Mathematical Methods Spring Term 2019
Answers to Problem Sheet 3

1. i) The radius of convergence of the Taylor expansion for f(z) = (1 —
cos z) /2% about z = 0 is infinity as f is an entire function.

ii) f(z) = In z. The derivatives of f are f(™(z) = (=1)"* (m—1)lz"™.
Taylor expansion
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R =1 (distance between e and singularity at origin).
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which has simple poles at z = +i. The residues are Res(f,7) = e /(2i)
and Res(f, —1) = e/(—21).

i) f(2)
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has simple poles at —1, —2 and —3. The residues are
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3. C'is the unit circle with the orientation taken anti-clockwise.
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by Cauchy’s theorem (the integrand is entire).
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using cos 2z = 1 — (22)%/2! + (22)*/4! — ... to extract the residue of the
integrand
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using e'/? = 1+ 1/2 4+ 1/(2!2%) +1/(3!23) + ...
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taken around a semi-circular path in the upper-half plane, with straight
line section between 2 = —R and z = R, R > 1. f(z) = /(2 —1)?
has a double pole at z = i. Expanding ¢ about i, e”* = elz=0+1] =
e tex=) = e (1 +i(z — i) + ...), so Res(f,i) = ie”!. By the residue
theorem the contour integral is —27/e. As R — oo the contribution of
the semi-circle to the contour integral vanishes. Accordingly,
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As the integrand is even integrating from — to oo yields 7/e.

. i) Consider the meromorphic function f(z) = 1/(1 + 2%) which has six
simple poles at e¥™/6 +4 ¢*57/6 Take the same contour as in question
4. The residues at the three poles inside the contour are
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(write f(z) = 1/g(z) where g(z) = 2% + 1 with ¢'(z) = 62°, at a pole
1

w, Res(f,w) =1/¢'(w)). For R > 1 the contour integral is
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As R — oo the semi-circle does not contribute so the contour integral
reduces to the integral of f(z) from —oo to oo. This gives
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can be computed by integrating f(z) = In(—z2)/(1+2%) over the keyhole
contour discussed in the lectures. Alternatively, integrate f(z) = 1/(1+
23) over the contour C' depicted below

ii) The integral

A

f(2) has simple poles at e*™/3 and —1 of which only ¢”/? is enclosed

by the contour. The residue at this pole is
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By the Residue theorem
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The contour integral splits into three parts. The arc contribution van-
ishes as R — oo. Integrating f along the positive real axis gives the
integral I we seek. The integral over the other line segment (denoted C
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below) gives a contribution proportional to I. Parametrizing this line
segment through z = e2™/3t (0 < t < R) gives
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(the minus sign follows from the anti-clockwise orientation of C'). Ac-
cordingly
—im/6
(1- 627”./3)[ _ 27re6 /

or ,
7 2me /2 B T 27
CeTT/3 —emi/3 3Sin(%7r) 33
Note that [ is obviously real and positive - this provides a check on
calculations of this type.

iii) This problem is challenging!
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integrate g(z) = Inz/(1 + 23) over the same contour as in part ii). As
in part ii) there is a simple pole at e’™/3- the residue is Ine™/? = in /3
multiplied by the residue of f(z) = 1/(1 + 2%), i.e. Res(g,e™3) =
ime~?™/3 /9. The contour integral is

To compute
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As in part ii) integrating g along the positive real axis gives the integral
J we seek. Much as in part ii) the integral of g along C' can be related
to J
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so that J = —27%/27.

iv) Let C be the unit circle (with anti-clockwise orientation)
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2?2 + (2a/b)z + 1 has roots atz = —a/b + ,/a?/b?> — 1 of which only
z=—a/b +/a?/b® — 1 is inside the unit circle. The residue of
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Using the residue theorem
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v) sin®z = (1 — cos2z) = Rei(1 — ¢**). Consider the meromorphic
function f(z) = (1 — €*#)/(22?) which has a simple pole at the origin.
Res(f,0) = —i.

This problem can be tackled by using the contour from question 4 with
a small semi-circular detour to avoid the pole at the origin:



There is no pole on or inside the contour C' so by Cauchy’s theorem
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In the R — oo limit the semi-circle does not contribute giving
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where C'(e) is the small semi-circle centred at the origin. Near z = 0
f(2) = —i/z + ... so that for small €
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(using z = ee with 0 < # < 7, the minus sign corrects the orientation).
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Taking the real part and the ¢ — 0 limit gives
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Alternatively, using the half residue rule Let C be the contour from
question 4 which passes through the pole at the origin.
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As R — oo the semi-circle does not contribute giving
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Taking the real part
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. A particular solution of the ODE &(t) 4+ 32 (t) +2x(t) = 0(¢) is (see also
Problem Sheet 4 Q3 ii) )
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Consider the meromorphic function
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which has simple poles at ¢ and 2¢. The residues are
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Res(f,i) = —e_—z,, Res(f,2i) = -

If t > 0 take the same contour as in question 4. As R — oo the
contribution of the semicircle vanishes giving
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If t < 0 the semi-circle should be taken in the lower half-plane. As this
contour neither encloses nor crosses any poles the integral is zero. The
solution can be written as

z(t) = (e7t — e 2Ho(t).
Check that this is a solution of the ODE!
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has simple poles at imn (n integer). Expanding sinh z about inm

sinh z

sinh z = sinh[(z—imn)+imn| = —(1)" sinh(z—imn) = (=1)" [(z — in7) + ...] .

Hence, the residues at the poles are Res(f,inm) = (—1)"e "7

The contour integral over the given contour is zero as it does not enclose
or pass through any poles.



The real integral can be computed by using the given contour or via the
half-residue rule (note that these are essentially the same procedures)

Using the half-residue rule — Take a rectangular contour (without the
detours) that cuts through the simple poles at 0 and iw. Then

p fc f(z)dz = mi[Res(f,0) + Res(f,im)] = im(1l — e ™).

As R — oo the contour integral is
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On taking the imaginary part
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