
Mathematical Methods Spring Term 2019

Answers to Problem Sheet 3

1. i) The radius of convergence of the Taylor expansion for f(z) = (1 −
cos z)/z2 about z = 0 is infinity as f is an entire function.

ii) f(z) = ln z. The derivatives of f are f (m)(z) = (−1)m+1(m−1)!z−m.
Taylor expansion

f(z) = f(e2πi/3) +
∞∑
m=1

f (m)(e2πi/3)

m!
(z − e2πi/3)m

= 2πi/3 +
∞∑
m=1

(−1)m+1 e
−2πim/3

m
(z − e2πi/3)m

R = 1 (distance between e2πi/3 and singularity at origin).

2.

i) f(z) =
eiz

1 + z2
=

eiz

(z + i)(z − i)
which has simple poles at z = ±i. The residues are Res(f, i) = e−1/(2i)
and Res(f,−i) = e/(−2i).

ii) f(z) =
1

(z + 1)(z + 2)(z + 3)

has simple poles at −1, −2 and −3. The residues are

Res(f,−1) =
1

(−1 + 2)(−1 + 3)
=

1

2
, Res(f,−2) =

1

(−2 + 1)(−2 + 3)
= −1,

Res(f,−3) =
1

(−3 + 1)(−3 + 2)
=

1

2
.

3. C is the unit circle with the orientation taken anti-clockwise.

a)
∮
C

ez − 1

z
dz = 0

by Cauchy’s theorem (the integrand is entire).

b)
∮
C

cos 2z

z5
dz = 2πi

24

4!
=

4πi

3
,

1



using cos 2z = 1− (2z)2/2! + (2z)4/4!− ... to extract the residue of the
integrand

c)
∮
C
z2e1/z dz =

2πi

3!
=
πi

3
,

using e1/z = 1 + 1/z + 1/(2!z2) + 1/(3!z3) + ...

4. ∮
C

eiz

(z − i)2
dz

taken around a semi-circular path in the upper-half plane, with straight
line section between z = −R and z = R, R > 1. f(z) = eiz/(z − i)2
has a double pole at z = i. Expanding eiz about i, eiz = ei[(z−i)+i] =
e−1ei(z−i) = e−1(1 + i(z − i) + ...), so Res(f, i) = ie−1. By the residue
theorem the contour integral is −2π/e. As R→∞ the contribution of
the semi-circle to the contour integral vanishes. Accordingly,

∫ ∞
−∞

eix

(x− i)2
dx = −2π

e
.

Now

Re
eix

(x− i)2
=

1

2

[
eix

(x− i)2
+

e−ix

(x+ i)2

]
=
eix(x+ i)2 + e−ix(x− i)2

2(x− i)2(x+ i)2

(x2 − 1)(eix + e−ix) + 2ix(eix − e−ix)
2(x2 + 1)2

=
2(x2 − 1) cosx− 4x sinx

2(x2 + 1)2
.

Therefore ∫ ∞
−∞

2x sinx− (x2 − 1) cosx

(1 + x2)2
dx =

2π

e
.

As the integrand is even integrating from − to ∞ yields π/e.

5. i) Consider the meromorphic function f(z) = 1/(1 + z6) which has six
simple poles at e±iπ/6, ±i, e±5πi/6. Take the same contour as in question
4. The residues at the three poles inside the contour are

Res(f, eiπ/6) =
1

6e5πi/6
=
e−5πi/6

6
= −e

iπ/6

6
, Res(f, i) =

1

6i5
= − i

6

Res(f, e5πi/6) =
1

6e25πi/6
=
e−iπ/6

6

2



(write f(z) = 1/g(z) where g(z) = z6 + 1 with g′(z) = 6z5, at a pole
w, Res(f, w) = 1/g′(w)). For R > 1 the contour integral is∮

C
f(z)dz =

2πi

6

[
−eπi/6 − i+ e−πi/6

]
=
πi

3

[
−2i sin

π

6
− i

]
=

2π

3
.

As R →∞ the semi-circle does not contribute so the contour integral
reduces to the integral of f(x) from −∞ to ∞. This gives∫ ∞

−∞

1

1 + x6
dx =

2π

3
.

ii) The integral

I =
∫ ∞
0

dx

1 + x3

can be computed by integrating f(z) = ln(−z)/(1+z3) over the keyhole
contour discussed in the lectures. Alternatively, integrate f(z) = 1/(1+
z3) over the contour C depicted below

-
C R

-

6

r

r
r 2

3
π

f(z) has simple poles at e±iπ/3 and −1 of which only eiπ/3 is enclosed
by the contour. The residue at this pole is

Res(f, eiπ/3) =
1

3(eiπ/3)2
=
e−2πi/3

3
.

By the Residue theorem

∮
C
f(z)dz =

2πie−2πi/3

3
=

2πe−iπ/6

3
.

The contour integral splits into three parts. The arc contribution van-
ishes as R → ∞. Integrating f along the positive real axis gives the
integral I we seek. The integral over the other line segment (denoted C̃
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below) gives a contribution proportional to I. Parametrizing this line
segment through z = e2πi/3t (0 < t < R) gives

∫
C̃
f(z)dz = −

∫ R

0

e2πi/3dt

1 + (e2πi/3t)3
= −

∫ R

0

e2πi/3dt

1 + t3
→ −e2πi/3I as R→∞.

(the minus sign follows from the anti-clockwise orientation of C). Ac-
cordingly

(1− e2πi/3)I =
2πe−iπ/6

6
.

or

I =
2πe−iπ/2

e−π/3 − eπi/3
=

π

3 sin(1
6
π)

=
2π

3
√

3
.

Note that I is obviously real and positive - this provides a check on
calculations of this type.

iii) This problem is challenging!

To compute

J =
∫ ∞
0

lnx

1 + x3
dx

integrate g(z) = ln z/(1 + z3) over the same contour as in part ii). As
in part ii) there is a simple pole at eiπ/3- the residue is ln eπi/3 = iπ/3
multiplied by the residue of f(z) = 1/(1 + z3), i.e. Res(g, eπi/3) =
iπe−2πi/3/9. The contour integral is

∮
C
g(z)dz = −2π2e−2πi/3

9
.

As in part ii) integrating g along the positive real axis gives the integral
J we seek. Much as in part ii) the integral of g along C̃ can be related
to J∫

C̃
g(z)dz = −

∫ R

0

ln(e2πi/3t)e2πi/3dt

1 + (e2πi/3t)3
= −e2πi/3

∫ R

0

(ln t + 2
3
πi)dt

1 + t3

→ −e2πi/3J − 2πie2πi/3

3
I as R→∞

Accordingly,

(1− e2πi/3)J = −2π2e−2πi/3

9
+

2πie2πi/3

3
I = −2π2e−2πi/3

9
+

4π2ie2πi/3

9
√

3
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or(
3

2
−
√

3i

2

)
J =

2π2

9

(
−e−2πi/3 +

2ie2πi/3√
3

)
=

2π2

9

(
1

2
+

√
3i

2
− i√

3
− 1

)

= −2π2

27

(
3

2
−
√

3i

2

)
,

so that J = −2π2/27.

iv) Let C be the unit circle (with anti-clockwise orientation)

∫ 2π

0

dθ

a+ b cos θ
=
∮
C

1

a+ 1
2
b(z + z−1)

dz

iz
=

1

i

∮
C

2

2az + bz2 + b
dz.

=
2

ib

∮
C

1

z2 + (2a/b)z + 1
dz.

z2 + (2a/b)z + 1 has roots atz = −a/b ±
√
a2/b2 − 1 of which only

z = −a/b +
√
a2/b2 − 1 is inside the unit circle. The residue of

1

z2 + (2a/b)z + 1
=

1

(z + a/b −
√
a2/b2 − 1)(z + a/b +

√
a2/b2 − 1))

at z = −a/b +
√
a2/b2 − 1 is

1

2
√
a2/b2 − 1)

.

Using the residue theorem∫ 2π

0

dθ

a+ b cos θ
=

2

ib
2πi

1

2
√
a2/b2 − 1)

=
2π√
a2 − b2

.

v) sin2 x = 1
2
(1 − cos 2x) = Re1

2
(1 − e2ix). Consider the meromorphic

function f(z) = (1− e2iz)/(2z2) which has a simple pole at the origin.
Res(f, 0) = −i.
This problem can be tackled by using the contour from question 4 with
a small semi-circular detour to avoid the pole at the origin:

5



-
C R−R −ε ε

-

6

r

There is no pole on or inside the contour C so by Cauchy’s theorem∮
C
f(z)dz = 0.

In the R→∞ limit the semi-circle does not contribute giving

0 =
[∫ −ε
−∞

+
∫ ∞
ε

]
1− e2ix

2x2
dx+

∫
C(ε)

f(z)dz,

where C(ε) is the small semi-circle centred at the origin. Near z = 0
f(z) ≈ −i/z + ... so that for small ε∫

C(ε)
f(z)dz = −

∫ π

0

−i
εeiθ

iεeiθdθ = −π

(using z = εeiθ with 0 ≤ θ ≤ π, the minus sign corrects the orientation).
For small ε [∫ −ε

−∞
+
∫ ∞
ε

]
1− e2ix

2x2
dx ≈ π.

Taking the real part and the ε→ 0 limit gives∫ ∞
−∞

sin2 x

x2
dx = π.

Alternatively, using the half residue rule Let C be the contour from
question 4 which passes through the pole at the origin.

P
∮
f(z)dz = iπRes(f, 0) = π

As R→∞ the semi-circle does not contribute giving

P
∫ ∞
−∞

1− e2ix

2x2
= π.
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Taking the real part ∫ ∞
0

sin2 x

x2
dx = π.

6. A particular solution of the ODE ẍ(t)+3ẋ(t)+2x(t) = δ(t) is (see also
Problem Sheet 4 Q3 ii) )

x(t) =
1

2π

∫ ∞
−∞

eiωt

−ω2 + 3iω + 2
dω.

Consider the meromorphic function

f(z) =
eizt

−z2 + 3iz + 2
= − eizt

(z − i)(z − 2i)
,

which has simple poles at i and 2i. The residues are

Res(f, i) = −e
−t

−i
, Res(f, 2i) = −e

−2t

i
.

If t > 0 take the same contour as in question 4. As R → ∞ the
contribution of the semicircle vanishes giving

x(t) =
1

2π

∫ ∞
−∞

eiωt

−ω2 + 3iω + 2
dω = e−t − e−2t.

If t < 0 the semi-circle should be taken in the lower half-plane. As this
contour neither encloses nor crosses any poles the integral is zero. The
solution can be written as

x(t) = (e−t − e−2t)θ(t).

Check that this is a solution of the ODE!

7.

f(z) =
eiz

sinh z

has simple poles at iπn (n integer). Expanding sinh z about inπ

sinh z = sinh[(z−iπn)+iπn] = −(1)n sinh(z−iπn) = (−1)n [(z − inπ) + ...] .

Hence, the residues at the poles are Res(f, inπ) = (−1)ne−nπ

The contour integral over the given contour is zero as it does not enclose
or pass through any poles.
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The real integral can be computed by using the given contour or via the
half-residue rule (note that these are essentially the same procedures)

Using the half-residue rule Take a rectangular contour (without the
detours) that cuts through the simple poles at 0 and iπ. Then

P
∮
C
f(z)dz = πi[Res(f, 0) + Res(f, iπ)] = iπ(1− e−π).

As R→∞ the contour integral is

P
∫ ∞
−∞

eix

sinhx
dx− P

∫ ∞
−∞

ei(x+iπ)

sinh(x+ iπ)
= (1 + e−π)P

∫ ∞
−∞

eix

sinhx
dx.

On taking the imaginary part

(1 + e−π)
∫ ∞
−∞

sinx

sinhx
dx = π(1− e−π)

or ∫ ∞
0

sinx

sinhx
dx =

π

2
tanh

π

2
.
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