
1. Consider the map

T : x̄ = y, ȳ = 7− x− 8 sin y.

Take the square Π : {0 ≤ x ≤ π, 0 ≤ x ≤ π} and write the map in the cross-form
on Π:

x̄ = fj(x, ȳ), y = fj(x, ȳ)

where j = 1 or 2, and

f1 = arcsin(
1
8

(7− x− ȳ)), f2 = π − arcsin(
1
8

(7− x− ȳ)).

As (x, ȳ) run Π, the value of f1 stays inside (0, π2 , and f2 stays inside (π2 , π),
which implies that T−1(Π)∩Π consists of 2 connected components, Π1 and Π2,
where Πj : {y ∈ range fj}. These components form a Markov partition: to
check this one must verify that

‖∂fj
∂x
‖+ ‖∂fj

∂y
‖ < 1

on Πj . This inequality reduces to

1
4| cos f |

< 1

or

| sin f | <
√

15
4
⇐⇒ 1

8
|7− x− ȳ| <

√
15
4
,

which is, of course, true for (x, ȳ) ∈ Π: maximum of 7− x− ȳ on Π is achieved
at (x, y) = (0, 0) and equals to 7 < 2

√
15.

Thus, we have a Markov partition with 2 components, which gives the sought
Smale horseshoe (we have checked condition 1-3 from the lecture notes).
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2. Consider the map

T : x̄ = y, ȳ = −x+ 7y − y3.

Let us first find its points of period 2. Any such point (x, y) satisfies the relation
(x, y) = T (x̄, ȳ) where (x̄, ȳ) = T (x, y) 6= (x, y). Thus,

x = −x+ 7y − y3, y = −y + 7x− x3.

By taking the sum and the difference of these equations, we get

5(x+ y) = x3 + y3, 9(x− y) = x3 − y3.

Since x 6= x̄ = y, we find that

x+ y = 0, 9 = x2 + xy + y2,

which gives (x, y) = (3,−3) or (x, y) = (−3, 3), or

5 = x2 − xy + y2, 9 = x2 + xy + y2,

which gives

xy = 2 =⇒ (x+ y)2 = 11 =⇒ (x+
2
x

)2 = 11 =⇒ x2 +
4
x2

= 7,

so (x, y) = ±(
√

7−
√

33
2 ,

√
7+
√

33
2 ) or (x, y) = ±(

√
7+
√

33
2 ,

√
7−
√

33
2 ). Altogether,

the map has 6 points of period 2, which means 3 orbits of period 2 (each of the
orbits contains exactly 2 points). Note that all the points of period 2 satisfy
the bounds |x| ≤ 3, |y| ≤ 3. The farthest of these points, (x, y) = (−3, 3) and
(x, y) = (3,−3) are the 2 points of the same orbit: T (−3, 3) = (3,−3).

Take the square Π : {|x| ≤ 3, |y| ≤ 3} with the vertices at these two points.
Let us show that T has no periodic points outside of Π. To this aim, it is enough
to show that every orbit which starts outside of Π tends to infinity either at
forward or backward iterations of T .

We will decompose the complement to Π into several regions, and check for
each region that the orbits starting there tend to infinity indeed. We start with
the regions Q1 : {y ≥ −x, y > 3 and Q2 : {y < −x, y ≤ −3}. The region Q1 is
mapped inside Q2. Indeed, for (x, y) ∈ Q1 we have

ȳ = −x+ 7y − y3 ≤ 8y − y3 = −y + 9y − y3 < −y + 9 · 3− 33 = −y < −3,

and
x̄+ ȳ = −x+ 8y − y3 ≤ 9y − y3 < 0,

i.e. (x̄, ȳ) ∈ Q2. Note also that

|ȳ| > |y|. (1)
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Similarly, if (x, y) ∈ Q2, then T (x, y) ∈ Q1, and (1) also holds (just note that the
map T is symmetric with respect to the transformation (x, y)↔ (−x,−y) which
interchanges Q1 and Q2). Thus, any forward orbit starting in Q1 ∪ Q2 stays
in this region forever, moreover the absolute value of the y coordinate grows
monotonically with the iterations (while the sign of y alternates). It follows
that the orbit tends to infinity: would the y coordinate stay bounded, |y| would
tend to a limit, and the orbit would tend to a point of period 2 inside Q1 ∪Q2,
but all the points of period 2, as we have shown, do not lie there.

In the same way one shows that any backward orbit which starts in the
region Q3 ∪Q4 where Q3 : {x ≥ −y, x > 3 and Q4 : {x < −y, x ≤ −3} never
leaves this region and tend to infinity. Indeed, the backward orbits of T are the
forward orbits of T−1, and the map

T−1 : y = x̄, x = −ȳ + 7x̄− x̄3

coincides with T after the transformation x↔ y, which maps Q1∪Q2 to Q3∪Q4,
so everything we prove about the orbits of T in Q1 ∪Q2 holds also true for the
orbits of T−1 in Q3 ∪Q4.

We have shown that for any point in Q1 ∪ Q2 ∪ Q3 ∪ Q4 either its forward
orbit or its backward orbit tends to infinity. Therefore, all bounded orbits stay
in the complement to Q1 ∪Q2 ∪Q3 ∪Q4, i.e. in Π.

Thus, to answer the question about the structure of the set of periodic orbits
of the map T it is enough to consider the behaviour of this map on Π. Let us
show that T−1(Π)∩Π consists of 3 connected components, and these components
form a Markov partition. We write the map T in the cross-form:

x̄ = ϕ(x+ ȳ), y = ϕ(x+ ȳ), (2)

where ϕ is inverse to the polynomial P (y) = 7y − y3 (i.e. P (ϕ(u)) = u). The
function ϕ is multivalued, namely it has 3 branches (as P is a polynomial of
degree 3). In particular, for each u ∈ [−6, 6] there exists exactly 3 values,
ϕ−1(u), ϕ0(u) and ϕ1(u), such that P (ϕj(u)) = u (j = −1, 0, 1). To see this,
note that P has 3 intervals of monotonicity: from −∞ to the minimum point at
y = −

√
7/3 > −3, from the minimum to the maximum at y = +

√
7/3 > −3,

and from the maximum to +∞. The value of P at the minimum point is
−14

√
7/27 < −6, and the value of P at the maximum point is +14

√
7/27 > 6;

note also that P (±3) = ±6. Thus, for u ∈ [−6, 6] we indeed have 3 branches
of the inverse to P : ϕ0(u) ∈ (−

√
7/3,

√
7/3), ϕ−1(u) ∈ [−3,−

√
7/3), ϕ1(u) ∈

(
√

7/3), 3].
It now follows from (2) that T−1(Π)∩Π consists indeed of exactly 3 connected

components, and the image by T of each of the components intersects all of them:
when x and ȳ run the interval I = [−3, 3], the value of u = x + ȳ runs from
−6 to 6, so all 3 values of ϕ(u) run within the same interval I = [−3, 3] (and
ϕj(u) 6= ϕk(v) if j 6= k).

Thus, we will get that on the set of all orbits that never leave Π = [−3, 3]×
[−3, 3] (i.e. on the set Λ of all bounded orbits) the map T is topologically
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conjugate to the topological Markov chain defined by the matrix

G =

 1 1 1
1 1 1
1 1 1


if we check the hyperbolicity property, which reads, in the case of map (2), as

|ϕ′(u)| < 1
2

for all u ∈ [−6, 6]. Since ϕ is inverse to P , we can rewrite this condition as

|P ′(y)| > 2 if |P (y)| ≤ 3

(when u runs the interval [−6, 6], the value of y = ϕ(u) stays in [−3, 3]). In
other words, we must show that

|P (y)| ≤ 3 =⇒ |y| <
√

5/3 or |y| >
√

3.

Now note that the points of extremum of P (the points y = ±
√

7/3) lie in the
intervals (−3,−

√
5/3) and (

√
5/3, 3), i.e. P is monotone at |y| <

√
5/3 or at

|y| >
√

3. Therefore, it is enough to check that P (
√

5/3) > 3, P (−
√

5/3) < −3,
P (
√

3) > 3 and P (−
√

3) < −3, which is a trivial exercise. Therefore, the
topological conjugacy of T |Λ to the topological Markov chain defined by G is
established.

The eigenvalues of the matrix G are (3, 0, 0), so the topological entropy of
the Markov chain is log 3, i.e. it is positive, which implies that the number of
periodic orbits is infinite. The number of points of period k equals to

tr(Gk) = 3k.

So T has 3 fixed points, 9 points of period 2, 27 points of period 3, and 729
points of period 6. Altogether we have 27 + 9−3 = 33 different points of period
2 and 3 (since the fixed points are also points both of period 2 and period 3,
we should not count them twice). These points are also points of period 6, i.e.
we have 33 points of period 6 whose least period is smaller than 6. Thus, we
have 729 − 33 = 696 points whose least period is exactly 6. The number of
corresponding periodic orbits is 696/6 = 116 (each orbit consists of exactly 6 of
these points).

4



3. As we just have proved, the map

g : x̄ = y, ȳ = −x+ 7y − y3

on the set Λ3 of all points whose orbits are bounded is topologically conjugate

to the walk along the edges of the graph defined by the matrix

 1 1 1
1 1 1
1 1 1

,

i.e. to the shift on the set of all bi-infinite sequences of symbols {1, 2, 3}.
In the same way ones shows that the map

f : x̄ = y, ȳ = 11− x− y2

on the set Λ2 of all points whose orbits are bounded is topologically conjugate
to the shift on the set of all bi-infinite sequences of symbols {1, 2}. So f |Λ2 is
topologically conjugate to g restricted to the subset of Λ3 which corresponds to
the sequences composed of 1’s and 2’s only.

On the other hand, the topological entropy of f |Λ2 is log 2, and the topo-
logical entropy of f restricted to any invariant subset of Λ2 cannot therefore
exceed log 2. Since the topological entropy of f |Λ3 is log 3 > log 2, we immedi-
ately obtain that f |Λ3 cannot be topologically conjugate to g restricted to Λ2

or to any subset of Λ2 (since topologically conjugate maps must have the same
topological entropy).
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4. Let us show that any two zero-dimensional uniformly-hyperbolic sets are
homeomorphic to each other. Any such set is homeomorphic to the set of paths
along the edges of a certain oriented graph G (defined by the Markov partition).
The path is an infinite sequence α = {αi}+∞i=−∞ of edges of G such that the end
vertex of the edge αi is the beginning of the edge αi+1, for every i. To paths α
and β are close if αi = βi for all |i| ≤ N where N is sufficiently close.

We will call a finite, of length (2N + 1), path {αi}|i|≤N along the edges of G
a path of level N . We say that a path {αi}|i|≤N+1 of level N + 1 is subordinate
to a path {βi}|i|≤N of level N if αi = βi for all |i| ≤ N . Let us build a tree TG
whose vertices at a level N are all paths of level N , and from each vertex an edge
is issued to each subordinate path. Thus, each infinite path {αi}+∞i=−∞ in the
graph G corresponds to a path {α0}, {α−1α0α1}, . . . , {α−N . . . α0 . . . αN}, . . .
along the edges of the tree TG. This is a one-to-one correspondence, and if two
paths in G are close, then their corresponding paths in TG are also close. Thus,
we have established a homeomorphism between the set of paths in G and the
set of paths in TG.

Let us show that the set of the paths in TG is homeomorphic to the one-
dimensional Cantor set C. The set C is an infinite closed subset of a segment
I of a straight line such that it has no isolated points (we also assume that the
end points of I are points of C). The complement to C in I is a countable
sequence of open intervals J1, J2, . . . which we order according to their lengths,
i.e. len(Ji) ≤ len(Jk) if i ≥ k. When we remove any finite number of these
open intervals from I, we obtain a finite set of closed segments such that C is
contained within these closed segments and the end points of the segments are
points of C. For each of these closed segments, the subset of C which lies in the
segment is also a Cantor set; we will call these Cantor sets the Cantor subsets of
C. Let us now establish a correspondence between some of such defined Cantor
subsets and the vertices of the tree TG. Let TG have m vertices of zero level.
Remove from I (m − 1) first of the intervals Ji (i.e. (m − 1) intervals of the
maximal length). The Cantor set C will then be decomposed into m Cantor
subsets. We will call these subsets the Cantor subsets of zero level and put
them into a one-to-one correspondence with the zero level vertices of the tree
TG in an arbitrary way. Then we proceed inductively: if a vertex A of level N
corresponds to a certain Cantor subset B, and this vertex has k subordinate
vertices, then we take the segment bounded by the utmost right and utmost left
points of B, consider those open intervals of Ji which lies in this segment, of
them we pick up and remove (k − 1) of maximal length, after which the subset
B becomes decomposed into k Cantor subsets, and we put these subsets, in an
arbitrary way, into the correspondence to the k vertices of level (N + 1) which
are subordinate to the vertex A.

In this way, each infinite path in the tree TG corresponds to a sequence of
Cantor subsets Cj such that Cj+1 ⊂ Cj , moreover the diameter of Cj tends
to zero as j → +∞. The latter fact means that there is only one point in C
which belongs to all Cj , and it is obvious that every point in C can be obtained
in this way. Thus, we built a one-to-one correspondence between the infinite
paths in TG and the points of C. If two paths are close, then the corresponding
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points in C belong to the same Cantor subset of a sufficiently high level, i.e. the
corresponding points are close to each other, since the diameter of the Cantor
subsets tends uniformly to zero as their level in the tree grows.

This proves that the set of infinite paths in the tree TG (hence, the set of
infinite path in the graph G, hence - the hyperbolic set under consideration) is
homeomorphic to C. Since this is the same set C, independent of the graph
G, it follows that the hyperbolic sets under consideration are all homeomorphic
indeed.
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5. For the Markov partition f(π1)

π1

π2

π3

f(π2) f(π3)

shown in the figure, the map on the corresponding hyperbolic set Λ is topo-
logically conjugate to the walk along the edges of the graph with 3 vertices,
π1, π2, π3, defined by the matrix

N =

 2 0 0
1 0 1
0 5 0

 .

This graph is not transitive – there is no path which leads from π2 or π3 to π1,
i.e. the orbits from Λ which leave π1 can never return to π1. This, in particular,
implies that there is no dense orbit in Λ: a dense orbit must visit π1, π2 and π3

infinitely often, which is impossible here, since once the orbit leaves π1 for π2

or π3, there is no return.
Also, periodic orbits of Λ form 2 groups: those staying in π1 and those

staying in π2 ∪ π3. The number of the period-k points of the first group is 2k,
and the number of the period-k points of the second group equals to tr(N ′)k
where we denote as N ′ the block of the matrix N on the inetsection of the

second and third column with the second and third rows: N ′ =
(

0 1
5 0

)
.

Obviously,

(N ′)2m =
(

5m 0
0 5m

)
and

(N ′)2m+1 =
(

0 5m

5m+1 0

)
.

Thus, the number Pk of periodic points of the period k is 2k + 5k/2 for even k,
and 2k for odd k. This gives us

lim sup
k→+∞

lnPk
k

= ln
√

5 and lim inf
k→+∞

lnPk
k

= ln 2.
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