Mathematical Methods

Spring Term 2021

Problem Sheet 3

1. i) What is the radius of convergence of the Taylor expansion for $f(z) = (1 - \cos z)/z^2$ about z = 0?

ii) Obtain the Taylor expansion of $f(z) = \ln z$ about $e^{2\pi i/3}$ (take $\ln e^{2\pi i/3} = \frac{2}{3}\pi i$). What is the radius of convergence of this series?

2. Find the poles and associated residues of the meromorphic functions

$$i)$$
 $f(z) = \frac{e^{iz}}{1+z^2}$, $ii)$ $f(z) = \frac{1}{(z+1)(z+2)(z+3)}$

3. Let C be the unit circle with the orientation taken anti-clockwise. Evaluate the contour integrals

a)
$$\oint_C \frac{e^z - 1}{z} dz$$
 b) $\oint_C \frac{\cos 2z}{z^5} dz$ c) $\oint_C z^2 e^{1/z} dz$.

4. Consider the integral

$$\oint_C \frac{e^{iz}}{(z-i)^2} dz$$

taken around a semi-circular path in the upper-half plane, with straight line section between z=-R and $z=R,\ R>1.$ By letting $R\to\infty$ show that

$$\int_0^\infty \frac{2x \sin x - (x^2 - 1) \cos x}{(1 + x^2)^2} dx = \frac{\pi}{e}.$$

5. Use residues to compute the integrals

i)
$$\int_{-\infty}^{\infty} \frac{1}{1+x^6} dx$$
 ii) $\int_{0}^{\infty} \frac{1}{1+x^3} dx$ iii) $\int_{0}^{\infty} \frac{\ln x}{1+x^3} dx$.

$$iv) \quad \int_0^{2\pi} \frac{d\theta}{a + b\cos\theta} \quad (a > b > 0) \qquad v) \quad \int_0^{\infty} \frac{\sin^2 x}{x^2} dx.$$

6. A particular solution of the ODE $\ddot{x}(t)+3\dot{x}(t)+2x(t)=\delta(t)$ is (see also Problem Sheet 4 Q3 ii))

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{i\omega t}}{-\omega^2 + 3i\omega + 2} d\omega.$$

Evaluate this using residues (hint: treat the cases t < 0 and t > 0 separately).

1

7. Locate the poles and determine the associated residues of the meromorphic function ${\bf r}$

$$f(z) = \frac{e^{iz}}{\sinh z}$$

Integrate f over the contour, C, depicted below

The semi-circles are centred at z=0 and $z=i\pi.$ Hence, or otherwise, compute the integral

$$\int_0^\infty \frac{\sin x}{\sinh x} \ dx.$$