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Abstract

In this paper we consider dynamic processes, in repeated games, that are subject to the natural informa-
tional restriction of uncoupledness. We study the almost sure convergence of play (the period-by-period
behavior as well as the long-run frequency) to Nash equilibria of the one-shot stage game, and present a
number of possibility and impossibility results. Basically, we show that if in addition to random experimen-
tation some recall, or memory, is introduced, then successful search procedures that are uncoupled can be
devised. In particular, to get almost sure convergence to pure Nash equilibria when these exist, it suffices to
recall the last two periods of play.
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1. Introduction

A dynamic process in a multi-player setup is uncoupled if the moves of every player do not
depend on the payoff (or utility) functions of the other players. This is a natural informational
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requirement, which holds in most models. In Hart and Mas-Colell (2003b) we introduce this
concept and show that uncoupled stationary dynamics cannot always converge to Nash equilibria,
even if these exist and are unique. The setup was that of deterministic, stationary, continuous-time
dynamics.

It is fairly clear that the situation may be different when stochastic moves are allowed, since
one may then try to carry out some version of exhaustive search: keep randomizing until by pure
chance a Nash equilibrium is hit, and then stop there. However, this is not so simple: play has a
decentralized character, and no player can, alone, recognize a Nash equilibrium. The purpose of
this paper is, precisely, to investigate to what extent Nash equilibria can be reached when consid-
ering dynamics that satisfy the restrictions of our previous paper: uncoupledness and stationarity.
As we shall see, one can obtain positive results, but these will require that, in addition to the abil-
ity to perform stochastic moves of an experimental nature, the players retain some memory from
the past plays.

Because we allow random moves, it is easier to place ourselves in a discrete time framework.
Thus we consider the repeated play of a given stage game, under the standard assumption that
each player observes the play of all players; as for payoffs, each player knows only his own
payoff function. We start by studying a natural analog of the approach of our earlier paper;
that is, we assume that in determining the random play at time t + 1 the players recall only
the information contained in the current play of all players at time t ; i.e., past history does not
matter. We call this the case of 1-recall. We shall then see that the result of our earlier paper is
recovered: convergence of play to Nash equilibrium cannot be ensured under the hypotheses of
uncoupledness, stationarity, and 1-recall (there is an exception for the case of generic two-player
games with at least one pure Nash equilibrium).

Yet, the exhaustive search intuition can be substantiated if we allow for (uncoupled and sta-
tionary) strategies with longer recall. Perhaps surprisingly, to guarantee almost sure convergence
of play to pure Nash equilibria when these exist, it suffices to have 2-recall: to determine the play
at t +1 the players use the information contained in the plays of all players at periods t and t −1.
In general, when Nash equilibria may be mixed, we show that convergence of the long-run em-
pirical distribution of play to (approximate) equilibria can be guaranteed using longer, but finite,
recall. Interestingly, however, this does not suffice to obtain the almost sure convergence of the
period-by-period behavior probabilities. As it turns out, we can get this too within the broader
context of finite memory (i.e., finite-state automata).

In conclusion, one can view this paper as contributing to the demarcation of the border be-
tween those classes of dynamics for which convergence to Nash equilibrium can be obtained and
those for which it cannot.

The paper is organized as follows. Section 2 presents the model and defines the relevant con-
cepts. Convergence to pure Nash equilibria is studied in Section 3, and to mixed equilibria, in
Section 4 (with a proof relegated to Appendix A). We conclude in Section 5 with some com-
ments and a discussion of the related literature, especially the work of Foster and Young (2003a,
2003b).

2. The setting

A basic static (one-shot) game is given in strategic (or normal) form, as follows. There are
N � 2 players, denoted i = 1,2, . . . ,N . Each player i has a finite set of actions Ai ; let A :=
A1 × A2 × · · · × AN be the set of action combinations. The payoff function (or utility function)
of player i is a real-valued function ui : A → R. The set of randomized or mixed actions of
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player i is the probability simplex over Ai , i.e, Δ(Ai) = { xi = (xi(ai))ai∈Ai :
∑

ai∈Ai xi(ai) = 1
and xi(ai) � 0 for all ai ∈ Ai}; as usual, the payoff functions ui are multilinearly extended, so
ui : Δ(A1) × Δ(A2) × · · · × Δ(AN) → R.

We fix the set of players N and the action sets Ai , and identify a game by its payoff functions
U = (u1, u2, . . . , uN).

For ε � 0, a Nash ε-equilibrium x is an N -tuple of mixed actions x = (x1, x2, . . . , xN) ∈
Δ(A1) × Δ(A2) × · · · × Δ(AN), such that xi is an ε-best reply to x−i for all i; i.e., ui(x) �
ui(yi, x−i ) − ε for every yi ∈ Δ(Ai ) (we write x−i = (x1, . . . , xi−1, xi+1, . . . , xN ) for the com-
bination of mixed actions of all players except i). When ε = 0 this is a Nash equilibrium, and
when ε > 0, a Nash approximate equilibrium.

The dynamic setup consists of a repeated play, at discrete time periods t = 1,2, . . . , of
the static game U . Let ai(t) ∈ Ai denote the action of player i at time1 t , and put a(t) =
(a1(t), a2(t), . . . , aN(t)) ∈ A for the combination of actions at t . We assume that there is stand-
ard monitoring: at the end of period t each player i observes everyone’s realized action, i.e.,
a(t).

A strategy2 f i of player i is a sequence of functions (f i
1 , f i

2 , . . . , f i
t , . . .), where, for each

time t , the function f i
t assigns a mixed action in Δ(Ai ) to each history ht−1 = (a(1), a(2), . . . ,

a(t − 1)). A strategy profile is f = (f 1, f 2, . . . , f N ).
A strategy f i of player i has finite recall if there exists a positive integer R such that only the

history of the last R periods matters: for each t > R, the function f i
t is of the form f i

t (a(t − R),
a(t − R + 1), . . . , a(t − 1)); we call this R-recall.3 Such a strategy is moreover stationary if the
(“calendar”) time t does not matter: f i

t ≡ f i(a(t −R),a(t −R + 1), . . . , a(t − 1)) for all t > R.
Strategies have to fit the game being played. We thus consider a strategy mapping,

which, to every game (with payoff functions) U , associates a strategy profile f (U) =
(f 1(U),f 2(U), . . . , f N(U)) for the repeated game induced by U = (u1, u2, . . . , uN ). Our ba-
sic requirement for a strategy mapping is uncoupledness, which says that the strategy of each
player i may depend only on the ith component ui of U , i.e., f i(U) ≡ f i(ui ). Thus, for any
player i and time t , the strategy f i

t has the form f i
t (a(1), a(2), . . . , a(t − 1);ui ). Finally, we

shall say that a strategy mapping has R-recall and is stationary if, for any U , the strategies f i(U)

of all players i have R-recall and are stationary.

3. Pure equilibria

We start by considering games that possess pure Nash equilibria (i.e., Nash equilibria x =
(x1, x2, . . . , xN) where each xi is a pure action in Ai ).4 Our first result generalizes the conclusion
of Hart and Mas-Colell (2003b). We show that with 1-recall—that is, if actions depend only on
the current play and not on past history—we cannot hope in all generality to converge, in an
uncoupled and stationary manner, to pure Nash equilibria when these exist.

1 More precisely, the actual realized action (when randomizations are used).
2 We use the term “strategy” for the repeated game and “action” for the one-shot game.
3 The recall of a player consists of past realized pure actions only, not of mixed actions played (not even his own).
4 From now on, “game” and “equilibrium” will always refer to the one-shot stage game.
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α β γ

α 1, 0 0, 1 1, 0

β 0, 1 1, 0 1, 0

γ 0, 1 0, 1 1, 1

Fig. 1. A non-generic two-player game.

Theorem 1. There are no uncoupled, 1-recall, stationary strategy mappings that guarantee al-
most sure convergence of play to pure Nash equilibria of the stage game in all games where such
equilibria exist.5

Proof. The following two examples, the first with N = 2 and the second with N = 3, establish
our result. We point out that the second example is generic—in the sense that the best reply is
always unique—while the first is not; this will matter in the sequel.

The first example is the two-player game of Fig. 1. The only pure Nash equilibrium is (γ, γ ).
Assume by way of contradiction that we are given an uncoupled, 1-recall, stationary strategy
mapping that guarantees convergence to pure Nash equilibria when these exist. Note that at each
of the nine action pairs, at least one of the two players is best-replying. Suppose the current
state a(t) is such that player 1 is best-replying (the argument is symmetric for player 2). We
claim that player 1 will play at t + 1 the same action as in t (i.e., player 1 will not move). To
see this consider a new game where the utility function of player 1 remains unaltered and the
utility function of player 2 is changed in such a manner that the current state a(t) is the only
pure Nash equilibrium of the new game. It is easy to check that in our game this can always be
accomplished (for example, to make (α, γ ) the unique Nash equilibrium, change the payoff of
player 2 in the (α, γ ) and (γ,α) cells to, say, 2). The strategy mapping has 1-recall, so it must
prescribe to the first player not to move in the new game (otherwise convergence to the unique
pure equilibrium would be violated there). By uncoupledness, therefore, player 1 will not move
in the original game either.

It follows that (γ, γ ) can never be reached when starting from any other state: if neither player
plays γ currently then only one player (the one who is not best-replying) may move; if only one
plays γ then the other player cannot move (since in all cases it is seen that he is best-replying).
This contradicts our assumption.

The second example is the three-player game of Fig. 2. There are three players i = 1,2,3,
and each player has three actions α,β, γ . Restricted to α and β we essentially have the game
of Jordan (1993) (see Hart and Mas-Colell, 2003b, Section III), where every player i tries to
mismatch the player i − 1 (the predecessor of player 1 is player 3): he gets 0 if he matches and 4
if he mismatches. If all three players play γ then each one gets 6. If one player plays γ and the
other two do not, the player that plays γ gets 1 and the other two get 3 each if they mismatch and
2 each if they match. If two players play γ and the third one does not then each one gets 0.

The only pure Nash equilibrium of this game is (γ, γ, γ ). Suppose that we start with all
players playing α or β , but not all the same; for instance, (α,β,α). Then players 2 and 3 are
best-replying, so only player 1 can move in the next period (this follows from uncoupledness
as in the previous example). If he plays α or β then we are in exactly the same position as
before (with, possibly, the role of mover taken by player 2). If he moves to γ then the action

5 “Almost sure convergence of play to pure Nash equilibria” means that almost every play path consists of a pure Nash
equilibrium being played from some point on.
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α β γ

α 0, 0, 0 0, 4, 4 2, 1, 2

β 4, 4, 0 4, 0, 4 3, 1, 3

γ 1, 2, 2 1, 3, 3 0, 0, 0

α β γ

4, 0, 4 4, 4, 0 3, 1, 3

0, 4, 4 0, 0, 0 2, 1, 2

1, 3, 3 1, 2, 2 0, 0, 0

α β γ

2, 2, 1 3, 3, 1 0, 0, 0

3, 3, 1 2, 2, 1 0, 0, 0

0, 0, 0 0, 0, 0 6, 6, 6

α β γ

Fig. 2. A generic three-player game.

configuration is (γ,β,α), at which both players 2 and 3 are best-replying and so, again, only
player 1 can move. Whatever he plays next, we are back to situations already contemplated. In
summary, every configuration that can be visited will only have at most one γ , and therefore the
unique pure Nash equilibrium (γ, γ, γ ) will never be reached. �
Remark. In the three-player example of Fig. 2, starting with (α,β,α), the empirical joint dis-
tribution of play cannot approach the distribution of a mixed Nash equilibrium, because neither
(α,α,α) nor (β,β,β) will ever be visited—but these action combinations have positive prob-
ability in every mixed Nash equilibrium (there are two such equilibria: in the first each player
plays (1/2,1/2,0), and in the second each plays (1/4,1/4,1/2)).

As we noted above, the two-player example of Fig. 1 is not generic. It turns out that in the
case of only two players, genericity—in the sense that every player’s best reply to pure actions
is always unique—does help.

Proposition 2. There exist uncoupled, 1-recall, stationary strategy mappings that guarantee al-
most sure convergence of play to pure Nash equilibria of the stage game in every two-player
generic game where such equilibria exist.

Proof. We define the strategy mapping of player 1 (and similarly for player 2) as follows. Let
the state (i.e., the previous period’s play) be a = (a1, a2) ∈ A = A1 × A2. If a1 is a best reply
to a2 according to u1, then player 1 plays a1; otherwise, player 1 randomizes uniformly6 over all
his actions in A1.

With these strategies, it is clear that each pure Nash equilibrium becomes an absorbing state
of the resulting Markov chain.7 Moreover, as we shall show next, from any other state a =
(a1, a2) ∈ A there is a positive probability of reaching a pure Nash equilibrium in at most two
steps. Indeed, since a is not a Nash equilibrium, then at least one of the players, say player 2,
is not best-replying. Therefore there is a positive probability that in the next period player 2
plays ā2, where (ā1, ā2) is a pure Nash equilibrium (which is assumed to exist), whereas player
1 plays the same a1 as last period (this has probability one if player 1 was best-replying, and
positive probability otherwise). The new state is thus (a1, ā2). If a1 = ā1, we have reached the
pure Nash equilibrium ā. If not, then player 1 is not best-replying—it is here that our genericity
assumption is used: the unique best reply to ā2 is ā1—so now there is a positive probability that

6 I.e., the probability of each a1 ∈ A1 is 1/|A1|. Of course, the uniform distribution may be replaced—here as well as
in all other constructions in this paper—by any probability distribution with full support (i.e., such that every action has
positive probability).

7 A standard reference for Markov chains is Feller (1968, Chapter XV).
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in the next period player 1 will play ā1 and player 2 will play ā2, and thus, again, the pure Nash
equilibrium ā is reached.

Therefore an absorbing state—i.e., a pure Nash equilibrium—must eventually be reached with
probability one. �

Interestingly, if we allow for longer recall the situation changes and we can present positive
results for general games. In fact, for the case where pure Nash equilibria exist the contrast is
quite dramatic, since allowing just one more period of recall suffices.

Theorem 3. There exist uncoupled, 2-recall, stationary strategy mappings that guarantee almost
sure convergence of play to pure Nash equilibria of the stage game in every game where such
equilibria exist.

Proof. Let the state—i.e., the play of the previous two periods—be (a′, a) ∈ A × A. We define
the strategy mapping of each player i as follows:

• if a′ = a (i.e., if all players have played exactly the same actions in the past two periods) and
ai is a best reply of player i to a−i according to ui , then player i plays ai (i.e., he plays the
same action yet again);

• in all other cases, player i randomizes uniformly over Ai .

To prove our result, we partition the state space S = A×A of the resulting Markov chain into
four regions:

S1 := {
(a, a) ∈ A × A: a is a Nash equilibrium

};
S2 := {

(a′, a) ∈ A × A: a′ �= a and a is a Nash equilibrium
};

S3 := {
(a′, a) ∈ A × A: a′ �= a and a is not a Nash equilibrium

};
S4 := {

(a, a) ∈ A × A: a is not a Nash equilibrium
}
.

Clearly, each state in S1 is absorbing. Next, we claim that all other states are transient: there
is a positive probability of reaching a state in S1 in finitely many periods. Indeed:

• At each state (a′, a) in S2 all players randomize; hence there is a positive probability that
next period they will play a—and so the next state will be (a, a), which belongs to S1.

• At each state (a′, a) in S3 all players randomize; hence there is a positive probability that
next period they will play a pure Nash equilibrium ā (which exists by assumption)—and so
the next state will be (a, ā), which belongs to S2.

• At each state (a, a) in S4 at least one player is not best-replying and thus is randomizing;
hence there is a positive probability that the next period play will be some a′ �= a—and so
the next state will be (a, a′), which belongs to S2 ∪ S3.

In all cases there is thus a positive probability of reaching an absorbing state in S1 in at most
three steps. Once such a state (a, a), where a is a pure Nash equilibrium, is reached (this happens
eventually with probability one), the players will continue to play a every period.8 �

8 Aniol Llorente (personal communication, 2005) has shown that it suffices to have 1-recall for one player and 2-recall
for all other players, but this cannot be further weakened (see the example of Fig. 1).
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Thus extremely simple strategies may nevertheless guarantee convergence to pure Nash equi-
libria. The strategies defined above may be viewed as a combination of search and testing. The
search is a standard random search; the testing is done individually, but in a coordinated man-
ner: the players wait until a certain “pattern” (a repetition) is observed, at which point each one
applies a “rational” test (he checks whether or not he is best-replying). Finally, the pattern is
self-replicating once the desired goal (a Nash equilibrium) is reached. (This structure will ap-
pear again, in a slightly more complex form, in the case of mixed equilibria; see the proofs of
Proposition 4 and Theorem 5 below.)

4. Mixed equilibria

We come next to the general case (where only the existence of mixed Nash equilibria is
guaranteed). Here we consider first the long-run frequencies of play, and then the period-by-
period behavior probabilities. The convergence will be to approximate equilibria. To this effect,
assume that there is a bound M on payoffs; i.e., the payoff functions all satisfy |ui(a)| � M for
all action combinations a ∈ A and all players i.

Given a history of play, we shall denote by Φt the empirical frequency distribution in the first t

periods: Φt [a] := |{1 � τ � t : a(τ) = a}|/t for each a ∈ A, and similarly Φt [ai] := |{1 � τ � t :
ai(τ ) = ai}|/t for each i and ai ∈ Ai . We shall refer to (Φt [a])a∈A ∈ Δ(A) as the empirical joint
distribution of play,9 and to (Φt [ai])ai∈Ai ∈ Δ(Ai ) as the empirical marginal distribution of play
of player i (up to time t).

Proposition 4. For every M and ε > 0 there exists an integer R and an uncoupled, R-recall, sta-
tionary strategy mapping that guarantees, in every game with payoffs bounded by M , almost sure
convergence of the empirical marginal distributions of play to Nash ε-equilibria; i.e., for almost
every history of play there exists a Nash ε-equilibrium of the stage game x = (x1, x2, . . . , xN)

such that, for every player i and every action ai ∈ Ai ,

lim
t→∞Φt

[
ai

] = xi
(
ai

)
. (1)

Of course, different histories may lead to different ε-equilibria (i.e., x may depend on the play
path). The length of the recall R depends on the precision ε and the bound on payoffs M (as well
as on the number of players N and the number of actions |Ai |).

Proof. Given ε > 0, let K be such that10

[∥∥xi − yi
∥∥ � 1

K
for all i

]

⇒ [∣∣ui(x) − ui(y)

∣∣ � ε for all i
]

(2)

for xi, yi ∈ Δ(Ai ) and |ui(a)| � M for all a ∈ A. Let ȳ = (ȳ1, ȳ2, . . . , ȳN ) be a Nash 2ε-
equilibrium, such that all probabilities are multiples of 1/K (i.e., Kȳi(ai ) is an integer for all ai

and all i). Such a ȳ always exists: take a 1/K-approximation of a Nash equilibrium and use (2).
Given such a Nash 2ε-equilibrium ȳ, let (ā1, ā2, . . . , āK) ∈ A × A × · · · × A be a fixed sequence

9 Also known as the “long-run sample distribution of play.”
10 We use the maximum (	∞) norm on Δ(Ai ), i.e., ||xi − yi || := maxai∈Ai |xi (ai ) − yi (ai )|; it is easy to check that

K � M
∑

i |Ai |/ε suffices for (2).
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of action combinations of length K whose marginals are precisely ȳi (i.e., each action ai of each
player i appears Kȳi(ai ) times in the sequence (āi

1, ā
i
2, . . . , ā

i
K)).

Take R = 2K . The construction parallels the one in the proof of Theorem 3. A state is a history
of play of length 2K , i.e., s = (a1, a2, . . . , a2K ) with ak ∈ A for all k. The state s is K-periodic
if aK+k = ak for all k = 1,2, . . . ,K . Given s, for each player i we denote by zi ∈ Δ(Ai ) the
frequency distribution of the last K actions of i, i.e., zi(ai) := |{K + 1 � k � 2K: ai

k = ai}/K
for each ai ∈ Ai ; put z = (z1, z2, . . . , zN ).

We define the strategy mapping of each player i as follows:

• if the current state s is K-periodic and zi is a 2ε-best reply to z−i , then player i plays
ai

1 = ai
K+1 (i.e., continues his K-periodic play);

• in all other cases player i randomizes uniformly over Ai .

Partition the state space S consisting of all sequences over A of length 2K into four regions:

S1 := {s is K-periodic and z is a Nash 2ε-equilibrium};
S2 := {s is not K-periodic and z is a Nash 2ε-equilibrium};
S3 := {s is not K-periodic and z is not a Nash 2ε-equilibrium};
S4 := {s is K-periodic and z is not a Nash 2ε-equilibrium}.

We claim that the states in S1 are persistent and K-periodic, and all other states are transient.
Indeed, once a state s in S1 is reached, the play moves in a deterministic way through the K

cyclic permutations of s, all of which have the same z—and so, for each player i, his empirical
marginal distribution of play will converge to zi . At a state s in S2 every player randomizes, so
there is a positive probability that everyone will play K-periodically, leading in r = max{1 �
k � K: aK+k �= ak} steps to S1. At a state s in S3, there is a positive probability of reaching S2
in K + 1 steps: in the first step the play is some a �= aK+1, and, in the next K steps, a sequence
(ā1, ā2, . . . , āK ) corresponding to a Nash 2ε-equilibrium. Finally, from a state in S4 there is a
positive probability of moving to a state in S2 ∪ S3 in one step. �

Proposition 4 is not entirely satisfactory, because it does not imply that the empirical joint
distributions of play converge to joint distributions induced by Nash approximate equilibria.
For this to happen, the joint distribution needs to be (in the limit) the product of the mar-
ginal distributions (i.e., independence among the players’ play is required). But this is not the
case in the construction in the proof of Proposition 4 above, where the players’ actions become
“synchronized”—rather than independent—once an absorbing cycle is reached. A more refined
proof is thus needed to obtain the stronger conclusion of the following theorem on the conver-
gence of the joint distributions.

Theorem 5. For every M and ε > 0 there exists an integer R and an uncoupled, R-recall, sta-
tionary strategy mapping that guarantees, in every game with payoffs bounded by M , the almost
sure convergence of the empirical joint distributions of play to Nash ε-equilibria; i.e., for almost
every history of play there exists a Nash ε-equilibrium of the stage game x = (x1, x2, . . . , xN)

such that, for every action combination a = (a1, a2, . . . , aN) ∈ A,

lim
t→∞Φt [a] =

N∏
xi

(
ai

)
. (3)
i=1
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Moreover, there exists an almost surely finite stopping time11 T after which the occurrence
probabilities Pr[a(t) = a |hT ] also converge to Nash ε-equilibria; i.e., for almost every history
of play and every action combination a = (a1, a2, . . . , aN) ∈ A,

lim
t→∞ Pr

[
a(t) = a | hT

] =
N∏

i=1

xi
(
ai

)
, (4)

where x is the same Nash ε-equilibrium of (3).

As before, x and T may depend on the history; T is the time when some ergodic set is
reached. Since the proof of Theorem 5 is relatively intricate, we relegate it to Appendix A. Of
course, (1) follows from (3). Note that neither (4) nor its marginal implications,

lim
t→∞ Pr

[
ai(t) = ai | hT

] = xi
(
ai

)
(5)

for all i, hold for the construction of Proposition 4 (again, due to periodicity).
Now (5) says that, after time T , the overall probabilities of play converge almost surely to

Nash ε-equilibria. It does not say the same, however, about the actual play or behavior proba-
bilities Pr[ai(t) = ai |ht−1] = f i(ht−1)(a

i ) (where ht−1 = (a(1), a(2), . . . , a(t − 1))). We next
show that this cannot be guaranteed in general when the recall is finite.

Theorem 6. For every small enough12 ε > 0, there are no uncoupled, finite recall, stationary
strategy mappings that guarantee, in every game, the almost sure convergence of the behavior
probabilities to Nash ε-equilibria of the stage game.

Proof. Choose a stage game U with a unique, completely mixed Nash equilibrium, and assume
that a certain pure action combination, call it ā ∈ A, is such that ā1 is the unique best reply of
player 1 to ā−1 = (ā2, . . . , āN ). Let U ′ be another game where the payoff function of player 1
is the same as in U , and the payoff function of every other player i �= 1 depends only on ai

and has a unique global maximum at āi . Then ā is the unique Nash equilibrium of U ′. Take
ε > 0 small enough so that all Nash ε-equilibria of U are completely mixed, and moreover there
exists ρ > 0 such that, for any two Nash ε-equilibria x and y of U and U ′, respectively, we have
0 < xi(āi) < ρ < yi(āi ) for all players i (recall that xi(āi) < 1 = yi(āi ) when x and y are the
unique Nash equilibria of U and U ′, respectively).

We argue by contradiction and assume that for some R there is an uncoupled, R-recall, sta-
tionary strategy mapping f for which the stated convergence does in fact obtain.

Consider now the history ā = (ā, ā, . . . , ā) of length R that consists of R repetitions of ā.
The behavior probabilities have been assumed to converge (a.s.) to Nash ε-equilibria, which, in
both games, always give positive probability to the actions āi . Hence the state ā has a positive
probability of occurring after any large enough time T . Therefore, in particular at this state ā,
the behavior probabilities must be close to Nash ε-equilibria. Now all Nash ε-equilibria x of U

satisfy x1(ā1) < ρ, so the behavior probability of player 1 at state ā must also satisfy this in-
equality, i.e., f 1(ā;u1)(ā1) < ρ. But the same argument applied to U ′ (where player 1 has the

11 I.e., T is determined by the past only: if T = t for a certain play path h = (a(1), . . . , a(t), a(t + 1), . . .), then T = t

for any other play path h′ = (a(1), . . . , a(t), a′(t + 1), . . .) that is identical to h up to and including time t . This initial
segment of history (a(1), a(2), . . . , a(T )) is denoted hT .
12 I.e., for all ε < ε0 (where ε0 may depend on N and (|Ai |)N

i=1).
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same payoff function u1 as in U) implies f 1(ā;u1)(ā1) > ρ (since this inequality is satisfied by
all Nash ε-equilibria of U ′). This contradiction proves our claim. �

The impossibility result of Theorem 6 hinges on the finite recall assumption. Finite recall
signifies that the distant past is irrelevant to present behavior (two histories that differ only in
periods beyond the last R periods will generate the same mixed actions).13 Hence, finite recall
is a special, though natural, way to get the past influencing the present through a finite set of
parameters. But it is not the only framework with this implication. What would happen if, while
retaining the desideratum of a limited influence from the past, we were to broaden our setting by
moving from a finite recall to a “finite memory” assumption? It turns out that we then obtain a
positive result: the period-by-period behavior probabilities can also be made to converge almost
surely.

Specifically, a strategy of player i has finite memory if it can be implemented by an automaton
with finitely many states, such that, at each period t , its input is a(t) ∈ A, the N -tuple of actions
actually played, and its output is xi(t + 1) ∈ Δ(Ai), the mixed action to be played next period.
To facilitate comparison with finite recall, we shall measure the size of the memory by the num-
ber of elements of A it can contain; thus R-memory means that the memory can contain any
(a(1), a(2), . . . , a(R)) with a(k) ∈ A for k = 1,2, . . . ,R (i.e., the automaton has |A|R states).

Theorem 7. For every M and ε > 0 there exists an integer R and an uncoupled, R-memory,
stationary strategy mapping that guarantees, in every game with payoffs bounded by M , the
almost sure convergence of the behavior probabilities to Nash ε-equilibria; i.e., for almost every
history of play there exists a Nash ε-equilibrium of the stage game x = (x1, x2, . . . , xN) such
that, for every action ai ∈ Ai of every player i ∈ N ,

lim
t→∞ Pr

[
ai(t) = ai

∣∣ ht−1
] = xi

(
ai

)
. (6)

Since the players randomize independently at each stage, (6) implies

lim
t→∞ Pr

[
a(t) = a | ht−1

] =
N∏

i=1

xi
(
ai

)
(7)

for every a ∈ A, from which it follows, by the law of large numbers, that the empirical joint
distributions of play also converge almost surely, i.e., (3).

Proof. We modify the construction in Proposition 4 as follows. Let R = 2K + 1; a state is
now s̃ = (a0, a1, a2, . . . , a2K ) with ak ∈ A for k = 0,1, . . . ,2K . Let s = (a1, a2, . . . , a2K ) be the
last 2K coordinates of s̃ (so s̃ = (a0, s)); the frequencies zi are still determined by the last K

coordinates aK+1, . . . , a2K.

There will be two “modes” of behavior. In the first mode the strategy mappings are as in the
Proof of Proposition 4, except that now the recall has length 2K + 1, and that whenever s (the
play of the last 2K periods) is K-periodic and zi is not a 2ε-best reply to z−i , player i plays
an action that is different from ai

1 (rather than a randomly chosen action); i.e., i “breaks” the
K-periodic play. This guarantees that a K-periodic state s̃ (the play of the last 2K + 1 periods)
is reached only when z is a Nash 2ε-equilibrium. When this occurs the strategies move to the

13 See Aumann and Sorin (1989) for a discussion of bounded recall.
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second mode, where in every period player i plays the mixed action zi , and the state remains
fixed (i.e., it is no longer updated).

Formally, we define the strategy mapping and the state-updating rule for each player i as
follows. Let the state be s̃ = (a0, a1, . . . , a2K) = (a0, s); then:

• Mode I: s̃ is not K-periodic.
– If s is K-periodic and zi is a 2ε-best reply to z−i , then player i plays ai

1 (which equals
ai
K+1; i.e., he continues his K-periodic play).

– If s is K-periodic and zi is not a 2ε-best reply to z−i , then player i randomizes uniformly
over Ai\{ai

1} (i.e., he “breaks” his K-periodic play).
– If s is not K-periodic, then player i randomizes uniformly over Ai .
In all three cases, let a be the N -tuple of actions actually played; then the new state is
s̃′ = (a1, . . . , a2K,a).

• Mode II: s̃ is K-periodic.
Player i plays the mixed action zi , and the new state is s̃′ = s̃ (i.e., unchanged).

• The starting state is any s̃ that is not K-periodic (Mode I).

It is easy to check that once a block of size K is repeated twice, either the frequencies z

constitute a Nash 2ε-equilibrium—in which case next period the cyclical play continues and we
get to Mode II—or they do not—in which case the cycle is broken by at least one player (and the
random search continues). Once Mode II is reached, which happens eventually a.s., the states of
all players stay constant, and each player plays the corresponding frequencies forever after. �
5. Discussion and comments

This section includes some further comments, particularly on the relevant literature.
(a) Foster and Young: The current paper is not the first one where, within the span of what

we call uncoupled dynamics, stochastic moves and the possibility of recalling the past have been
brought to bear on the formulation of dynamics leading to Nash equilibria. The pioneers were
Foster and Young (2003a), followed by Foster and Young (2003b), Kakade and Foster (2003),
and Germano and Lugosi (2004).

The motivation of Foster and Young and our motivation are not entirely the same. They want
to push to its limits the “learning with experimentation” paradigm (which does not allow direct
exhaustive search procedures that, in our terminology, are not of an uncoupled nature). We start
from the uncoupledness property and try to demarcate the border between what can and what
cannot be done with such dynamics.

(b) Convergence: Throughout this paper we have sought a strong form of convergence,
namely, almost sure convergence to a point.14 One could consider seeking weaker forms of con-
vergence (as has been done in the related literature): almost sure convergence to the convex hull
of the set of Nash ε-equilibria, or convergence in probability, or “1 − ε of the time being an
ε-equilibrium,” and so on. Conceivably, the use of weaker forms of convergence may have a
theoretical payoff in other aspects of the analysis.

14 The negative results of Theorems 1 and 6 also hold for certain weaker forms of convergence.
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(c) Stationarity: With stationary finite recall (or finite memory) strategies, no more than con-
vergence to approximate equilibria can be expected. Convergence to exact equilibria requires
non-stationary strategies with unbounded recall; see Germano and Lugosi (2004) for such a re-
sult.

Another issue is that non-stationarity may allow the transmission of arbitrarily large amounts
of information through the time dimension (for instance, a player may signal his payoff function
through his actions in the first T periods), thus effectively voiding the uncoupledness assumption.

(d) State space: Theorems 1 and 3 show how doubling the size of the recall (from 1 to 2)
allows for a positive result. More generally, the results of this paper may be viewed as a study
of convergence to equilibrium when the common state space is larger than just the action space,
thus allowing, in a sense, more information to be transmitted. Shamma and Arslan (2005) have
introduced procedures in the continuous-time setup (extended to discrete-time in Arslan and
Shamma, 2004) that double the state space, and yield convergence to Nash equilibria for some
specific classes of games. Interestingly, convergence to correlated equilibria in the continuous-
time setup was also obtained with a doubled state space, consisting of the current as well as the
cumulative average play; see Hart and Mas-Colell (2003a, Theorem 5.1 and Corrollary 5.2).

(e) Unknown game: Suppose that the players observe, not the history of play, but only their
own realized payoffs; i.e., for each player i and time t the strategy is f i

t (ui(a(1)), ui(a(2)), . . . ,

ui(a(t − 1))) (in fact, the player may know nothing about the game being played but his set of
actions). What results can be obtained in this case? It appears that, for any positive result, exper-
imentation even at (apparent) Nash equilibria will be indispensable. This suggests, in particular,
that the best sort of convergence to hope for, in a stationary setting, is some kind of convergence
in probability as mentioned in Remark (b). On this point see Foster and Young (2003b).

(f) Which equilibrium? Among multiple (approximate) equilibria, the more “mixed” an equi-
librium is, the higher the probability that the strategies of Section 4 will converge to it. Indeed, the
probability that uniform randomizations yield in a K-block frequencies (k1, k2, . . . , kr ) is pro-
portional to K!/(k1!k2! · · ·kr !), which is lowest for pure equilibria (where k1 = K) and highest
for15 p1 = p2 = · · · = pr = K/r .

(g) Correlated equilibria: We know that there are uncoupled strategy mappings with the prop-
erty that the empirical joint distributions of play converge almost surely to the set of correlated
equilibria (see Foster and Vohra, 1997; Hart and Mas-Colell, 2000; Hart, 2005; and the book
of Young, 2004). Strictly speaking, those strategies do not have finite recall, but enjoy a closely
related property: they depend (in a stationary way) on a finite number of summary, and easily
updatable, statistics from the past. The results of these papers differ from those of the current
paper in several respects. First, the convergence there is to a set, whereas here it is to a point.
Second, the convergence there is to correlated equilibria, whereas here it is to Nash equilibria.
And third, the strategies there are natural, adaptive, heuristic strategies, while in this paper we
are dealing with forms of exhaustive search (see (h) below). An issue for further study is to what
extent the contrast can be captured by an analysis of the speeds of convergence (which appears
to be faster for correlated equilibria).

(h) Adaptation vs. experimentation: Suppose we were to require in addition that the strategies
of the players be “adaptive” in one way or another. For example, at time t player i could ran-
domize only over actions that improve i’s payoff given some sort of “expected” behavior of the

15 For large K, an approximate comparison can be made in terms of entropies: equilibria with higher entropy are more
likely to be reached than those with lower entropy.
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other players at t , or over actions that would have yielded a better payoff if played at t − 1, or if
played every time in the past that the action at t −1 was played, or if played every time in the past
(these last two are in the style of “regret-based” strategies; see Hart, 2005 for a survey). What
kind of results would then be plausible? Note that such adaptive or monotonicity-like conditions
severely restrict the possibilities of “free experimentation” that drive the positive results obtained
here. Indeed, even the weak requirement of never playing the currently worst action rules out
convergence to Nash equilibria: for example, in the Jordan (1993) example where each player
has two actions, this requirement leads to the best-reply dynamic, which does not converge to the
unique Nash equilibrium.

Thus, returning to the issue, raised at the end of the Introduction, of distinguishing those
classes of dynamics for which convergence to Nash equilibria can be obtained from those for
which it cannot, “exhaustive experimentation” appears as a key ingredient in the former.
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Appendix A. Proof of Theorem 5

As pointed out in Section 4, the problem with our construction in the proof of Proposition 4
is that it leads to periodic and synchronized behavior. To avoid this we introduce small random
perturbations, independently for each player: once in a while, there is a positive probability of
repeating the previous period’s action rather than continuing the periodic play.16 To guarantee
that these perturbations do not eventually change the frequencies of play (our players cannot use
any additional “notes” or “instructions”17), we use three repetitions rather than two and make
sure that the basic periodic play can always be recognized from the R-history.

Proof of Theorem 5. We take R = 3K , where K > 2 is chosen so as to satisfy (2). Consider
sequences b = (b1, b2, . . . , b3K ) of length 3K over an arbitrary finite set B (i.e., bk ∈ B for all k).
We distinguish two types of such sequences:

• Type E (“Exact”): The sequence is K-periodic, i.e., bK+k = bk for all 1 � k � 2K . Thus b
consists of three repetitions of the basic K-sequence c := (b1, b2, . . . , bK ).

• Type D (“Delay”): The sequence is not of type E, and there is 2 � d � 3K such that bd =
bd−1 and if we drop the element bd from the sequence b then the remaining sequence b−d =
(b1, . . . , bd−1, bd+1, . . . , b3K ) of length 3K − 1 is K-periodic. Again, let c denote the basic
K-sequence,18 so b−d consists of three repetitions of c, except for the missing last element.
Think of bd as a “delay” element.

16 This kind of perturbation was suggested by Benjy Weiss. The randomness is needed to obtain (4) (one can get (3)
using deterministic mixing in appropriately long blocks).
17 As would be the case were the strategies of finite memory, as in Theorem 7.
18 As we shall see immediately below, c is well defined (even though d need not be unique).
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We claim that the basic sequence of a sequence b of type D is uniquely defined. In-
deed, assume that b−d and b−d ′ are both K-periodic, with corresponding basic sequences c =
(c1, c2, . . . , cK ) and c′ = (c′

1, c
′
2, . . . , c

′
K), and d < d ′. If d � K + 1, then the first K coordinates

of b determine the basic sequence: (b1, b2, . . . , bK) = c = c′. If d ′ � 2K , then the last K coor-
dinates determine this: (b2K+1, b2K+2, . . . , b3K) = (cK, c1, . . . , cK−1) = (c′

K, c′
1, . . . , c

′
K−1), so

again c = c′. If neither of these two hold, then d � K and d ′ � 2K + 1. Without loss of gener-
ality assume that we took d ′ to be maximal such that b−d ′ is K-periodic, and let d ′ = 2K + r

(where 1 � r � K). Now bd ′−1 = c′
r−1 and bd ′ = cr−1, so cr−1 = c′

r−1 (since bd ′ = bd ′−1). But
cr−1 = bK+r = c′

r (since d < K + r < d ′; if r = 1 put r − 1 ≡ K), so c′
r−1 = c′

r . If d ′ < 3K ,
this last equality implies that bd ′ = bd ′+1, so b−(d ′+1) is also K-periodic (with the same basic
sequence c′), contradicting the maximality of d ′. If d ′ = 3K , the equality becomes c′

K−1 = c′
K ,

which implies that the sequence b is in fact of type E (it consists of three repetitions of c′), again
a contradiction.

Given a sequence b of type E or D, the frequency distribution of its basic K-sequence c, i.e.,
w ∈ Δ(B) where w(b) := |{1 � k � K: ck = b}|/K for each b ∈ B , will be called the basic
frequency distribution of b.

To define the strategies, let a = (a1, a2, . . . , a3K) ∈ A × A × · · · × A be the state—a history
of action combinations of length 3K—and put ai := (ai

1, a
i
2, . . . , a

i
3K ) for the corresponding

sequence of actions of player i. When ai is of type E or D, we denote by yi ∈ Δ(Ai ) its basic
frequency distribution. If for each player i the sequence ai is of type E or D,19 we shall say that
the state a is regular; otherwise we shall call a irregular.

The strategy of player i is defined as follows.

(∗) If the state a is regular, the basic frequency yi is a 4ε-best reply to the basic frequencies
of the other players y−i = (yj )j �=i , and the sequence ai is of type E, then with probability
1/2 play ai

1 (i.e., continue the K-periodic play), and with probability 1/2 play ai
3K (i.e.,

introduce a “delay” period by repeating the previous period’s action).
(∗∗) If the state a is regular, the basic frequency yi is a 4ε-best reply to the basic frequencies

of the other players y−i = (yj )j �=i , and the sequence ai is of type D, then play the last
element of the basic sequence c, which is ai

K if d > K and ai
K+1 if d � K (i.e., continue

the K-periodic play).
(∗∗∗) In all other cases randomize uniformly over Ai .

As in the proof of Proposition 4, given a state a, for each player i let zi ∈ Δ(Ai ) de-
note the frequency distribution of (ai

2K+1, a
i
2K+2, . . . , a

i
3K), the last K actions of i, and put

z = (z1, z2, . . . , zN ); also, y = (y1, y2, . . . , yN ) is the N -tuple of the basic frequency distribu-
tions. We partition the state space S, which consists of all sequences a of length 3K over A, into
four regions:

S1 := {a is regular and y is a Nash 4ε-equilibrium};
S2 := {a is irregular and z is a Nash 2ε-equilibrium};
S3 := {a is regular and y is not a Nash 4ε-equilibrium};
S4 := {a is irregular and z is not a Nash 2ε-equilibrium}.

19 Some players’ sequences may be E, and others’, D (moreover, they may have different d’s); therefore a itself need
not be E or D.
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We analyze each region in turn.

Claim 1. All states in S1 are ergodic.20

Proof. Let a ∈ S1. For each player i, let ci = (ci
1, c

i
2, . . . , c

i
K ) be the basic sequence of ai , with

yi the corresponding basic frequency distribution. The strategies are such that the sequence of i

in the next period is also of type E or D (by (∗) and (∗∗)), with basic sequence that is the cyclical
permutation of ci by one step (c2, . . . , cK, c1), except when ai is of type D with d = 2, in which
case it remains unchanged. Therefore the basic frequency distribution yi does not change, and the
new state is also in S1. Hence S1 is a closed set, and once it is reached the conditions of regularity
and 4ε-best-replying for each player will always continue to be automatically satisfied; thus each
player’s play in S1 depends only on whether his own sequence is of type E or D (again, see
(∗) and (∗∗)). Therefore in the region S1 the play becomes independent among the players, and
the Markov chain restricted to S1 is the product of N independent Markov chains, one for each
player. Specifically, the state space Si

1 of the Markov chain of player i consists of all sequences
of length 3K over Ai that are of type E or D, and the transition probabilities are defined as in (∗)
and (∗∗), according to whether the sequence is of type E or D, respectively.

We thus analyze each i separately. Let ai be a 3K-sequence in Si
1 with basic sequence ci .

The closure of ai (i.e., the minimal closed set containing ai ) consists of all ãi in Si
1 whose basic

sequence is one of the K cyclical permutations of ci : any such state can be reached from any
other in finitely many steps (for instance, it takes at most 3K − 1 steps to get to a sequence of
type E, then at most K − 1 steps to the appropriate cyclical permutation, and then another 3K

steps to introduce a delay and wait until it reaches the desired place in the sequence).
Next, the states in Si

1 are aperiodic. Indeed, if the basic sequence ci is constant (i.e., ci =
(âi , âi , . . . , âi ) for some âi ∈ Ai ), then the constant sequence (âi , âi , . . . , âi ) of length 3K is an
absorbing state (since the next play of i will always be âi by (∗)), and thus aperiodic. If ci is not
constant, then assume without loss of generality that ci

1 �= ci
K (if not, take an appropriate cyclical

permutation of ci , which keeps us in the same minimal closed set). Let ai be the sequence of
type E that consists of three repetitions of ci . Starting at ai , there is a positive probability that ai

is reached again in K steps, by always making the first choice in (∗) (i.e., playing K-periodically,
with no delays). However, there is also a positive probability of returning to ai in 3K + 1 steps,
by always making the first choice in (∗), except for the initial choice which introduces a delay
(after 3K additional steps the delay coordinate is no longer part of the state and we return to
the original sequence21 ai ). But K and 3K + 1 are relatively prime, so the state ai is aperiodic.
Therefore, every minimal closed set contains an aperiodic state, and all states are aperiodic.

Returning to the original Markov chain (over N -tuples of actions), the product of what we
have shown is that, to each combination of basic sequences (c1, c2, . . . , cN ) whose frequency
distributions constitute a Nash 4ε-equilibrium, there corresponds an ergodic set22 consisting of
all states with basic sequences that are, for each i, some cyclic permutation of ci . The set S1 is
precisely the union of all these ergodic sets. �
20 I.e., aperiodic and persistent; see Feller (1968, Sections XV.4–6) for these and the other Markov chain concepts that
we use below.
21 The condition ci

1 �= ci
K

is needed in order for the delay action, ci
K

, to be different from the K-periodic action, ci
1.

22 I.e., a minimal closed and aperiodic set.
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The next three claims show that all states outside S1 are transient: from any such state there is
a positive probability of reaching S1 in finitely many steps.

Claim 2. Starting from any state in S2, there is a positive probability that a state in S1 is reached
in at most 2K steps.

Proof. Let a ∈ S2. Since at state a case (∗∗∗) applies to every player i, there is a positive prob-
ability that i will play ai

2K+1 (i.e., play K-periodically). If the new state a′ is regular, then for
each i the frequency distribution yi of the resulting basic sequence either equals the frequency
distribution zi of the last K periods, or differs from it by 1/K (in the maximum norm). But zi

is a 2ε-best reply to z−i , which implies that yi is a 4ε-best reply to y−i by (2)—and so a′ ∈ S1.
If the new state a′ is irregular, then a′ ∈ S2. Again, at a′ there is a positive probability that every
player will play K-periodically. Continuing in this way, we must at some point reach a regular
state—since after 2K such steps the sequence of each player is surely of type E—a state that is
therefore in S1. �
Claim 3. Starting from any state in S3, there is a positive probability that a state in S2 is reached
in at most 5K + 1 steps.

Proof. Let a ∈ S3. There is a positive probability that every player will continue to play his basic
sequence K-periodically, with no delays (this has probability 1/2 in (∗), 1 in (∗∗), and 1/|Ai in
(∗∗∗)). After at most 3K + 1 steps, we get a sequence of type E for every player (since all the
original delay actions are no longer part of the state). During these steps the basic frequencies
yi did not change, so there is still one player, say player 1, such that y1 is not a 4ε-best reply
to y−1. So case (∗∗∗) applies to player 1, and thus there is a positive probability that he will
next play an action â1 that satisfies 1 − y1(â1) > 1/K (for instance, let â1 ∈ A1 have minimal
frequency in y1, then y1(â1) � 1/|A1| � 1/2 and so23 1 − y1(â1) � 1/2 > 1/K). The sequence
of every other player i �= 1 is of type E, so with positive probability i plays ai

2K+1 (this has
probability 1/2 if (∗) and 1/|Ai | if (∗∗∗)), and thus the sequence of i remains of type E. With
positive probability this continues for K periods for all players i �= 1. As for player 1, note that
y−1 does not change (since all other players i �= 1 play K-periodically and so their yi does not
change). If at any point during these K steps the sequence of player 1 turns out to be of type E
or D, then it contains at least two repetitions of the original basic sequence (recall that we started
with three repetitions, and we have made at most K steps), so the basic frequency is still y1; but
y1 is not a 4ε-best reply to y−1, so we are in case (∗∗∗). If the sequence is not of type E or D then
of course we are in case (∗∗∗)—so case (∗∗∗) always applies during these K steps, and there is
a positive probability that player 1 will always play â1.

But after K periods the sequence of player 1 is for sure neither of type E nor D: the frequency
of â1 in the last K periods equals 1, and in the middle K periods it equals y1(â1), and these differ
by more than 1/K (whereas in a sequence of type E or D, any two blocks of length K may differ
in frequencies by at most 1/K). Now these two K-blocks remain part of the state for K more
periods, during which the sequence of player 1 can thus be neither E nor D, and so the state is
irregular. Hence case (∗∗∗) applies to all players during these K periods, and there is a positive
probability that each player i plays a K-sequence whose frequency is ȳi , where (ȳ1, ȳ2, . . . , ȳN )

23 This is where K > 2 is used. Note that |A1| � 2, since otherwise player 1 would always be best-replying.
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is a Nash 2ε-equilibrium (see the beginning of the proof of Proposition 4). So, finally, after at
most (3K + 1) + K + K steps, a state in S2 is reached. �
Claim 4. Starting from any state in S4, there is a positive probability that a state in S1 ∪ S2 ∪ S3
is reached in at most K steps.

Proof. At a ∈ S4, case (∗∗∗) applies to every player. There is therefore a positive probability that
each player i plays according to a K-sequence with frequency ȳi , where again (ȳ1, ȳ2, . . . , ȳN )
is a fixed Nash 2ε-equilibrium. Continue in this way until either a regular state (in S1 or S3) is
reached, or, if not, then after at most K steps the state is in S2. �

Combining the four claims implies that almost surely one of the ergodic sets, all of which are
subsets of S1, will eventually be reached. Let T denote the period when this happens—so T is
an almost surely finite stopping time—and let qT ∈ S1 be the reached ergodic state. It remains to
prove (3) and (4).

Let Q ⊂ S1 be an ergodic set. As we saw in the proof of Claim 1, all states in Q have the same
basic frequency distributions (y1, y2, . . . , yN). The independence among players in S1 implies
that Q = Q1 ×Q2 ×· · ·×QN , where Qi ⊂ Si

1 is an ergodic set for the Markov chain of player i.
For each ai ∈ Qi , let xi

ai ∈ Δ(Ai ) be the frequency distribution of all 3K coordinates of ai ,

then ‖xi
ai − yi‖ � 1/(3K) (they may differ when the sequence contains a delay). Let μi be

the unique invariant probability measure on Qi ; then the average frequency distribution xi :=∑
ai∈Qi μi(ai )xi

ai ∈ Δ(Ai ) also satisfies ‖xi − yi‖ � 1/(3K). But (y1, y2, . . . , yN ) is a Nash

4ε-equilibrium, and so (x1, x2, . . . , xN ) is a Nash 6ε-equilibrium (by (2)).
Once the ergodic set Qi has been reached, i.e., qi

T ∈ Qi , the probability of occurrence of
each state ai = (ai

1, a
i
2, . . . , a

i
3K ) in Qi converges to its invariant probability (see Feller, 1968,

Section XV.7):

lim
t→∞ Pr

[
ai(t + k) = ai

k for k = 1,2, . . . ,3K | qi
T ∈ Qi

] = μi
(
ai

)
.

Projecting on the kth coordinate yields, for every ai ∈ Ai ,

lim
t→∞ Pr

[
ai(t) = ai | qi

T ∈ Qi
] =

∑
ai∈Qi : ai

k=ai

μi
(
ai

)
,

so, in particular, the limit on the left-hand side exists. Averaging over k = 1,2, . . . ,3K yields on
the right-hand side

∑
ai∈Qi μi(ai ) xi

ai (a
i), which equals xi(ai); this proves (5), from which (4)

follows by independence.
A similar argument applies to the limit of the long-run frequencies Φt . This completes the

proof of Theorem 5. �
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