
1. (i) Determine how many periodic orbits and equilibria can be born at the bifurcations of the

zero equilibrium of the following system:






ẋ = y − x2,

ẏ = z + xy,

ż = −y − z + x2 − xy + y2 + z2 − x4.

(ii) Determine how many periodic orbits does the following system have at small ε > 0 in a

small neighbourhood of zero: {
ẋ = y + y2,

ẏ = εy − x + x3.

2. Consider the system 




ẋ = −2x + 16y2,

ẏ = −z + xy − 4y2z − 2z2y,

ż = y.

(i) Write down the normal form up to the terms of the third order for the system on the center

manifold near the equuilibrium (0, 0, 0).

(ii) Is the equilibrium stable or unstable? How many stable periodic orbits can be born at the

bifurcations of this equilibrium?

3. Consider the map

x̄ = a − bx − x3.

(i) Find equations of the bifurcation curves for the fixed points of this map and draw these

curves in the plane of parameters (a, b).

(ii) On the curve which corresponds to the existence of a fixed point with the multiplier

equal to −1, find the points from which a bifurcation curve emanates which corresponds to a

period-2 point with a multiplier +1.



4. It is known from numerical experiments that in the plane of parameters (a, b) there is a curve

C such that the system 




ẋ = y,

ẏ = z,

ż = ax − by − z + x2

has a homoclinic loop to the equilibrium state O(0, 0, 0) at (a, b) ∈ C. This curve intersects

the line a = b + 2 at a point P ∗(a∗, b∗) with b∗ > 0 and a∗ > 2.

Consider a sufficiently small neighbourhood U of P ∗ in the (a, b) plane. The line a = b + 2

divides U into two halves:

U+ = U ∩ {a = b + 2 + ε, ε > 0} and U− = U ∩ {a = b + 2 + ε, ε < 0}.

(i) Let a = b + 2 + ε and b > 0. For the eigenvalues λ1,2,3 of the linearisation matrix at the

equilibrium state O, find their expansion in ε up to the first order.

(ii) Show that infinitely many periodic orbits exist at (a, b) ∈ C ∩ U+.

(iii) Show that a single stable periodic orbit is born at the bifurcations of the homoclinic loop

which exists at (a, b) ∈ C ∩ U−.



Solutions:

1. (i) (10 points) Determine how many periodic orbits and equilibria can be born at the

bifurcations of the zero equilibrium of the following system:

ẋ = y − x2, ẏ = z + xy, ż = −y − z + x2 − xy + y2 + z2 − x4.

Solution (seen similar): The linearisation matrix at the equilibrium is




0 1 0

0 0 1

0 −1 −1



. The

characteristic equation is λ(λ2 +λ+1) = 0. It has one zero root and two roots with non-zero

real parts. The center manifold is therefore one-dimensional, hence no periodic orbits can be

born at bifurcations.

In order to find equilibria of this system, one can find, from the first two equations, y and z

as functions of x. Namely, y = x2 and z = −x3. Plugging this into the third equation, we

obtain the equation x6 = 0. Zero is a multiplicity 6 root of this equation, so up to 6 solutions

(=up to 6 equilibria) can be obtained by small perturbations.

(ii) (10 points) Determine how many periodic orbits does the following system have at small

ε > 0 in a small neighbourhood of zero:

ẋ = y + y2, ẏ = εy − x + x3.

Solution (seen similar): The linearisation matrix is

(
0 1

−1 ε

)

. At ε = 0 there is a pair of

pure imaginary eigenvalues, and at ε 6= 0 the real part of the eigenvalues becomes non-zero.

At ε = 0 the system has an integral: H(x, y) =
y2

2
+

y3

3
+

x2

2
−

x4

4
, hence all orbits near

zero are closed. It follows then from the Hopf theorem that no periodic orbits exist near zero

at small ε 6= 0.



2. Consider the system

ẋ = −2x + 16y2, ẏ = −z + xy − 4y2z − 2z2y, ż = y.

(i) (10 points) Write down the normal form up to the terms of the third order for the system

on the center manifold near the equuilibrium (0, 0, 0).

Solution (seen similar): The linearisation matrix is




−2 0 0

0 0 −1

0 1 0



. The eigenvalues are

λ1 = −2 and λ2,3 = ±i. The center manifold is tangent to the (y, z) plane.

Let us make a coordinate transformation X = x+ay2+byz+cz2 in order to kill the quadratic

term in the first equation:

Ẋ + 2X = −2x + 16y2 + 2x + 2ay2 + 2byz + 2cz2 + 2ayẏ + bẏz + byż + 2czż =

= (16 + 2a)y2 + 2byz + 2cz2 − 2ayz − bz2 + by2 + 2cyz + third order terms.

There will be now quadratic terms if 16 + 2a + b = 0, b − a + c = 0 and 2c − b = 0, i.e.

if we choose c = −2, b = −4, a = −6. In this case the equation of the center manifold is

X = O(|y|3 + |z|3), hence x = 6y2 + 4yz + 2z2 + O(|y|3 + |z|3). The system on the center

manifold is

ż = y, ẏ = −z + 6y3 + O(y4 + z4).

Denote u = y + iz, hence y = (u + u∗)/2. The system takes the form

u̇ = iu +
3

4
(u + u∗)3 + O(|u|4).

By removing the non-resonant terms, we obtain the normal form

u̇ = iu +
9

4
u2u∗ + O(|u|4).

(ii) (10 points) Is the equilibrium stable or unstable? How many stable periodic orbits can be

born at the bifurcations of this equilibrium?

Solution (seen similar): The first Lyapunov coefficient L1 = 9/4 is strictly positive. Therefore

the equilibrium is unstable and no stable periodic orbits can be born.



3. Consider the map

x̄ = a − bx − x3.

(i) Find equations of the bifurcation curves for the fixed points of this map and draw these

curves in the plane of parameters (a, b).

Solution (seen similar): The fixed point is given by the equation a = (b + 1)x + x3, and

bifurcations happen at −b − 3x2 = ±1. Express x from the second equation: x2 = −
b ± 1

3
.

Then the first equation provides the equations for the bifurcation curves:

multiplier +1: a = ±
2

3
(b + 1)

√

−
b + 1

3
, b ≤ −1,

multiplier −1: a = ±
2

3
(b + 2)

√
1 − b

3
, b ≤ 1.

(ii)(10 points) On the curve which corresponds to the existence of a fixed point with the

multiplier equal to −1, find the points from which a bifurcation curve emanates which

corresponds to a period-2 point with a multiplier +1.

Solution (unseen/ seen parts): Shift the origin to the fixed point x0 = ±

√
1 − b

3
, i.e. put

x = x0 + y. The map takes the form

ȳ = −y − 3y2x0 − y3.

The second iteration is

=
y= −ȳ − 3ȳ2x0 − ȳ3 = y + (2 − 18x2

0)y
3 + O(y4).

The period-2 points with multiplier +1 can be born only if the coefficient of y3 vanishes, i.e.

at x2
0 = 1/9, which corresponds to b = 2/3, a = ±16/27.



4. It is known from numerical experiments that in the plane of parameters (a, b) there is a curve

C such that the system

ẋ = y, ẏ = z, ż = ax − by − z + x2

has a homoclinic loop to the equilibrium state (0, 0, 0) at (a, b) ∈ C. This curve intersects

the line a = b + 2 at a point P ∗(a∗, b∗) with b∗ > 0 and a∗ > 2.

Consider a sufficiently small neighbourhood U of P ∗ in the (a, b) plane. The line a = b + 2

divides U into two halves:

U+ = U ∩ {a = b + 2 + ε, ε > 0} and U− = U ∩ {a = b + 2 + ε, ε < 0}.

(i) (6 points) Let a = b + 2 + ε and b > 0. For the eigenvalues λ1,2,3 of the linearisation

matrix at the equilibrium state O, find their expansion in ε up to the first order.

(ii) (7 points) Show that infinitely many periodic orbits exist at (a, b) ∈ C ∩ U+.

(iii) (7 points) Show that a single stable periodic orbit is born at the bifurcations of the

homoclinic loop which exists at (a, b) ∈ C ∩ U−.

Solution (unseen): (i) The linearisation matrix is




0 1 0

0 0 1

a −b −1



. The characteristic

equation is

λ3 + λ2 + bλ − a = 0,

or, at a = b + 2 + ε,

(λ − 1)(λ2 + 2λ + b + 2) = ε. (∗)

At ε = 0 and b > 0 the eigenvalues are λ1 = 1 and λ2,3 = −1± i
√

b + 1. In order to see how

the eigenvalues change as ε varies across zero, differentiate both sides of (*) with respect to

ε at ε = 0. We obtain

dλ1

dε
(λ2

1 + 2λ1 + b + 2) =
dλ1

dε
(b + 5) = 1 =⇒ λ1 = 1 +

ε

b + 5
+ O(ε2)

and

2
dλ2

dε
(λ2

2 − 1) = −2(b + 1 + 2i
√

b + 1)
dλ2

dε
= 1 =⇒ λ2 = −1 −

ε(1 − 2i/
√

b + 1)

2(b + 5)
+ O(ε2).

(ii) We have

λ1 + Re λ2 =
ε

2(b + 5)
+ O(ε2).

This value is positive at small ε > 0, and λ2,3 are not real, hence infinitely many periodic

orbits coexist with the homoclinic loop.

(iii) At small ε < 0 we have λ1 + Re λ2 < 0, hence a single stable periodic orbit is born from

the loop.
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