and uA =

(
∂

∂t
+ uG ·∇

)
ẑ × uG − f1 uG . (2.4)

The remainder of this section is devoted to studying the class of RSW flows that satisfy condition
(2.3). In equation (2.4), uG is divergenceless and uA has divergence given by

∇ · uA = −
(
∂

∂t
+ uG ·∇

)
∆h− uG ·∇f1 , (2.5)

in which ∆h is the horizontal Laplacian of h.

Exercise. Verify equation (2.5) for ∇ · uA. F

Substituting expression (2.5) for ∇ · uA into the continuity equation

∂η

∂t
+ ∇ · (ηu) = 0 , rewritten as εFh,t = −∇ · (ηu) , (2.6)

and using the relations

η = b+ εFh , u = uG + εuA and b(x) = 1 + εb1(x) , (2.7)

yields at order O(ε) the QG equation for the dimensionless free surface height [14],(
∂

∂t
+ uG ·∇

)
(Fh−∆h+ b1 − f1) = 0 . (2.8)

Thus, in the QG approximation, the potential vorticity, defined by

q = Fh−∆h+ b1 − f1 , (2.9)
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is advected by the divergenceless geostrophic velocity uG = ẑ ×∇h. That is,

∂tq + uG ·∇q = 0 . (2.10)

The positive-definite symmetric operator F−∆ is nondegenerate, so its operator inverse 1/(F−
∆) exists and is well defined on Fourier transformable functions, say. Therefore, the surface
height h and its derivatives are determined uniquely from the potential vorticity q in QG theory.

Equations (2.8) and (2.9) combine into

∂q

∂t
= −ẑ ×∇h ·∇q = J(q, h) , (2.11)

where
J(q, h) := ẑ ·∇q ×∇h (2.12)

is the Jacobian of the transformation (x, y)→ (q, h)

dq ∧ dh = J(q, h) dx ∧ dy = (q,xh,y − h,xq,y) dx ∧ dy =: {q, h}can dx ∧ dy , (2.13)

where
{q, h}can := q,xh,y − h,xq,y (2.14)

denotes the canonical Poisson bracket.
Thus, the PV equation for QG takes the canonical Hamiltonian form, ∂tq = {q, h}can.

2.2 The ageostrophic velocity in the QG approximation

Exercise. Show that the QG motion equation (2.8) implies

∂

∂t

(
Fh2

2
+
|∇h|2

2

)
= ∇ ·

(
h∇h,t − huG(Fh−∆h+ b1 − f1)

)
. (2.15)

F

As a consequence of (2.15), QG motion conserves the positive-definite energy,

EQG =

∫ (
Fh2

2
+

1

2
|uG|2

)
d 2x

=
1

2

∫
(Fh2 + |∇h|2)d 2x

=
1

2

∫
µ(F −∆)−1µ d 2x =: H(µ) ,

(2.16)

with µ := q− (b1− f1) = (F −∆)h, provided the vector ∇h in (2.15) is normal to the domain
boundary (so uG is tangential there) and also provided the boundary integral of the normal
derivative of ∂th vanishes [14].
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Exercise. Show that the QG motion equation (2.8) yields the formal expression,

∂h

∂t
= −(F −∆)−1(uG ·∇q) = −(F −∆)−1J(h, q) , (2.17)

where (F −∆)−1 denotes integration against the Green’s function kernel K(x, y) of
the Helmholtz operator (F −∆). That is,

(F −∆)−1J =

∫
K(x, y)J(y) dy and (F −∆)K(x, y) = δ(x− y) ,

where δ(x− y) is the Dirac delta distribution, defined by
∫
δ(x− y)f(y)dy = f(x).

F

The gradient of equation (2.17) provides an estimate for the quantity

∂t

(
ẑ × uG

)
= −∇h,t ,

appearing in expression (2.4) for uA,

uA = (uG ·∇)ẑ × uG −∇h,t − f1uG , (2.18)

which may therefore be written as,

uA = (uG ·∇)ẑ × uG + ∇(F −∆)−1J(h, q)− f1uG, (2.19)

where q = Fh − ∆h + b1 − f1, according to (2.9). Thus, in the QG approximation, the
ageostrophic velocity uA may be expressed via (2.17) entirely in terms of the geostrophic velocity
uG and other spatial derivatives of surface height elevation, h.

2.3 Rossby waves for QG and their dispersion relation

Exercise. Show that steady solutions (qe, he) of (2.8) satisfy J(qe, he) = 0, so that
potential vorticity qe and elevation he are functionally related.

Linearise the QG potential vorticity equation (2.8) around a steady solution he with
ẑ×∇he = U = U êx = const and find the dispersion relation for the resulting wave
equation. F

Answer.

1. For an equilibrium solution qe satisfying ∂qe/∂t = 0, equation (2.8) implies
J(qe, he) = 0, which means that qe(x, y) = Fhe − ∆he + b1 − f1 and he(x, y)
are functionally related, so their gradients are collinear.

We shall assume that

∇qe = −U ŷ and ∇he = −βŷ

where U and β are positive constants.
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2. Linearize equation (2.8) using J(q, h) = ẑ ·∇q ×∇h as

∂q′

∂t
= −ẑ ×∇he ·∇q′ + ẑ ×∇qe ·∇h′. (2.20)

Then insert ẑ×∇he = U êx and ẑ×∇qe = βêx, and select a solution propor-
tional to exp(i(k · x− νt)) with k = (k, l), to find, upon using q′ = (F −∆)h′,
that

ν = Uk − βk

k2 + l2 + F
(2.21)

This is the dispersion relation for the linearised QG equation.

3. The corresponding phase and group velocities are

cp =
ν

k
= U − β

k2 + l2 + F
and cg =

dν

dk
= U +

β(k2 − l2)

(k2 + l2 + F)2
. (2.22)

N

Exercise.

1. Suppose we linearise equation (2.8) about a state of rest. How does the
dispersion relation change?

2. Plot the dispersion relation, discuss its zonal phase and group speeds.

F

Answer. A state of rest for equation (2.8) give he = const. Linearising then gives

∂q′

∂t
+ ẑ×∇h′ ·∇βy = 0 , or

∂q′

∂t
+ β∂xh

′ = ∂t(Fh′−∆h′) + β∂xh
′ = 0 . (2.23)

1. For a solution proportional to exp(i(k · x− νt)) with k = (k, l) this yields

ν = − βk

k2 + l2 + F
(2.24)

Thus, the dispersion relation for the linearised QG equation about a state of
rest amounts to setting U = 0 in the dispersion relation for a state moving with
constant velocity. This means that moving into a frame of motion with constant
velocity produces a Doppler shift of the wave frequency, corresponding to the
Galilean transformation of adding the moving frame velocity to the phase or
group velocity.

2. The corresponding zonal (l2 = 0) phase and group velocities are

cp =
ν

k
= − β

k2 + F
and cg =

dν

dk
=
β(k2 −F)

(k2 + F)2
. (2.25)

Thus, the dispersion relation has a peak for k2 = F , beyond which the slope
changes sign, so the group velocity changes direction.

N

The generation of Rossby waves is important in producing the deflections observed in the
jet stream in the stratosphere, for example. See, e.g., http://en.wikipedia.org/wiki/File:
Aerial_Superhighway.ogv for simulations of Rossby waves on the Jet Stream.

There are many good discussions of the meanings of the dispersion relation ν(k), phase
velocity cp, and group velocity cg in the literature [19, 22].

http://en.wikipedia.org/wiki/File:Aerial_Superhighway.ogv
http://en.wikipedia.org/wiki/File:Aerial_Superhighway.ogv
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3 Fundamental conservation laws of the QG equations

3.1 Energy and circulation

The conservation laws for energy and circulation are of great value in the analysis and under-
standing of their solution behaviour of the QG equations.

First, we consider the QG energy,

EQG =
1

2

∫
h (Fh−∆h) d 2x =

1

2

∫
uG ·

(
uG −F∆−1uG

)
d 2x , (3.1)

which is conserved, provided the vector ∇h is normal to the domain boundary, so that the QG
velocity uG = ẑ×∇h is tangent to the boundary. This may be seen by direct computation, as

dEQG
dt

=

∫
S

h
∂

∂t

(
Fh−∆h+ b1(x)− f1(x)

)
d2x

=

∫
S

h
∂q

∂t
d2x = −

∫
S

h(−uG ·∇q) d2x = −
∫
S

h∇ · (uGq) d2x

= −
∫
S

∇ · (huGq) d
2x+

∫
S

∇h · (ẑ ×∇h) d2x

(By Gauss) = −
∮
∂S

n̂ · (huGq) ds = 0 , provided n̂ · uG
∣∣
∂S

= 0 .

Second, the Kelvin circulation integral for QG is defined by

K =

∮
c(uG)

(εuG − εF∆−1uG + R(x)) · dx

=

∫ ∫
∂S=c(uG)

(
∆h−Fh− b1 + f1

)
d 2x

=

∫ ∫
∂S=c(uG)

q d 2x ,

(3.2)

where
curl R(x) =

(
1 + ε

(
f1(x)− b1(x)

))
ẑ , (3.3)

and c(uG) is a closed planar loop moving with the fluid velocity uG(x, t), which also coincides
with the boundary ∂S of the surface integral. The Kelvin circulation theorem for QG may also
be computed directly, as

dK

dt
=

d

dt

∫ ∫
∂S=c(uG)

q d 2x

=

∫ ∫
∂S=c(uG)

(∂tq + uG ·∇q + ∇ · uG) d 2x

= 0 ,

(3.4)

since ∂tq + uG ·∇q = 0 and ∇ · uG = 0.

Exercise. Verify equation (3.4) explicitly. F
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3.2 Potential vorticity (PV)

The conservation of potential vorticity (PV) on QG fluid parcels was proved as equation (2.10)
in section 2.1. Namely,

∂tq + uG · ∇q = 0 , (3.5)

where PV is defined by using curl uG = ∆h as

q := −ẑ · curl(εuG − εF∆−1uG + R(x)) = Fh−∆h+ b1 − f1 . (3.6)

An alternative derivation of the QG motion equation (3.5) may be obtained by taking the curl
of the following motion equation for the QG velocity uG = ẑ ×∇h,

∂t(εuG − εF∆−1uG + R(x))

− uG × curl(εuG − εF∆−1uG + R(x)) + ∇π = 0 ,
(3.7)

where curl R(x) is given in (3.3) and ∇π is a pressure force.
This calculation is facilitated by the fundamental vector identity of fluid dynamics,

(curl a)× b + ∇(a · b) = (b ·∇)a + aj∇bj . (3.8)

Remarkably, QG possesses an infinite number of conserved integral quantities (called enstro-
phies), in the form

dCΦ

dt
= 0 for CΦ =

∫
Φ(q) d 2x , (3.9)

for any differentiable function Φ. To prove this statement, we compute directly,

d

dt

∫ ∫
S

Φ(q) d 2x =

∫ ∫
S

∂tΦ(q) d 2x = −
∫ ∫

S

uG ·∇Φ(q) d 2x

= −
∫ ∫

S

∇ · (uGΦ(q)) d 2x

(By Gauss) = −
∮
∂S

n̂ · (uGΦ(q)) ds = 0 , provided n̂ · uG
∣∣
∂S

= 0 .

3.3 Casting QG into Hamiltonian form.

In this section we show that the QG equation (2.10) may be written in Hamiltonian form,

∂tq = {q,H} , (3.10)

for the Hamiltonian H(µ) = EQG in (2.16) and a Poisson bracket {F,H} among functionals of
µ := q + f1 − b1 = (F −∆)h, given by

{F,H} =

∫
q

{
δF

δµ
,
δH

δµ

}
can

dxdy . (3.11)

Here, the variational derivative δH
δµ

of a functional of µ is defined by the limit

lim
ε→0

(
ε−1
(
H(µ+ εδµ)−H(µ)

))
=

d

dε

∣∣∣∣
ε=0

H(µ+ εδµ)

=:

〈
δH

δµ
, δµ

〉
L2

,

(3.12)

where the angle brackets 〈 · , · 〉L2 represent L2 pairing of real functions.
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To verify the Hamiltonian form of the QG equation in (3.10), one may begin by recalling
the cyclic permutation formula∫

a{b, c}candxdy =

∫
b{c, a}candxdy ,

for real functions a, b, c, on the (x, y) plane with homogeneous or periodic boundary conditions.
Then, one may verify that the variational derivative of the QG energy H(µ) = EQG in

(2.16) with respect to the quantity µ yields the surface height elevation. That is, verify the
relation δH/δµ = h by using the definition of the the variational derivative (3.12) with H(µ)
in (2.16).

Notice that the Poisson bracket in (3.11) is bilinear, skew-symmetric, and satisfies the
Leibniz and Jacobi identities. In particular, it satisfies the Jacobi identity, because it is a
linear functional of the canonical Poisson bracket { · , · }can in (2.13) which satisfies the Jacobi
identity.

Using formula (3.11), one may compute the Poisson brackets {F,CΦ} for the conserved
quantities CΦ in (3.9) with an arbitrary smooth functional F . In the next section, we will see
that critical points of the conserved functional

HΦ(q) := EQG(q) + CΦ(q)

are equilibrium solutions of the QG equations. Perturbations of these critical points will produce
Rossby waves and Poincaré gravity waves whose stability naturally depends on the choice of
the function Φ in the conserved functional CΦ(q). Later, we will discuss transformations of
variables and asymptotic expansions that will allow us to see how these waves in the RSW
solutions couple to the circulations in the QG approximation.
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4 Equilibrium solutions of QG

4.1 Critical point solutions of QG

As discussed earlier, two important properties of the QG equation (2.8) are conservation of
energy EQG in (3.1) and enstrophy CΦ(q) in (1.18)

EQG(h) =
1

2

∫
h (Fh−∆h) d 2x and CΦ(q) =

∫
Φ(q) d 2x = 0 , (4.1)

provided the vector ∇h is normal to the domain boundary, so that the QG velocity uG = ẑ×∇h
is tangent to the boundary. The potential vorticity q is related to the elevation h by

q = Fh−∆h+ b1 − f1 , (4.2)

and it satisfies equation (3.5), recalled here as

∂tq + uG · ∇q = 0 . (4.3)

Therefore, the QG energy EQG may be written in terms of the potential vorticity q as a quadratic
form,

EQG(q) =
1

2

∫
(q − b1 + f1)(F −∆)−1(q − b1 + f1) d 2x , (4.4)

where we have used h = (F −∆)−1(q − b1 + f1). We define the conserved functional HΦ(q) :=
EQG(q) + CΦ(q) and find the condition for its first variation to vanish for a function qe to be

δHΦ(qe) =

∫
(he + Φ′(qe))δq d

2x = 0 . (4.5)

The critical point condition for δHΦ(qe) = 0 is thus

he + Φ′(qe) = 0 , (4.6)

for a given choice of the function Φ.

Theorem

4.1. Critical points of the conserved functional HΦ(q) := EQG(q) +CΦ(q) are equilibrium solu-
tions of the QG equations.

Proof. By the critical point condition (4.6), we have ∇he×∇qe = 0 for Φ′′(qe) 6= 0, because the
functional relation between he and qe implies that their gradients ∇he and ∇qe are collinear.
Thus, the PV evolution equation (4.3) implies that qe is an equilibrium solution. Namely,

∂tqe = −ẑ ×∇he · ∇qe = −ẑ · ∇he ×∇qe = 0 . (4.7)

Exercise. Explain how the stability of a QG equilibrium solution depends on the
choice of the function Φ in the conserved functional CΦ(q).

Hint: the second variation of the conserved functional HΦ(q) is the Hamiltonian
for the linearised evolution of perturbations in the neighbourhood of an equilibrium
solution qe. F
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5 Alternative representations of RSW: Part I

5.1 Vorticity, divergence and depth representation

We transform variables in equations (1.1) from fluid velocity and depth (u, η), to vorticity,
divergence and depth, (ω = ẑ · curl u,D = div u, η). After introducing the operator(

∂

∂t
+ ∂ju

j

)
=

(
D

Dt
+D

)
, so that

∂D
∂t

+ ∂j
(
ujD

)
=

(
D

Dt
+D

)
D , (5.1)

the RSW equations (1.1) take the following forms in the variables ω = ẑ · curl u, D = div u and
η, (

D

Dt
+D

)
(εω + f) = 0,(

D

Dt
+D

)
η = 0,(

D

Dt
+D

)
εD = − div [f ẑ × u + ∇h ] + 2εJ(u, v),

=: Ω + 2εJ(u, v),

(5.2)

where
Ω := − div (f ẑ × u + ∇h) , and J(u, v) := ẑ ·∇u×∇v . (5.3)

Here, J(u, v) is the Jacobian of the velocity components u(x, y) and v(x, y).

1. We shall assume that the velocity has a weighted Helmholtz decomposition

u = ẑ ×∇ψ + ε∇χ . (5.4)

Inserting (5.4) into (5.2) shows that with this assumption the quantity Ω may be expressed
as

Ω = − div [f ẑ × u + ∇h ] = div(f∇ψ) + εJ(f, χ)−∆h , (5.5)

which is called the imbalance [13, 20, 17, 18]. (Why is this a good name for Ω?)

2. In addition, since D = ε∆χ is order O(ε) once we assume (5.4), the quantity Ω+2εJ(u, v)
in (5.2) must then be of order O(ε2).

Exercise. Explicitly transform variables from (1.1)–(1.2) to (5.2)–(5.5).

Hint: For this calculation, you may want to recall that

∂j(u
jui,i)− ∂i(ujui,j) = 2J(u1, u2) for u = (u1, u2) = (u, v) , (5.6)

when you are taking the divergence of the motion equation (1.1) in the form,

∂tu = −u · ∇u− (f ẑ × u +∇h)) .

For more insight, see the standard literature [13, 20, 17, 18]. F
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Exercise. Prove equation (5.6) explicitly. F

The operator D/Dt+D has an integrating factor exp
∫
Ddt, where the integral is taken at

constant Lagrangian fluid-parcel label lA(x, t), A = 1, 2, which satisfies,

DlA

Dt
= ∂tl

A + u ·∇lA = 0 , (5.7)

since the fluid-parcel label is a Lagrangian tracer. Using this integrating factor in equations
(5.2) gives

e−
∫
Ddt D

Dt

(
e
∫
Ddt(εω + f)

)
= 0,

e−
∫
Ddt D

Dt

(
e
∫
Ddtη

)
= 0,

e−
∫
Ddt D

Dt

(
e
∫
DdtεD

)
= Ω + 2εJ(u, v).

(5.8)

Consequently, we find

e
∫
Ddt(εω + f) = c1(lA),

e
∫
Ddtη = c2(lA),

η
D

Dt

(
εD
η

)
= Ω + 2εJ(u, v),

(5.9)

where c1 and c2 are functions of the Lagrangian labels lA so they satisfy Dc1/Dt = 0 = Dc2/Dt.
The ratio of the first pair of equations in (5.9) yields potential vorticity conservation,

q :=
εω + f

η
=
c1(lA)

c2(lA)
⇒ Dq

Dt
= 0 . (5.10)

We also find from (5.2) and (5.9) that

Dq

Dt
= 0,

D

Dt

(
1

η

)
=
D
η
,

D

Dt

(
εD
η

)
=

(
Ω + 2εJ(u, v)

)(
1

η

)
. (5.11)

Thus, the RSW equations transform without approximation (but at the cost of introducing
higher spatial derivatives) to

Dq

Dt
= 0 and ε

D2

Dt2

(
1

η

)
=

(
Ω + 2εJ(u, v)

)(
1

η

)
. (5.12)

According to these equations, the potential vorticity q is constant along a fluid parcel
trajectory and the inverse depth 1/η either oscillates stably or evolves exponentially, depending
on the sign of the quantity Ω+2εJ(u, v). Of course, advection of q is well known. The oscillator
equation for 1/η in (5.12) can be interpreted in a mixed Eulerian-Lagrangian fashion as saying
that sufficient convergence of Eulerian force causes Lagrangian (advective) instability of the
water depth.
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Thus, the RSW equations may be separated into vortical motions and Rossby waves in q
and Lagrangian oscillations in 1/η, with no approximation. Recall that D is order O(ε) and
the quantity Ω + 2εJ(u, v) is of order O(ε2). So the second equation in (5.12) is consistent with
order O(1) dynamics of η in (1.2) and order O(ε) variations in bottom topography

η = 1 + ε(Fh+ b1) . (5.13)

Unfortunately, there is no corresponding separation of time scales in equation (5.12).

Reduction of the q-equation in (5.12) to quasigeostrophy (QG). For ε � 1 in the
potential vorticity equation in (5.12), further assumptions can be imposed which decouple the
slow vortical motion from the fast gravity waves. In this limit, one may write the Taylor
expansion

q =
1 + ε (ω + f1)

1 + ε (Fh+ b1)
= 1 + ε (ω −Fh+ f1 − b1) +O(ε2). (5.14)

Thus, with ω = ∆ψ and u = ẑ ×∇ψ + ε∇χ, the equation in (5.12) for the potential vorticity
becomes

∂

∂t

(
∆ψ −Fh

)
+ J

(
∆ψ −Fh+ f1 − b1, ψ

)
= O(ε). (5.15)

The further assumption that
u = uG + εuA +O(ε2) ,

with uG = ẑ×∇h, so that ω = ∆ψ = ∆h+O(ε) reduces equation (5.15) to the quasigeostrophic
(QG) motion equation [1, 14],

∂

∂t

(
∆h−Fh

)
+ J

(
∆h−Fh+ f1 − b1, h

)
= O(ε),

or
∂q

∂t
+ uG ·∇q = O(ε)

(5.16)

when terms of order O(ε) are neglected.

Exercise. Follow the reasoning above to derive equation (5.16) explicitly and find
its conserved energy. F

Estimating the imbalance Ω + 2εJ(u, v) = O(ε2) using QG theory. As we have seen,
QG theory [1, 14] sets

u = uG + εuA +O(ε2) , (5.17)

with geostrophic and ageostrophic velocities given respectively by

uG = ẑ ×∇h and

uA = −f1uG + (∂t + uG · ∇) ẑ× uG. (5.18)
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Consequently, one finds D = ε divuA and

Ω + 2εJ(u, v) = ε div
[
(∂t + u ·∇)u

]
+ 2εJ(u, v)

Using (5.17) = ε div
[
(∂t + uG ·∇)uG

]
+ ε2div

[
(∂t + uG ·∇)uA + (uA ·∇)uG

]
+ 2εJ(uG, vG) + 2ε2

(
J(uA, vG) + J(uG, vA)

)
+O(ε3)

= ε2 (∂t + uG ·∇) div uA +O(ε3) , (5.19)

after cancellations at both orders O(ε) and O(ε2).
The QG theory also gives

1

ε

Dη

Dt
= (∂t + uG ·∇ )(Fh+ b1) +O(ε) = − div uA

= (∂t + uG ·∇ )(∆h+ f1(x, y) ),
(5.20)

which recovers the previous asymptotic equation (5.16) when terms of order O(ε) are neglected.

Exercise. Verify the computations in (5.19) and (5.20). F
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6 Alternative representations of RSW: Part II

6.1 Slow + Fast decomposition

Transformed variables for Rotating Shallow Water: Still with no approximation, we can
transform the RSW equations into the following set of variables,

ω := ẑ ·∇× u, D := ∇ · u,
Ω := −∇ · [f ẑ × u + ∇h] = div(f∇ψ) + εJ(f, χ)−∆h.

(6.1)

In these variables, with q = (εω+f)/η = $/η, the RSW equations from (5.11) may be written,
without approximation, as follows.

∂tη = −∇ · (ηu) , for total depth η = 1 + εb1 + εFh

∂tq = −u · ∇q , for PV q =
εω + f

η

∂tD −
1

ε
Ω = −∇ · (Du) + 2J(u, v)

∂tΩ−
1

εF
(∆−F)D = ∆∇ ·

(
(h+

b1

F
)u
)
− 1

ε
∇ ·
(
(f 2 + εωf − 1)u

)
− J(εf1, h+ |u|2)

(6.2)

Exercise. Verify the calculation required to obtain equations (6.2) from equations
(5.11).

Hint: It may be helpful to notice that for constant rotation and flat bottom to-
pography one has f1 = 0 and b1 = 0. In this case, the imbalance Ω simplifies as
Ω→ ∆ψ −∆h, and the last equation (6.2) simplifies to

∂

∂t

(
∆ψ −∆h

)
− 1

εF
(∆−F)D = ∆

(
div(hu)

)
− div

(
(∆ψ)u

)
. (6.3)

Two other convenient formulas which are useful to prove for this exercise are

− ∂

∂t
∆h =

1

εF
∆D +

1

F
∆
(

div
(
(b1 + Fh)u

))
,

− ∂

∂t
∆ψ = div

(
(ω + f1)u

)
+
D
ε
.

(6.4)

F

Klein-Gordon equations: In terms of the fast time variable t/ε and up to order O(ε), the
quantities D and Ω in equations (6.2) satisfy identical linear Klein-Gordon equations

[∂2
t/ε − (F−1∆− 1)]D = O(ε) +O(ε2),

[∂2
t/ε − (F−1∆− 1)]Ω = O(ε) +O(ε2),

(6.5)

corresponding to rapidly fluctuating Poincaré-gravity waves of the RSW system (6.2), with
fast frequency ν ≈ ∂t/ε of order O(1/ε), driven by order O(ε) and O(ε2) nonlinear slow + fast
forcing terms on the right hand sides. Upon ignoring the nonlinear slow + fast forcing terms,
the RSW linear Poincaré-gravity waves satisfy the dispersion relation,

ν2 = 1 + F−1k2 , with cp =
ν

k
= ±

√
F−1 +

1

k2
, (6.6)
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which admits both leftward and rightward travelling waves.

Exercise. The longer the wavelength, the greater the group velocity of shallow
water waves. Compute the group velocity for the dispersion relation in (6.6). F

The limiting linear PDE for RSW waves for ε� 1 governing both D and Ω in (6.5)

∂2
t/εφ−F−1∆φ = φ , for either φ = D or φ = Ω (6.7)

is the celebrated Klein-Gordon (KG) equation. The KG equation is a relativistic version of
the Schrödinger equation. Although KG was discovered a long time ago, it has received renewed
interest in physics lately, because describes a spin-zero elementary particle, the famous Higgs
boson, whose existence was verified at CERN in 2012. For a good account of its history and a
few background references, see http://en.wikipedia.org/wiki/Klein-Gordon_equation.

Remark

6.1. The leading order fast-time equations for the D and Ω system in (6.2) are expressed as by

∂

∂(t/ε)

[
D
Ω

]
=

[
0 1
−1 0

] [
(−F−1∆ + 1)D

Ω

]
=

[
0 1
−1 0

] [
δH/δD
δH/δΩ

]
.

Thus, D and Ω appear as canonically conjugate variables in a Hamiltonian system for the
fast-time dynamics in t/ε with Hamiltonian H given by

H =

∫ ( 1

2F
|∇D|2 +

1

2
D2 +

1

2
Ω2
)
dx dy , (6.8)

and canonical Poisson bracket given for functionals G and H of D and Ω by{
G , H

}
=

∫ [
δG/δD
δG/δΩ

] [
0 1
−1 0

] [
δH/δD
δH/δΩ

]
dxdy . (6.9)

At orders O(ε) and O(ε2), the right hand sides for ε 6= 0 of equations (6.2) are coupled to the
QG equation (5.16). As it turns out, the coupled system of equations (5.16) and (6.2) is also
Hamiltonian [1]. This is not surprising, because the original RSW system (1.1) is Hamiltonian,
as well.

Remark

6.2. This observation suggests a two-timing approach (t, t/ε) in which, upon averaging over
the fast time, H in (6.8) would emerge as an adiabatic invariant. For an extensive review of
multiple time scale expansions from the current viewpoint, see, for example, Klein [12].

Remark

6.3. The slow + fast decomposition of the RSW solution into potential vorticity q(t) governed
by the QG equation (5.16) for the potential vorticity, interacting with wave variables D(t, t/ε)
and Ω(t, t/ε) governed by coupled KG equations in (6.5), is the basis for many possible approx-
imations in rotating shallow water dynamics. For example, the initialization in a “balanced”

http://en.wikipedia.org/wiki/Klein-Gordon_equation
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state to supress the time derivatives on the left sides of the last two equations in this set gives
the “slow equations” due to Peter Lynch. See, for example, Lynch [13], as well as Warn et
al. [20] and Browning and Kreiss [2, 3]. Many other useful approximate reduced equations are
discussed in the references. For more information about such approximate “reduced” equations,
read Chapters 4 and 5 of Vallis [19]. For more information about linear and nonlinear waves,
see Whitham [22].

7 Hamilton’s principle for simple ideal fluids

7.1 Preparation for fluid dynamical variational principles

Definition

7.1. The variational derivative δF
δψ
∈ V ∗(M) of a real functional F [ψ] of smooth functions

ψ ∈ F(M) taking values in a vector space V (M) over a manifold M is defined by

δF [ψ] = lim
ε→0

(
F [ψ + εδψ]− F [ψ]

)
=

〈
δF

δψ
, δψ

〉
for δψ ∈ F(M) . (7.1)

The angle brackets 〈 · , · 〉 here denote L2 pairing, as in

〈f , g〉 =

∫
< f(x) , h(x) >V ∗×V dx , (7.2)

for integrable real functions f ∈ V and h ∈ V ∗, and pairing < · , · >V ∗×V : V ∗ × V → R, for a
vector space V and its dual vector space V ∗.

This definition of variational derivative applies for fluid dynamics, for example, with ve-
locity u and depth (or density) (u, D) ∈ X(R2) ×Dens(R2), since both X(R2) and Dens(R2)
are vector spaces.

Our strategy in applying Hamilton’s principle δS = 0 with S =
∫
l(u, D) dt to derive ideal

GFD approximations will be to perform variations at fixed x and t of the following action
integral [7, 8, 6],

S =

∫ T

0

l(u, D) dt , (7.3)

whose Lagrangian l(u, D) depends on the horizontal fluid velocity u and the total depth D. We
will first do the general case for an arbitrary choice of Lagrangian l : X(R2)×Dens(R2)→ R,
for fluid velocity defined as a vector field over the plane R2, so that u ∈ X(R2), and depth
defined as a density D ∈ Dens(R2), so that variations in depth conserve the volume of water.
That is, D satisfies the continuity equation,

∂tD + div(Du) = 0 . (7.4)

7.2 Explicitly varying the action integral

Hamilton’s principle δS = 0 for the action S in (7.3) is derived by taking the variations,

0 = δS =

∫ T

0

(〈
δl

δu
, δu

〉
+

〈
δl

δD
, δD

〉)
dt . (7.5)
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For fluid dynamics, the variations of the fluid velocity vector field u and the mass density D
are given by

δu =
d

dε

∣∣∣∣
ε=0

u = ∂tv + u · ∇v− v · ∇u and δD =
d

dε

∣∣∣∣
ε=0

D = −div(Dv) , (7.6)

where the variational vector field v ∈ X(R2) is assumed to vanish at the endpoints in time
[0, T ].

7.3 Deriving the Euler–Poincaré motion equation

Substituting the expressions in (7.6) for the variations δu and δD into Hamilton’s principle in
(7.5) yields

0 = δS =

∫ T

0

〈
δl

δui
, ∂tv

i + uj∂jv
i − vj∂jui

〉
+

〈
δl

δD
, −∂i(Dvi)

〉
dt

=

∫ T

0

〈
−∂t

δl

δui
− ∂j

(
δl

δui
uj
)
− δl

δuk
∂iu

k +D∂i
δl

δD
, vi
〉
dt

+

〈
δl

δui
, vi
〉 ∣∣∣∣T

0

,

(7.7)

where we have invoked natural boundary conditions (n̂ ·u = 0 on the boundary) when integrat-
ing by parts in space, so the corresponding boundary terms vanish. The last term vanishes, as
well, because we have assumed that the variational vector field v vanishes at the endpoints in
time. Consequently, for independent variational vector fields v we find from (7.7) that Hamil-
ton’s principle for fluids implies the following Euler-Poincaré equation for ideal fluid dynamics

∂t
δl

δui
+ ∂j

(
δl

δui
uj
)

+
δl

δuk
∂iu

k = D∂i
δl

δD
. (7.8)

To complete the dynamical system, we also have the auxiliary equation (7.4), rewritten in
components now in three dimensions as

∂tD + ∂j(Du
j) = 0 . (7.9)

Exercise. Verify equation (7.7) by substituting the variations (7.6) into equation
(7.5) and integrating by parts. F

Remark

7.2. The class of equations derived in this section are called Euler-Poincaré equations. For
an extensive discussion of Euler-Poincaré equations for fluid dynamics, see Holm, Marsden
and Ratiu [9, 10].
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8 Hamilton’s principle for RSW

8.1 Properties of the Euler–Poincaré motion equation

Hamilton’s principle in (7.5) has produced in equation (7.8) an example of the Euler–Poincaré
motion equation for fluids [9]. This equation may be expressed in three-dimensional vector
form as

D

Dt

1

D

δl

δu
+

1

D

δl

δuj
∇uj −∇ δl

δD
= 0, (8.1)

upon using the continuity equation (7.4) for D to simplify the components form of the equation
in (7.8).

One may also write equation (8.1) equivalently in three dimensional vector notation as,

∂

∂t

( 1

D

δl

δu

)
− u× curl

( 1

D

δl

δu

)
+ ∇

(
u · 1

D

δl

δu
− δl

δD

)
= 0 . (8.2)

In writing the last equation, we have again used the fundamental vector identity of fluid dy-
namics, recalled from (1.9),

(b · ∇)a + aj∇bj = − b× (∇× a) +∇(b · a) , (8.3)

for any three dimensional vectors a,b ∈ R3 with, in this case, a = ( 1
D
δl
δu

) and b = u.

Kelvin-Noether circulation theorem [9, 10]. Prove that equation (8.2) implies
Kelvin’s conservation law for circulation

d

dt

∮
c(u)

1

D

δl

δu
· dx = 0 , (8.4)

where c(u) is a closed loop moving with the fluid velocity u(x, t) in three dimensions.

This form of the Kelvin circulation theorem generalises the result for RSW in (1.15)
to the case of an arbitrary ideal compressible fluid moving in three dimensions.

F

Energy conservation. Verify that equations (8.1) or (8.2) with the continuity
equation (7.4) conserve the energy

E(u, D) =

〈
δl

δuj
, uj
〉
− l(u, D) . (8.5)

Explain why energy conservation is to be expected from Hamilton’s principle δS = 0
for the Lagrangian l(u, D). Hint: a symmetry of the Lagrangian is involved. F

8.2 Specialising to the RSW equation

We now specialise the Lagrangian to the RSW case, by choosing, cf. (1.14),

S =

∫ T

0

l(u, D) dt =

∫ T

0

∫
ε

2
D|u|2 +Du ·R(x)− (D − b(x))2

2εF
d2x dt (8.6)
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where curl R(x) = f(x)ẑ. In this case, taking variations yields

0 = δS =

∫ T

0

∫
D
(
εu + R(x)

)
· δu +

(
ε

2
|u|2 + u ·R(x)− D − b(x)

εF

)
δD d2x dt , (8.7)

where we denote h := (D− b(x))/εF . Substituting these variational derivatives into the Euler-
Poincaré motion equation (8.2) yields

∂t(εu + R(x))− u× curl(εu + R(x)) + ∇
(
ε

2
|u|2 +

D − b(x)

εF

)
= 0 . (8.8)

This recovers the RSW motion equation in its curl form (1.8). Thus, the RSW motion equation
(1.8) is an Euler-Poincaré motion equation (8.2), which may be derived from Hamilton’s prin-
ciple δS = 0 with action integral in the form (7.3), S =

∫
l(u, D) dt with Lagrangian l(u, D)

given in (8.6).

Exercise. Verify equation (8.8) by substituting the variational derivatives in (8.7)
into the Euler-Poincaré motion equation (8.2). F

8.3 Hamiltonian formulation of the Euler-Poincaré equations

The conserved energy for the EP equations in equation (8.5) may be rewritten in the following
form

h(m, D) =
〈
mj, u

j
〉
− l(u, D) with components mj :=

δl

δuj
, (8.9)

in which the angle brackets 〈 · , · 〉 still denote the L2 pairing in (7.2). In this form, the conserved
energy provides the Legendre transformation from the Lagrangian l(u, D) to the Hamiltonian
h(m, D), in which fluid momentum density is defined by m := δl/δu. Taking variations of both
sides of the Legendre transformation in equation (8.9) yields

δh(m, D) =

〈
δh

δmj

, δmj

〉
+

〈
δh

δD
, δD

〉
=
〈
δmj, u

j
〉

+

〈
mj −

δl

δuj
, δuj

〉
+

〈
− δl

δD
, δD

〉
.

(8.10)

Identifying coefficients of the independent variations δmj, δu
j and δD in (8.10) then yields the

following variational relations,

δh

δmj

= uj ,
δh

δD
= − δl

δD
and mj :=

δl

δuj
. (8.11)

In terms of the variables mi, u
j = δh/δmj and D, we may write the Euler-Poincaré equation

(7.8) and its auxiliary continuity equation, respectively, as

∂tmi + ∂j

(
mi

δh

δmj

)
+mj∂i

δh

δmj

= D∂i
δl

δD
, (8.12)

and

∂tD + ∂j

(
D
δh

δmj

)
= 0 . (8.13)



D. D. Holm — RSW dynamics — MPE CDT PDE notes – Autumn 2016 25

In turn, we may rewrite these component equations in skew-symmetric matrix operator form
as

∂t

[
mi

D

]
= −

[
(∂jmi +mj∂i) D∂i

∂jD 0

] [
δh/δmj

δh/δD

]
. (8.14)

This skew-symmetric matrix representation implies a Hamiltonian formulation in terms of the
Lie–Poisson bracket

∂tg =
{
g , h

}
= −

∫ [
δg/δmi

δg/δD

]T [
(∂jmi +mj∂i) D∂i

∂jD 0

] [
δh/δmj

δh/δD

]
dnx , (8.15)

for any differentiable functionals g and h. For the case of RSW with Lagrangian in (8.6), we
have from the variational relations from equation (8.7) that

m :=
δl

δu
= D

(
εu + R(x)

)
and

δh

δD
=− δl

δD
= −

(
ε

2
|u|2 + u ·R(x)− D − b(x)

εF

)
.

(8.16)

Exercise. Derive the Hamiltonian for RSW by computing its Legendre transfor-
mation from the Lagrangian in (8.6). F

Exercise. Verify the results of the Euler-Poincaré theory introduced here, by sub-
stituting the variational derivatives (8.16) into Hamiltonian matrix form in equation
(8.14) to recover the RSW equations in Hamiltonian form. F

The Hamiltonian formulation of ideal fluid dynamics in terms of Lie–Poisson brackets has
proven its utility many times in studying the qualitative and quantitative properties of GFD
during the past 50 years. It is now part of the toolbox of every mathematician studying ideal
fluid dynamics and it has accumulated a vast literature which is constantly being rediscovered.

The Euler–Poincaré approach discussed here for passing from Hamilton’s variational prin-
ciple to the Hamiltonian formulation of the fluid equations guarantees preservation of two key
properties of the GFD balances which are responsible for large-scale ocean and atmosphere
circulations. Namely:
(1) the Kelvin circulation theorem, leading to proper potential-vorticity (PV) dynamics; and
(2) the law of energy conservation.
These two important properties are preserved in the EP approach for Hamilton’s-principle
asymptotics at every level of approximation. However, they have often been lost when using
the standard asymptotic expansions of the fluid equations.

The models pictured in the figure below form the main sequence of GFD model equations
and they follow from the Euler–Poincaré form of Hamilton’s principle for a fluid Lagrangian
that depends parametrically on the advected quantities such as mass, salt and heat, all carried
as material properties of the fluid’s motion. Thus, the Euler–Poincaré theorem with advected
quantities systematically selects and derives the useful GFD fluid models possessing the two
main properties of energy balance and the circulation theorem. For fundamental references, see
[9, 10].
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Figure 1: Asymptotics and averaging in Hamilton’s principle in the Euler–Poincaré framework produces
fluid approximations for GFD that preserve fundamental mathematical structures such as the Kelvin–Noether
theorem for circulation leading to conservation of energy and potential vorticity (PV). Legendre transforming
the resulting Euler–Poincaré Lagrangian yields the Lie–Poisson Hamiltonian formulation of geophysical fluid
dynamics and its Eulerian conservation laws, which may be used to classify steady solutions as relative equilibria
and determine sufficient conditions for their nonlinear stability [11].

8.4 Thermal Rotating Shallow Water (TRSW)

While the standard RSW model applies to a single layer of homogeneous fluid moving in vertical
columns, the thermal rotating shallow water (TRSW) model describes an upper active layer of
fluid motion with horizontally varying buoyancy and an inert lower layer. The TRSW model is
an extension of the RSW model. This extension comprises an upper active layer of fluid motion
with horizontally varying buoyancy and an inert lower layer. Since the lower layer is inert, the
TRSW model is sometimes called a 1.5 layer model [21]. For a discussion of a fully multilayer
model with nonhydrostatic pressure, see [4].

The TRSW equations are expressed in terms of the square root γ =
√
θ of the (nonnegative)

buoyancy θ(x, t) = (ρ̄− ρ(x, t))/ρ̄, where ρ is the (time and space dependent) mass density of
the active upper layer, ρ̄ is the uniform mass density of the inert lower layer. To distinguish from
the RSW notation, we let D = D(x, t) be the thickness of the active layer, where x = (x, y) is
the horizontal vector position, and t is time. The nondimensional TRSW equations are

ε
D

Dt
u + f ẑ × u + γ∇(Dγ) = 0 ,

∂D

∂t
+ ∇ · (Du) = 0 ,

Dγ

Dt
= 0 . (8.17)

with notation ε for Rossby number as in RSW and advective time derivative D
Dt

= ∂t + u ·∇,
in equation (1.2). The boundary conditions are

n̂ · u = 0 and n̂×∇θ = 0 , (8.18)
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meaning that fluid velocity u is tangential and buoyancy θ is constant on the boundary of the
domain of flow.

8.5 Conservation laws for TRSW

Exercise. Verify the following four properties of the TRSW equations (8.17)

1. Energy conservation

E(u, D, γ) =
1

2

∫
εD|u|2 + γ2D2 d2x . (8.19)

2. Kelvin circulation theorem

d

dt

∮
c(u)

(εu + R(x)) · dx =

∮
c(u)

1

2
D∇γ2 · dx , (8.20)

where curl R(x) = f(x)ẑ and c(u) is a closed planar loop moving with the
fluid velocity u(x, t).

3. Evolution of potential vorticity (PV) on fluid parcels

∂tq + u ·∇q =
1

2D
J(D , θ) , (8.21)

where PV (q) is defined by

q :=
$

η
, and $ := ẑ · curl(εu + R(x)) , (8.22)

and
J(D, θ) = ẑ ·∇D ×∇θ = − div(Dẑ ×∇θ)

is the Jacobian of the depth D(x) and the buoyancy is θ(x) = γ2(x).

4. Infinite number of conserved integral quantities

C =

∫
Df(γ) +$g(γ) d2x , (8.23)

for boundary conditions (8.18) and any differentiable functions f and g.

Hints: The following alternative form of the TRSW motion equation (8.17) may be
helpful in verifying these four properties:

∂tv− u× curlv + ∇
(
ε

2
|u|2 +

1

2
Dγ2

)
− 1

2
D∇γ2 = 0 , (8.24)

where v := εu + R(x) and curl R(x) = f(x)ẑ.

You might also keep in mind the fundamental vector identity of fluid dynamics,

(curl a)× b + ∇(a · b) = (b ·∇)a + aj∇bj . (8.25)

F
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Answer.

1. The time derivative of the proposed TRSW energy is given by

dE

dt
=

1

2

d

dt

∫
D
εD|u|2 + γ2D2 dx dy

=

∫
D
Du · ∂tεu +

( ε
2
|u|2 + γ2D

)
∂tD +

(
γD2

)
∂tγ dx dy

= −
∫
D
Du ·∇

(
ε

2
|u|2 +

1

2
Dγ2

)
+
( ε

2
|u|2 +Dγ2

)
div(Du) +Du ·∇

(
D
γ2

2

)
dx dy

= −
∫
D

div
(
Du
( ε

2
|u|2 +Dγ2

))
dx dy ,

which vanishes for u tangent to the boundary ∂D of the domain of flow D.

2. The alternative form of the TRSW motion equation in (8.24) yields

d

dt

∮
c(u)

v · dx =

∮
c(u)

(
∂tv− u× curlv + ∇

(
u · v

))
· dx

By (8.24) = −
∮
c(u)

(
∇
( ε

2
|u|2 +

1

2
Dγ2 − u · v

)
− 1

2
D∇γ2

)
· dx

=

∮
c(u)

1

2
D∇γ2 · dx ,

where we have used the fundamental theorem of calculus in setting integrals
of gradients over the closed loop to zero.

3. The curl of the alternative form of the TRSW motion equation in (8.24) yields

∂t$ − curl(u×$) = ∂t$ + u ·∇$ +$divu =
1

2
ẑ · curl(D∇θ) .

Using the continuity equation to write divu in terms of D in this equation
verifies (8.21) as

D(∂t + u ·∇)
$

D
=

1

2
ẑ · curl(D∇θ) =

1

2
J(D, θ) .

4. The expression for the Jacobian given in the remark immediately after equation
(8.22) suggests rewriting (8.21) equivalently by using the continuity equation
for D in (8.17) as

∂t$ + div
(
$u +

D

2
ẑ ×∇θ

)
= 0 . (8.26)

The infinite family of constants of motion C in (8.23) may then be verified by
taking the time derivative of C and using the boundary conditions for u and
ẑ ×∇θ in (8.18) and the defining relation, θ := γ2. Thus,

d

dt

∫
Df(γ) d2x = −

∫
div
(
f(γ)Du

)
d2x

d

dt

∫
$g(γ) d2x = −

∫
div

(
g(γ)

(
$u +

D

2
ẑ ×∇θ

))
d2x

+

∫
D

2
ẑ ×∇θ ·∇g(γ) d2x .

N
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Euler-Poincaré equation.

(a) Show that the Euler-Poincaré equation

∂t
δl

δui
+ ∂j

(
δl

δui
uj
)

+
δl

δuk
∂iu

k = D∂i
δl

δD
− γ,i

δl

δγ
, (8.27)

arises from Hamilton’s principle δS = 0 with action integral S =∫
l(u, D, γ) dt given by

S =

∫ T

0

l(u, D, γ) dt , (8.28)

for variations of the action integral which depend on the horizontal fluid
velocity u, the depth of the active layer D and sqrt-buoyancy γ, as follows.

(i) In the variational formula,

0 = δS =

∫ T

0

(〈
δl

δu
, δu

〉
+

〈
δl

δD
, δD

〉
+

〈
δl

δγ
, δγ

〉)
dt , (8.29)

substitute variations given geometrically by the infinitesimal transfor-
mations,

δu =
d

dε

∣∣∣
ε=0

u = ∂tv + u · ∇v− v · ∇u , (8.30)

δD =
d

dε

∣∣∣
ε=0

D = −div(Dv) , (8.31)

δγ =
d

dε

∣∣∣
ε=0

γ = −v · ∇γ , (8.32)

where the variational vector field v ∈ X(R2) which generates the flow
parameterised by ε is assumed to vanish at the endpoints in time [0, T ]
and the angle brackets 〈 · , · 〉 in (8.29) denote L2 pairing, as in equation
(7.2).

(ii) Integrate by parts in (8.29) using these variations to obtain the Euler-
Poincaré equation (8.27).

F

Euler-Poincaré equation for TRSW system (8.17).

(a) Verify that one may also write the Euler-Poincaré equation (8.27) equiva-
lently in three dimensional vector notation as,

∂

∂t

( 1

D

δl

δu

)
− u×curl

( 1

D

δl

δu

)
+∇

(
u· 1

D

δl

δu
− δl

δD

)
+

1

D

δl

δγ
∇γ = 0 . (8.33)
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In verifying the last equation, it may be helpful to use the fundamental
vector identity of fluid dynamics, recalled from (1.9),

(b · ∇)a + aj∇bj = − b× (∇× a) +∇(b · a) , (8.34)

for any three dimensional vectors a,b ∈ R3 with, in this case, a = ( 1
D
δl
δu

)
and b = u.

(b) Evaluate the variational derivatives for the Lagrangian in the following ac-
tion integral

S =

∫ T

0

l(u, D, γ) dt =

∫ T

0

∫
ε

2
D|u|2 +Du ·R(x)− 1

2
γ2D2 d2x dt (8.35)

and use formula (8.33) with curl R(x) = f(x)ẑ to obtain the motion equation
for the TRSW system in (8.17).

F

Kelvin-Noether circulation theorem [9, 10].

(a) Prove that the Euler-Poincaré equation (8.33) implies the following Kelvin
circulation law

d

dt

∮
c(u)

1

D

δl

δu
· dx = −

∮
c(u)

1

D

δl

δγ
∇γ · dx , (8.36)

where c(u) is a closed loop moving with horizontal fluid velocity u(x, t) in
two dimensions.

(b) Evaluate this circulation law for the TRSW system (8.17).

F

Energy conservation.

Verify that equations (8.27) or (8.33) with the auxiliary equations for D and γ in
the TRSW system (8.17) conserve the energy

E(u, D, γ) =

〈
δl

δuj
, uj
〉
− l(u, D, γ) =

1

2

∫
εD|u|2 + γ2D2 d2x . (8.37)

Explain why energy conservation is to be expected from Hamilton’s principle δS = 0
for the Lagrangian l(u, D, γ). Hint: a symmetry of the Lagrangian is involved. F
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Exercise. Derive the Hamiltonian for 1.5 layer TRSW by computing its Legendre
transformation from the Lagrangian in (8.35) . F

Hamiltonian formulation of TRSW.

Following section 8.3 in light of equation (8.27), we extend equations (8.12), (8.13)
and (8.14), as follows. In terms of the variables mi, u

j = δh/δmj, D and γ, we may
write the Euler-Poincaré equation (8.33) and its auxiliary equations, as

∂tmi + ∂j

(
mi

δh

δmj

)
+mj∂i

δh

δmj

= −D∂i
δh

δD
+
δh

δγ
∂iγ , (8.38)

∂tD + ∂j

(
D
δh

δmj

)
= 0 , (8.39)

and

∂tγ +
δh

δmj

∂jγ = 0 . (8.40)

In turn, we may rewrite these component equations in skew-symmetric matrix op-
erator form as

∂t

mi

D
γ

 = −

(∂jmi +mj∂i) D∂i −γ,i
∂jD 0 0
γ,j 0 0

δh/δmj

δh/δD
δh/δγ

 . (8.41)

This skew-symmetric matrix representation implies a Hamiltonian formulation in
terms of the Lie–Poisson bracket

∂tg =
{
g , h

}
= −

∫ δg/δmj

δg/δD
δg/δγ

T (∂jmi +mj∂i) D∂i −γ,i
∂jD 0 0
γ,j 0 0

δh/δmj

δh/δD
δh/δγ

 d2x ,

(8.42)

for any differentiable functionals g and h. For the case of TRSW with Lagrangian
in (8.35), we have via the variational relations from the Legendre transformation of
the TRSW Lagrangian that

m :=
δl

δu
= D

(
εu + R(x)

)
and

δh

δm
= u ,

δh

δD
=− δl

δD
= −

( ε
2
|u|2 + u ·R(x)− γ2D

)
and

δh

δγ
=− δl

δγ
= γD2 .

(8.43)

F
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Exercise. Verify the results of the Euler-Poincaré theory introduced here for
TRSW, by substituting the variational derivatives (8.43) into the Hamiltonian ma-
trix form in equation (8.41) to recover the TRSW equations in Hamiltonian form.

F

Hamilton’s principle with auxiliary Clebsch constraints.

Show that the Euler-Poincaré equation in (8.27) arises from Hamilton’s principle
δS = 0 with constrained action integral given by

S =

∫ T

0

l(u, D, γ) +
〈
α , ∂tD + ∇ · (Du)

〉
+
〈
β , ∂tγ + u ·∇γ

〉
dt . (8.44)

for free variations of the functions u, D, γ, α and β, with L2 pairing indicated by
the angle brackets 〈 · , · 〉 as in equation (7.2).

Hint: To prove this statement try taking the advective time derivative of the result
for the δu variation,

1

D

δl

δu
· dx = dα− β

D
dγ ,

F

Answer. Taking variations wrt u, D and γ yields

δu :
δl

δu
−D∇α + β∇γ = 0 ,

δD :
δl

δD
− Dα

Dt
= 0 ,

δγ :
δl

δγ
− ∂tβ −∇ · (βu) = 0 ,

while variations wrt α and β yield the auxiliary equations for D and γ, respectively.

Taking the advective time derivative D
Dt

along Dx
Dt

= u of the result for the variation
wrt the fluid velocity yields

D

Dt

(
1

D

δl

δu
· dx

)
=

D

Dt

(
dα− β

D
dγ

)
D

Dt

(
1

D

δl

δu

)
· dx +

(
1

D

δl

δu

)
· dDx

Dt
= d

Dα

Dt
− D

Dt

(
β

D

)
dγ − β

D
d

(
Dγ

Dt

)
(
D

Dt

(
1

D

δl

δu

)
+

(
1

D

δl

δuj

)
∇uj

)
· dx =

(
∇ δl

δD
− 1

D

δl

δγ
∇γ

)
· dx

upon inserting the auxiliary equation for γ and the two other variational equations
above. Hence, in addition to the auxiliary equations for buoyancy γ2 and depth D,
one obtains the motion equation

D

Dt

(
1

D

δl

δu

)
+

(
1

D

δl

δuj

)
∇uj = ∇ δl

δD
− 1

D

δl

δγ
∇γ ,
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which recovers equation (8.27) upon using the continuity equation for depth, D.
and also recovers equation (8.33) upon using the fundamental vector identity of
fluid dynamics (1.9)

N
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