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Preface to the Second Edition

The favorable reaction to the first edition of this book confirmed that the
publication of such an application-oriented text on bifurcation theory of
dynamical systems was well timed. The selected topics indeed cover ma-
jor practical issues of applying the bifurcation theory to finite-dimensional
problems. This new edition preserves the structure of the first edition while
updating the context to incorporate recent theoretical developments, in
particular, new and improved numerical methods for bifurcation analysis.
The treatment of some topics has been clarified.

Major additions can be summarized as follows: In Chapter 3, an ele-
mentary proof of the topological equivalence of the original and truncated
normal forms for the fold bifurcation is given. This makes the analysis of
codimension-one equilibrium bifurcations of ODEs in the book complete.
This chapter also includes an example of the Hopf bifurcation analysis in a
planar system using MAPLE, a symbolic manipulation software. Chapter
4 includes a detailed normal form analysis of the Neimark-Sacker bifur-
cation in the delayed logistic map. In Chapter 5, we derive explicit for-
mulas for the critical normal form coefficients of all codim 1 bifurcations
of n-dimensional iterated maps (i.e., fold, flip, and Neimark-Sacker bifur-
cations). The section on homoclinic bifurcations in n-dimensional ODEs
in Chapter 6 is completely rewritten and introduces the Melnikov inte-
gral that allows us to verify the regularity of the manifold splitting under
parameter variations. Recently proved results on the existence of center
manifolds near homoclinic bifurcations are also included. By their means
the study of generic codim 1 homoclinic bifurcations in n-dimensional sys-
tems is reduced to that in some two-, three-, or four-dimensional systems.
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Two- and three-dimensional cases are treated in the main text, while the
analysis of bifurcations in four-dimensional systems with a homoclinic orbit
to a focus-focus is outlined in the new appendix. In Chapter 7, an explicit
example of the “blue sky” bifurcation is discussed. Chapter 10, devoted to
the numerical analysis of bifurcations, has been changed most substantially.
We have introduced bordering methods to continue fold and Hopf bifur-
cations in two parameters. In this approach, the defining function for the
bifurcation used in the minimal augmented system is computed by solving
a bordered linear system. It allows for explicit computation of the gradi-
ent of this function, contrary to the approach when determinants are used
as the defining functions. The main text now includes BVP methods to
continue codim 1 homoclinic bifurcations in two parameters, as well as all
codim 1 limit cycle bifurcations. A new appendix to this chapter provides
test functions to detect all codim 2 homoclinic bifurcations involving a sin-
gle homoclinic orbit to an equilibrium. The software review in Appendix
3 to this chapter is updated to present recently developed programs, in-
cluding AUTO97 with HomCont, DsTool, and CONTENT providing the
information on their availability by ftp.

A number of misprints and minor errors have been corrected while prepar-
ing this edition. I would like to thank many colleagues who have sent
comments and suggestions, including E. Doedel (Concordia University,
Montreal), B. Krauskopf (VU, Amsterdam), S. van Gils (TU Twente, En-
schede), B. Sandstede (WIAS, Berlin), W.-J. Beyn (Bielefeld University),
F.S. Berezovskaya (Center for Ecological Problems and Forest Productivity,
Moscow), E. Nikolaev and E.E. Shnoll (IMPB, Pushchino, Moscow Region),
W. Langford (University of Guelph), O. Diekmann (Utrecht University),
and A. Champneys (University of Bristol).

I am thankful to my wife, Lioudmila, and to my daughters, Elena and
Ouliana, for their understanding, support, and patience, while I was work-
ing on this book and developing the bifurcation software CONTENT.

Finally, I would like to acknowledge the Research Institute for Applica-
tions of Computer Algebra (RIACA, Eindhoven) for the financial support
of my work at CWI (Amsterdam) in 1995–1997.

Yuri A. Kuznetsov
Amsterdam
September 1997



Preface to the First Edition

During the last few years, several good textbooks on nonlinear dynam-
ics have appeared for graduate students in applied mathematics. It seems,
however, that the majority of such books are still too theoretically ori-
ented and leave many practical issues unclear for people intending to apply
the theory to particular research problems. This book is designed for ad-
vanced undergraduate or graduate students in mathematics who will par-
ticipate in applied research. It is also addressed to professional researchers
in physics, biology, engineering, and economics who use dynamical systems
as modeling tools in their studies. Therefore, only a moderate mathematical
background in geometry, linear algebra, analysis, and differential equations
is required. A brief summary of general mathematical terms and results,
which are assumed to be known in the main text, appears at the end of
the book. Whenever possible, only elementary mathematical tools are used.
For example, we do not try to present normal form theory in full general-
ity, instead developing only the portion of the technique sufficient for our
purposes.

The book aims to provide the student (or researcher) with both a solid
basis in dynamical systems theory and the necessary understanding of the
approaches, methods, results, and terminology used in the modern applied
mathematics literature. A key theme is that of topological equivalence and
codimension, or “what one may expect to occur in the dynamics with a
given number of parameters allowed to vary.” Actually, the material cov-
ered is sufficient to perform quite complex bifurcation analysis of dynam-
ical systems arising in applications. The book examines the basic topics
of bifurcation theory and could be used to compose a course on nonlin-
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ear dynamical systems or systems theory. Certain classical results, such
as Andronov-Hopf and homoclinic bifurcation in two-dimensional systems,
are presented in great detail, including self-contained proofs. For more com-
plex topics of the theory, such as homoclinic bifurcations in more than two
dimensions and two-parameter local bifurcations, we try to make clear the
relevant geometrical ideas behind the proofs but only sketch them or, some-
times, discuss and illustrate the results but give only references of where
to find the proofs. This approach, we hope, makes the book readable for a
wide audience and keeps it relatively short and able to be browsed. We also
present several recent theoretical results concerning, in particular, bifurca-
tions of homoclinic orbits to nonhyperbolic equilibria and one-parameter
bifurcations of limit cycles in systems with reflectional symmetry. These
results are hardly covered in standard graduate-level textbooks but seem
to be important in applications.

In this book we try to provide the reader with explicit procedures for
application of general mathematical theorems to particular research prob-
lems. Special attention is given to numerical implementation of the devel-
oped techniques. Several examples, mainly from mathematical biology, are
used as illustrations.

The present text originated in a graduate course on nonlinear systems
taught by the author at the Politecnico di Milano in the Spring of 1991. A
similar postgraduate course was given at the Centrum voor Wiskunde en
Informatica (CWI, Amsterdam) in February, 1993. Many of the examples
and approaches used in the book were first presented at the seminars held
at the Research Computing Centre1 of the Russian Academy of Sciences
(Pushchino, Moscow Region).

Let us briefly characterize the content of each chapter.

Chapter 1. Introduction to dynamical systems. In this chapter we
introduce basic terminology. A dynamical system is defined geometrically
as a family of evolution operators ϕt acting in some state space X and
parametrized by continuous or discrete time t. Some examples, including
symbolic dynamics, are presented. Orbits, phase portraits, and invariant
sets appear before any differential equations, which are treated as one of
the ways to define a dynamical system. The Smale horseshoe is used to illus-
trate the existence of very complex invariant sets having fractal structure.
Stability criteria for the simplest invariant sets (equilibria and periodic or-
bits) are formulated. An example of infinite-dimensional continuous-time
dynamical systems is discussed, namely, reaction-diffusion systems.
Chapter 2. Topological equivalence, bifurcations, and structural

stability of dynamical systems. Two dynamical systems are called topo-
logically equivalent if their phase portraits are homeomorphic. This notion is

1Renamed in 1992 as the Institute of Mathematical Problems of Biology
(IMPB).
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then used to define structurally stable systems and bifurcations. The topo-
logical classification of generic (hyperbolic) equilibria and fixed points of
dynamical systems defined by autonomous ordinary differential equations
(ODEs) and iterated maps is given, and the geometry of the phase portrait
near such points is studied. A bifurcation diagram of a parameter-dependent
system is introduced as a partitioning of its parameter space induced by
the topological equivalence of corresponding phase portraits. We introduce
the notion of codimension (codim for short) in a rather naive way as the
number of conditions defining the bifurcation. Topological normal forms
(universal unfoldings of nondegenerate parameter-dependent systems) for
bifurcations are defined, and an example of such a normal form is demon-
strated for the Hopf bifurcation.
Chapter 3. One-parameter bifurcations of equilibria in continu-

ous-time dynamical systems. Two generic codim 1 bifurcations – tan-
gent (fold) and Andronov-Hopf – are studied in detail following the same
general approach: (1) formulation of the corresponding topological normal
form and analysis of its bifurcations; (2) reduction of a generic parameter-
dependent system to the normal form up to terms of a certain order; and
(3) demonstration that higher-order terms do not affect the local bifur-
cation diagram. Step 2 (finite normalization) is performed by means of
polynomial changes of variables with unknown coefficients that are then
fixed at particular values to simplify the equations. Relevant normal form
and nondegeneracy (genericity) conditions for a bifurcation appear natu-
rally at this step. An example of the Hopf bifurcation in a predator-prey
system is analyzed.
Chapter 4. One-parameter bifurcations of fixed points in discre-

te-time dynamical systems. The approach formulated in Chapter 3 is
applied to study tangent (fold), flip (period-doubling), and Hopf (Neimark-
Sacker) bifurcations of discrete-time dynamical systems. For the Neimark-
Sacker bifurcation, as is known, a normal form so obtained captures only
the appearance of a closed invariant curve but does not describe the orbit
structure on this curve. Feigenbaum’s universality in the cascade of period
doublings is explained geometrically using saddle properties of the period-
doubling map in an appropriate function space.
Chapter 5. Bifurcations of equilibria and periodic orbits in n-

dimensional dynamical systems. This chapter explains how the results
on codim 1 bifurcations from the two previous chapters can be applied to
multidimensional systems. A geometrical construction is presented upon
which a proof of the Center Manifold Theorem is based. Explicit formulas
are derived for the quadratic coefficients of the Taylor approximations to
the center manifold for all codim 1 bifurcations in both continuous and
discrete time. An example is discussed where the linear approximation of
the center manifold leads to the wrong stability analysis of an equilibrium.
We present in detail a projection method for center manifold computation
that avoids the transformation of the system into its eigenbasis. Using this



xii Preface to the First Edition

method, we derive a compact formula to determine the direction of a Hopf
bifurcation in multidimensional systems. Finally, we consider a reaction-
diffusion system on an interval to illustrate the necessary modifications of
the technique to handle the Hopf bifurcation in some infinite-dimensional
systems.
Chapter 6. Bifurcations of orbits homoclinic and heteroclinic

to hyperbolic equilibria. This chapter is devoted to the generation of
periodic orbits via homoclinic bifurcations. A theorem due to Andronov
and Leontovich describing homoclinic bifurcation in planar continuous-time
systems is formulated. A simple proof is given which uses a constructive
C1-linearization of a system near its saddle point. All codim 1 bifurcations
of homoclinic orbits to saddle and saddle-focus equilibrium points in three-
dimensional ODEs are then studied. The relevant theorems by Shil’nikov
are formulated together with the main geometrical constructions involved
in their proofs. The role of the orientability of invariant manifolds is em-
phasized. Generalizations to more dimensions are also discussed. An appli-
cation of Shil’nikov’s results to nerve impulse modeling is given.
Chapter 7. Other one-parameter bifurcations in continuous-

time dynamical systems. This chapter treats some bifurcations of ho-
moclinic orbits to nonhyperbolic equilibrium points, including the case of
several homoclinic orbits to a saddle-saddle point, which provides one of
the simplest mechanisms for the generation of an infinite number of peri-
odic orbits. Bifurcations leading to a change in the rotation number on an
invariant torus and some other global bifurcations are also reviewed. All
codim 1 bifurcations of equilibria and limit cycles in Z2-symmetric systems
are described together with their normal forms.
Chapter 8. Two-parameter bifurcations of equilibria in conti-

nuous-time dynamical systems. One-dimensional manifolds in the di-
rect product of phase and parameter spaces corresponding to the tangent
and Hopf bifurcations are defined and used to specify all possible codim 2
bifurcations of equilibria in generic continuous-time systems. Topological
normal forms are presented and discussed in detail for the cusp, Bogdanov-
Takens, and generalized Andronov-Hopf (Bautin) bifurcations. An example
of a two-parameter analysis of Bazykin’s predator-prey model is considered
in detail. Approximating symmetric normal forms for zero-Hopf and Hopf-
Hopf bifurcations are derived and studied, and their relationship with the
original problems is discussed. Explicit formulas for the critical normal form
coefficients are given for the majority of the codim 2 cases.
Chapter 9. Two-parameter bifurcations of fixed points in discre-

te-time dynamical systems. A list of all possible codim 2 bifurcations
of fixed points in generic discrete-time systems is presented. Topologi-
cal normal forms are obtained for the cusp and degenerate flip bifurca-
tions with explicit formulas for their coefficients. An approximate normal
form is presented for the Neimark-Sacker bifurcation with cubic degener-
acy (Chenciner bifurcation). Approximating normal forms are expressed
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in terms of continuous-time planar dynamical systems for all strong reso-
nances (1:1, 1:2, 1:3, and 1:4). The Taylor coefficients of these continuous-
time systems are explicitly given in terms of those of the maps in question.
A periodically forced predator-prey model is used to illustrate resonant
phenomena.
Chapter 10. Numerical analysis of bifurcations. This final chapter

deals with numerical analysis of bifurcations, which in most cases is the only
tool to attack real problems. Numerical procedures are presented for the
location and stability analysis of equilibria and the local approximation
of their invariant manifolds as well as methods for the location of limit
cycles (including orthogonal collocation). Several methods are discussed
for equilibrium continuation and detection of codim 1 bifurcations based
on predictor-corrector schemes. Numerical methods for continuation and
analysis of homoclinic bifurcations are also formulated.

Each chapter contains exercises, and we have provided hints for the most
difficult of them. The references and comments to the literature are sum-
marized at the end of each chapter as separate bibliographical notes. The
aim of these notes is mainly to provide a reader with information on fur-
ther reading. The end of a theorem’s proof (or its absence) is marked by
the symbol ✷, while that of a remark (example) is denoted by ♦ (✸),
respectively.

As is clear from this Preface, there are many important issues this book
does not touch. In fact, we study only the first bifurcations on a route to
chaos and try to avoid the detailed treatment of chaotic dynamics, which
requires more sophisticated mathematical tools. We do not consider im-
portant classes of dynamical systems such as Hamiltonian systems (e.g.,
KAM-theory and Melnikov methods are left outside the scope of this book).
Only introductory information is provided on bifurcations in systems with
symmetries. The list of omissions can easily be extended. Nevertheless, we
hope the reader will find the book useful, especially as an interface between
undergraduate and postgraduate studies.

This book would have never appeared without the encouragement and
help from many friends and colleagues to whom I am very much indebted.
The idea of such an application-oriented book on bifurcations emerged in
discussions and joint work with A.M. Molchanov, A.D. Bazykin, E.E. Shnol,
and A.I. Khibnik at the former Research Computing Centre of the USSR
Academy of Sciences (Pushchino). S. Rinaldi asked me to prepare and give a
course on nonlinear systems at the Politecnico di Milano that would be use-
ful for applied scientists and engineers. O. Diekmann (CWI, Amsterdam)
was the first to propose the conversion of these brief lecture notes into a
book. He also commented on some of the chapters and gave friendly sup-
port during the whole project. S. van Gils (TU Twente, Enschede) read the
manuscript and gave some very useful suggestions that allowed me to im-
prove the content and style. I am particularly thankful to A.R. Champneys
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of the University of Bristol, who reviewed the whole text and not only cor-
rected the language but also proposed many improvements in the selection
and presentation of the material. Certain topics have been discussed with J.
Sanders (VU/RIACA/CWI, Amsterdam), B. Werner (University of Ham-
burg), E. Nikolaev (IMPB, Pushchino), E. Doedel (Concordia University,
Montreal), B. Sandstede (IAAS, Berlin), M. Kirkilonis (CWI, Amsterdam),
J. de Vries (CWI, Amsterdam), and others, whom I would like to thank.
Of course, the responsibility for all remaining mistakes is mine. I would
also like to thank A. Heck (CAN, Amsterdam) and V.V. Levitin (IMPB,
Pushchino/CWI, Amsterdam) for computer assistance. Finally, I thank the
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) for pro-
viding financial support during my stay at CWI, Amsterdam.

Yuri A. Kuznetsov
Amsterdam
December 1994
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1
Introduction to Dynamical Systems

This chapter introduces some basic terminology. First, we define a dynam-
ical system and give several examples, including symbolic dynamics. Then
we introduce the notions of orbits, invariant sets, and their stability. As
we shall see while analyzing the Smale horseshoe, invariant sets can have
very complex structures. This is closely related to the fact discovered in
the 1960s that rather simple dynamical systems may behave “randomly,”
or “chaotically.” Finally, we discuss how differential equations can define
dynamical systems in both finite- and infinite-dimensional spaces.

1.1 Definition of a dynamical system

The notion of a dynamical system is the mathematical formalization of the
general scientific concept of a deterministic process. The future and past
states of many physical, chemical, biological, ecological, economical, and
even social systems can be predicted to a certain extent by knowing their
present state and the laws governing their evolution. Provided these laws
do not change in time, the behavior of such a system could be considered
as completely defined by its initial state. Thus, the notion of a dynamical
system includes a set of its possible states (state space) and a law of the
evolution of the state in time. Let us discuss these ingredients separately
and then give a formal definition of a dynamical system.
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FIGURE 1.1. Classical pendulum.

1.1.1 State space
All possible states of a system are characterized by the points of some set X.
This set is called the state space of the system. Actually, the specification of
a point x ∈ X must be sufficient not only to describe the current “position”
of the system but also to determine its evolution. Different branches of
science provide us with appropriate state spaces. Often, the state space is
called a phase space, following a tradition from classical mechanics.

Example 1.1 (Pendulum) The state of an ideal pendulum is com-
pletely characterized by defining its angular displacement ϕ (mod 2π) from
the vertical position and the corresponding angular velocity ϕ̇ (see Figure
1.1). Notice that the angle ϕ alone is insufficient to determine the future
state of the pendulum. Therefore, for this simple mechanical system, the
state space is X = S

1×R
1, where S

1 is the unit circle parametrized by the
angle, and R

1 is the real axis corresponding to the set of all possible veloc-
ities. The set X can be considered as a smooth two-dimensional manifold
(cylinder) in R

3. ✸

Example 1.2 (General mechanical system) In classical mechanics,
the state of an isolated system with s degrees of freedom is characterized
by a 2s-dimensional real vector:

(q1, q2, . . . , qs, p1, p2, . . . , ps)T ,

where qi are the generalized coordinates, while pi are the corresponding
generalized momenta. Therefore, in this case, X = R

2s. If k coordinates are
cyclic, X = S

k × R
2s−k. In the case of the pendulum, s = k = 1, q1 = ϕ,

and we can take p1 = ϕ̇. ✸

Example 1.3 (Quantum system) In quantum mechanics, the state of
a system with two observable states is characterized by a vector

ψ =
(

a1
a2

)
∈ C

2,
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where ai, i = 1, 2, are complex numbers called amplitudes, satisfying the
condition

|a1|2 + |a2|2 = 1.

The probability of finding the system in the ith state is equal to pi =
|ai|2, i = 1, 2. ✸

Example 1.4 (Chemical reactor) The state of a well-mixed isothermic
chemical reactor is defined by specifying the volume concentrations of the
n reacting chemical substances

c = (c1, c2, . . . , cn)T .

Clearly, the concentrations ci must be nonnegative. Thus,

X = {c : c = (c1, c2, . . . , cn)T ∈ R
n, ci ≥ 0}.

If the concentrations change from point to point, the state of the reactor is
defined by the reagent distributions ci(x), i = 1, 2, . . . , n. These functions
are defined in a bounded spatial domain Ω, the reactor interior, and charac-
terize the local concentrations of the substances near a point x. Therefore,
the state space X in this case is a function space composed of vector-valued
functions c(x), satisfying certain smoothness and boundary conditions. ✸

Example 1.5 (Ecological system) Similar to the previous example,
the state of an ecological community within a certain domain Ω can be
described by a vector with nonnegative components

N = (N1, N2, . . . , Nn)T ∈ R
n,

or by a vector function

N(x) = (N1(x), N2(x), . . . , Nn(x))T , x ∈ Ω,

depending on whether the spatial distribution is essential for an adequate
description of the dynamics. Here Ni is the number (or density) of the ith
species or other group (e.g., predators or prey). ✸

Example 1.6 (Symbolic dynamics) To complete our list of state
spaces, consider a set Ω2 of all possible bi-infinite sequences of two symbols,
say {1, 2}. A point ω ∈ X is the sequence

ω = {. . . , ω−2, ω−1, ω0, ω1, ω2, . . .},

where ωi ∈ {1, 2}. Note that the zero position in a sequence must be pointed
out; for example, there are two distinct periodic sequences that can be
written as

ω = {. . . , 1, 2, 1, 2, 1, 2, . . .},
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one with ω0 = 1, and the other with ω0 = 2. The space Ω2 will play an
important role in the following.

Sometimes, it is useful to identify two sequences that differ only by a shift
of the origin. Such sequences are called equivalent. The classes of equivalent
sequences form a set denoted by Ω̃2. The two periodic sequences mentioned
above represent the same point in Ω̃2. ✸

In all the above examples, the state space has a certain natural struc-
ture, allowing for comparison between different states. More specifically, a
distance ρ between two states is defined, making these sets metric spaces.

In the examples from mechanics and in the simplest examples from chem-
istry and ecology, the state space was a real vector space R

n of some fi-
nite dimension n, or a (sub-)manifold (hypersurface) in this space. The
Euclidean norm can be used to measure the distance between two states
parametrized by the points x, y ∈ R

n, namely

ρ(x, y) = ‖x− y‖ =
√
〈x− y, x− y〉 =

√√√√ n∑
i=1

(xi − yi)2, (1.1)

where 〈·, ·〉 is the standard scalar product in R
n,

〈x, y〉 = xT y =
n∑

i=1

xiyi.

If necessary, the distance between two (close) points on a manifold can
be measured as the minimal length of a curve connecting these points
within the manifold. Similarly, the distance between two states ψ,ϕ of the
quantum system from Example 1.3 can be defined using the standard scalar
product in C

n,

〈ψ,ϕ〉 = ψ̄Tϕ =
n∑

i=1

ψ̄iϕi,

with n = 2. Meanwhile, 〈ψ,ψ〉 = 〈ϕ,ϕ〉 = 1.
When the state space is a function space, there is a variety of possible

distances, depending on the smoothness (differentiability) of the functions
allowed. For example, we can introduce a distance between two continuous
vector-valued real functions u(x) and v(x) defined in a bounded closed
domain Ω ∈ R

m by

ρ(u, v) = ‖u− v‖ = max
i=1,...,n

sup
x∈Ω

|ui(x)− vi(x)|.

Finally, in Example 1.6 the distance between two sequences ω, θ ∈ Ω2
can be measured by

ρ(ω, θ) =
+∞∑

k=−∞
δωkθk

2−|k|, (1.2)
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where

δωkθk
=

{
0 if ωk = θk,
1 if ωk = θk.

According to this formula, two sequences are considered to be close if they
have a long block of coinciding elements centered at position zero (check!).

Using the previously defined distances, the introduced state spaces X are
complete metric spaces. Loosely speaking, this means that any sequence of
states, all of whose sufficiently future elements are separated by an arbi-
trarily small distance, is convergent (the space has no “holes”).

According to the dimension of the underlying state space X, the dy-
namical system is called either finite- or infinite-dimensional. Usually, one
distinguishes finite-dimensional systems defined in X = R

n from those de-
fined on manifolds.

1.1.2 Time
The evolution of a dynamical system means a change in the state of the
system with time t ∈ T , where T is a number set. We will consider two
types of dynamical systems: those with continuous (real) time T = R

1,
and those with discrete (integer) time T = Z. Systems of the first type
are called continuous-time dynamical systems, while those of the second
are termed discrete-time dynamical systems. Discrete-time systems appear
naturally in ecology and economics when the state of a system at a certain
moment of time t completely determines its state after a year, say at t+ 1.

1.1.3 Evolution operator
The main component of a dynamical system is an evolution law that de-
termines the state xt of the system at time t, provided the initial state x0
is known. The most general way to specify the evolution is to assume that
for given t ∈ T a map ϕt is defined in the state space X,

ϕt : X → X,

which transforms an initial state x0 ∈ X into some state xt ∈ X at time t:

xt = ϕtx0.

The map ϕt is often called the evolution operator of the dynamical system.
It might be known explicitly; however, in most cases, it is defined indirectly
and can be computed only approximately. In the continuous-time case, the
family {ϕt}t∈T of evolution operators is called a flow.

Note that ϕtx may not be defined for all pairs (x, t) ∈ X×T . Dynamical
systems with evolution operator ϕt defined for both t ≥ 0 and t < 0 are
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called invertible. In such systems the initial state x0 completely defines not
only the future states of the system, but its past behavior as well. However,
it is useful to consider also dynamical systems whose future behavior for t >
0 is completely determined by their initial state x0 at t = 0, but the history
for t < 0 can not be unambigously reconstructed. Such (noninvertible)
dynamical systems are described by evolution operators defined only for
t ≥ 0 (i.e., for t ∈ R

1
+ or Z+). In the continuous-time case, they are called

semiflows.
It is also possible that ϕtx0 is defined only locally in time, for example,

for 0 ≤ t < t0, where t0 depends on x0 ∈ X. An important example of
such a behavior is a “blow-up,” when a continuous-time system in X = R

n

approaches infinity within a finite time, i.e.,

‖ϕtx0‖ → +∞,

for t→ t0.
The evolution operators have two natural properties that reflect the de-

terministic character of the behavior of dynamical systems. First of all,

(DS.0) ϕ0 = id,

where id is the identity map on X, id x = x for all x ∈ X. The property
(DS.0) implies that the system does not change its state “spontaneously.”
The second property of the evolution operators reads

(DS.1) ϕt+s = ϕt ◦ ϕs.

It means that
ϕt+sx = ϕt(ϕsx)

for all x ∈ X and t, s ∈ T , such that both sides of the last equation are
defined.1 Essentially, the property (DS.1) states that the result of the evo-
lution of the system in the course of t+ s units of time, starting at a point
x ∈ X, is the same as if the system were first allowed to change from the
state x over only s units of time and then evolved over the next t units
of time from the resulting state ϕsx (see Figure 1.2). This property means
that the law governing the behavior of the system does not change in time:
The system is “autonomous.”

For invertible systems, the evolution operator ϕt satisfies the property
(DS.1) for t and s both negative and nonnegative. In such systems, the
operator ϕ−t is the inverse to ϕt, (ϕt)−1 = ϕ−t, since

ϕ−t ◦ ϕt = id.

1Whenever possible, we will avoid explicit statements on the domain of defi-
nition of ϕtx.
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FIGURE 1.2. Evolution operator.

A discrete-time dynamical system with integer t is fully specified by
defining only one map f = ϕ1, called “time-one map.” Indeed, using (DS.1),
we obtain

ϕ2 = ϕ1 ◦ ϕ1 = f ◦ f = f2,

where f2 is the second iterate of the map f . Similarly,

ϕk = fk

for all k > 0. If the discrete-time system is invertible, the above equation
holds for k ≤ 0, where f0 = id.

Finally, let us point out that, for many systems, ϕtx is a continuous
function of x ∈ X, and if t ∈ R

1, it is also continuous in time. Here,
the continuity is supposed to be defined with respect to the corresponding
metric or norm in X. Furthermore, many systems defined on R

n, or on
smooth manifolds in R

n, are such that ϕtx is smooth as a function of
(x, t). Such systems are called smooth dynamical systems.

1.1.4 Definition of a dynamical system
Now we are able to give a formal definition of a dynamical system.

Definition 1.1 A dynamical system is a triple {T,X, ϕt}, where T is a
time set, X is a state space, and ϕt : X → X is a family of evolution
operators parametrized by t ∈ T and satisfying the properties (DS.0) and
(DS.1).

Let us illustrate the definition by two explicit examples.

Example 1.7 (A linear planar system) Consider the plane X = R
2

and a family of linear nonsingular transformations on X given by the matrix
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depending on t ∈ R
1:

ϕt =
(

eλt 0
0 eµt

)
,

where λ, µ = 0 are real numbers. Obviously, it specifies a continuous-time
dynamical system on X. The system is invertible and is defined for all
(x, t). The map ϕt is continuous (and smooth) in x, as well as in t. ✸

Example 1.8 (Symbolic dynamics) Take the space X = Ω2 of all
bi-infinite sequences of two symbols {1, 2} introduced in Example 1.6. Con-
sider a map σ : X → X, which transforms the sequence

ω = {. . . , ω−2, ω−1, ω0, ω1, ω2, . . .} ∈ X

into the sequence θ = σ(ω),

θ = {. . . , θ−2, θ−1, θ0, θ1, θ2, . . .} ∈ X,

where
θk = ωk+1, k ∈ Z.

The map σ merely shifts the sequence by one position to the left. It is
called a shift map. The shift map defines a discrete-time dynamical system
on X, ϕk = σk, that is invertible (find ϕ−1). Notice that two sequences, θ
and ω, are equivalent if and only if θ = σk0(ω) for some k0 ∈ Z. ✸

Later on in the book, we will encounter many different examples of dy-
namical systems and will study them in detail.

1.2 Orbits and phase portraits

Throughout the book we use a geometrical point of view on dynamical
systems. We shall always try to present their properties in geometrical
images, since this facilitates their understanding. The basic geometrical
objects associated with a dynamical system {T,X, ϕt} are its orbits in the
state space and the phase portrait composed of these orbits.

Definition 1.2 An orbit starting at x0 is an ordered subset of the state
space X,

Or(x0) = {x ∈ X : x = ϕtx0, for all t ∈ T such that ϕtx0 is defined}.
Orbits of a continuous-time system with a continuous evolution operator

are curves in the state space X parametrized by the time t and oriented by
its direction of increase (see Figure 1.3). Orbits of a discrete-time system are
sequences of points in the state space X enumerated by increasing integers.
Orbits are often also called trajectories. If y0 = ϕt0x0 for some t0, the
sets Or(x0) and Or(y0) coincide. For example, two equivalent sequences
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FIGURE 1.3. Orbits of a continuous-time system.

θ, ω ∈ Ω2 generate the same orbit of the symbolic dynamics {Z,Ω2, σ
k}.

Thus, all different orbits of the symbolic dynamics are represented by points
in the set Ω̃2 introduced in Example 1.6.

The simplest orbits are equilibria.

Definition 1.3 A point x0 ∈ X is called an equilibrium (fixed point) if
ϕtx0 = x0 for all t ∈ T .

The evolution operator maps an equilibrium onto itself. Equivalently,
a system placed at an equilibrium remains there forever. Thus, equilibria
represent the simplest mode of behavior of the system. We will reserve the
name “equilibrium” for continuous-time dynamical systems, while using
the term “fixed point” for corresponding objects of discrete-time systems.
The system from Example 1.7 obviously has a single equilibrium at the
origin, x0 = (0, 0)T . If λ, µ < 0, all orbits converge to x0 as t→ +∞ (this
is the simplest mode of asymptotic behavior for large time). The symbolic
dynamics from Example 1.7 have only two fixed points, represented by the
sequences

ω1 = {. . . , 1, 1, 1, . . .}
and

ω2 = {. . . , 2, 2, 2, . . .}.
Clearly, the shift σ does not change these sequences: σ(ω1,2) = ω1,2.

Another relatively simple type of orbit is a cycle.

Definition 1.4 A cycle is a periodic orbit, namely a nonequilibrium orbit
L0, such that each point x0 ∈ L0 satisfies ϕt+T0x0 = ϕtx0 with some
T0 > 0, for all t ∈ T .

The minimal T0 with this property is called the period of the cycle L0. If a
system starts its evolution at a point x0 on the cycle, it will return exactly
to this point after every T0 units of time. The system exhibits periodic
oscillations. In the continuous-time case a cycle L0 is a closed curve (see
Figure 1.4(a)).
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FIGURE 1.4. Periodic orbits in (a) a continuous-time and (b) a discrete-time
system.

Definition 1.5 A cycle of a continuous-time dynamical system, in a neigh-
borhood of which there are no other cycles, is called a limit cycle.

In the discrete-time case a cycle is a (finite) set of points

x0, f(x0), f2(x0), . . . , fN0(x0) = x0,

where f = ϕ1 and the period T0 = N0 is obviously an integer (Figure
1.4(b)). Notice that each point of this set is a fixed point of the N0th
iterate fN0 of the map f . The system from Example 1.7 has no cycles. In
contrast, the symbolic dynamics (Example 1.8) have an infinite number
of cycles. Indeed, any periodic sequence composed of repeating blocks of
length N0 > 1 represents a cycle of period N0, since we need to apply the
shift σ exactly N0 times to transform such a sequence into itself. Clearly,
there is an infinite (though countable) number of such periodic sequences.
Equivalent periodic sequences define the same periodic orbit.

We can roughly classify all possible orbits in dynamical systems into
fixed points, cycles, and “all others.”

Definition 1.6 The phase portrait of a dynamical system is a partitioning
of the state space into orbits.

The phase portrait contains a lot of information on the behavior of a
dynamical system. By looking at the phase portrait, we can determine
the number and types of asymptotic states to which the system tends as
t → +∞ (and as t → −∞ if the system is invertible). Of course, it is
impossible to draw all orbits in a figure. In practice, only several key orbits
are depicted in the diagrams to present phase portraits schematically (as
we did in Figure 1.3). A phase portrait of a continuous-time dynamical
system could be interpreted as an image of the flow of some fluid, where
the orbits show the paths of “liquid particles” as they follow the current.
This analogy explains the use of the term “flow” for the evolution operator
in the continuous-time case.
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1.3 Invariant sets

1.3.1 Definition and types
To further classify elements of a phase portrait – in particular, possible
asymptotic states of the system – the following definition is useful.

Definition 1.7 An invariant set of a dynamical system {T,X, ϕt} is a
subset S ⊂ X such that x0 ∈ S implies ϕtx0 ∈ S for all t ∈ T .

The definition means that ϕtS ⊆ S for all t ∈ T . Clearly, an invariant set
S consists of orbits of the dynamical system. Any individual orbit Or(x0)
is obviously an invariant set. We always can restrict the evolution operator
ϕt of the system to its invariant set S and consider a dynamical system
{T, S, ψt}, where ψt : S → S is the map induced by ϕt in S. We will use
the symbol ϕt for the restriction, instead of ψt.

If the state space X is endowed with a metric ρ, we could consider closed
invariant sets in X. Equilibria (fixed points) and cycles are clearly the
simplest examples of closed invariant sets. There are other types of closed
invariant sets. The next more complex are invariant manifolds, that is,
finite-dimensional hypersurfaces in some space R

K . Figure 1.5 sketches an
invariant two-dimensional torus T

2 of a continuous-time dynamical system
in R

3 and a typical orbit on that manifold. One of the major discoveries in
dynamical systems theory was the recognition that very simple, invertible,
differentiable dynamical systems can have extremely complex closed invari-
ant sets containing an infinite number of periodic and nonperiodic orbits.
Smale constructed the most famous example of such a system. It provides
an invertible discrete-time dynamical system on the plane possessing an
invariant set Λ, whose points are in one-to-one correspondence with all the
bi-infinite sequences of two symbols. The invariant set Λ is not a manifold.
Moreover, the restriction of the system to this invariant set behaves, in a
certain sense, as the symbolic dynamics specified in Example 1.8. That is,
how we can verify that it has an infinite number of cycles. Let us explore
Smale’s example in some detail.

FIGURE 1.5. Invariant torus.
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FIGURE 1.6. Construction of the horseshoe map.

1.3.2 Example 1.9 (Smale horseshoe)
Consider the geometrical construction in Figure 1.6. Take a square S on the
plane (Figure 1.6(a)). Contract it in the horizontal direction and expand
it in the vertical direction (Figure 1.6(b)). Fold it in the middle (Figure
1.6(c)) and place it so that it intersects the original square S along two
vertical strips (Figure 1.6(d)). This procedure defines a map f : R

2 → R
2.

The image f(S) of the square S under this transformation resembles a
horseshoe. That is why it is called a horseshoe map. The exact shape of the
image f(S) is irrelevant; however, let us assume for simplicity that both
the contraction and expansion are linear and that the vertical strips in the
intersection are rectangles. The map f can be made invertible and smooth
together with its inverse. The inverse map f−1 transforms the horseshoe
f(S) back into the square S through stages (d)–(a). This inverse transfor-
mation maps the dotted square S shown in Figure 1.6(d) into the dotted
horizontal horseshoe in Figure 1.6(a), which we assume intersects the orig-
inal square S along two horizontal rectangles.

Denote the vertical strips in the intersection S ∩ f(S) by V1 and V2,

S ∩ f(S) = V1 ∪ V1

(see Figure 1.7(a)). Now make the most important step: Perform the second
iteration of the map f . Under this iteration, the vertical strips V1,2 will be
transformed into two “thin horseshoes” that intersect the square S along
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FIGURE 1.7. Vertical and horizontal strips.

four narrow vertical strips: V11, V21, V22, and V12 (see Figure 1.7(b)). We
write this as

S ∩ f(S) ∩ f2(S) = V11 ∪ V21 ∪ V22 ∪ V12.

Similarly,
S ∩ f−1(S) = H1 ∪H2,

where H1,2 are the horizontal strips shown in Figure 1.7(c), and

S ∩ f−1(S) ∩ f−2(S) = H11 ∪H12 ∪H22 ∪H21,

with four narrow horizontal strips Hij (Figure 1.7(d)). Notice that f(Hi) =
Vi, i = 1, 2, as well as f2(Hij) = Vij , i, j = 1, 2 (Figure 1.8).

H

f  H

(a) (b) (c)

H

H
f  H

f

H

21

22

12

11

f

(      )

(      )

12(      ) 22

f  H 21

V 12V2111V 22V

(      )f  H 11

FIGURE 1.8. Transformation f2(Hij) = Vij , i, j = 1, 2.

Iterating the map f further, we obtain 2k vertical strips in the intersec-
tion S ∩ fk(S), k = 1, 2, . . .. Similarly, iteration of f−1 gives 2k horizontal
strips in the intersection S ∩ f−k(S), k = 1, 2, . . ..

Most points leave the square S under iteration of f or f−1. Forget about
such points, and instead consider a set composed of all points in the plane
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FIGURE 1.9. Location of the invariant set.

that remain in the square S under all iterations of f and f−1:

Λ = {x ∈ S : fk(x) ∈ S, for all k ∈ Z}.
Clearly, if the set Λ is nonempty, it is an invariant set of the discrete-time
dynamical system defined by f . This set can be alternatively presented as
an infinite intersection,

Λ = · · ·∩f−k(S)∩· · ·∩f−2(S)∩f−1(S)∩S∩f(S)∩f2(S)∩· · · fk(S)∩· · ·
(any point x ∈ Λ must belong to each of the involved sets). It is clear from
this representation that the set Λ has a peculiar shape. Indeed, it should
be located within

f−1(S) ∩ S ∩ f(S),

which is formed by four small squares (see Figure 1.9(a)). Furthermore, it
should be located inside

f−2(S) ∩ f−1(S) ∩ S ∩ f(S) ∩ f2(S),

which is the union of sixteen smaller squares (Figure 1.9(b)), and so forth.
In the limit, we obtain a Cantor (fractal) set.

Lemma 1.1 There is a one-to-one correspondence h : Λ → Ω2, between
points of Λ and all bi-infinite sequences of two symbols.

Proof:
For any point x ∈ Λ, define a sequence of two symbols {1, 2}

ω = {. . . , ω−2, ω−1, ω0, ω1, ω2, . . .}
by the formula

ωk =
{

1 if fk(x) ∈ H1,
2 if fk(x) ∈ H2,

(1.3)

for k = 0,±1,±2, . . .. Here, f0 = id, the identity map. Clearly, this formula
defines a map h : Λ → Ω2, which assigns a sequence to each point of the
invariant set.
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To verify that this map is invertible, take a sequence ω ∈ Ω2, fix m > 0,
and consider a set Rm(ω) of all points x ∈ S, not necessarily belonging to
Λ, such that

fk(x) ∈ Hωk
,

for −m ≤ k ≤ m − 1. For example, if m = 1, the set R1 is one of the
four intersections Vj ∩Hk. In general, Rm belongs to the intersection of a
vertical and a horizontal strip. These strips are getting thinner and thinner
as m→ +∞, approaching in the limit a vertical and a horizontal segment,
respectively. Such segments obviously intersect at a single point x with
h(x) = ω. Thus, h : Λ → Ω2 is a one-to-one map. It implies that Λ is
nonempty. ✷

Remark:
The map h : Λ → Ω2 is continuous together with its inverse (a homeo-

morphism) if we use the standard metric (1.1) in S ⊂ R
2 and the metric

given by (1.2) in Ω2. ♦
Consider now a point x ∈ Λ and its corresponding sequence ω = h(x),

where h is the map previously constructed. Next, consider a point y = f(x),
that is, the image of x under the horseshoe map f . Since y ∈ Λ by definition,
there is a sequence that corresponds to y : θ = h(y). Is there a relation
between these sequences ω and θ? As one can easily see from (1.3), such a
relation exists and is very simple. Namely,

θk = ωk+1, k ∈ Z,

since fk(f(x)) = fk+1(x). In other words, the sequence θ can be obtained
from the sequence ω by the shift map σ, defined in Example 1.8:

θ = σ(ω).

Therefore, the restriction of f to its invariant set Λ ⊂ R
2 is equivalent to

the shift map σ on the set of sequences Ω2. Let us formulate this result as
the following short lemma.

Lemma 1.2 h(f(x)) = σ(h(x)), for all x ∈ Λ.

We can write an even shorter one:

f |Λ = h−1 ◦ σ ◦ h.
Combining Lemmas 1.1 and 1.2 with obvious properties of the shift dy-

namics on Ω2, we get a theorem giving a rather complete description of the
behavior of the horseshoe map.

Theorem 1.1 (Smale [1963]) The horseshoe map f has a closed invari-
ant set Λ that contains a countable set of periodic orbits of arbitrarily long
period, and an uncountable set of nonperiodic orbits, among which there
are orbits passing arbitrarily close to any point of Λ. ✷
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The dynamics on Λ have certain features of “random motion.” Indeed,
for any sequence of two symbols we generate “randomly,” thus prescribing
the phase point to visit the horizontal strips H1 and H2 in a certain order,
there is an orbit showing this feature among those composing Λ.

The next important feature of the horseshoe example is that we can
slightly perturb the constructed map f without qualitative changes to its
dynamics. Clearly, Smale’s construction is based on a sufficiently strong
contraction/expansion, combined with a folding. Thus, a (smooth) pertur-
bation f̃ will have similar vertical and horizontal strips, which are no longer
rectangles but curvilinear regions. However, provided the perturbation is
sufficiently small (see the next chapter for precise definitions), these strips
will shrink to curves that deviate only slightly from vertical and horizon-
tal lines. Thus, the construction can be carried through verbatim, and the
perturbed map f̃ will have an invariant set Λ̃ on which the dynamics are
completely described by the shift map σ on the sequence space Ω2. As we
will discuss in Chapter 2, this is an example of structurally stable behavior.

Remark:
One can precisely specify the contraction/expansion properties required

by the horseshoe map in terms of expanding and contracting cones of the
Jacobian matrix fx (see the literature cited in the bibliographical notes in
Appendix 2 to this chapter). ♦

1.3.3 Stability of invariant sets
To represent an observable asymptotic state of a dynamical system, an
invariant set S0 must be stable; in other words, it should “attract” nearby
orbits. Suppose we have a dynamical system {T,X, ϕt} with a complete
metric state space X. Let S0 be a closed invariant set.

Definition 1.8 An invariant set S0 is called stable if

(i) for any sufficiently small neighborhood U ⊃ S0 there exists a neigh-
borhood V ⊃ S0 such that ϕtx ∈ U for all x ∈ V and all t > 0;

(ii) there exists a neighborhood U0 ⊃ S0 such that ϕtx → S0 for all
x ∈ U0, as t→ +∞.

If S0 is an equilibrium or a cycle, this definition turns into the standard
definition of stable equilibria or cycles. Property (i) of the definition is called
Lyapunov stability. If a set S0 is Lyapunov stable, nearby orbits do not leave
its neighborhood. Property (ii) is sometimes called asymptotic stability.
There are invariant sets that are Lyapunov stable but not asymptotically
stable (see Figure 1.10(a)). In contrast, there are invariant sets that are
attracting but not Lyapunov stable, since some orbits starting near S0
eventually approach S0, but only after an excursion outside a small but
fixed neighborhood of this set (see Figure 1.10(b)).
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FIGURE 1.10. (a) Lyapunov versus (b) asymptotic stability.

If x0 is a fixed point of a finite-dimensional, smooth, discrete-time dy-
namical system, then sufficient conditions for its stability can be formulated
in terms of the Jacobian matrix evaluated at x0.

Theorem 1.2 Consider a discrete-time dynamical system

x �→ f(x), x ∈ R
n,

where f is a smooth map. Suppose it has a fixed point x0, namely f(x0) =
x0, and denote by A the Jacobian matrix of f(x) evaluated at x0, A =
fx(x0). Then the fixed point is stable if all eigenvalues µ1, µ2, . . . , µn of A
satisfy |µ| < 1. ✷

The eigenvalues of a fixed point are usually called multipliers. In the
linear case the theorem is obvious from the Jordan normal form. Theorem
1.2, being applied to the N0th iterate fN0 of the map f at any point of
the periodic orbit, also gives a sufficient condition for the stability of an
N0-cycle.

Another important case where we can establish the stability of a fixed
point of a discrete-time dynamical system is provided by the following
theorem.

Theorem 1.3 (Contraction Mapping Principle) Let X be a complete
metric space with distance defined by ρ. Assume that there is a map f : X →
X that is continuous and that satisfies, for all x, y ∈ X,

ρ(f(x), f(y)) ≤ λρ(x, y),

with some 0 < λ < 1. Then the discrete-time dynamical system {Z+, X, f
k}

has a stable fixed point x0 ∈ X. Moreover, fk(x) → x0 as k → +∞, starting
from any point x ∈ X. ✷

The proof of this fundamental theorem can be found in any text on math-
ematical analysis or differential equations. Notice that there is no restric-
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tion on the dimension of the space X: It can be, for example, an infinite-
dimensional function space. Another important difference from Theorem
1.2 is that Theorem 1.3 guarantees the existence and uniqueness of the
fixed point x0, whereas this has to be assumed in Theorem 1.2. Actually,
the map f from Theorem 1.2 is a contraction near x0, provided an ap-
propriate metric (norm) in R

n is introduced. The Contraction Mapping
Principle is a powerful tool: Using this principle, we can prove the Implicit
Function Theorem, the Inverse Function Theorem, as well as Theorem 1.4
ahead. We will apply the Contraction Mapping Principle in Chapter 4 to
prove the existence, uniqueness, and stability of a closed invariant curve
that appears under parameter variation from a fixed point of a generic pla-
nar map. Notice also that Theorem 1.3 gives global asymptotic stability:
Any orbit of {Z+, X, f

k} converges to x0.
Finally, let us point out that the invariant set Λ of the horseshoe map is

not stable. However, there are similar invariant fractal sets that are stable.
Such objects are called strange attractors.

1.4 Differential equations and dynamical systems

The most common way to define a continuous-time dynamical system is by
differential equations. Suppose that the state space of a system is X = R

n

with coordinates (x1, x2, . . . , xn). If the system is defined on a manifold,
these can be considered as local coordinates on it. Very often the law of
evolution of the system is given implicitly, in terms of the velocities ẋi as
functions of the coordinates (x1, x2, . . . , xn):

ẋi = fi(x1, x2, . . . , xn), i = 1, 2, . . . , n,

or in the vector form
ẋ = f(x), (1.4)

where the vector-valued function f : R
n → R

n is supposed to be sufficiently
differentiable (smooth). The function in the right-hand side of (1.4) is re-
ferred to as a vector field, since it assigns a vector f(x) to each point x.
Equation (1.4) represents a system of n autonomous ordinary differential
equations, ODEs for short. Let us revisit some of the examples introduced
earlier by presenting differential equations governing the evolution of the
corresponding systems.

Example 1.1 (revisited) The dynamics of an ideal pendulum are de-
scribed by Newton’s second law,

ϕ̈ = −k2 sinϕ,

with
k2 =

g

l
,



1.4 Differential equations and dynamical systems 19

where l is the pendulum length, and g is the gravity acceleration constant.
If we introduce ψ = ϕ̇, so that (ϕ,ψ) represents a point in the state space
X = S

1 × R
1, the above differential equation can be rewritten in the form

of equation (1.4): {
ϕ̇ = ψ,

ψ̇ = −k2 sinϕ.
(1.5)

Here

x =
(

ϕ
ψ

)
,

while

f

(
ϕ
ψ

)
=

(
ψ

−k2 sinϕ

)
. ✸

Example 1.2 (revisited) The behavior of an isolated energy-conserving
mechanical system with s degrees of freedom is determined by 2s Hamilto-
nian equations:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, (1.6)

for i = 1, 2, . . . , s. Here the scalar function H = H(q, p) is the Hamilton
function. The equations of motion of the pendulum (1.5) are Hamiltonian
equations with (q, p) = (ϕ,ψ) and

H(ϕ,ψ) =
ψ2

2
+ k2 cosϕ. ✸

Example 1.3 (revisited) The behavior of a quantum system with two
states having different energies can be described between “observations”
by the Heisenberg equation,

i�
dψ

dt
= Hψ,

where i2 = −1,

ψ =
(

a1
a2

)
, ai ∈ C

1.

The symmetric real matrix

H =
(

E0 −A
−A E0

)
, E0, A > 0,

is the Hamiltonian matrix of the system, and � is Plank’s constant divided
by 2π. The Heisenberg equation can be written as the following system of
two linear complex equations for the amplitudes ȧ1 = 1

i� (E0a1 −Aa2),

ȧ2 = 1
i� (−Aa1 + E0a2). ✸

(1.7)
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Example 1.4 (revisited) As an example of a chemical system, let us
consider the Brusselator [Lefever & Prigogine 1968]. This hypothetical sys-
tem is composed of substances that react through the following irreversible
stages:

A
k1−→ X

B + X
k2−→ Y + D

2X + Y
k3−→ 3X

X
k4−→ E.

Here capital letters denote reagents, while the constants ki over the arrows
indicate the corresponding reaction rates. The substances D and E do not
re-enter the reaction, while A and B are assumed to remain constant. Thus,
the law of mass action gives the following system of two nonlinear equations
for the concentrations [X] and [Y ]:

d[X]
dt

= k1[A]− k2[B][X]− k4[X] + k3[X]2[Y ],

d[Y ]
dt

= k2[B][X]− k3[X]2[Y ].

Linear scaling of the variables and time yields the Brusselator equations,{
ẋ = a− (b + 1)x + x2y,
ẏ = bx− x2y.

✸ (1.8)

Example 1.5 (revisited) One of the earliest models of ecosystems was
the system of two nonlinear differential equations proposed by Volterra
[1931]: {

Ṅ1 = αN1 − βN1N2,

Ṅ2 = −γN2 + δN1N2.
(1.9)

Here N1 and N2 are the numbers of prey and predators, respectively, in an
ecological community, α is the prey growth rate, γ is the predator mortality,
while β and δ describe the predators’ efficiency of consumption of the prey.
✸

Under very general conditions, solutions of ODEs define smooth conti-
nuous-time dynamical systems. Few types of differential equations can be
solved analytically (in terms of elementary functions). However, for smooth
right-hand sides, the solutions are guaranteed to exist according to the
following theorem. This theorem can be found in any textbook on ordinary
differential equations. We formulate it without proof.

Theorem 1.4 (Existence, uniqueness, and smooth dependence)
Consider a system of ordinary differential equations

ẋ = f(x), x ∈ R
n,
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where f : R
n → R

n is smooth in an open region U ⊂ R
n. Then there is a

unique function x = x(t, x0), x : R
1 × R

n → R
n, that is smooth in (t, x),

and satisfies, for each x0 ∈ U , the following conditions:

(i) x(0, x0) = x0;
(ii) there is an interval J = (−δ1, δ2), where δ1,2 = δ1,2(x0) > 0, such

that, for all t ∈ J ,
y(t) = x(t, x0) ∈ U,

and
ẏ(t) = f(y(t)). ✷

The degree of smoothness of x(t, x0) with respect to x0 in Theorem 1.4
is the same as that of f as a function of x. The function x = x(t, x0),
considered as a function of time t, is called a solution starting at x0. It
defines, for each x0 ∈ U , two objects: a solution curve

Cr(x0) = {(t, x) : x = x(t, x0), t ∈ J } ⊂ R
1 × R

n

and an orbit, which is the projection of Cr(x0) onto the state space,

Or(x0) = {x : x = x(t, x0), t ∈ J } ⊂ R
n

(see Figure 1.11). Both curves are parametrized by time t and oriented by
the direction of time advance. A nonzero vector f(x0) is tangent to the
orbit Or(x0) at x0. There is a unique orbit passing through a point x0 ∈ U .

Under the conditions of the theorem, the orbit either leaves U at t = −δ1
(and/or t = δ2), or stays in U forever; in the latter case, we can take
J = (−∞,+∞).

Now we can define the evolution operator ϕt : R
n → R

n by the formula

ϕtx0 = x(t, x0),

which assigns to x0 a point on the orbit through x0 that is passed t time
units later. Obviously, {R1,Rn, ϕt} is a continuous-time dynamical system
(check!). This system is invertible. Each evolution operator ϕt is defined for
x ∈ U and t ∈ J , where J depends on x0 and is smooth in x. In practice,
the evolution operator ϕt corresponding to a smooth system of ODEs can
be found numerically on fixed time intervals to within desired accuracy.
One of the standard ODE solvers can be used to accomplish this.

One of the major tasks of dynamical systems theory is to analyze the
behavior of a dynamical system defined by ODEs. Of course, one might
try to solve this problem by “brute force,” merely computing many orbits
numerically (by “simulations”). However, the most useful aspect of the
theory is that we can predict some features of the phase portrait of a system
defined by ODEs without actually solving the system. The simplest example
of such information is the number and positions of equilibria. Indeed, the
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FIGURE 1.11. Solution curve and orbit.

equilibria of a system defined by (1.4) are zeros of the vector field given by
its right-hand side:

f(x) = 0. (1.10)

Clearly, if f(x0) = 0, then ϕtx0 = x0 for all t ∈ R
1. The stability of an

equilibrium can also be detected without solving the system. For example,
sufficient conditions for an equilibrium x0 to be stable are provided by the
following classical theorem.

Theorem 1.5 (Lyapunov [1892]) Consider a dynamical system defined
by

ẋ = f(x), x ∈ R
n,

where f is smooth. Suppose that it has an equilibrium x0 (i.e., f(x0) = 0),
and denote by A the Jacobian matrix of f(x) evaluated at the equilibrium,
A = fx(x0). Then x0 is stable if all eigenvalues λ1, λ2, . . . , λn of A satisfy
Re λ < 0. ✷

Recall that the eigenvalues are roots of the characteristic equation

det(A− λI) = 0,

where I is the n× n identity matrix.
The theorem can easily be proved for a linear system

ẋ = Ax, x ∈ R
n,

by its explicit solution in a basis where A has Jordan normal form, as well
as for a general nonlinear system by constructing a Lyapunov function L(x)
near the equilibrium. More precisely, by a shift of coordinates, one can place
the equilibrium at the origin, x0 = 0, and find a certain quadratic form L(x)
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0x

FIGURE 1.12. Lyapunov function.

whose level surfaces L(x) = L0 surround the origin and are such that the
vector field points strictly inside each level surface, sufficiently close to the
equilibrium x0 (see Figure 1.12). Actually, the Lyapunov function L(x) is
the same for both linear and nonlinear systems and is fully determined by
the Jacobian matrix A. The details can be found in any standard text on
differential equations (see the bibliographical notes in Appendix 2). Note
also that the theorem can also be derived from Theorem 1.2 (see Exercise
7).

Unfortunately, in general it is impossible to tell by looking at the right-
hand side of (1.4), whether this system has cycles (periodic solutions).
Later on in the book we will formulate some efficient methods to prove
the appearance of cycles under small perturbation of the system (e.g., by
variation of parameters on which the system depends).

If the system has a smooth invariant manifold M , then its defining vector
field f(x) is tangent to M at any point x ∈ M , where f(x) = 0. For an
(n− 1)-dimensional smooth manifold M ⊂ R

n, which is locally defined by
g(x) = 0 for some scalar function g : R

n → R
1, the invariance means

〈∇g(x), f(x)〉 = 0.

Here ∇g(x) denotes the gradient

∇g(x) =
(
∂g(x)
∂x1

,
∂g(x)
∂x2

, . . . ,
∂g(x)
∂xn

)T

,

which is orthogonal to M at x.

1.5 Poincaré maps

There are many cases where discrete-time dynamical systems (maps) nat-
urally appear in the study of continuous-time dynamical systems defined
by differential equations. The introduction of such maps allows us to apply
the results concerning maps to differential equations. This is particularly
efficient if the resulting map is defined in a lower-dimensional space than
the original system. We will call maps arising from ODEs Poincaré maps.
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1.5.1 Time-shift maps
The simplest way to extract a discrete-time dynamical system from a conti-
nuous-time system {R1, X, ϕt} is to fix some T0 > 0 and consider a system
on X that is generated by iteration of the map f = ϕT0 . This map is called
a T0-shift map along orbits of {R1, X, ϕt}. Any invariant set of {R1, X, ϕt}
is an invariant set of the map f . For example, isolated fixed points of f are
located at those positions where {R1, X, ϕt} has isolated equilibria.

In this context, the inverse problem is more interesting: Is it possible to
construct a system of ODEs whose T0-shift map ϕT0 reproduces a given
smooth and invertible map f? If we require the discrete-time system to have
the same dimension as the continuous-time one, the answer is negative. The
simplest counterexample is provided by the linear scalar map

x �→ f(x) = −1
2
x, x ∈ R

1. (1.11)

The map in (1.11) has a single fixed point x0 = 0 that is stable. Clearly,
there is no scalar ODE

ẋ = F (x), x ∈ R
1, (1.12)

such that its evolution operator ϕT0 = f . Indeed, x0 = 0 must be an
equilibrium of (1.12), thus none of its orbits can “jump” over the origin
like those of (1.11). We will return to this inverse problem in Chapter 9,
where we explicitly construct ODE systems approximating certain maps.

0 x(     ,    )

t = 0

T 0t = 

x(   )f

T

(   ,         )

t

x

0

FIGURE 1.13. Suspension flow.

Remark:
If we allow for ODEs on manifolds, the inverse problem can always be

solved. Specifically, consider a map f : R
n → R

n that is assumed to be
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smooth, together with its inverse. Take a layer

{(t, x) ∈ R
1 × R

n : t ∈ [0, T0]}
(see Figure 1.13) and identify (“glue”) a point (T0, x) on the “top” face
of X with the point (0, f(x)) on the “bottom” face. Thus, the constructed
space X is an (n+1)-dimensional manifold with coordinates (t mod T0, x).
Specify now an autonomous system of ODEs on this manifold, called the
suspension, by the equations {

ṫ = 1,
ẋ = 0. (1.13)

The orbits of (1.13) (viewed as subsets of R
1×R

n) are straight lines inside
the layer interrupted by “jumps” from its “top” face to the “bottom” face.
Obviously, the T0-shift along orbits of (1.13) ϕT0 coincides on its invariant
hyperplane {t = 0} with the map f .

Let k > 0 satisfy the equation ekT0 = 2. The suspension system corre-
sponding to the map (1.11) has the same orbit structure as the system{

ṫ = 1,
ẋ = −kx,

defined on an (infinitely wide) Möbius strip obtained by identifying the
points (T0, x) and (0,−x) (see Figure 1.14). In both systems, x = 0 cor-
responds to a stable limit cycle of period T0 with the multiplier µ = − 1

2 .
♦

1.5.2 Poincaré map and stability of cycles
Consider a continuous-time dynamical system defined by

ẋ = f(x), x ∈ R
n, (1.14)

x

t

x

(  )

(  )

0t = T

0t = 
f  x

f  x

FIGURE 1.14. Stable limit cycle on the Möbius strip.
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with smooth f . Assume, that (1.14) has a periodic orbit L0. Take a point
x0 ∈ L0 and introduce a cross-section Σ to the cycle at this point (see
Figure 1.15). The cross-section Σ is a smooth hypersurface of dimension
n−1, intersecting L0 at a nonzero angle. Since the dimension of Σ is one less
than the dimension of the state space, we say that the hypersurface Σ is of
“codimension” one, codim Σ = 1. Suppose that Σ is defined near the point
x0 by the zero-level set of a smooth scalar function g : R

n → R
1, g(x0) = 0,

Σ = {x ∈ R
n : g(x) = 0}.

A nonzero intersection angle (“transversality”) means that the gradient

∇g(x) =
(
∂g(x)
∂x1

,
∂g(x)
∂x2

, . . . ,
∂g(x)
∂xn

)T

is not orthogonal to L0 at x0, that is,

〈∇g(x0), f(x0)〉 = 0,

where 〈·, ·〉 is the standard scalar product in R
n. The simplest choice of Σ

x 0
x(  )P

0

x

L

Σ

FIGURE 1.15. The Poincaré map associated with a cycle.

is a hyperplane orthogonal to the cycle L0 at x0. Such a cross-section is
obviously given by the zero-level set of the linear function

g(x) = 〈f(x0), x− x0〉.
Consider now orbits of (1.14) near the cycle L0. The cycle itself is an

orbit that starts at a point on Σ and returns to Σ at the same point
(x0 ∈ Σ). Since the solutions of (1.8) depend smoothly on their initial
points (Theorem 1.4), an orbit starting at a point x ∈ Σ sufficiently close
to x0 also returns to Σ at some point x̃ ∈ Σ near x0. Moreover, nearby
orbits will also intersect Σ transversally. Thus, a map P : Σ → Σ,

x �→ x̃ = P (x),

is constructed.
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Definition 1.9 The map P is called a Poincaré map associated with the
cycle L0.

The Poincaré map P is locally defined, is as smooth as the right-hand
side of (1.14), and is invertible near x0. The invertibility follows from
the invertibility of the dynamical system defined by (1.14). The inverse
map P−1 : Σ → Σ can be constructed by extending the orbits crossing Σ
backward in time until reaching their previous intersection with the cross-
section. The intersection point x0 is a fixed point of the Poincaré map:
P (x0) = x0.

Let us introduce local coordinates ξ = (ξ1, ξ2, . . . , ξn−1) on Σ such that
ξ = 0 corresponds to x0. Then the Poincaré map will be characterized by a
locally defined map P : R

n−1 → R
n−1, which transforms ξ corresponding

to x into ξ̃ corresponding to x̃,

P (ξ) = ξ̃.

The origin ξ = 0 of R
n−1 is a fixed point of the map P : P (0) = 0.

The stability of the cycle L0 is equivalent to the stability of the fixed point
ξ0 = 0 of the Poincaré map. Thus, the cycle is stable if all eigenvalues
(multipliers) µ1, µ2, . . . , µn−1 of the (n − 1) × (n − 1) Jacobian matrix of
P ,

A =
dP

dξ

∣∣∣∣
ξ=0

,

are located inside the unit circle |µ| = 1 (see Theorem 1.2).
One may ask whether the multipliers depend on the choice of the point

x0 on L0, the cross-section Σ, or the coordinates ξ on it. If this were the
case, determining stability using multipliers would be confusing or even
impossible.

Lemma 1.3 The multipliers µ1, µ2, . . . , µn−1 of the Jacobian matrix A of
the Poincaré map P associated with a cycle L0 are independent of the point
x0 on L0, the cross-section Σ, and local coordinates on it.

Proof:
Let Σ1 and Σ2 be two cross-sections to the same cycle L0 at points

x1 and x2, respectively (see Figure 1.16, where the planar case is pre-
sented for simplicity). We allow the points x1,2 to coincide, and we let
the cross-sections Σ1,2 represent identical surfaces in R

n that differ only in
parametrization. Denote by P1 : Σ1 → Σ1 and P2 : Σ2 → Σ2 corresponding
Poincaré maps. Let ξ = (ξ1, ξ2, . . . , ξn−1) be coordinates on Σ1, and let
η = (η1, η2, . . . , ηn−1) be coordinates on Σ2, such that ξ = 0 corresponds
to x1 while η = 0 gives x2. Finally, denote by A1 and A2 the associated
Jacobian matrices of P1 and P2, respectively.

Due to the same arguments as those we used to construct the Poincaré
map, there exists a locally defined, smooth, and invertible correspondence
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map Q : Σ1 → Σ2 along orbits of (1.14):

η = Q(ξ).

Obviously, we have
P2 ◦Q = Q ◦ P1,

or, in coordinates,
P2(Q(ξ)) = Q(P1(ξ)),

for all sufficiently small ‖ξ‖ (see Figure 1.15). Since Q is invertible, we
obtain the following relation between P1 and P2:

P1 = Q−1 ◦ P2 ◦Q.
Differentiating this equation with respect to ξ, and using the chain rule,
we find

dP1

dξ
=
dQ−1

dη

dP2

dη

dQ

dξ
.

Evaluating the result at ξ = 0 gives the matrix equation

A1 = B−1A2B,

where

B =
dQ

dξ

∣∣∣∣
ξ=0

is nonsingular (i.e., detB = 0). Thus, the characteristic equations for A1
and A2 coincide, as do the multipliers. Indeed,

det(A1 − µI) = det(B−1) det(A2 − µI) det(B) = det(A2 − µI),

since the determinant of the matrix product is equal to the product of the
the determinants of the matrices involved, and det(B−1) det(B) = 1. ✷

1

(   )ξ1P  (   )η2P  

Σ

2

2Σ

ηξ

Q

x

L 0

x1

FIGURE 1.16. Two cross-sections to the cycle L0.
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According to Lemma 1.3, we can use any cross-section Σ to compute the
multipliers of the cycle: The result will be the same.

The next problem to be addressed is the relationship between the multi-
pliers of a cycle and the differential equations (1.14) defining the dynamical
system that has this cycle. Let x0(t) denote a periodic solution of (1.14),
x0(t + T0) = x0(t), corresponding to a cycle L0. Represent a solution of
(1.14) in the form

x(t) = x0(t) + u(t),

where u(t) is a deviation from the periodic solution. Then,

u̇(t) = ẋ(t)− ẋ0(t) = f(x0(t) + u(t))− f(x0(t)) = A(t)u(t) + O(‖u(t)‖2).

Truncating O(‖u‖2) terms results in the linear T0-periodic system

u̇ = A(t)u, u ∈ R
n, (1.15)

where A(t) = fx(x0(t)), A(t + T0) = A(t).

Definition 1.10 System (1.15) is called the variational equation about the
cycle L0.

The variational equation is the main (linear) part of the system governing
the evolution of perturbations near the cycle. Naturally, the stability of the
cycle depends on the properties of the variational equation.

Definition 1.11 The time-dependent matrix M(t) is called the fundamen-
tal matrix solution of (1.14) if it satisfies

Ṁ = A(t)M,

with the initial condition M(0) = I, the identity n× n matrix.

Any solution u(t) to (1.15) satisfies

u(T0) = M(T0)u(0)

(prove!). The matrix M(T0) is called a monodromy matrix of the cycle
L0. The following Liouville formula expresses the determinant of the mon-
odromy matrix in terms of the matrix A(t):

detM(T0) = exp

{∫ T0

0
tr A(t) dt

}
. (1.16)

Theorem 1.6 The monodromy matrix M(T0) has eigenvalues

1, µ1, µ2, . . . , µn−1,

where µi are the multipliers of the Poincaré map associated with the cycle
L0.
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Sketch of the proof:
Let ϕt be the evolution operator (flow) defined by system (1.14) near the

cycle L0. Consider the map

ϕT0 : R
n → R

n.

Clearly, ϕT0x0 = x0, where x0 is an initial point on the cycle, which we
assume to be located at the origin, x0 = 0. The map is smooth, and its
Jacobian matrix at x0 coincides with the monodromy matrix:

∂ϕT0x

∂x

∣∣∣∣
x=x0

= M(T0).

We claim that the matrix M(T0) has an eigenvalue µ0 = 1. Indeed, v(t) =
ẋ0(t) is a solution to (1.15). Therefore, q = v(0) = f(x0) is transformed by
M(T0) into itself:

M(T0)q = q.

There are no generalized eigenvectors associated to q. Thus, the mon-
odromy matrix M(T0) has a one-dimensional invariant subspace spanned
by q and a complementary (n− 1)-dimensional subspace Σ : M(T0)Σ = Σ.
Take the subspace Σ as a cross-section to the cycle at x0 = 0. One can
see that the restriction of the linear transformation defined by M(T0) to
this invariant subspace Σ is the Jacobian matrix of the Poincaré map P
defined by system (1.14) on Σ. Therefore, their eigenvalues µ1, µ2, . . . , µn−1
coincide. ✷

According to (1.16), the product of all eigenvalues of M(T0) can be ex-
pressed as

µ1µ2 · · ·µn−1 = exp

{∫ T0

0
(div f)(x0(t)) dt

}
, (1.17)

where, by definition, the divergence of a vector field f(x) is given by

(div f)(x) =
n∑

i=1

∂fi(x)
∂xi

.

Thus, the product of all multipliers of any cycle is positive. Notice that
in the planar case (n = 2) formula (1.17) allows us to compute the only
multiplier µ1, provided the periodic solution corresponding to the cycle is
known explicitly. However, this is mainly a theoretical tool, since periodic
solutions of nonlinear systems are rarely known analytically.

1.5.3 Poincaré map for periodically forced systems
In several applications the behavior of a system subjected to an external
periodic forcing is described by time-periodic differential equations

ẋ = f(t, x), (t, x) ∈ R
1 × R

n, (1.18)



1.6 Exercises 31

where f(t + T0, x) = f(t, x). System (1.18) defines an autonomous system
on the cylindrical manifold X = S

1 ×R
n, with coordinates (t(mod T0), x),

namely {
ṫ = 1,
ẋ = f(t, x). (1.19)

In this space X, take the n-dimensional cross-section Σ = {(x, t) ∈ X : t =
0}. We can use xT = (x1, x2, . . . , xn) as coordinates on Σ. Clearly, all orbits
of (1.19) intersect Σ transversally. Assuming that the solution x(t, x0) of
(1.19) exists on the interval t ∈ [0, T0], we can introduce the Poincaré map

x0 �→ P (x0) = x(T0, x0).

In other words, we have to take an initial point x0 and integrate system
(1.18) over its period T0 to obtain P (x0). By this construction, the discrete-
time dynamical system {Z,Rn, P k} is defined. Fixed points of P obviously
correspond to T0-periodic solutions of (1.18). An N0-cycle of P represents
an N0T0-periodic solution (subharmonic) of (1.18). The stability of these
periodic solutions is clearly determined by that of the corresponding fixed
points and cycles. More complicated solutions of (1.18) can also be studied
via the Poincaré map. In Chapter 9 we will analyze in detail a model of
a periodically (seasonally) forced predator-prey system exhibiting various
subharmonic and chaotic solutions.

1.6 Exercises

(1) (Symbolic dynamics and the Smale horseshoe revisited)
(a) Compute the number N(k) of period-k cycles in the symbolic dy-

namics {Z,Ω2, σ
k}.

(b) Explain how to find the coordinates of the two fixed points of the
horseshoe map f in S. Prove that each point has one multiplier inside and
one multiplier outside the unit circle |µ| = 1.

(2) (Hamiltonian systems)
(a) Prove that the Hamilton function is constant along orbits of a Hamil-

tonian system: Ḣ = 0.
(b) Prove that the equilibrium (ϕ,ψ) = (0, 0) of a pendulum described

by (1.5) is Lyapunov stable. (Hint: System (1.5) is Hamiltonian with closed
level curves H(ϕ,ψ) = const near (0, 0).) Is this equilibrium asymptotically
stable?

(3) (Quantum oscillations)
(a) Integrate the linear system (1.7), describing the simplest quantum

system with two states, and show that the probability pi = |ai|2 of finding
the system in a given state oscillates periodically in time.
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(b) How does p1 + p2 behave?

(4) (Brusselator revisited)
(a) Derive the Brusselator system (1.8) from the system written in terms

of the concentrations [X], [Y ].
(b) Compute an equilibrium position (x0, y0) and find a sufficient condi-

tion on the parameters (a, b) for it to be stable.

(5) (Volterra system revisited)
(a) Show that (1.9) can be reduced by a linear scaling of variables and

time to the following system with only one parameter γ:{
ẋ = x− xy,
ẏ = −γy + xy.

(b) Find all equilibria of the scaled system.
(c) Verify that the orbits of the scaled system in the positive quadrant

{(x, y) : x, y > 0} coincide with those of the Hamiltonian system

ẋ =
1
y
− 1,

ẏ = −γ
x

+ 1.

(Hint: Vector fields defining these two systems differ by the factor µ(x, y) =
xy, which is positive in the first quadrant.) Find the Hamilton function.

(d) Taking into account steps (a) to (c), prove that all nonequilibrium
orbits of the Volterra system in the positive quadrant are closed, thus de-
scribing periodic oscillations of the numbers of prey and predators.

(6) (Explicit Poincaré map)
(a) Show that for α > 0 the planar system in polar coordinates{

ρ̇ = ρ(α− ρ2),
ϕ̇ = 1,

has the explicit solution

ρ(t) =
(

1
α

+
(

1
ρ2
0
− 1
α

)
e−2αt

)−1/2

, ϕ(t) = ϕ0 + t.

(b) Draw the phase portrait of the system and prove that it has a unique
limit cycle for each α > 0.

(c) Compute the multiplier µ1 of the limit cycle:
(i) by explicit construction of the Poincaré map ρ �→ P (ρ) using the

solution above and evaluating its derivative with respect to ρ at the fixed
point ρ0 =

√
α (Hint: See Wiggins [1990, pp. 66-67].);
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(ii) using formula (1.17), expressing µ1 in terms of the integral of the
divergence over the cycle. (Hint: Use polar coordinates; the divergence is
invariant.)

(7) (Lyapunov’s theorem) Prove Theorem 1.5 using Theorem 1.2.
(a) Write the system near the equilibrium as

ẋ = Ax + F (x),

where F (x) = O(‖x‖2) is a smooth nonlinear function.
(b) Using the variation-of-constants formula for the evolution operator

ϕt,

ϕtx = eAtx +
∫ t

0
eA(t−τ)F (ϕτx) dτ,

show that the unit-time shift along the orbits has the expansion

ϕ1x = Bx + O(‖x‖2),

where B = eA.
(c) Conclude the proof, taking into account that µk = eλk , where µk and

λk are the eigenvalues of the matrices B and A, respectively.

1.7 Appendix 1: Infinite-dimensional dynamical
systems defined by reaction-diffusion
equations

As we have seen in Examples 1.4 and 1.5, the state of a spatially distributed
system is characterized by a function from a function space X. The dimen-
sion of such spaces is infinite. A function u ∈ X satisfies certain boundary
and smoothness conditions, while its evolution is usually determined by a
system of equations with partial derivatives (PDEs). In this appendix we
briefly discuss how a particular type of such equations, namely reaction-
diffusion systems, defines infinite-dimensional dynamical systems.

The state of a chemical reactor at time t can be specified by defining
a vector function c(x, t) = (c1(x, t), c2(x, t), . . . , cn(x, t))T , where the ci
are concentrations of reacting substances near the point x in the reactor
domain Ω ⊂ R

m. Here m = 1, 2, 3, depending on the geometry of the
reactor, and Ω is assumed to be closed and bounded by a smooth boundary
∂Ω. The concentrations ci(x, t) satisfy certain problem-dependent boundary
conditions. For example, if the concentrations of all the reagents are kept
constant at the boundary, we have

c(x, t) = c0, x ∈ ∂Ω.
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Defining a deviation from the boundary value, s(x, t) = c(x, t)− c0, we can
reduce to the case of zero Dirichlet boundary conditions:

s(x, t) = 0, x ∈ ∂Ω.

If the reagents cannot penetrate the reactor boundary, zero Neumann (zero
flux) conditions are applicable:

∂c(x, t)
∂n

= 0, x ∈ ∂Ω,

where the left-hand side is the inward-pointing normal derivative at the
boundary.

The evolution of a chemical system can be modeled by a system of
reaction-diffusion equations written in the vector form for u(x, t) (u = s or
c):

∂u(x, t)
∂t

= D(∆u)(x, t) + f(u(x, t)), (A.1)

where f : R
n → R

n is smooth and D is a diagonal diffusion matrix with
positive coefficients, and ∆ is known as the Laplacian,

∆u =
m∑
i=1

∂2u

∂x2
i

.

The first term of the right-hand side of (A.1) describes diffusion of the
reagents, while the second term specifies their local interaction. The func-
tion u(x, t) satisfies one of the boundary conditions listed above, for exam-
ple, the Dirichlet conditions:

u(x, t) = 0, x ∈ ∂Ω. (A.2)

Definition 1.12 A function u = u(x, t), u : Ω×R
1 → R

n, is called a clas-
sical solution to the problem (A.1),(A.2) if it is continuously differentiable,
at least once with respect to t and twice with respect to x, and satisfies
(A.1),(A.2) in the domain of its definition.

For any twice continuously differentiable initial function u0(x),

u0(x) = 0, x ∈ ∂Ω, (A.3)

the problem (A.1),(A.2) has a unique classical solution u(x, t), defined for
x ∈ Ω and t ∈ [0, δ0), where δ0 depends on u0, and such that u(x, 0) =
u0(x). Moreover, this classical solution is actually infinitely many times
differentiable in (x, t) for 0 < t < δ0. The same properties are valid if one
replaces (A.2) by Neumann boundary conditions.

Introduce the space X = C2
0 (Ω,Rn) of all twice continuously differen-

tiable vector functions in Ω satisfying the Dirichlet condition (A.3) at the
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boundary ∂Ω. The preceeding results mean that the reaction-diffusion sys-
tem (A.1),(A.2) defines a continuous-time dynamical system {R1

+, X, ϕ
t},

with the evolution operator

(ϕtu0)(x) = u(x, t), (A.4)

where u(x, t) is the classical solution to (A.1),(A.2) satisfying u(x, 0) =
u0(x). It also defines a dynamical system on X1 = C∞

0 (Ω,Rn) composed
of all infinitely continuously differentiable vector functions in Ω satisfying
the Dirichlet condition (A.3) at the boundary ∂Ω.

The notions of equilibria and cycles are, therefore, applicable to the
reaction-diffusion system (A.1). Clearly, equilibria of the system are de-
scribed by time-independent vector functions satisfying

D(∆u)(x) + f(u(x)) = 0 (A.5)

and the corresponding boundary conditions. A trivial, spatially homoge-
neous solutions to (A.5) satisfying (A.2), for example, is an equilibrium of
the local system

u̇ = f(u), u ∈ R
n. (A.6)

Nontrivial, spatially nonhomogeneous solutions to (A.5) are often called
dissipative structures. Spatially homogeneous and nonhomogeneous equi-
libria can be stable or unstable. In the stable case, all (smooth) small
perturbations v(x) of an equilibrium solution decay in time. Cycles (i.e.,
time-periodic solutions of (A.1) satisfying the appropriate boundary con-
ditions) are also possible; they can be stable or unstable. Standing and
rotating waves in reaction-diffusion systems in planar circular domains Ω
are examples of such periodic solutions.

Up to now, the situation seems to be rather simple and is parallel to the
finite-dimensional case. However, one runs into certain difficulties when
trying to introduce a distance in X = C2

0 (Ω,Rn). For example, this space
is incomplete in the “integral norm”

‖u‖2 =
∫

Ω

∑
j=1,2,...,n

|i|≤2

∣∣∣∣ ∂|i|uj(x)
∂xi11 ∂x

i2
2 · · · ∂ximm

∣∣∣∣2 dΩ, (A.7)

where |i| = i1 + i2 + . . . + im. In other words, a Cauchy sequence in this
norm can approach a function that is not twice continuously differentiable
(it may have no derivatives at all) and thus does not belong to X. Since
this property is important in many respects, a method called completion
has been developed that allows us to construct a complete space, given any
normed one. Loosely speaking, we add the limits of all Cauchy sequences to
X. More precisely, we call two Cauchy sequences equivalent if the distance
between their corresponding elements tends to zero. Classes of equivalent
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Cauchy sequences are considered as points of a new space H. The original
norm can be extended to H, thus making it a complete normed space. Such
spaces are called Banach spaces. The space X can then be interpreted as
a subset of H. It is also useful if the obtained space is a Hilbert space,
meaning that the norm in it is generated by a certain scalar product.

Therefore, we can try to use one of the completed spaces H as a new state
space for our reaction-diffusion system. However, since H includes functions
on which the diffusion part of (A.1) is undefined, extra work is required.
One should also take care that the reaction part f(u) of the system defines
a smooth map on H. Without going into details, we merely state that it
is possible to prove the existence of a dynamical system {R1

+, H, ψ
t} such

that ψtu is defined and continuous in u for all u ∈ H and t ∈ [0, δ(u)),
and, if u0 ∈ X ⊂ H, then ψtu0 = ϕtu0, where ϕtu0 is a classical solution
to (A.1),(A.2).

The stability of equilibria and other solutions can be studied in the
space H. If an equilibrium is stable in H, it will also be stable with re-
spect to smooth perturbations. One can derive sufficient conditions for an
equilibrium to be stable in H (or X) in terms of the linear part of the
reaction-diffusion system (A.1). For example, let us formulate sufficient
stability conditions (an analogue of Theorem 1.5) for a trivial (homoge-
neous) equilibrium of a reaction-diffusion system on the interval Ω = [0, π]
with Dirichlet boundary conditions.

Theorem 1.7 Consider a reaction-diffusion system

∂u

∂t
= D

∂2u

∂x2 + f(u), (A.8)

where f is smooth, x ∈ [0, π], with the boundary conditions

u(0) = u(π) = 0. (A.9)

Assume that u0 = 0 is a homogeneous equilibrium, f(0) = 0, and A is
the Jacobian matrix of the corresponding equilibrium of the local system,
A = fu(0). Suppose that the eigenvalues of the n× n matrix

Mk = A− k2D

have negative real parts for all k = 0, 1, 2, . . ..
Then u0 = 0 is a stable equilibrium of the dynamical system {R1

+, H, ψ
t}

generated by the system (A.8), (A.9) in the completion H of the space
C2

0 ([0, π], R
n) in the norm (A.7). ✷

A similar theorem can be proved for the system in Ω ⊂ R
m,m = 2, 3,

with Dirichlet boundary conditions. The only modification is that k2 should
be replaced by κk, where {κk} are all positive numbers for which

(∆vk)(x) = −κkvk(x),

with vk = vk(x) satisfying Dirichlet boundary conditions. The modification
to the Neumann boundary condition case is rather straightforward.
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1.8 Appendix 2: Bibliographical notes

Originally, the term “dynamical system” meant only mechanical systems
whose motion is described by differential equations derived in classical me-
chanics. Basic results on such dynamical systems were obtained by Lya-
punov and Poincaré at the end of the nineteenth century. Their studies
have been continued by Dulac [1923] and Birkhoff [1927], among others.
The books by Nemytskii & Stepanov [1949] and Coddington & Levinson
[1955] contain detailed treatments of the then-known properties of dynam-
ical systems defined by differential equations. Later on it became clear that
this notion is useful for the analysis of various evolutionary processes stud-
ied in different branches of science and described by ODEs, PDEs, or explic-
itly defined iterated maps. The modern period in dynamical system theory
started from the work of Kolmogorov [1957], Smale [1963, 1966, 1967] and
Anosov [1967]. Today, the literature on dynamical systems is huge. We do
not attempt to survey it here, giving only a few remarks in the bibliograph-
ical notes to each chapter.

The horseshoe diffeomorphism proposed by Smale [1963, 1967] is treated
in many books, for example, in Nitecki [1971], Guckenheimer & Holmes
[1983], Wiggins [1990], Arrowsmith & Place [1990]. However, the best pre-
sentation of this and related topics is still due to Moser [1973].

General properties of ordinary differential equations and their relation
to dynamical systems are presented in the cited book by Nemytskii and
Stepanov, and notably in the texts by Pontryagin [1962], Arnold [1973],
and Hirsch & Smale [1974]. The latter three books contain a compre-
hensive analysis of linear differential equations with constant and time-
dependent coefficients. The book by Hartman [1964] treats the relation
between Poincaré maps, multipliers, and stability of limit cycles.

The study of infinite-dimensional dynamical systems has been stimu-
lated by hydro- and aerodynamics and by chemical and nuclear engineering.
Linear infinite-dimensional dynamical systems, known as “continuous (an-
alytical) semigroups” are studied in functional analysis (see, e.g., Hille &
Phillips [1957], Balakrishnan [1976], or the more physically oriented texts
by Richtmyer [1978, 1981]). The theory of nonlinear infinite-dimensional
systems is a rapidly developing field. The reader is addressed to the rele-
vant chapters of the books by Marsden & McCracken [1976], Carr [1981],
and Henry [1981]. Infinite-dimensional dynamical systems also arise natu-
rally in studying differential equations with delays (see Hale [1971], Hale &
Verduyn Lunel [1993], and Diekmann, van Gils, Verduyn Lunel & Walther
[1995]).
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2
Topological Equivalence,
Bifurcations, and Structural
Stability of Dynamical Systems

In this chapter we introduce and discuss the following fundamental notions
that will be used throughout the book: topological equivalence of dynamical
systems and their classification, bifurcations and bifurcation diagrams, and
topological normal forms for bifurcations. The last section is devoted to
the more abstract notion of structural stability. In this chapter we will be
dealing only with dynamical systems in the state space X = R

n.

2.1 Equivalence of dynamical systems

We would like to study general (qualitative) features of the behavior of
dynamical systems, in particular, to classify possible types of their behavior
and compare the behavior of different dynamical systems. The comparison
of any objects is based on an equivalence relation,1 allowing us to define
classes of equivalent objects and to study transitions between these classes.
Thus, we have to specify when we define two dynamical systems as being
“qualitatively similar” or equivalent. Such a definition must meet some
general intuitive criteria. For instance, it is natural to expect that two
equivalent systems have the same number of equilibria and cycles of the
same stability types. The “relative position” of these invariant sets and the

1Recall that a relation between two objects (a ∼ b) is called equivalence if it
is reflexive (a ∼ a), symmetric (a ∼ b implies b ∼ a), and transitive (a ∼ b and
b ∼ c imply a ∼ c).
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shape of their regions of attraction should also be similar for equivalent
systems. In other words, we consider two dynamical systems as equivalent
if their phase portraits are “qualitatively similar,” namely, if one portrait
can be obtained from another by a continuous transformation (see Figure
2.1).

y

y

2

1

x 2

x 1

FIGURE 2.1. Topological equivalence.

Definition 2.1 A dynamical system {T,Rn, ϕt} is called topologically equ-
ivalent to a dynamical system {T,Rn, ψt} if there is a homeomorphism
h : R

n → R
n mapping orbits of the first system onto orbits of the second

system, preserving the direction of time.

A homeomorphism is an invertible map such that both the map and
its inverse are continuous. The definition of the topological equivalence
can be generalized to cover more general cases when the state space is a
complete metric or, in particular, is a Banach space. The definition also
remains meaningful when the state space is a smooth finite-dimensional
manifold in R

n, for example, a two-dimensional torus T
2 or sphere S

2. The
phase portraits of topologically equivalent systems are often also called
topologically equivalent.

The above definition applies to both continuous- and discrete-time sys-
tems. However, in the discrete-time case we can obtain an explicit relation
between the corresponding maps of the equivalent systems. Indeed, let

x �→ f(x), x ∈ R
n, (2.1)

and
y �→ g(y), y ∈ R

n, (2.2)

be two topologically equivalent, discrete-time invertible dynamical systems
(f = ϕ1, g = ψ1 are smooth invertible maps). Consider an orbit of system
(2.1) starting at some point x:

. . . , f−1(x), x, f(x), f2(x), . . .

and an orbit of system (2.2) starting at a point y:

. . . , g−1(y), y, g(y), g2(y), . . . .
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Topological equivalence implies that if x and y are related by the homeo-
morphism h, y = h(x), then the first orbit is mapped onto the second one
by this map h. Symbolically,

x
f−→ f(x)

h ↓ h ↓
y

g−→ g(y).

Therefore, g(y) = h(f(x)) or g(h(x)) = h(f(x)) for all x ∈ R
n, which can

be written as
f(x) = h−1(g(h(x)))

since h is invertible. We can write the last equation in a more compact
form using the symbol of map superposition:

f = h−1 ◦ g ◦ h. (2.3)

Definition 2.2 Two maps f and g satisfying (2.3) for some homeomor-
phism h are called conjugate.

Consequently, topologically equivalent, discrete-time systems are often
called conjugate systems. If both h and h−1 are Ck maps, the maps f and
g are called Ck-conjugate. For k ≥ 1, Ck-conjugate maps (and the corre-
sponding systems) are called smoothly conjugate or diffeomorphic. Two dif-
feomorphic maps (2.1) and (2.2) can be considered as the same map written
in two different coordinate systems with coordinates x and y, while y = h(x)
can be treated as a smooth change of coordinates. Consequently, diffeomor-
phic discrete-time dynamical systems are practically indistinguishable.

Now consider two continuous-time topologically equivalent systems:

ẋ = f(x), x ∈ R
n, (2.4)

and
ẏ = g(y), y ∈ R

n, (2.5)

with smooth right-hand sides. Let ϕt and ψt denote the corresponding
flows. In this case, there is no simple relation between f and g analogous
to formula (2.3). Nevertheless, there are two particular cases of topological
equivalence between (2.4) and (2.5) that can be expressed analytically, as
we now explain.

Suppose that y = h(x) is an invertible map h : R
n → R

n, which is
smooth together with its inverse (h is a diffeomorphism) and such that, for
all x ∈ R

n,
f(x) = M−1(x)g(h(x)), (2.6)

where

M(x) =
dh(x)
dx
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is the Jacobian matrix of h(x) evaluated at the point x. Then, system (2.4)
is topologically equivalent to system (2.5). Indeed, system (2.5) is obtained
from system (2.4) by the smooth change of coordinates y = h(x). Thus, h
maps solutions of (2.4) into solutions of (2.5),

h(ϕtx) = ψth(x),

and can play the role of the homeomorphism in Definition 2.1.

Definition 2.3 Two systems (2.4) and (2.5) satisfying (2.6) for some dif-
feomorphism h are called smoothly equivalent (or diffeomorphic).

Remark:
If the degree of smoothness of h is of interest, one writes: Ck-equivalent

or Ck-diffeomorphic in Definition 2.3. ♦
Two diffeomorphic systems are practically identical and can be viewed

as the same system written using different coordinates. For example, the
eigenvalues of corresponding equilibria are the same. Let x0 and y0 = h(x0)
be such equilibria and let A(x0) and B(y0) denote corresponding Jacobian
matrices. Then, differentiation of (2.6) yields

A(x0) = M−1(x0)B(y0)M(x0).

Therefore, the characteristic polynomials for the matrices A(x0) and B(y0)
coincide. In addition, diffeomorphic limit cycles have the same multipliers
and period (see Exercise 4). This last property calls for more careful analysis
of different time parametrizations.

Suppose that µ = µ(x) > 0 is a smooth scalar positive function and that
the right-hand sides of (2.4) and (2.5) are related by

f(x) = µ(x)g(x) (2.7)

for all x ∈ R
n. Then, obviously, systems (2.4) and (2.5) are topologically

equivalent since their orbits are identical and it is the velocity of the motion
that makes them different. (The ratio of the velocities at a point x is exactly
µ(x).) Thus, the homeomorphism h in Definition 2.1 is the identity map
h(x) = x. In other words, the systems are distinguished only by the time
parametrization along the orbits.

Definition 2.4 Two systems (2.4) and (2.5) satisfying (2.7) for a smooth
positive function µ are called orbitally equivalent.

Clearly, two orbitally equivalent systems can be nondiffeomorphic, having
cycles that look like the same closed curve in the phase space but have
different periods.

Very often we study system dynamics locally, e.g., not in the whole state
space R

n but in some region U ⊂ R
n. Such a region may be, for example, a
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neighborhood of an equilibrium (fixed point) or a cycle. The above defini-
tions of topological, smooth, and orbital equivalences can be easily “local-
ized” by introducing appropriate regions. For example, in the topological
classification of the phase portraits near equilibrium points, the following
modification of Definition 2.1 is useful.

Definition 2.5 A dynamical system {T,Rn, ϕt} is called locally topologi-
cally equivalent near an equilibrium x0 to a dynamical system {T,Rn, ψt}
near an equilibrium y0 if there exists a homeomorphism h : R

n → R
n that

is
(i) defined in a small neighborhood U ⊂ R

n of x0;
(ii) satisfies y0 = h(x0);
(iii) maps orbits of the first system in U onto orbits of the second system

in V = f(U) ⊂ R
n, preserving the direction of time.

If U is an open neighborhood of x0, then V is an open neighborhood
of y0. Let us also remark that equilibrium positions x0 and y0, as well as
regions U and V , might coincide.

Let us compare the above introduced equivalences in the following ex-
ample.

Example 2.1 (Node-focus equivalence) Consider two linear planar
dynamical systems: {

ẋ1 = −x1,
ẋ2 = −x2,

(2.8)

and {
ẋ1 = −x1 − x2,
ẋ2 = x1 − x2.

(2.9)

In the polar coordinates (ρ, θ) these systems can be written as{
ρ̇ = −ρ,
θ̇ = 0,

and {
ρ̇ = −ρ,
θ̇ = 1,

respectively. Thus,
ρ(t) = ρ0e

−t,
θ(t) = θ0,

for the first system, while

ρ(t) = ρ0e
−t,

θ(t) = θ0 + t,

for the second. Clearly, the origin is a stable equilibrium in both systems,
since ρ(t) → 0 as t → ∞. All other orbits of (2.8) are straight lines, while
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(a) (b)

FIGURE 2.2. Node-focus equivalence.

those of (2.9) are spirals. The phase portraits of the systems are presented
in Figure 2.2. The equilibrium of the first system is a node (Figure 2.2(a)),
while in the second system it is a focus (Figure 2.2(b)). The difference in
behavior of the systems can also be perceived by saying that perturbations
decay near the origin monotonously in the first case and oscillatorily in the
second case.

The systems are neither orbitally nor smoothly equivalent. The first fact
is obvious, while the second follows from the observation that the eigen-
values of the equilibrium in the first system (λ1 = λ2 = −1) differ from
those of the second (λ1,2 = −1 ± i). Nevertheless, systems (2.8) and (2.9)
are topologically equivalent, for example, in a closed unit disc

U = {(x1, x2) : x2
1 + x2

2 ≤ 1} = {(ρ, θ) : ρ ≤ 1},

centered at the origin. Let us prove this explicitly by constructing a homeo-
morphism h : U → U as follows (see Figure 2.3). Take a point x = 0 in U
with polar coordinates (ρ0, θ0) and consider the time τ required to move,
along an orbit of system (2.8), from the point (1, θ0) on the boundary to

(1, θ  )00

U

y

x

FIGURE 2.3. The construction of the homeomorphism.
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the point x. This time depends only on ρ0 and can easily be computed:

τ(ρ0) = − ln ρ0.

Now consider an orbit of system (2.9) starting at the boundary point (1, θ0),
and let y = (ρ1, θ1) be the point at which this orbit arrives after τ(ρ0)
units of time. Thus, a map y = h(x) that transforms x = (ρ0, θ0) = 0 into
y = (ρ1, θ1) is obtained and is explicitly given by

h :
{

ρ1 = ρ0,
θ1 = θ0 − ln ρ0.

(2.10)

For x = 0, set y = 0, that is, h(0) = 0. Thus the constructed map transforms
U into itself by rotating each circle ρ0 = const by a ρ0-dependent angle.
This angle equals zero at ρ0 = 1 and increases as ρ0 → 0. The map is
obviously continuous and invertible and maps orbits of (2.8) onto orbits of
(2.9), preserving time direction. Thus, the two systems are topologically
equivalent within U .

However, the homeomorphism h is not differentiable in U . More precisely,
it is smooth away from the origin but not differentiable at x = 0. To see
this, one should evaluate the Jacobian matrix dy

dx in (x1, x2)-coordinates.
For example, the difference quotient corresponding to the derivative

∂y1

∂x1

∣∣∣∣
x1=x2=0

is given for x1 > 0 by

x1 cos(lnx1)− 0
x1 − 0

= cos(lnx1),

which has no limit as x1 → 0. ✸

Therefore, considering continuous-time systems modulo topological equi-
valence, we preserve information on the number, stability, and topology
of invariant sets, while losing information relating transient and time-
dependent behavior. Such information may be important in some appli-
cations. In these cases, stronger equivalences (such as orbital or smooth)
have to be applied.

A combination of smooth and orbital equivalences gives a useful equiva-
lence relation, which will be used frequently in this book.

Definition 2.6 Two systems (2.4) and (2.5) are called smoothly orbitally
equivalent if (2.5) is smoothly equivalent to a system that is orbitally equiv-
alent to (2.4).

According to this definition, two systems are equivalent (in R
n or in some

region U ⊂ R
n) if we can transform one of them into the other by a smooth

invertible change of coordinates and multiplication by a positive smooth
function of the coordinates. Clearly, two smoothly orbitally equivalent sys-
tems are topologically equivalent, while the inverse is not true.
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2.2 Topological classification of generic equilibria
and fixed points

In this section we study the geometry of the phase portrait near generic,
namely hyperbolic, equilibrium points in continuous- and discrete-time dy-
namical systems and present their topological classification.

2.2.1 Hyperbolic equilibria in continuous-time systems
Consider a continuous-time dynamical system defined by

ẋ = f(x), x ∈ R
n, (2.11)

where f is smooth. Let x0 = 0 be an equilibrium of the system (i.e., f(x0) =
0) and let A denote the Jacobian matrix df

dx evaluated at x0. Let n−, n0,
and n+ be the numbers of eigenvalues of A (counting multiplicities) with
negative, zero, and positive real part, respectively.

Definition 2.7 An equilibrium is called hyperbolic if n0 = 0, that is, if
there are no eigenvalues on the imaginary axis. A hyperbolic equilibrium is
called a hyperbolic saddle if n−n+ = 0.

Since a generic matrix has no eigenvalues on the imaginary axis (n0 = 0),
hyperbolicity is a typical property and an equilibrium in a generic system
(i.e., one not satisfying certain special conditions) is hyperbolic. We will not
try to formalize these intuitively obvious properties, though it is possible
using measure theory and transversality arguments (see the bibliographi-
cal notes). Instead, let us study the geometry of the phase portrait near
a hyperbolic equilibrium in detail. For an equilibrium (not necessarily a
hyperbolic one), we introduce two invariant sets:

W s(x0) = {x : ϕtx→ x0, t→ +∞},Wu(x0) = {x : ϕtx→ x0, t→ −∞},
where ϕt is the flow associated with (2.11).

Definition 2.8 W s(x0) is called the stable set of x0, while Wu(x0) is
called the unstable set of x0.

Theorem 2.1 (Local Stable Manifold) Let x0 be a hyperbolic equilib-
rium (i.e., n0 = 0, n− + n+ = n ). Then the intersections of W s(x0)
and Wu(x0) with a sufficiently small neighborhood of x0 contain smooth
submanifolds W s

loc(x0) and Wu
loc(x0) of dimension n− and n+, respectively.

Moreover, W s
loc(x0)(Wu

loc(x0)) is tangent at x0 to T s(Tu), where T s(Tu)
is the generalized eigenspace corresponding to the union of all eigenvalues
of A with Re λ < 0 (Re λ > 0). ✷

The proof of the theorem, which we are not going to present here, can be
carried out along the following lines (Hadamard-Perron). For the unstable
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manifold, take the linear manifold Tu passing through the equilibrium and
apply the map ϕ1 to this manifold, where ϕt is the flow corresponding
to the system. The image of Tu under ϕ1 is some (nonlinear) manifold
of dimension n+ tangent to Tu at x0. Restrict attention to a sufficiently
small neighborhood of the equilibrium where the linear part is “dominant”
and repeat the procedure. It can be shown that the iterations converge
to a smooth invariant submanifold defined in this neighborhood of x0 and
tangent to Tu at x0. The limit is the local unstable manifold Wu

loc(x0). The
local stable manifold W s

loc(x0) can be constructed by applying ϕ−1 to T s.

Remark:
Globally, the invariant sets W s and Wu are immersed manifolds of di-

mensions n− and n+, respectively, and have the same smoothness proper-
ties as f . Having these properties in mind, we will call the sets W s and
Wu the stable and unstable invariant manifolds of x0, respectively. ♦

Example 2.2 (Saddles and saddle-foci in R
3) Figure 2.4 illustrates
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FIGURE 2.4. (a) Saddle and (b) saddle-focus: The vectors νk are the eigenvectors
corresponding to the eigenvalues λk.

the theorem for the case where n = 3, n− = 2, and n+ = 1. In this
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case, there are two invariant manifolds passing through the equilibrium,
namely, the two-dimensional manifold W s(x0) formed by all incoming or-
bits, and the one-dimensional manifold Wu(x0) formed by two outgoing
orbits Wu

1 (x0) and Wu
2 (x0). All orbits not belonging to these manifolds

pass near the equilibrium and eventually leave its neighborhood in both
time directions.

In case (a) of real simple eigenvalues (λ3 < λ2 < 0 < λ1), orbits on
W s form a node, while in case (b) of complex eigenvalues (Re λ2,3 < 0 <
λ1, λ̄3 = λ2), W s carries a focus. Thus, in the first case, the equilibrium is
called a saddle, while in the second one it is referred to as a saddle-focus.
The equilibria in these two cases are topologically equivalent. Nevertheless,
it is useful to distinguish them, as we shall see in our study of homoclinic
orbit bifurcations (Chapter 6). ✸

The following theorem gives the topological classification of hyperbolic
equilibria.

Theorem 2.2 The phase portraits of system (2.11) near two hyperbolic
equilibria, x0 and y0, are locally topologically equivalent if and only if these
equilibria have the same number n− and n+ of eigenvalues with Re λ < 0
and with Re λ > 0, respectively. ✷

Often, the equilibria x0 and y0 are then also called topologically equiv-
alent. The proof of the theorem is based on two ideas. First, it is possible
to show that near a hyperbolic equilibrium the system is locally topologi-
cally equivalent to its linearization: ξ̇ = Aξ (Grobman-Hartman Theorem).
This result should be applied both near the equilibrium x0 and near the
equilibrium y0. Second, the topological equivalence of two linear systems
having the same numbers of eigenvalues with Re λ < 0 and Re λ > 0 and
no eigenvalues on the imaginary axis has to be proved. Example 2.1 is a
particular case of such a proof. Nevertheless, the general proof is based on
the same idea. See the Appendix at the end of this chapter for references.

Example 2.3 (Generic equilibria of planar systems) Consider a
two-dimensional system

ẋ = f(x), x = (x1, x2)T ∈ R
2,

with smooth f . Suppose that x = 0 is an equilibrium, f(0) = 0, and let

A =
df(x)
dx

∣∣∣∣
x=0

be its Jacobian matrix. Matrix A has two eigenvalues λ1, λ2, which are the
roots of the characteristic equation

λ2 − σλ + ∆ = 0,
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FIGURE 2.5. Topological classification of hyperbolic equilibria on the plane.

where σ = tr A, ∆ = detA.
Figure 2.5 displays well-known classical results. There are three topo-

logical classes of hyperbolic equilibria on the plane: stable nodes (foci),
saddles, and unstable nodes (foci). As we have discussed, nodes and foci (of
corresponding stability) are topologically equivalent but can be identified
looking at the eigenvalues.

Definition 2.9 Nodes and foci are both called antisaddles.

Stable points have two-dimensional stable manifolds and no unstable
manifolds. For unstable equilibria the situation is reversed. Saddles have
one-dimensional stable and unstable manifolds, sometimes called separatri-
ces. ✸

2.2.2 Hyperbolic fixed points in discrete-time systems
Now consider a discrete-time dynamical system

x �→ f(x), x ∈ R
n, (2.12)

where the map f is smooth along with its inverse f−1 (diffeomorphism). Let
x0 = 0 be a fixed point of the system (i.e., f(x0) = x0) and let A denote
the Jacobian matrix df

dx evaluated at x0. The eigenvalues µ1, µ2, . . . , µn
of A are called multipliers of the fixed point. Notice that there are no
zero multipliers, due to the invertibility of f . Let n−, n0, and n+ be the
numbers of multipliers of x0 lying inside, on, and outside the unit circle
{µ ∈ C

1 : |µ| = 1}, respectively.
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Definition 2.10 A fixed point is called hyperbolic if n0 = 0, that is, if
there are no multipliers on the unit circle. A hyperbolic fixed point is called
a hyperbolic saddle if n−n+ = 0.

Notice that hyperbolicity is a typical property also in discrete time. As
in the continuous-time case, we can introduce stable and unstable invariant
sets for a fixed point x0 (not necessarily a hyperbolic one):

W s(x0) = {x : fk(x) → x0, k → +∞},
Wu(x0) = {x : fk(x) → x0, k → −∞},

where k is integer “time” and fk(x) denotes the kth iterate of x under f .
An analogue of Theorem 2.1 can be formulated.

Theorem 2.3 (Local Stable Manifold) Let x0 be a hyperbolic fixed po-
int, namely, n0 = 0, n− + n+ = n. Then the intersections of W s(x0)
and Wu(x0) with a sufficiently small neighborhood of x0 contain smooth
submanifolds W s

loc(x0) and Wu
loc(x0) of dimension n− and n+, respectively.

Moreover, W s
loc(x0)(Wu

loc(x0)) is tangent at x0 to T s(Tu), where T s(Tu)
is the generalized eigenspace corresponding to the union of all eigenvalues
of A with |µ| < 1(|µ| > 1). ✷

The proof of the theorem is completely analogous to that in the con-
tinuous-time case, if one substitutes ϕ1 by f . Globally, the invariant sets
W s and Wu are again immersed manifolds of dimension n− and n+, re-
spectively, and have the same smoothness properties as the map f . The
manifolds cannot intersect themselves, but their global topology may be
very complex, as we shall see later.

The topological classification of hyperbolic fixed points follows from a
theorem that is similar to Theorem 2.2 for equilibria in the continuous-
time systems.

Theorem 2.4 The phase portraits of (2.12) near two hyperbolic fixed points,
x0 and y0, are locally topologically equivalent if and only if these fixed points
have the same number n− and n+ of multipliers with |µ| < 1 and |µ| > 1,
respectively, and the signs of the products of all the multipliers with |µ| < 1
and with |µ| > 1 are the same for both fixed points. ✷

As in the continuous-time case, the proof is based upon the fact that
near a hyperbolic fixed point the system is locally topologically equiva-
lent to its linearization: x �→ Ax (discrete-time version of the Grobman-
Hartman Theorem). The additional conditions on the products are due
to the fact that the dynamical system can define either an orientation-
preserving or orientation-reversing map on the stable or unstable manifold
near the fixed point. Recall that a diffeomorphism on R

l preserves orien-
tation in R

l if detJ > 0, where J is its Jacobian matrix, and reverses it
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otherwise. Two topologically equivalent maps must have the same orienta-
tion properties. The products in Theorem 2.4 are exactly the determinants
of the Jacobian matrices of the map (2.12) restricted to its stable and un-
stable local invariant manifolds. It should be clear that one needs only
account for real multipliers to compute these signs, since the product of a
complex-conjugate pair of multipliers is always positive.

Let us consider two examples of fixed points.

Example 2.4 (Stable fixed points in R
1) Suppose x0 = 0 is a fixed

point of a one-dimensional discrete-time system (n = 1). Let n− = 1, mean-
ing that the unique multiplier µ satisfies |µ| < 1. In this case, according
to Theorem 2.3, all orbits starting in some neighborhood of x0 converge
to x0. Depending on the sign of the multiplier, we have the two possi-
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FIGURE 2.6. Stable fixed points of one-dimensional systems: (a) 0 < µ < 1; (b)
−1 < µ < 0.

bilities presented in Figure 2.6. If 0 < µ < 1, the iterations converge to
x0 monotonously (Figure 2.6(a)). If −1 < µ < 0, the convergence is non-
monotonous and the phase point “jumps” around x0 while converging to x0
(Figure 2.6(b)). In the first case the map preserves orientation in R

1 while
reversing it in the second. It should be clear that “jumping” orbits can-
not be transformed into monotonous ones by a continuous map. Figure 2.7
presents orbits near the two types of fixed points using staircase diagrams.
✸

Example 2.5 (Saddle fixed points in R
2) Suppose x0 = 0 is a fixed

point of a two-dimensional discrete-time system (now n = 2). Assume
that n− = n+ = 1, so that there is one (real) multiplier µ1 outside the
unit circle (|µ1| > 1) and one (real) multiplier µ2 inside the unit circle
(|µ2| < 1). In our case, there are two invariant manifolds passing through
the fixed point, namely the one-dimensional manifold W s(x0) formed by
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FIGURE 2.7. Staircase diagrams for stable fixed points.

orbits converging to x0 under iterations of f , and the one-dimensional man-
ifold Wu(x0) formed by orbits tending to x0 under iterations of f−1. Recall
that the orbits of a discrete-time system are sequences of points. All orbits
not belonging to the aforementioned manifolds pass near the fixed point
and eventually leave its neighborhood in both “time” directions.

Figure 2.8 shows two types of saddles in R
2. In the case (a) of positive

multipliers, 0 < µ2 < 1 < µ1, an orbit starting at a point on W s(x0)
converges to x0 monotonously. Thus, the stable manifold W s(x0) is formed
by two invariant branches, W s

1,2(x0), separated by x0. The same can be
said about the unstable manifold Wu(x0) upon replacing f by its inverse.
The restriction of the map onto both manifolds preserves orientation.

If the multipliers are negative (case (b)), µ1 < −1 < µ2 < 0, the orbits
on the manifolds “jump” between the two components W s,u

1,2 separated by
x0. The map reverses orientation in both manifolds. The branches W s,u

1,2
are invariant with respect to the second iterate f2 of the map. ✸

Remarks:
(1) The stable and unstable manifolds W s,u(x0) of a two-dimensional

saddle are examples of invariant curves: If x belongs to the curve, so does
any iterate fk(x). The invariant curve is not an orbit. Actually, it consists
of an infinite number of orbits. Figure 2.9 shows invariant curves and an
orbit near a saddle fixed point with positive multipliers.

(2) The global behavior of the stable and unstable manifolds W s,u(x0)
of a hyperbolic fixed point can be very complex, thus making the word
“contain” absolutely necessary in Theorem 2.3.

Return, for example, to the planar case and suppose that x0 is a saddle
with positive multipliers. First of all, unlike the stable and unstable sets
of an equilibrium in a continuous-time system, the manifolds W s(x0) and
Wu(x0) of a generic discrete-time system can intersect at nonzero angle
(transversally) (see Figure 2.10(a)).
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FIGURE 2.8. Invariant manifolds of saddle fixed points on the plane: (a) positive
multipliers; (b) negative multipliers.

Moreover, one transversal intersection, if it occurs, implies an infinite
number of such intersections. Indeed, let x0 be a point of the intersection.
By definition, it belongs to both invariant manifolds. Therefore, the orbit
starting at this point converges to the saddle point x0 under repeated it-
eration of either f or f−1 : fk(x0) → x0 as k → ±∞. Each point of this
orbit is a point of intersection of W s(x0) and Wu(x0). This infinite num-
ber of intersections forces the manifolds to “oscillate” in a complex manner
near x0, as sketched in Figure 2.10(b). The resulting “web” is called the
Poincaré homoclinic structure. The orbit starting at x0 is said to be homo-
clinic to x0. It is the presence of the homoclinic structure that can make
the intersection of W s,u(x0) with any neighborhood of the saddle x0 highly
nontrivial.

The dynamical consequences of the existence of the homoclinic structure
are also dramatic: It results in the appearance of an infinite number of
periodic points with arbitrary high periods near the homoclinic orbit. This
follows from the presence of Smale horseshoes (see Chapter 1). Figure 2.11
illustrates how the horseshoes are formed. Take a (curvilinear) rectangle
S near the stable manifold W s(x0) and consider its iterations fkS. If the
homoclinic structure is present, for a sufficiently high number of iterations
N , fNS will look like the folded and expanded band Q shown in the figure.
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FIGURE 2.9. Invariant curves and an orbit near a saddle fixed point.
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FIGURE 2.10. Poincaré homoclinic structure.

The intersection of S with Q forms several horseshoes, where each of them
implies an infinite number of cycles with arbitrary high periods. ♦

2.2.3 Hyperbolic limit cycles
Using the results of the previous section and the Poincaré map construction
(see Chapter 1), we can define hyperbolic limit cycles in continuous-time
systems and describe the topology of phase orbits near such cycles. Consider
a continuous-time dynamical system

ẋ = f(x), x ∈ R
n, (2.13)

with smooth f , and assume that there is an isolated periodic orbit (limit cy-
cle) L0 of (2.13). As in Chapter 1, let Σ be a local cross-section to the cycle
of dimension (n − 1) (codim Σ = 1) with coordinates ξ = (ξ1, . . . , ξn−1)T .
System (2.13) locally defines a smooth invertible map P (a Poincaré map)
from Σ to Σ along the orbits of (2.13). The point ξ0 of intersection of L0
with Σ is a fixed point of the map P, P (ξ0) = ξ0.

Generically, the fixed point ξ0 is hyperbolic, so there exist invariant man-
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ferret
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FIGURE 2.11. Smale horseshoes embedded into the Poincaré homoclinic struc-
ture.

ifolds
W s(ξ0) = {ξ ∈ Σ : P k(ξ) → ξ0, k → +∞}

and
Wu(ξ0) = {ξ ∈ Σ : P−k(ξ) → ξ0, k → +∞},

of the dimensions n− and n+, respectively, where n∓ are the numbers of
eigenvalues of the Jacobian matrix of P at ξ0 located inside and outside
the unit circle. Recall that n− + n+ = n − 1 and that the eigenvalues are
called multipliers of the cycle. The invariant manifolds W s,u(ξ0) are the
intersections with Σ of the stable and unstable manifolds of the cycle:

W s(L0) = {x : ϕtx→ L0, t→ +∞},
Wu(L0) = {x : ϕtx→ L0, t→ −∞},

where ϕt is the flow corresponding to (2.13).
We can now use the results on the topological classification of fixed points

of discrete-time dynamical systems to classify limit cycles. A limit cycle is
called hyperbolic if ξ0 is a hyperbolic fixed point of the Poincaré map.
Similarly, a hyperbolic cycle is called a saddle cycle if it has multipliers
both inside and outside the unit circle (i.e., n−n+ = 0). Recall that the
product of the multipliers is always positive (see Chapter 1); therefore the
Poincaré map preserves orientation in Σ. This imposes some restrictions on
the location of the multipliers in the complex plane.

Example 2.6 (Hyperbolic cycles in planar systems) Consider a
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smooth planar system {
ẋ1 = f1(x1, x2),
ẋ2 = f2(x1, x2),

x = (x1, x2)T ∈ R
2. Let x0(t) be a solution corresponding to a limit cycle

L0 of the system, and let T0 be the (minimal) period of this solution. There
is only one multiplier of the cycle, µ1, which is positive and is given by

µ1 = exp

{∫ T0

0
(div f)(x0(t)) dt

}
> 0,

where div stands for the divergence of the vector field:

(div f)(x) =
∂f1(x)
∂x1

+
∂f2(x)
∂x2

.

If 0 < µ1 < 1, we have a stable hyperbolic cycle and all nearby orbits con-
verge exponentially to it, while for µ1 > 1 we have an unstable hyperbolic
cycle with exponentially diverging neighboring orbits. ✸
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FIGURE 2.12. Saddle cycles in three-dimensional systems: (a) positive multipliers
and (b) negative multipliers.

Example 2.7 (Saddle cycles in three-dimensional systems) Ex-
ample 2.5 provides two types of saddle limit cycles existing in R

3 (see Figure
2.12). If the multipliers of the Poincaré map satisfy

0 < µ2 < 1 < µ1,
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both invariant manifolds W s(L0) and Wu(L0) of the cycle L0 are simple
bands (Figure 2.12(a)), while in the case when the multipliers satisfy

µ1 < −1 < µ2 < 0,

the manifolds W s(L0) and Wu(L0) are twisted bands (called Möbius strips)
(see Figure 2.12(b)). Other types of saddle cycles in R

3 are impossible, since
the product of the multipliers of any Poincaré map is positive. Thus, the
manifolds W s(L0) and Wu(L0) must both be simple or twisted.

Finally, remark that W s(L) and Wu(L) can intersect along orbits ho-
moclinic to the cycle L, giving rise to Poincaré homoclinic structure and
Smale horseshoes on the cross-section Σ. ✸

2.3 Bifurcations and bifurcation diagrams

Now consider a dynamical system that depends on parameters. In the
continuous-time case we will write it as

ẋ = f(x, α), (2.14)

while in the discrete-time case it is written as

x �→ f(x, α), (2.15)

where x ∈ R
n and α ∈ R

m represent phase variables and parameters,
respectively. Consider the phase portrait of the system.2 As the parameters
vary, the phase portrait also varies. There are two possibilities: either the
system remains topologically equivalent to the original one, or its topology
changes.

Definition 2.11 The appearance of a topologically nonequivalent phase
portrait under variation of parameters is called a bifurcation.

Thus, a bifurcation is a change of the topological type of the system as its
parameters pass through a bifurcation (critical) value. Actually, the central
topic of this book is the classification and analysis of various bifurcations.

Example 2.8 (Andronov-Hopf bifurcation) Consider the following
planar system that depends on one parameter:{

ẋ1 = αx1 − x2 − x1(x2
1 + x2

2),
ẋ2 = x1 + αx2 − x2(x2

1 + x2
2). (2.16)

2If necessary, one may consider the phase portrait in a parameter-dependent
region Uα ⊂ R

n.



58 2. Equivalence and Bifurcations

In polar coordinates (ρ, θ) it takes the form{
ρ̇ = ρ(α− ρ2),
θ̇ = 1,

(2.17)

and can be integrated explicitly (see Exercise 6). Since the equations for

α < 0 α = 0 α > 0

FIGURE 2.13. Hopf bifurcation.

ρ and θ are independent in (2.17), we can easily draw phase portraits of
the system in a fixed neighborhood of the origin, which is obviously the
only equilibrium point (see Figure 2.13). For α ≤ 0, the equilibrium is a
stable focus, since ρ̇ < 0 and ρ(t) → 0, if we start from any initial point. On
the other hand, if α > 0, we have ρ̇ > 0 for small ρ > 0 (the equilibrium
becomes an unstable focus), and ρ̇ < 0 for sufficiently large ρ. It is easy to
see from (2.17) that the system has a periodic orbit for any α > 0 of radius
ρ0 =

√
α (at ρ = ρ0 we have ρ̇ = 0). Moreover, this periodic orbit is stable,

since ρ̇ > 0 inside and ρ̇ < 0 outside the cycle.
Therefore, α = 0 is a bifurcation parameter value. Indeed, a phase por-

trait with a limit cycle cannot be deformed by a one-to-one transformation
into a phase portrait with only an equilibrium. The presence of a limit cy-
cle is said to be a topological invariant. As α increases and crosses zero, we
have a bifurcation in system (2.16) called the Andronov-Hopf bifurcation.
It leads to the appearance, from the equilibrium state, of small-amplitude
periodic oscillations. We will use this bifurcation as an example later in
this chapter and analyze it in detail in Chapters 3 and 5. ✸

As should be clear, an Andronov-Hopf bifurcation can be detected if
we fix any small neighborhood of the equilibrium. Such bifurcations are
called local. One can also define local bifurcations in discrete-time systems
as those detectable in any small neighborhood of a fixed point. We will
often refer to local bifurcations as bifurcations of equilibria or fixed points,
although we will analyze not just these points but the whole phase portraits
near the equilibria. Those bifurcations of limit cycles which correspond to
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local bifurcations of associated Poincaré maps are called local bifurcations
of cycles.

There are also bifurcations that cannot be detected by looking at small
neighborhoods of equilibrium (fixed) points or cycles. Such bifurcations are
called global.

Example 2.9 (Heteroclinic bifurcation) Consider the following pla-
nar system that depends on one parameter:{

ẋ1 = 1− x2
1 − αx1x2,

ẋ2 = x1x2 + α(1− x2
1). (2.18)

The system has two saddle equilibria

x(1) = (−1, 0), x(2) = (1, 0),

for all values of α (see Figure 2.14). At α = 0 the horizontal axis is invariant
and, therefore, the saddles are connected by an orbit that is asymptotic to
one of them for t→ +∞ and to the other for t→ −∞. Such orbits are called
heteroclinic. Similarly, an orbit that is asymptotic to the same equilibrium
as t→ +∞ and t→ −∞ is called homoclinic. For α = 0, the x1-axis is no
longer invariant, and the connection disappears. This is obviously a global
bifurcation. To detect this bifurcation we must fix a region U covering both
saddles. We will study hetero- and homoclinic orbit bifurcations in Chapter
6. ✸

There are global bifurcations in which certain local bifurcations are in-
volved. In such cases, looking at the local bifurcation provides only partial
information on the behavior of the system. The following example illus-
trates this possibility.

Example 2.10 (Saddle-node homoclinic bifurcation) Let us ana-
lyze the following system on the plane:{

ẋ1 = x1(1− x2
1 − x2

2) − x2(1 + α + x1),
ẋ2 = x1(1 + α + x1) + x2(1− x2

1 − x2
2), (2.19)

where α is a parameter. In polar coordinates (ρ, θ) system (2.19) takes the
form {

ρ̇ = ρ(1− ρ2),
θ̇ = 1 + α + ρ cos θ.

(2.20)

Fix a thin annulus U around the unit circle {(ρ, θ) : ρ = 1}. At α = 0,
there is a nonhyperbolic equilibrium point of system (2.20) in the annulus:

x0 = (ρ0, θ0) = (1, π)

(see Figure 2.15). It has eigenvalues λ1 = 0, λ2 = −2 (check!). For small
positive values of α the equilibrium disappears, while for small negative
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α < 0

α = 0

α > 0

FIGURE 2.14. Heteroclinic bifurcation.
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α < 0 α = 0 α > 0

FIGURE 2.15. Saddle-node homoclinic bifurcation.

α it splits into a saddle and a node (this bifurcation is called a saddle-
node or fold bifurcation; see Chapter 3). This is a local event. However,
for α > 0 a stable limit cycle appears in the system coinciding with the
unit circle. This circle is always an invariant set in the system, but for
α ≤ 0 it contains equilibria. Looking at only a small neighborhood of the
nonhyperbolic equilibrium, we miss the global appearance of the cycle.
Notice that at α = 0 there is exactly one orbit that is homoclinic to the
nonhyperbolic equilibrium x0. We will discuss such global bifurcations in
Chapter 7. ✸

We return now to a general discussion of bifurcations in a parameter-de-
pendent system (2.14) (or (2.15)). Take some value α = α0 and consider
a maximal connected parameter set (called a stratum) containing α0 and
composed by those points for which the system has a phase portrait that is
topologically equivalent to that at α0. Taking all such strata in the parame-
ter space R

m, we obtain the parametric portrait of the system. For example,
system (2.16) exhibiting the Andronov-Hopf bifurcation has a parametric
portrait with two strata: {α ≤ 0} and {α > 0}. In system (2.18) there are
three strata: {α < 0}, {α = 0}, and {α > 0}. Notice, however, that the
phase portrait of (2.18) for α < 0 is topologically equivalent to that for
α > 0.

The parametric portrait together with its characteristic phase portraits
constitute a bifurcation diagram.

Definition 2.12 A bifurcation diagram of the dynamical system is a strat-
ification of its parameter space induced by the topological equivalence, to-
gether with representative phase portraits for each stratum.

It is desirable to obtain the bifurcation diagram as a result of the qualita-
tive analysis of a given dynamical system. It classifies in a very condensed
way all possible modes of behavior of the system and transitions between
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them (bifurcations) under parameter variations.3 Note that the bifurcation
diagram depends, in general, on the region of phase space considered.

Remark:
If a dynamical system has a one- or two-dimensional phase space and

depends on only one parameter, its bifurcation diagram can be visualized
in the direct product of the phase and parameter spaces, R

1,2×R
1 with the

phase portraits represented by one- or two-dimensional slices α = const.
Consider, for example, a scalar system

ẋ = αx− x3, x ∈ R
1, α ∈ R

1.

This system has an equilibrium x0 = 0 for all α. This equilibrium is stable
for α < 0 and unstable for α > 0 (α is the eigenvalue of this equilibrium).
For α > 0, there are two extra equilibria branching from the origin (namely,
x1,2 = ±√α) which are stable. This bifurcation is often called a pitchfork
bifurcation, the reason for which becomes immediately clear if one has a
look at the bifurcation diagram of the system presented in (x, α)-space
(see Figure 2.16). Notice that the system demonstrating the pitchfork bi-

α

x

xx

x 0

1

2

0

FIGURE 2.16. Pitchfork bifurcation.

furcation is invariant under the transformation x �→ −x. We will study
bifurcations in such symmetric systems in Chapter 7. ♦

In the simplest cases, the parametric portrait is composed by a finite
number of regions in R

m. Inside each region the phase portrait is topo-
logically equivalent. These regions are separated by bifurcation boundaries,
which are smooth submanifolds in R

m (i.e., curves, surfaces). The bound-
aries can intersect, or meet. These intersections subdivide the boundaries
into subregions, and so forth. A bifurcation boundary is defined by specify-
ing a phase object (equilibrium, cycle, etc.) and some bifurcation conditions

3Recall that some time-related information on the behavior of the system is
lost due to topological equivalence.
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determining the type of its bifurcation (Hopf, fold, etc.). For example, the
Andronov-Hopf bifurcation of an equilibrium is characterized by one bifur-
cation condition, namely, the presence of a purely imaginary pair of eigen-
values of the Jacobian matrix evaluated at this equilibrium (cf. Example
2.7):

Re λ1,2 = 0.

When a boundary is crossed, the bifurcation occurs.

Definition 2.13 The codimension of a bifurcation in system (2.14) or
(2.15) is the difference between the dimension of the parameter space and
the dimension of the corresponding bifurcation boundary.

Equivalently, the codimension (codim for short) is the number of inde-
pendent conditions determining the bifurcation. This is the most practical
definition of the codimension. It makes it clear that the codimension of
a certain bifurcation is the same in all generic systems depending on a
sufficient number of parameters.

Remark:
The bifurcation diagram of even a simple continuous-time system in

a bounded region on the plane can be composed by an infinite num-
ber of strata. The situation becomes more involved for multidimensional
continuous-time systems (with n > 3). In such systems the bifurcation val-
ues can be dense in some parameter regions and the parametric portrait
can have a Cantor (fractal) structure with certain patterns repeated on
smaller and smaller scales to infinity. Clearly, the task of fully investigating
such a bifurcation diagram is practically impossible. Nevertheless, even par-
tial knowledge of the bifurcation diagram provides important information
about the behavior of the system being studied. ♦

2.4 Topological normal forms for bifurcations

Fortunately, bifurcation diagrams are not entirely “chaotic.” Different strata
of bifurcation diagrams in generic systems interact with each other follow-
ing certain rules. This makes bifurcation diagrams of systems arising in
many different applications look similar. To discuss this topic, we have to
decide when two dynamical systems have “qualitatively similar” or equiv-
alent bifurcation diagrams. Consider two (for definitiveness, continuous-
time) dynamical systems:

ẋ = f(x, α), x ∈ R
n, α ∈ R

m, (2.21)

and
ẏ = g(y, β), y ∈ R

n, β ∈ R
m, (2.22)
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with smooth right-hand sides and the same number of variables and param-
eters. The following definition is parallel to Definition 2.1, with necessary
modifications due to parameter dependence.

Definition 2.14 Dynamical system (2.21) is called topologically equiva-
lent to a dynamical system (2.22) if

(i) there exists a homeomorphism of the parameter space p : R
m →

R
m, β = p(α);
(ii) there is a parameter-dependent homeomorphism of the phase space

hα : R
n → R

n, y = hα(x), mapping orbits of the system (2.21) at parameter
values α onto orbits of the system (2.22) at parameter values β = p(α),
preserving the direction of time.

Clearly, the homeomorphism p transforms the parametric portrait of sys-
tem (2.21) into the parametric portrait of system (2.22), while the homeo-
morphism hα maps corresponding phase portraits. By definition, topolog-
ically equivalent parameter-dependent systems have (topologically) equiv-
alent bifurcation diagrams.

Remark:
Notice that we do not require the homeomorphism hα to depend contin-

uously on α, which would imply that the map (x, α) �→ (hp(α)(x), p(α)) be
a homeomorphism of the direct product R

n × R
m. For this reason, some

authors call the above-defined topological equivalence weak (or fiber) topo-
logical equivalence. ♦

As in the constant-parameter case, Definition 2.14 can be modified if one
is interested in comparing local behavior of the systems, for example, in
a small neighborhood of the origin of the state space, for small parameter
values.

Definition 2.15 Two systems (2.21) and (2.22) are called locally topologi-
cally equivalent near the origin, if there exists a map (x, α) �→ (hα(x), p(α)),
defined in a small neighborhood of (x, α) = (0, 0) in the direct product
R
n × R

m and such that

(i) p : R
m → R

m is a homeomorphism defined in a small neighborhood
of α = 0, p(0) = 0;

(ii) hα : R
n → R

n is a parameter-dependent homeomorphism defined in
a small neighborhood Uα of x = 0, h0(0) = 0, and mapping orbits of (2.21)
in Uα onto orbits of (2.22) in hα(Uα), preserving the direction of time.

This definition means that one can introduce two small neighborhoods
of the origin Uα and Vβ , whose diameters are bounded away from zero
uniformly for α, β varying in some fixed small neighborhoods of the ori-
gin of the corresponding parameter spaces. Then, the homeomorphism hα
maps orbits of (2.21) in Uα onto orbits of (2.22) in Vp(α), preserving their
orientation.
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We now consider the problem of the classification of all possible bifur-
cation diagrams of generic systems, at least, locally (i.e. near bifurcation
boundaries in the parameter space and corresponding critical orbits in the
phase space) and up to and including certain codimension. These local
diagrams could then serve as “building blocks” to construct the “global”
bifurcation diagram of any system. This problem has been solved for equi-
librium bifurcations in two-dimensional continuous-time systems up to and
including codim 3. In some sense, it has also been solved for bifurcations
of equilibria and fixed points in multidimensional continuous- and discrete-
time systems up to and including codim 2, although the relevant results are
necessarily incomplete (see Chapters 3, 4, 8, and 9). There are also several
outstanding results concerning higher-codimension local bifurcations and
some global bifurcations of codim 1 and 2.

The classification problem formulated above is simplified due to the fol-
lowing obvious but important observation. The minimal number of free pa-
rameters required to meet a codim k bifurcation in a parameter-dependent
system is exactly equal to k. Indeed, to satisfy a single bifurcation condition,
we need, in general, to “tune” a (single) parameter of the system. If there
are two conditions to be satisfied, two parameters have to be varied, and so
forth. In other words, we have to control k parameters to reach a codim k
bifurcation boundary in the parametric portrait of a generic system. On
the other hand, it is enough to study a bifurcation of codim k in generic
k-parameter systems. General m-parameter (m > k) diagrams near the
bifurcation boundary can then be obtained by “shifting” the k-parameter
diagram in the complementary directions. For example, the Andronov-Hopf
bifurcation is a codim 1 (local) bifurcation. Thus, it occurs at isolated pa-
rameter values in systems depending on one parameter. In two-parameter
systems, it generally occurs on specific curves (one-dimensional manifolds).
If we cross this curve at a nonzero angle (transversally), the resulting one-
parameter bifurcation diagrams (where the parameter, e.g., is the arclength
along a transversal curve) will be topologically equivalent to the original
one-parameter diagram. The same will be true if we cross a two-dimensional
surface corresponding to the Hopf bifurcation in a system depending on
three parameters.

For local bifurcations of equilibria and fixed points, universal bifurcation
diagrams are provided by topological normal forms.4 This is one of the
central notions in bifurcation theory. Let us discuss it in the continuous-
time setting, although it also applies to discrete-time systems. Sometimes
it is possible to construct a simple (polynomial in ξi) system

ξ̇ = g(ξ, β;σ), ξ ∈ R
n, β ∈ R

k, σ ∈ R
l, (2.23)

4It is possible to construct a kind of topological normal form for certain global
bifurcations involving homoclinic orbits.
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which has at β = 0 an equilibrium ξ = 0 satisfying k bifurcation conditions
determining a codim k bifurcation of this equilibrium. Here σ is a vector
of the coefficients σi, i = 1, 2, . . . , l, of the polynomials involved in (2.23).
In all the cases we will consider, there is a finite number of regions in the
coefficient space corresponding to topologically nonequivalent bifurcation
diagrams of (2.23). In the simplest situations, the σi take only a finite
number of integer values. For example, all the coefficients σi = 1 except a
single σi0 = ±1. In more complex situations, some components of σ may
take real values (modulae).

Together with system (2.23), let us consider a system

ẋ = f(x, α), x ∈ R
n, α ∈ R

k, (2.24)

having at α = 0 an equilibrium x = 0.

Definition 2.16 (Topological normal form) System (2.23) is called a
topological normal form for the bifurcation if any generic system (2.24)
with the equilibrium x = 0 satisfying the same bifurcation conditions at
α = 0 is locally topologically equivalent near the origin to (2.23) for some
values of the coefficients σi.

Of course, we have to explain what a generic system means. In all the
cases we will consider, “generic” means that the system satisfies a finite
number of genericity conditions. These conditions will have the form of
nonequalities:

Ni[f ] = 0, i = 1, 2, . . . , s,

where each Ni is some (algebraic) function of certain partial derivatives
of f(x, α) with respect to x and α evaluated at (x, α) = (0, 0). Thus, a
“typical” parameter-dependent system satisfies these conditions. Actually,
the value of σ is then determined by values of Ni, i = 1, 2, . . . , s.

It is useful to distinguish those genericity conditions which are deter-
mined by the system at the critical parameter values α = 0. These condi-
tions can be expressed in terms of partial derivatives of f(x, 0) with respect
to x evaluated at x = 0, and are called nondegeneracy conditions. All the
other conditions, in which the derivatives of f(x, α) with respect to the
parameters α are involved, are called transversality conditions. The role of
these two types of conditions is different. The nondegeneracy conditions
guarantee that the critical equilibrium (singularity) is not too degenerate
(i.e., typical in a class of equiliubria satisfying given bifurcation conditions),
while the transversality conditions assure that the parameters “unfold” this
singularity in a generic way.

If a topological normal form is constructed, its bifurcation diagram clearly
has a universal meaning, since it immanently appears as a part of bifurca-
tion diagrams of generic systems exhibiting the relevant bifurcation. System
(2.16) from Example 2.7, by which we have illustrated the Andronov-Hopf
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bifurcation, corresponds to the case σ = −1 in the two-dimensional topo-
logical normal form for this bifurcation:{

ξ̇1 = βξ1 − ξ2 + σξ1(ξ21 + ξ22),
ξ̇2 = ξ1 + βξ2 + σξ2(ξ21 + ξ22).

The conditions specifying generic systems that demonstrate this bifurcation
are the following:

(H.1)
d

dα
Re λ1,2(α)

∣∣∣∣
α=0

= 0

and

(H.2) l1(0) = 0.

The first condition (transversality) means that the pair of complex-conjuga-
te eigenvalues λ1,2(α) crosses the imaginary axis with nonzero speed. The
second condition (nondegeneracy) implies that a certain combination of
Taylor coefficients of the right-hand sides of the system (up to and including
third-order coefficients) does not vanish. An explicit formula for l1(0) will
be derived in Chapter 3, where we also prove that the above system is really
a topological normal form for the Hopf bifurcation. We will also show that
σ = sign l1(0).

Remark:
There is a closely related notion of versal deformation (or universal un-

folding) for a bifurcation. First, we need to define what we mean by an
induced system.

Definition 2.17 (Induced system) The system

ẏ = g(y, β), y ∈ R
n, β ∈ R

m,

is said to be induced by the system

ẋ = f(x, α), x ∈ R
n, α ∈ R

m,

if g(y, β) = f(y, p(β)), where p : R
m → R

m is a continuous map.

Notice that the map p is not necessarily a homeomorphism, so it can be
noninvertible.

Definition 2.18 (Versal deformation) System (2.23) is a versal defor-
mation for the corresponding local bifurcation if any system (2.24), with the
equilibrium x = 0 satisfying the same bifurcation conditions and nondegen-
eracy conditions at α = 0, is locally topologically equivalent near the origin
to a system induced by (2.23) for some values of the coefficients σi.

It can be proved, in many cases, that the topological normal forms we
derive are actually versal deformations for the corresponding bifurcations
(see also Exercise 7). ♦
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2.5 Structural stability

There are dynamical systems whose phase portrait (in some domain) does
not change qualitatively under all sufficiently small perturbations.

Example 2.11 (Persistence of a hyperbolic equilibrium) Suppose
that x0 is a hyperbolic equilibrium of a continuous-time system

ẋ = f(x), x ∈ R
n, (2.25)

where f is smooth, f(x0) = 0. Consider, together with system (2.25), its
one-parameter perturbation

ẋ = f(x) + εg(x), x ∈ R
n, (2.26)

where g is also smooth and ε is a small parameter; setting ε = 0 brings
(2.26) back to (2.25). System (2.26) has an equilibrium x(ε) for all suffi-
ciently small |ε| such that x(0) = x0. Indeed, the equation defining equi-
libria of (2.26) can be written as

F (x, ε) = f(x) + εg(x) = 0,

with F (x0, 0) = 0. We also have Fx(x0, 0) = A0, where A0 is the Jacobian
matrix of (2.25) at the equilibrium x0. Since detA0 = 0, because x0 is
hyperbolic, the Implicit Function Theorem guarantees the existence of a
smooth function x = x(ε), x(0) = x0, satisfying

F (x(ε), ε) = 0

for small values of |ε|. The Jacobian matrix of x(ε) in (2.26),

Aε =
(
df(x)
dx

+ ε
dg(x)
dx

)∣∣∣∣
x=x(ε)

,

depends smoothly on ε and coincides with A0 in (2.25) at ε = 0. As already
known, the eigenvalues of a matrix that depends smoothly on a parameter
change continuously with the variation of this parameter.5 Therefore, x(ε)
will have no eigenvalues on the imaginary axis for all sufficiently small
|ε|, since it has no such eigenvalues at ε = 0. In other words, x(ε) is a
hyperbolic equilibrium of (2.26) for all |ε| small enough. Moreover, the
numbers n− and n+ of the stable and unstable eigenvalues of Aε are fixed
for these values of ε. Applying Theorem 2.2, we find that systems (2.25)
and (2.26) are locally topologically equivalent near the equilibria. Actually,
for every |ε| small, there is a neighborhood Uε ⊂ R

n of the equilibrium xε
in which system (2.26) is topologically equivalent to (2.25) in U0. In short,

5The eigenvalues vary smoothly as long as they remain simple.
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all these facts are summarized by saying that “a hyperbolic equilibrium is
structurally stable under smooth perturbations.”

Similar arguments provide the persistence of a hyperbolic equilibrium
for all sufficiently small |ε| in a smooth system

ẋ = G(x, ε), x ∈ R
n, ε ∈ R

1,

where G(x, 0) = f(x). ✸

The parameter ε from Example 2.11 somehow measures the distance
between system (2.25) and its perturbation (2.26); if ε = 0 the systems
coincide. There is a general definition of the distance between two smooth
dynamical systems. Consider two continuous-time systems

ẋ = f(x), x ∈ R
n, (2.27)

and
ẋ = g(x), x ∈ R

n, (2.28)

with smooth f and g.

Definition 2.19 The distance between (2.27) and (2.28) in a closed region
U ⊂ R

n is a positive number d1 given by

d1 = sup
x∈U

{
‖f(x)− g(x)‖+

∥∥∥∥df(x)
dx

− dg(x)
dx

∥∥∥∥} .

The systems are ε-close in U if d1 ≤ ε.

Here ‖ · ‖ means a vector and a matrix norm in R
n, for example:

‖x‖ =
√ ∑

i=1,...,n

x2
i , ‖A‖ =

√ ∑
i,j=1,...,n

a2
ij .

Thus, two systems are close if their right-hand sides are close to each other,
together with their first partial derivatives. In this case one usually calls the
systems C1-close. Clearly, the distance between systems (2.25) and (2.26)
is proportional to |ε|: d1 = C|ε| for some constant C > 0 depending on
the upper bounds for ‖g‖ and

∥∥∥ dg
dx

∥∥∥ in U . Definition 2.19 can be applied
verbatim to discrete-time systems.

Remark:
The appearance of the first derivatives in the definition of the distance

is natural if one wants to ensure that close systems have nearby equilibria
of the same topological type (see Example 2.11). It is easy to construct a
smooth system (2.28) that is ε-close to (2.27) in the C0-distance:

d0 = sup
x∈U

{‖f(x)− g(x)‖} ,
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FIGURE 2.17. Two C0-close functions with different numbers of zeros.

and that has a totally different number of equilibria in any neighborhood
of an equilibrium of (2.27) (see Figure 2.17 for n = 1). ♦

Now we would like to define a structurally stable system, which means
that any sufficiently close system is topologically equivalent to the struc-
turally stable one. The following definition seems rather natural.

Definition 2.20 (Strict structural stability) System (2.27) is strictly
structurally stable in the region U if any system (2.28) that is sufficiently
C1-close in U is topologically equivalent in U to (2.27).

U

Lx 0

U

FIGURE 2.18. Structurally unstable orbits according to Definition 2.20.

Notice, however, that systems having hyperbolic equilibria on the bound-
ary of U , or hyperbolic cycles touching the boundary (see Figure 2.18),
are structurally unstable in accordance with this definition, since there are
small system perturbations moving such equilibria out of U , or pushing
such cycles to lie (partially) outside of U . There are two ways to handle
this difficulty.

The first is to consider dynamical systems “in the whole phase space”
and to forget about any regions. This way is perfect for dynamical systems
defined on a compact smooth manifold X. In such a case, the “region U”
in Definition 2.20 (as well as in the definition of the distance) should be
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substituted by the “compact manifold X.” Unfortunately, for systems in
R
n this easily leads to complications. For example, the distance between

many innocently looking systems may be infinite if the supremum in d1 is
taken over the whole of R

n. Therefore, the second way out is to continue to
work with bounded regions but to introduce another definition of structural
stability.

Definition 2.21 (Andronov’s structural stability) A system (2.27) de-
fined in a region D ⊂ R

n is called structurally stable in a region D0 ⊂ D
if for any sufficiently C1-close in D system (2.28) there are regions U, V ⊂
D, D0 ⊂ U such that (2.27) is topologically equivalent in U to (2.28) in V
(see Figure 2.19).

0

D

D
V

U

FIGURE 2.19. Andronov’s structural stability.

A parallel definition can be given for discrete-time systems. If (2.27) is
structurally stable in D0 ⊂ D, then it is structurally stable in any region
D1 ⊂ D0. There are cases when Definitions 2.20 and 2.21 actually coincide.

Lemma 2.1 If a system is structurally stable in a region D0 with the
boundary B0 and all its orbits point strictly inside B0, then it is strictly
structurally stable in U = D0. ✷

The following classical theorem gives necessary and sufficient conditions
for a continuous-time system in the plane to be structurally stable.

FIGURE 2.20. Structurally unstable connecting orbits in planar systems.
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Theorem 2.5 (Andronov & Pontryagin [1937]) A smooth dynamical
system

ẋ = f(x), x ∈ R
2,

is structurally stable in a region D0 ⊂ R
2 if and only if

(i) it has a finite number of equilibria and limit cycles in D0, and all of
them are hyperbolic;

(ii) there are no saddle separatrices returning to the same saddle or con-
necting two different saddles in D0 (see Figure 2.20). ✷

Remark:
Actually, in their original paper of 1937, Andronov and Pontryagin con-

sidered systems with analytic right-hand sides in a region D0 ⊂ R
2 bounded

by a (piecewise) smooth curve. They also assumed that all orbits point
strictly inside the region, so they were able to use Definition 2.20. Later,
Definition 2.21 was introduced and this restriction on the behavior on the
boundary was left out. Moreover, they proved that the homeomorphism h
transforming the phase portrait of a perturbed system in D0 into that of
the original system can be selected C0-close to the identity map id(x) = x.
♦

This theorem gives the complete description of structurally stable sys-
tems on the plane. It is rather obvious, although it has to be proved, that
a typical (generic) system on the plane satisfies Andronov-Pontryagin con-
ditions and is, thus, structurally stable. If one considers the bifurcation
diagram of a generic planar system depending on k parameters, these are
structurally stable systems that occupy k-dimensional open regions in the
parameter space.

One can ask if a similar theorem exists for n-dimensional systems. The
answer is “no.” More precisely, one can establish sufficient conditions (called
Morse-Smale conditions, similar to those in Theorem 2.5) for a continuous-
time system to be structurally stable. Nevertheless, there are systems,
which do not satisfy these conditions, that are structurally stable. In par-
ticular, structurally stable systems can have an infinite number of peri-
odic orbits in compact regions. To understand this phenomenon, consider a
continuous-time system R

3. Suppose that there is a two-dimensional cross-
section Σ on which the system defines a Poincaré map generating a Smale
horseshoe (see Chapter 1 and Example 2.7 in this chapter). Then, the sys-
tem has an infinite number of saddle cycles in some region of the phase
space. A C1-close system will define a C1-close Poincaré map on Σ. The
horseshoe will be slightly deformed, but the geometrical construction we
have carried out in Chapter 1 remains valid. Thus, a complex invariant
set including an infinite number of saddle cycles will persist under all suf-
ficiently small perturbations. A homeomorphism transforming the corre-
sponding phase portraits can also be constructed.
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Moreover, it is possible to construct a system that has no close struc-
turally stable systems. We direct the reader to the literature cited in this
chapter’s appendix.

2.6 Exercises

(1) Determine which of the following linear systems has a structurally
stable equilibrium at the origin, and sketch its phase portrait:

(a)
{

ẋ = x− 2y,
ẏ = −2x + 4y;

(b)
{

ẋ = 2x + y,
ẏ = −x;

(c)
{

ẋ = x + 2y,
ẏ = −x− y.

(2) The following system of partial differential equations is the FitzHugh-
Nagumo caricature of the Hodgkin-Huxley equations modeling the nerve
impulse propagation along an axon:

∂u

∂t
=

∂2u

∂x2 − fa(u)− v,

∂v

∂t
= bu,

where u = u(x, t) represents the membrane potential, v = v(x, t) is a
“recovery” variable, fa(u) = u(u − a)(u − 1), 1 > a > 0, b > 0,−∞ < x <
+∞, and t > 0.
Traveling waves are solutions to these equations of the form

u(x, t) = U(ξ), v(x, t) = V (ξ), ξ = x + ct,

where c is an a priori unknown wave propagation speed. The functions U(ξ)
and V (ξ) are the wave profiles.

(a) Derive a system of three ordinary differential equations for the profiles
with “time” ξ. (Hint: Introduce an extra variable: W = U̇ .)

(b) Check that for all c > 0 the system for the profiles (the wave system)
has a unique equilibrium with one positive eigenvalue and two eigenvalues
with negative real parts. (Hint: First, verify this assuming that eigenvalues
are real. Then, show that the characteristic equation cannot have roots
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on the imaginary axis, and finally, use the continuous dependence of the
eigenvalues on the parameters.)

(c) Conclude that the equilibrium can be either a saddle or a saddle-
focus with a one-dimensional unstable and a two-dimensional stable in-
variant manifold, and find a condition on the system parameters that de-
fines a boundary between these two cases. Plot several boundaries in the
(a, c)-plane for different values of b and specify the region corresponding to
saddle-foci. (Hint: At the boundary the characteristic polynomial h(λ) has
a double root λ0 : h(λ0) = h′(λ0) = 0.)

(d) Sketch possible profiles of traveling impulses in both regions. (Hint:
An impulse corresponds to a solution of the wave system with

(U(ξ), V (ξ),W (ξ)) → (0, 0, 0)

as ξ → ±∞. See Chapter 6 for further details.)

(3) Prove that the system {
ẋ1 = −x1,
ẋ2 = −x2,

is locally topologically equivalent near the origin to the system{
ẋ1 = −x1,
ẋ2 = −2x2.

(Hint: Mimic the proof of Example 2.1 without introducing polar coordi-
nates.) Are the systems diffeomorphic?

(4) (Diffeomorphic limit cycles) Show that for diffeomorphic continu-
ous-time systems, corresponding limit cycles have coinciding periods and
multipliers. (Hint: Use the fact that variational equations around corre-
sponding cycles (considered as autonomous systems with an extra cyclic
variable) are diffeomorphic.)

(5) (Orbital equivalence and global flows)
(a) Prove that the scalar system

dx

dt
= x2, x ∈ R

1,

having solutions approaching infinity within finite time, and thus defining
only local flow ϕt : R

1 → R
1, is orbitally equivalent to the scalar system

dx

dτ
=

x2

1 + x2 , x ∈ R
1,

having no such solutions and therefore defining a global flow ψτ : R
1 → R

1.
How are t and τ related?
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(b) Prove that any smooth system ẋ = f(x), x ∈ R
n, is orbitally equiva-

lent in R
n to a smooth system defining a global flow ψτ on R

n. (Hint: The
system

ẋ =
1

1 + ‖f(x)‖f(x),

where ‖ · ‖ is the norm associated with the standard scalar product in R
n,

does the job.)

(6) (One-point parametric portrait) Construct an autonomous system
of differential equations in R

3 depending on two parameters (α, β) and
having topologically equivalent phase portraits for all parameter values
except (α, β) = (0, 0). (Hint: Use the idea of Example 2.9. At α = β = 0,
the system should have two saddle points with one-dimensional unstable
and one-dimensional stable manifolds with coinciding branches (see Figure
2.21).)

FIGURE 2.21. Exercise 6.

(7) (Induced systems) Show that the scalar system

ẏ = βy − y2,

which exhibits the transcritical bifurcation, is topologically equivalent (in
fact, diffeomorphic) to a system induced by the system

ẋ = α− x2,

which undergoes the fold bifurcation. (Hint: See Arrowsmith & Place [1990,
p.193].)

(8) (Proof of Lemma 2.1)
(a) Prove that a smooth planar system ẋ = f(x), x ∈ R

2, is topologically
equivalent (in fact, diffeomorphic) in a region U , that is, free of equilibria
and periodic orbits and is bounded by two orbits and two smooth curves
transversal to orbits, to the system{

ẏ1 = 1,
ẏ2 = 0,
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FIGURE 2.22. Phase portraits in regions U and V are equivalent.
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FIGURE 2.23. Saddles are topologically equivalent.

in the unit square V = {(y1, y2) : |y1| ≤ 1, |y2| ≤ 1} (see Figure 2.22).
(b) Generalize this result to n-dimensional systems and prove Lemma

2.1.
(c) Prove, using part (a), that two hyperbolic saddle points on the plane

have locally topologically equivalent phase portraits. (Hint: See Figure 2.23;
an explicit map providing the equivalence is constructed in Chapter 6.)
Where is the differentiability lost?

2.7 Appendix: Bibliographical notes

The notion of topological equivalence of dynamical systems appeared in
the paper by Andronov & Pontryagin [1937] devoted to structurally stable
systems on the plane. It is extensively used (among other equivalences) in
singularity theory to classify singularities of maps and their deformations
(Thom [1972], Arnold, Varchenko & Guseyn-Zade [1985], Golubitsky &
Schaeffer [1985]).

The local topological equivalence of a nonlinear dynamical system to its
linearization at a hyperbolic equilibrium was proved by Grobman [1959] and
Hartman [1963]. See Hartman [1964] for details. Local topological equiva-
lence of a map near a hyperbolic fixed point to its linearization has been
established by Grobman and Hartman as a by-product of their proofs of
the corresponding theorem in the continuous-time case (see also Nitecki
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[1971]). A constructive proof of the topological equivalence of two linear
systems with n0 = 0 and the same n− and n+ can be found in Arnold
[1973] and Hale & Koçak [1991].

The Local Stable Manifold Theorem for differential equations originated
in works by Hadamard [1901] and Perron [1930]. Complete proofs and gen-
eralizations are given by Kelley [1967]; Hirsch, Pugh & Shub [1977] (see also
Irwin [1980]). The Local Stable Manifold Theorem for maps is actually the
main technical tool used to prove the relevant theorem for differential equa-
tions. Therefore, its proof can be found in the cited literature, for example,
in Hartman [1964] or Nitecki [1971]. The latter reference also contains a
proof that the stable and unstable sets of a hyperbolic fixed point are im-
ages of R

n
− and R

n
+ under immersion.

The complex structure generated by the transversal intersection of the
stable and unstable manifolds of a hyperbolic fixed point was discovered
by Poincaré [1892,1893,1899] while analyzing area-preserving (conserva-
tive) maps appearing in celestial mechanics. Further analysis of this phe-
nomenon in the conservative case was undertaken by Birkhoff [1935], with
particular emphasis to the statistical properties of corresponding orbits.
The nonconservative case was studied by Smale [1963], Neimark [1967],
and Shil’nikov [1967b]. A nice exposition of this topic is given by Moser
[1973].

There are two main approaches to studying bifurcations in dynamical
systems. The first one, originating in the works by Poincaré, is to analyze
the appearance (branching) of new phase objects of a certain type (equi-
libria or cycles, for example) from some known ones when parameters of
the system vary. This approach led to the development of branching theory
for equilibrium solutions of finite- and infinite-dimensional nonlinear equa-
tions (see, e.g, Văınberg & Trenogin [1974], and Chow & Hale [1982]). The
approach also proved to be a powerful tool to study some global bifurca-
tions (see the bibliographical notes in Chapter 6). The second approach,
going back to Andronov [1933] and reintroduced by Thom [1972] in order
to classify gradient systems ẋ = −grad V (x, α), is to study rearrangements
(bifurcations) of the whole phase portrait under variations of parameters.
In principle, the branching analysis should precede more complete phase
portrait study, but there are many cases where complete phase portraits
are unavailable and studying certain solutions is the only way to get some
information on the bifurcation.

Bifurcations of phase portraits of two-dimensional dynamical systems
have been studied in great detail by Andronov and his co-workers in 1930-
1950 and summarized in the classical book whose English translation is
available as Andronov, Leontovich, Gordon & Maier [1973]. In his fa-
mous lectures, Arnold [1972] first applied many ideas from singularity the-
ory of differentiable maps to dynamical systems (a similar approach was
developed by Takens [1974a]). The notions of topological equivalence of
parameter-dependent systems (families), versal deformations for local bi-
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furcations, as well as many original results, were first presented in Arnold’s
lectures and then in the book by Arnold [1983]. Notice that in the literature
in English versal deformations are often called universal unfoldings follow-
ing terminology from singularity theory. A fundamental survey of bifurca-
tion theory, including results on global bifurcations, is given by Arnol’d,
Afraimovich, Il’yashenko & Shil’nikov [1994].

Structurally stable two-dimensional ODE systems were studied by An-
dronov & Pontryagin [1937] under the name coarse (or rough) systems.
Actually, they included the requirement that the homeomorphism trans-
forming the phase portraits be close to the identity. Peixoto [1962] proved
that a typical system on a two-dimensional manifold is structurally stable.
To discuss “typicality” one has to specify a space D of considered dynami-
cal systems. Then, a property is called typical (or generic) if systems from
the intersection of a countable number of open and dense subsets of D
possess this property (see Wiggins [1990] for an introductory discussion).
A class of structurally stable, multidimensional dynamical systems (called
Morse-Smale systems) has been identified Smale [1961, 1967]. Such systems
have only a finite number of equilibria and cycles, all of which are hyper-
bolic and have their stable and unstable invariant manifolds intersecting at
nonzero angles (transversally). There are structurally stable systems that
do not satisfy Morse-Smale criteria, in particular, having an infinite num-
ber of hyperbolic cycles [Smale 1963]. Moreover, structural stability is not a
typical property for multidimensional dynamical systems, and structurally
stable systems are not dense in a space D of smooth dynamical systems
[Smale 1966]. The interested reader is referred to Nitecki [1971] and Arnold
[1983] for more information.



3
One-Parameter Bifurcations of
Equilibria in Continuous-Time
Dynamical Systems

In this chapter we formulate conditions defining the simplest bifurcations
of equilibria in n-dimensional continuous-time systems: the fold and the
Hopf bifurcations. Then we study these bifurcations in the lowest possible
dimensions: the fold bifurcation for scalar systems and the Hopf bifurca-
tion for planar systems. Chapter 5 shows how to “lift” these results to
n-dimensional situations.

3.1 Simplest bifurcation conditions

Consider a continuous-time system depending on a parameter

ẋ = f(x, α), x ∈ R
n, α ∈ R

1,

where f is smooth with respect to both x and α. Let x = x0 be a hyper-
bolic equilibrium in the system for α = α0. As we have seen in Chapter 2,
under a small parameter variation the equilibrium moves slightly but re-
mains hyperbolic. Therefore, we can vary the parameter further and mon-
itor the equilibrium. It is clear that there are, generically, only two ways
in which the hyperbolicity condition can be violated. Either a simple real
eigenvalue approaches zero and we have λ1 = 0 (see Figure 3.1(a)), or a
pair of simple complex eigenvalues reaches the imaginary axis and we have
λ1,2 = ±iω0, ω0 > 0 (see Figure 3.1(b)) for some value of the parameter. It
is obvious (and can be rigorously formalized) that we need more parameters
to allocate extra eigenvalues on the imaginary axis. Notice that this might
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FIGURE 3.1. Codim 1 critical cases.

not be true if the system has some special properties, such as a symmetry
(see Chapter 7).

The rest of the chapter will essentially be devoted to the proof that a
nonhyperbolic equilibrium satisfying one of the above conditions is struc-
turally unstable and to the analysis of the corresponding bifurcations of
the local phase portrait under variation of the parameter. We have already
seen several examples of these bifurcations in Chapter 2. Let us finish this
section with the following two definitions.

Definition 3.1 The bifurcation associated with the appearance of λ1 = 0
is called a fold (or tangent) bifurcation.

Remark:
This bifurcation has a lot of other names, including limit point, saddle-

node bifurcation, and turning point. ♦
Definition 3.2 The bifurcation corresponding to the presence of λ1,2 =
±iω0, ω0 > 0, is called a Hopf (or Andronov-Hopf) bifurcation.

Notice that the tangent bifurcation is possible if n ≥ 1, but for the Hopf
bifurcation we need n ≥ 2.

3.2 The normal form of the fold bifurcation

Consider the following one-dimensional dynamical system depending on
one parameter:

ẋ = α + x2 ≡ f(x, α). (3.1)

At α = 0 this system has a nonhyperbolic equilibrium x0 = 0 with λ =
fx(0, 0) = 0. The behavior of the system for all the other values of α
is also clear (see Figure 3.2). For α < 0 there are two equilibria in the
system: x1,2(α) = ±√−α, the left one of which is stable, while the right
one is unstable. For α > 0 there are no equilibria in the system. While
α crosses zero from negative to positive values, the two equilibria (stable
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y = f   x(   , α)
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(   , α)y = f   x

FIGURE 3.2. Fold bifurcation.

and unstable) “collide,” forming at α = 0 an equilibrium with λ = 0, and
disappear. This is a fold bifurcation. The term “collision” is appropriate,
since the speed of approach ( d

dαx1,2(α)) of the equilibria tends to infinity
as α→ 0.

There is another way of presenting this bifurcation: plotting a bifurcation
diagram in the direct product of the phase and parameter spaces (simply,
the (x, α)-plane). The equation

f(x, α) = 0

defines an equilibrium manifold, which is simply the parabola α = −x2

(see Figure 3.3). This presentation displays the bifurcation picture at once.
Fixing some α, we can easily determine the number of equilibria in the

α = − x 2

x2 (α)

x1 (α)

0 α

x

FIGURE 3.3. Fold bifurcation in the phase-parameter space.

system for this parameter value. The projection of the equilibrium manifold
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into the parameter axis has a singularity of the fold type at (x, α) = (0, 0).

Remark:
The system ẋ = α− x2 can be considered in the same way. The analysis

reveals two equilibria appearing for α > 0. ♦

Now add to system (3.1) higher-order terms that can depend smoothly
on the parameter. It happens that these terms do not change qualitatively
the behavior of the system near the origin x = 0 for parameter values close
to α = 0. Actually, the following lemma holds:

Lemma 3.1 The system

ẋ = α + x2 + O(x3)

is locally topologically equivalent near the origin to the system

ẋ = α + x2.

Proof:
The proof goes through two steps. It is based on the fact that for scalar

systems a homeomorphism mapping equilibria into equilibria will also map
their connecting orbits.

Step 1 (Analysis of equilibria). Introduce a scalar variable y and write the
first system as

ẏ = F (y, α) = α + y2 + ψ(y, α), (3.2)

where ψ = O(y3) is a smooth functions of (y, α) near (0, 0). Consider the
equilibrium manifold of (3.2) near the origin (0, 0) of the (y, α)-plane:

M = {(y, α) : F (y, α) = α + y2 + ψ(y, α) = 0}.

The curve M passes through the origin (F (0, 0) = 0). By the Implicit
Function Theorem (since Fα(0, 0) = 1), it can be locally parametrized by
y:

M = {(y, α) : α = g(y)},
where g is smooth and defined for small |y|. Moreover,

g(y) = −y2 + O(y3)

(check!). Thus, for any sufficiently small α < 0, there are two equilibria
of (3.2) near the origin in (3.2), y1(α) and y2(α), which are close to the
equilibria of (3.1), i.e., x1(α) = +

√−α and x2(α) = −√−α, for the same
parameter value (see Figure 3.4).
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FIGURE 3.4. Fold bifurcation for the perturbed system.

Step 2 (Homeomorphism construction). For small |α|, construct a parame-
ter-dependent map y = hα(x) as following. For α ≥ 0 take the identity
map

hα(x) = x.

For α < 0 take a linear transformation

hα(x) = a(α) + b(α)x,

where the coefficients a, b are uniquely determined by the conditions

hα(xj(α)) = yj(α), j = 1, 2,

(find them!). The constructed map hα : R
1 → R

1 is a homeomorphism
mapping orbits of (3.1) near the origin into the corresponding orbits of
(3.2), preserving the direction of time. Chapter 2 identified this property
as the local topological equivalence of parameter-dependent systems.

Although it is not required in the book for the homeomorphism hα to
depend continuously on α (see Remark after Definition 2.14), this property
holds here, since hα tends to the identity map as negative α→ 0. ✷

3.3 Generic fold bifurcation

We shall show that system (3.1) (with a possible sign change of the x2-
term) is a topological normal form of a generic one-dimensional system
having a fold bifurcation. In Chapter 5 we will also see that in some strong
sense it describes the fold bifurcation in a generic n-dimensional system.

Suppose the system

ẋ = f(x, α), x ∈ R
1, α ∈ R

1, (3.3)
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with a smooth f has at α = 0 the equilibrium x = 0 with λ = fx(0, 0) = 0.
Expand f(x, α) as a Taylor series with respect to x at x = 0:

f(x, α) = f0(α) + f1(α)x + f2(α)x2 + O(x3).

Two conditions are satisfied: f0(0) = f(0, 0) = 0 (equilibrium condition)
and f1(0) = fx(0, 0) = 0 (fold bifurcation condition).

The main idea of the following simple calculations is this: By smooth
invertible changes of the coordinate and the parameter, transform system
(3.3) into the form (3.1) up to and including the second-order terms. Then,
Lemma 3.1 can be applied, thus making it possible to drop the higher-order
terms. While proceeding, we will see that some extra nondegeneracy and
transversality conditions must be imposed to make these transformations
possible. These conditions will actually specify which one-parameter system
having a fold bifurcation can be considered as generic. This idea works
for all local bifurcation problems. We will proceed in exactly this way in
analyzing the Hopf bifurcation later in this chapter.

Step 1 (Shift of the coordinate). Perform a linear coordinate shift by intro-
ducing a new variable ξ:

ξ = x + δ, (3.4)

where δ = δ(α) is an a priori unknown function that will be defined later.
The inverse coordinate transformation is

x = ξ − δ.

Substituting (3.4) into (3.3) yields

ξ̇ = ẋ = f0(α) + f1(α)(ξ − δ) + f2(α)(ξ − δ)2 + · · · .
Therefore,

ξ̇ =
[
f0(α)− f1(α)δ + f2(α)δ2 + O(δ3)

]
+

[
f1(α)− 2f2(α)δ + O(δ2)

]
ξ

+ [f2(α) + O(δ)] ξ2

+ O(ξ3).

Assume that

(A.1) f2(0) =
1
2
fxx(0, 0) = 0.

Then there is a smooth function δ(α) that annihilates the linear term in
the above equation for all sufficiently small |α|. This can be justified with
the Implicit Function Theorem. Indeed, the condition for the linear term
to vanish can be written as

F (α, δ) ≡ f1(α)− 2f2(α)δ + δ2ψ(α, δ) = 0
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with some smooth function ψ. We have

F (0, 0) = 0,
∂F

∂δ

∣∣∣∣
(0,0)

= −2f2(0) = 0,
∂F

∂α

∣∣∣∣
(0,0)

= f ′
1(0),

which implies (local) existence and uniqueness of a smooth function δ =
δ(α) such that δ(0) = 0 and F (α, δ(α)) ≡ 0. It also follows that

δ(α) =
f ′
1(0)

2f2(0)
α + O(α2).

The equation for ξ now contains no linear terms:

ξ̇ = [f ′
0(0)α + O(α2)] + [f2(0) + O(α)]ξ2 + O(ξ3). (3.5)

Step 2 (Introduce a new parameter). Consider as a new parameter µ = µ(α)
the constant (ξ-independent) term of (3.5):

µ = f ′
0(0)α + α2φ(α),

where φ is some smooth function. We have:

(a) µ(0) = 0;
(b) µ′(0) = f ′

0(0) = fα(0, 0).

If we assume that

(A.2) fα(0, 0) = 0,

then the Inverse Function Theorem implies local existence and uniqueness
of a smooth inverse function α = α(µ) with α(0) = 0. Therefore, equation
(3.5) now reads

ξ̇ = µ + a(µ)ξ2 + O(ξ3),

where a(µ) is a smooth function with a(0) = f2(0) = 0 due to the first
assumption (A.1).

Step 3 (Final scaling). Let η = |a(µ)|ξ and β = |a(µ)|µ. Then we get

η̇ = β + sη2 + O(η3),

where s = sign a(0) = ±1.

Therefore, the following theorem is proved.

Theorem 3.1 Suppose that a one-dimensional system

ẋ = f(x, α), x ∈ R
1, α ∈ R

1,

with smooth f , has at α = 0 the equilibrium x = 0, and let λ = fx(0, 0) = 0.
Assume that the following conditions are satisfied:
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(A.1) fxx(0, 0) = 0;
(A.2) fα(0, 0) = 0.

Then there are invertible coordinate and parameter changes transforming
the system into

η̇ = β ± η2 + O(η3). ✷

Using Lemma 3.1, we can eliminate O(η3) terms and finally arrive at the
following general result.

Theorem 3.2 (Topological normal form for the fold bifurcation)
Any generic scalar one-parameter system

ẋ = f(x, α),

having at α = 0 the equilibrium x = 0 with λ = fx(0, 0) = 0, is locally
topologically equivalent near the origin to one of the following normal forms:

η̇ = β ± η2. ✷

Remark:
The genericity conditions in Theorem 3.2 are the nondegeneracy condi-

tion (A.1) and the transversality condition (A.2) from Theorem 3.1. ♦

3.4 The normal form of the Hopf bifurcation

Consider the following system of two differential equations depending on
one parameter: {

ẋ1 = αx1 − x2 − x1(x2
1 + x2

2),
ẋ2 = x1 + αx2 − x2(x2

1 + x2
2). (3.6)

This system has the equilibrium x1 = x2 = 0 for all α with the Jacobian
matrix

A =
(

α −1
1 α

)
having eigenvalues λ1,2 = α ± i. Introduce the complex variable z = x1 +
ix2, z̄ = x1− ix2, |z|2 = zz̄ = x2

1 +x2
2. This variable satisfies the differential

equation

ż = ẋ1 + iẋ2 = α(x1 + ix2) + i(x1 + ix2)− (x1 + ix2)(x2
1 + x2

2),

and we can therefore rewrite system (3.6) in the following complex form:

ż = (α + i)z − z|z|2. (3.7)
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Finally, using the representation z = ρeiϕ, we obtain

ż = ρ̇eiϕ + ρiϕ̇eiϕ,

or
ρ̇eiϕ + iρϕ̇eiϕ = ρeiϕ(α + i− ρ2),

which gives the polar form of system (3.6):{
ρ̇ = ρ(α− ρ2),
ϕ̇ = 1. (3.8)

Bifurcations of the phase portrait of the system as α passes through zero
can easily be analyzed using the polar form, since the equations for ρ and
ϕ in (3.8) are uncoupled. The first equation (which should obviously be
considered only for ρ ≥ 0) has the equilibrium point ρ = 0 for all values of
α. The equilibrium is linearly stable if α < 0; it remains stable at α = 0
but nonlinearly (so the rate of solution convergence to zero is no longer ex-
ponential); for α > 0 the equilibrium becomes linearly unstable. Moreover,
there is an additional stable equilibrium point ρ0(α) =

√
α for α > 0. The

second equation describes a rotation with constant speed. Thus, by super-
position of the motions defined by the two equations of (3.8), we obtain the
following bifurcation diagram for the original two-dimensional system (3.6)
(see Figure 3.5). The system always has an equilibrium at the origin. This
equilibrium is a stable focus for α < 0 and an unstable focus for α > 0.
At the critical parameter value α = 0 the equilibrium is nonlinearly stable
and topologically equivalent to the focus. Sometimes it is called a weakly
attracting focus. This equilibrium is surrounded for α > 0 by an isolated
closed orbit (limit cycle) that is unique and stable. The cycle is a circle of
radius ρ0(α) =

√
α. All orbits starting outside or inside the cycle except

at the origin tend to the cycle as t → +∞. This is an Andronov-Hopf
bifurcation.

This bifurcation can also be presented in (x, y, α)-space (see Figure 3.6).
The appearing α-family of limit cycles forms a paraboloid surface.

x1

x2 x2

x1

x2

x1

α = 0 α > 0α < 0

FIGURE 3.5. Supercritical Hopf bifurcation.
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x1

x2

α

FIGURE 3.6. Supercritical Hopf bifurcation in the phase-parameter space.

A system having nonlinear terms with the opposite sign,{
ẋ1 = αx1 − x2 + x1(x2

1 + x2
2),

ẋ2 = x1 + αx2 + x2(x2
1 + x2

2), (3.9)

which has the following complex form:

ż = (α + i)z + z|z|2,

can be analyzed in the same way (see Figures 3.7 and 3.8). The system
undergoes the Andronov-Hopf bifurcation at α = 0. Contrary to system
(3.6), there is an unstable limit cycle in (3.9), which disappears when α
crosses zero from negative to positive values. The equilibrium at the origin
has the same stability for α = 0 as in system (3.6): It is stable for α < 0 and
unstable for α > 0. Its stability at the critical parameter value is opposite
to that in (3.6): It is (nonlinearly) unstable at α = 0.

x1 x1x 1

x2x2x2

α = 0α < 0 α > 0

FIGURE 3.7. Subcritical Hopf bifurcation.
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x1

x2

α

FIGURE 3.8. Subcritical Hopf bifurcation in the phase-parameter space.

Remarks:
(1) We have seen that there are two types of Andronov-Hopf bifurca-

tion. The bifurcation in system (3.6) is often called supercritical because
the cycle exists for positive values of the parameter α (“after” the bifurca-
tion). The bifurcation in system (3.9) is called subcritical since the cycle is
present “before” the bifurcation. It is clear that this terminology is some-
how misleading since “after” and “before” depend on the chosen direction
of parameter variation.

(2) In both cases we have a loss of stability of the equilibrium at α = 0
under increase of the parameter. In the first case (with “−” in front of
the cubic terms), the stable equilibrium is replaced by a stable limit cycle
of small amplitude. Therefore, the system “remains” in a neigborhood of
the equilibrium and we have a soft or noncatastrophic stability loss. In the
second case (with “+” in front of the cubic terms), the region of attraction
of the equilibrium point is bounded by the unstable cycle, which “shrinks”
as the parameter approaches its critical value and disappears. Thus, the
system is “pushed out” from a neigborhood of the equilibrium, giving us a
sharp or catastrophic loss of stability. If the system loses stability softly, it
is well “controllable”: If we make the parameter negative again, the system
returns to the stable equilibrium. On the contrary, if the system loses its
stability sharply, resetting to a negative value of the parameter may not
return the system back to the stable equilibrium since it may have left its
region of attraction. Notice that the type of Andronov-Hopf bifurcation
is determined by the stability of the equilibrium at the critical parameter
value.

(3) The above interpretation of super- and subcritical Hopf bifurcations
should be considered with care. If we consider α as a slow variable and add
to system (3.6) the third equation

α̇ = ε,
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with ε small but positive, then the resulting time series (x(t), y(t), α(t))
will demonstrate some degree of “sharpness.” If the solution starts at some
initial point (x0, y0, α0) with α0 < 0, it then converges to the origin and
remains very close to it even if α becomes positive, thus demonstrating no
oscillations. Only when α reaches some finite positive value will the solution
leave the equilibrium “sharply” and start to oscillate with a relatively large
amplitude.

(4) Finally, consider a system without nonlinear terms:

ż = (α + i)z.

This system also has a family of periodic orbits of increasing amplitude, but
all of them are present at α = 0 when the system has a center at the origin
(see Figure 3.9). It can be said that the limit cycle paraboloid “degenerates”

x1

x2

α

FIGURE 3.9. “Hopf bifurcation” in a linear system.

into the plane α = 0 in (x, y, α)-space in this case. This observation makes
natural the appearance of small limit cycles in the nonlinear case. ♦

Let us now add some higher-order terms to system (3.6) and write it in
the vector form(

ẋ1
ẋ2

)
=

(
α −1
1 α

)(
x1
x2

)
− (x2

1 + x2
2)

(
x1
x2

)
+ O(‖x‖4), (3.10)

where x = (x1, x2)T , ‖x‖2 = x2
1 + x2

2, and O(‖x‖4) terms can smoothly
depend on α. The following lemma will be proved in Appendix 1 to this
chapter.

Lemma 3.2 System (3.10) is locally topologically equivalent near the ori-
gin to system (3.6). ✷

Therefore, the higher-order terms do not affect the bifurcation behavior
of the system.
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3.5 Generic Hopf bifurcation

We now shall prove that any generic two-dimensional system undergoing a
Hopf bifurcation can be transformed into the form (3.10) with a possible
difference in the sign of the cubic terms.

Consider a system

ẋ = f(x, α), x = (x1, x2)T ∈ R
2, α ∈ R

1,

with a smooth function f , which has at α = 0 the equilibrium x = 0 with
eigenvalues λ1,2 = ±iω0, ω0 > 0. By the Implicit Function Theorem, the
system has a unique equilibrium x0(α) in some neigborhood of the origin
for all sufficiently small |α|, since λ = 0 is not an eigenvalue of the Jacobian
matrix. We can perform a coordinate shift, placing this equilibrium at the
origin. Therefore, we may assume without loss of generality that x = 0
is the equilibrium point of the system for |α| sufficiently small. Thus, the
system can be written as

ẋ = A(α)x + F (x, α), (3.11)

where F is a smooth vector function whose components F1,2 have Taylor
expansions in x starting with at least quadratic terms, F = O(‖x‖2). The
Jacobian matrix A(α) can be written as

A(α) =
(

a(α) b(α)
c(α) d(α)

)
with smooth functions of α as its elements. Its eigenvalues are the roots of
the characteristic equation

λ2 − σλ + ∆ = 0,

where σ = σ(α) = a(α) + d(α) = tr A(α), and ∆ = ∆(α) = a(α)d(α) −
b(α)c(α) = detA(α). So,

λ1,2(α) =
1
2

(
σ(α)±

√
σ2(α)− 4∆(α)

)
.

The Hopf bifurcation condition implies

σ(0) = 0, ∆(0) = ω2
0 > 0.

For small |α| we can introduce

µ(α) =
1
2
σ(α), ω(α) =

1
2

√
4∆(α)− σ2(α)

and therefore obtain the following representation for the eigenvalues:

λ1(α) = λ(α), λ2(α) = λ(α),

where
λ(α) = µ(α) + iω(α), µ(0) = 0, ω(0) = ω0 > 0.
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Lemma 3.3 By introducing a complex variable z, system (3.11) can be
written for sufficiently small |α| as a single equation:

ż = λ(α)z + g(z, z̄, α), (3.12)

where g = O(|z|2) is a smooth function of (z, z̄, α).

Proof:
Let q(α) ∈ C

2 be an eigenvector of A(α) corresponding to the eigenvalue
λ(α):

A(α)q(α) = λ(α)q(α),

and let p(α) ∈ C
2 be an eigenvector of the transposed matrix AT (α) cor-

responding to its eigenvalue λ(α):

AT (α)p(α) = λ(α)p(α).

It is always possible to normalize p with respect to q:

〈p(α), q(α)〉 = 1,

where 〈·, ·〉 means the standard scalar product in C
2: 〈p, q〉 = p̄1q1 + p̄2q2.

Any vector x ∈ R
2 can be uniquely represented for any small α as

x = zq(α) + z̄q̄(α) (3.13)

for some complex z, provided the eigenvectors are specified. Indeed, we
have an explicit formula to determine z:

z = 〈p(α), x〉.
To verify this formula (which results from taking the scalar product with
p of both sides of (3.13)), we have to prove that 〈p(α), q̄(α)〉 = 0. This is
the case, since

〈p, q̄〉 = 〈p, 1
λ̄
Aq̄〉 =

1
λ̄
〈AT p, q̄〉 =

λ

λ̄
〈p, q̄〉

and therefore (
1− λ

λ̄

)
〈p, q̄〉 = 0.

But λ = λ̄ because for all sufficiently small |α| we have ω(α) > 0. Thus,
the only possibility is 〈p, q̄〉 = 0.

The complex variable z obviously satisfies the equation

ż = λ(α)z + 〈p(α), F (zq(α) + z̄q̄(α), α)〉,
having the required1 form (3.12) with

g(z, z̄, α) = 〈p(α), F (zq(α) + z̄q̄(α), α)〉. ✷

1The vectors q(α) and p(α), corresponding to the simple eigenvalues, can be
selected to depend on α as smooth as A(α).
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There is no reason to expect g to be an analytic function of z (i.e., z̄-
independent). Write g as a formal Taylor series in two complex variables
(z and z̄):

g(z, z̄, α) =
∑

k+l≥2

1
k!l!

gkl(α)zkz̄l,

where

gkl(α) =
∂k+l

∂zk∂z̄l
〈p(α), F (zq(α) + z̄q̄(α), α)〉

∣∣∣∣
z=0

,

for k + l ≥ 2, k, l = 0, 1, . . ..

Remarks:
(1) There are several (equivalent) ways to prove Lemma 3.3. The selected

one fits well into the framework of Chapter 5, where we will consider the
Hopf bifurcation in n-dimensional systems.

(2) Equation (3.13) imposes a linear relation between (x1, x2) and the
real and imaginary parts of z. Thus, the introduction of z can be viewed as
a linear invertible change of variables, y = T (α)x, and taking z = y1 + iy2.
As it can be seen from (3.13), the components (y1, y2) are the coordinates
of x in the real eigenbasis of A(α) composed by {2 Re q,−2 Im q}. In this
basis, the matrix A(α) has its canonical real (Jordan) form:

J(α) = T (α)A(α)T−1(α) =
(

µ(α) −ω(α)
ω(α) µ(α)

)
.

(3) Suppose that at α = 0 the function F (x, α) from (3.11) is represented
as

F (x, 0) =
1
2
B(x, x) +

1
6
C(x, x, x) + O(‖x‖4),

where B(x, y) and C(x, y, u) are symmetric multilinear vector functions of
x, y, u ∈ R

2. In coordinates, we have

Bi(x, y) =
2∑

j,k=1

∂2Fi(ξ, 0)
∂ξj∂ξk

∣∣∣∣
ξ=0

xjyk, i = 1, 2,

and

Ci(x, y, u) =
2∑

j,k,l=1

∂3Fi(ξ, 0)
∂ξj∂ξk∂ξl

∣∣∣∣
ξ=0

xjykul, i = 1, 2.

Then,

B(zq + z̄q̄, zq + z̄q̄) = z2B(q, q) + 2zz̄B(q, q̄) + z̄2B(q̄, q̄),

where q = q(0), p = p(0), so the Taylor coefficients gkl, k + l = 2, of the
quadratic terms in g(z, z̄, 0) can be expressed by the formulas

g20 = 〈p,B(q, q)〉, g11 = 〈p,B(q, q̄)〉, g02 = 〈p,B(q̄, q̄)〉,
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and similar calculations with C give

g21 = 〈p, C(q, q, q̄)〉.

(4) The normalization of q is irrelevant in the following. Indeed, suppose
that q is normalized by 〈q, q〉 = 1. A vector q̃ = γq is also the eigenvector
for any nonzero γ ∈ C

1 but with the normalization 〈q̃, q̃〉 = |γ|2. Taking
p̃ = 1

γ̄ p will keep the relative normalization untouched: 〈p̃, q̃〉 = 1. It is clear
that Taylor coefficients g̃kl computed using q̃, p̃ will be different from the
original gkl. For example, we can check via the multilinear representation
that

g̃20 = γg20, g̃11 = γ̄g11, g̃02 =
γ̄2

γ
g02, g̃21 = |γ|2g21.

However, this change can easily be neutralized by the linear scaling of the
variable: z = 1

γw, which results in the same equation for w as before.
For example, setting 〈q, q〉 = 1

2 corresponds to the standard relation
z = 〈p, x〉 = x1 + ix2 for a system that already has the real canonical form
ẋ = J(α)x, where J is given above. In this case,

q =
1
2

(
1
−i

)
, p =

(
1
−i

)
. ♦

Let us start to make nonlinear (complex) coordinate changes that will
simplify (3.12). First of all, remove all quadratic terms.

Lemma 3.4 The equation

ż = λz +
g20
2
z2 + g11zz̄ +

g02
2
z̄2 + O(|z|3), (3.14)

where λ = λ(α) = µ(α) + iω(α), µ(0) = 0, ω(0) = ω0 > 0, and gij = gij(α),
can be transformed by an invertible parameter-dependent change of complex
coordinate

z = w +
h20

2
w2 + h11ww̄ +

h02

2
w̄2,

for all sufficiently small |α|, into an equation without quadratic terms:

ẇ = λw + O(|w|3).

Proof:
The inverse change of variable is given by the expression

w = z − h20

2
z2 − h11zz̄ − h02

2
z̄2 + O(|z|3).

Therefore,
ẇ = ż − h20zż − h11(żz̄ + z ˙̄z)− h02z̄ ˙̄z + · · ·
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= λz +
(g20

2
− λh20

)
z2 +

(
g11 − λh11 − λ̄h11

)
zz̄ +

(g02
2
− λ̄h02

)
z̄2 + · · ·

= λw+
1
2

(g20−λh20)w2+(g11−λ̄h11)ww̄+
1
2

(g02−(2λ̄−λ)h02)w̄2+O(|w|3).

Thus, by setting

h20 =
g20
λ
, h11 =

g11
λ̄
, h02 =

g02
2λ̄− λ

,

we “kill” all the quadratic terms in (3.14). These substitutions are correct
because the denominators are nonzero for all sufficiently small |α| since
λ(0) = iω0 with ω0 > 0. ✷

Remarks:
(1) The resulting coordinate transformation is polynomial with coeffi-

cients that are smoothly dependent on α. The inverse transformation has
the same property but it is not polynomial. Its form can be obtained by
the method of unknown coefficients. In some neighborhood of the origin
the transformation is near-identical because of its linear part.

(2) Notice that the transformation changes the coefficients of the cubic
(as well as higher-order) terms of (3.14). ♦

Assuming that we have removed all quadratic terms, let us try to elim-
inate the cubic terms as well. This is “almost” possible: There is only one
“resistant” term, as the following lemma shows.

Lemma 3.5 The equation

ż = λz +
g30
6
z3 +

g21
2
z2z̄ +

g12
2
zz̄2 +

g03
6
z̄3 + O(|z|4),

where λ = λ(α) = µ(α) + iω(α), µ(0) = 0, ω(0) = ω0 > 0, and gij = gij(α),
can be transformed by an invertible parameter-dependent change of complex
coordinate

z = w +
h30

6
w3 +

h21

2
w2w̄ +

h12

2
ww̄2 +

h03

6
w̄3,

for all sufficiently small |α|, into an equation with only one cubic term:

ẇ = λw + c1w
2w̄ + O(|w|4),

where c1 = c1(α).

Proof:
The inverse transformation is

w = z − h30

6
z3 − h21

2
z2z̄ − h12

2
zz̄2 − h03

6
z̄3 + O(|z|4).
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Therefore,

ẇ = ż − h30

2
z2ż − h21

2
(2zz̄ż + z2 ˙̄z)− h12

2
(żz̄2 + 2zz̄ ˙̄z)− h03

2
z̄2 ˙̄z + · · ·

= λz +
(
g30
6
− λh30

2

)
z3 +

(
g21
2
− λh21 − λ̄h21

2

)
z2z̄

+
(
g12
2
− λh12

2
− λ̄h12

)
zz̄2 +

(
g03
6
− λ̄h03

2

)
z̄3 + · · ·

= λw +
1
6

(g30 − 2λh30)w3 +
1
2

(g21 − (λ + λ̄)h21)w2w̄

+
1
2

(g12 − 2λ̄h12)ww̄2 +
1
6

(g03 + (λ− 3λ̄)h03)w̄3 + O(|w|4).

Thus, by setting

h30 =
g30
2λ

, h12 =
g12
2λ̄

, h03 =
g03

3λ̄− λ
,

we can annihilate all cubic terms in the resulting equation except the w2w̄
-term, which we have to treat separately. The substitutions are valid since
all the involved denominators are nonzero for all sufficiently small |α|.

One can also try to eliminate the w2w̄-term by formally setting

h21 =
g21
λ + λ̄

.

This is possible for small α = 0, but the denominator vanishes at α = 0:
λ(0) + λ̄(0) = iω0 − iω0 = 0. To obtain a transformation that is smoothly
dependent on α, set h21 = 0, which results in

c1 =
g21
2
. ✷

Remark:
The remaining cubic w2w̄-term is called a resonant term. Note that its

coefficient is the same as the coefficient of the cubic term z2z̄ in the original
equation in Lemma 3.5. ♦

We now combine the two previous lemmas.

Lemma 3.6 (Poincaré normal form for the Hopf bifurcation) The
equation

ż = λz +
∑

2≤k+l≤3

1
k!l!

gklz
kz̄l + O(|z|4), (3.15)
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where λ = λ(α) = µ(α) + iω(α), µ(0) = 0, ω(0) = ω0 > 0, and gij = gij(α),
can be transformed by an invertible parameter-dependent change of complex
coordinate, smoothly depending on the parameter,

z = w +
h20

2
w2 + h11ww̄ +

h02

2
w̄2

+
h30

6
w3 +

h12

2
ww̄2 +

h03

6
w̄3,

for all sufficiently small |α|, into an equation with only the resonant cubic
term:

ẇ = λw + c1w
2w̄ + O(|w|4), (3.16)

where c1 = c1(α).

Proof:
Obviously, a superposition of the transformations defined in Lemmas 3.4

and 3.5 does the job. First, perform the transformation

z = w +
h20

2
w2 + h11ww̄ +

h02

2
w̄2, (3.17)

with
h20 =

g20
λ
, h11 =

g11
λ̄
, h02 =

g02
2λ̄− λ

,

defined in Lemma 3.4. This annihilates all the quadratic terms but also
changes the coefficients of the cubic terms. The coefficient of w2w̄ will be
1
2 g̃21, say, instead of 1

2g21. Then make the transformation from Lemma 3.5
that eliminates all the cubic terms but the resonant one. The coefficient of
this term remains 1

2 g̃21. Since terms of order four and higher appearing in
the superposition affect only O(|w|4) terms in (3.16), they can be truncated.
✷

Thus, all we need to compute to get the coefficient c1 in terms of the
given equation (3.15) is a new coefficient 1

2 g̃21 of the w2w̄-term after the
quadratic transformation (3.17). We can do this computation in the same
manner as in Lemmas 3.4 and 3.5, namely, inverting (3.17). Unfortunately,
now we have to know the inverse map up to and including cubic terms.2

However, there is a possibility to avoid explicit inverting of (3.17).
Indeed, we can express ż in terms of w, w̄ in two ways. One way is to

substitute (3.17) into the original equation (3.15). Alternatively, since we

2Actually, only the “resonant” cubic term of the inverse is required:

w = z − h20

2
z2 − h11zz̄ − h02

2
z̄2 +

1
2
(3h11h20 + 2|h11|2 + |h02|2)z2z̄ + · · · ,

where the dots now mean all undisplayed terms.
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know the resulting form (3.16) to which (3.15) can be transformed, ż can
be computed by differentiating (3.17),

ż = ẇ + h20wẇ + h11(w ˙̄w + w̄ẇ) + h02 ˙̄w,

and then by substituting ẇ and its complex conjugate, using (3.16). Com-
paring the coefficients of the quadratic terms in the obtained expressions
for ż gives the above formulas for h20, h11, and h02, while equating the
coefficients in front of the w|w|2-term leads to

c1 =
g20g11(2λ + λ̄)

2|λ|2 +
|g11|2
λ

+
|g02|2

2(2λ− λ̄)
+
g21
2
.

This formula gives us the dependence of c1 on α if we recall that λ and gij
are smooth functions of the parameter. At the bifurcation parameter value
α = 0, the previous equation reduces to

c1(0) =
i

2ω0

(
g20g11 − 2|g11|2 − 1

3
|g02|2

)
+
g21
2
. (3.18)

Now we want to transform the Poincaré normal form into the normal
form studied in the previous section.

Lemma 3.7 Consider the equation

dw

dt
= (µ(α) + iω(α))w + c1(α)w|w|2 + O(|w|4),

where µ(0) = 0, and ω(0) = ω0 > 0.
Suppose µ′(0) = 0 and Re c1(0) = 0. Then, the equation can be trans-

formed by a parameter-dependent linear coordinate transformation, a time
rescaling, and a nonlinear time reparametrization into an equation of the
form

du

dθ
= (β + i)u + su|u|2 + O(|u|4),

where u is a new complex coordinate, and θ, β are the new time and pa-
rameter, respectively, and s = sign Re c1(0) = ±1.

Proof:
Step 1 (Linear time scaling). Introduce the new time τ = ω(α)t. The time
direction is preserved since ω(α) > 0 for all sufficiently small |α|. Then,

dw

dτ
= (β + i)w + d1(β)w|w|2 + O(|w|4),

where

β = β(α) =
µ(α)
ω(α)

, d1(β) =
c1(α(β))
ω(α(β))

.
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We can consider β as a new parameter because

β(0) = 0, β′(0) =
µ′(0)
ω(0)

= 0,

and therefore the Inverse Function Theorem guarantees local existence and
smoothness of α as a function of β. Notice that d1 is complex.

Step 2 (Nonlinear time reparametrization). Change the time parametriza-
tion along the orbits by introducing a new time θ = θ(τ, β), where

dθ = (1 + e1(β)|w|2) dτ

with e1(β) = Im d1(β). The time change is a near-identity transformation
in a small neighborhood of the origin. Using the new definition of the time
we obtain

dw

dθ
= (β + i)w + l1(β)w|w|2 + O(|w|4),

where l1(β) = Re d1(β)− βe1(β) is real and

l1(0) =
Re c1(0)
ω(0)

. (3.19)

Step 3 (Linear coordinate scaling). Finally, introduce a new complex vari-
able u:

w =
u√|l1(β)| ,

which is possible due to Re c1(0) = 0 and, thus, l1(0) = 0. The equation
then takes the required form:

du

dθ
= (β + i)u +

l1(β)
|l1(β)|u|u|

2 + O(|u|4) = (β + i)u + su|u|2 + O(|u|4),

with s = sign l1(0) = sign Re c1(0). ✷

Definition 3.3 The real function l1(β) is called the first Lyapunov coeffi-
cient.

It follows from (3.19) that the first Lyapunov coefficient at β = 0 can be
computed by the formula

l1(0) =
1

2ω2
0

Re(ig20g11 + ω0g21). (3.20)

Thus, we need only certain second- and third-order derivatives of the right-
hand sides at the bifurcation point to compute l1(0). Recall that the value
of l1(0) does depend on the normalization of the eigenvectors q and p, while
its sign (which is what only matters in the bifurcation analysis) is invariant
under scaling of q, p obeying the relative normalization 〈p, q〉 = 1. Notice
that the equation of u with s = −1 written in real form coincides with
system (3.10) from the previous section. We now summarize the obtained
results in the following theorem.
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Theorem 3.3 Suppose a two-dimensional system

dx

dt
= f(x, α), x ∈ R

2, α ∈ R
1, (3.21)

with smooth f , has for all sufficiently small |α| the equilibrium x = 0 with
eigenvalues

λ1,2(α) = µ(α)± iω(α),

where µ(0) = 0, ω(0) = ω0 > 0.
Let the following conditions be satisfied:

(B.1) l1(0) = 0, where l1 is the first Lyapunov coefficient;
(B.2) µ′(0) = 0.

Then, there are invertible coordinate and parameter changes and a time
reparameterization transforming (3.21) into

d

dτ

(
y1
y2

)
=

(
β −1
1 β

)(
y1
y2

)
± (y2

1 + y2
2)

(
y1
y2

)
+ O(‖y‖4). ✷

Using Lemma 3.2, we can drop the O(‖y‖4) terms and finally arrive at
the following general result.

Theorem 3.4 (Topological normal form for the Hopf bifurcation)
Any generic two-dimensional, one-parameter system

ẋ = f(x, α),

having at α = 0 the equilibrium x = 0 with eigenvalues

λ1,2(0) = ±iω0, ω0 > 0,

is locally topologically equivalent near the origin to one of the following
normal forms:(

ẏ1
ẏ2

)
=

(
β −1
1 β

)(
y1
y2

)
± (y2

1 + y2
2)

(
y1
y2

)
. ✷

Remark:
The genericity conditions assumed in Theorem 3.4 are the nondegeneracy

condition (B.1) and the transversality condition (B.2) from Theorem 3.3.
♦

The preceding two theorems together with the normal form analysis of
the previous section and formula (3.20) for l1(0) provide us with all the nec-
essary tools for analysis of the Hopf bifurcation in generic two-dimensional
systems. In Chapter 5 we will see how to deal with n-dimensional systems
where n > 2.
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Example 3.1 (Hopf bifurcation in a predator-prey model) Con-
sider the following system of two differential equations:

ẋ1 = rx1(1− x1)− cx1x2

α + x1
,

(3.22)

ẋ2 = −dx2 +
cx1x2

α + x1
.

The system describes the dynamics of a simple predator-prey ecosystem
(see, e.g., Holling [1965]). Here x1 and x2 are (scaled) population numbers,
and r, c, d, and α are parameters characterizing the behavior of isolated
populations and their interaction. Let us consider α as a control parameter
and assume c > d.

To simplify calculations further, let us consider a polynomial system that
has for x1 > −α the same orbits as the original one (i.e., orbitally equiva-
lent, see Chapter 2):{

ẋ1 = rx1(α + x1)(1− x1)− cx1x2,
ẋ2 = −αdx2 + (c− d)x1x2

(3.23)

(this system is obtained by multiplying both sides of the original system
by the function (α + x1) and introducing a new time variable τ by dt =
(α + x1) dτ).

System (3.23) has a nontrivial equilibrium

E0 =
(

αd

c− d
,

rα

c− d

[
1− αd

c− d

])
.

The Jacobian matrix evaluated at this equilibrium is

A(α) =

 αrd(c + d)
(c− d)2

[
c− d
c + d

− α
]

− αcd
c− d

αr(c− d(1 + α))
c− d

0

 ,

and thus

µ(α) =
σ(α)

2
=
αrd(c + d)
2(c− d)2

[
c− d

c + d
− α

]
.

We have µ(α0) = 0 for

α0 =
c− d

c + d
.

Moreover,

ω2(α0) =
rc2d(c− d)

(c + d)3
> 0. (3.24)
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Therefore, at α = α0 the equilibrium E0 has eigenvalues λ1,2(α0) = ±iω(α0)
and a Hopf bifurcation takes place.3 The equilibrium is stable for α > α0
and unstable for α < α0. Notice that the critical value of α corresponds
to the passing of the line defined by ẋ2 = 0 through the maximum of the
curve defined by ẋ1 = 0 (see Figure 3.10). Thus, if the line ẋ2 = 0 is to the

x1 = 0
.

x2 = 0
.

x1 
(0)

x2
(0)

x2

x1 

E0

10

FIGURE 3.10. Zero-isoclines at the Hopf bifurcation.

right of the maximum, the point is stable, while if this line is to the left,
the point is unstable. To apply the normal form theorem to the analysis of
this Hopf bifurcation, we have to check whether the genericity conditions
of Theorem 3.3 are satisfied. The transversality condition (B.2) is easy to
verify:

µ′(α0) = −α0rd(c + d)
2(c− d)2

< 0.

To compute the first Lyapunov coefficient, fix the parameter α at its
critical value α0. At α = α0, the nontrivial equilibrium E0 at α = α0 has
the coordinates

x
(0)
1 =

d

c + d
, x

(0)
2 =

rc

(c + d)2
.

Translate the origin of the coordinates to this equilibrium by the change of
variables {

x1 = x
(0)
1 + ξ1,

x2 = x
(0)
2 + ξ2.

This transforms system (3.23) into

ξ̇1 = − cd

c + d
ξ2 − rd

c + d
ξ21 − cξ1ξ2 − rξ31 ≡ F1(ξ1, ξ2),

3Since (3.23) is only orbitally equivalent to (3.22), the value of ω(α0) given by
(3.24) cannot be used directly to evaluate the period of small oscillations around
E0 in the original system.
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ξ̇2 =
cr(c− d)
(c + d)2

ξ1 + (c− d)ξ1ξ2 ≡ F2(ξ1, ξ2).

This system can be represented as

ξ̇ = Aξ +
1
2
B(ξ, ξ) +

1
6
C(ξ, ξ, ξ),

where A = A(α0), and the multilinear functions B and C take on the
planar vectors ξ = (ξ1, ξ2)T , η = (η1, η2)T , and ζ = (ζ1, ζ2)T the values

B(ξ, η) =

(
− 2rd

(c + d)ξ1η1 − c(ξ1η2 + ξ2η1)

(c− d)(ξ1η2 + ξ2η1)

)
and

C(ξ, η, ζ) =
( −6rξ1η1ζ1

0

)
.

Write the matrix A(α0) in the form

A =

 0 − cd
c + d

ω2(c + d)
cd

0

 ,

where ω2 is given by formula (3.24).4 Now it is easy to check that complex
vectors

q ∼
(

cd
−iω(c + d)

)
, p ∼

(
ω(c + d)
−icd

)
,

are proper eigenvectors:

Aq = iωq, AT p = −iωp.
To achieve the necessary normalization 〈p, q〉 = 1, we can take, for example,

q =
(

cd
−iω(c + d)

)
, p =

1
2ωcd(c + d)

(
ω(c + d)
−icd

)
.

The hardest part of the job is done, and now we can simply calculate5

g20 = 〈p,B(q, q)〉 =
cd(c2 − d2 − rd) + iωc(c + d)2

(c + d)
,

4It is always useful to express the Jacobian matrix using ω, since this simplifies
expressions for the eigenvectors.

5Another way to compute g20, g11, and g21 (which may be simpler if we use a
symbolic manipulation software) is to define the complex-valued function

G(z, w) = p̄1F1(zq1 + wq̄1, zq2 + wq̄2) + p̄2F2(zq1 + wq̄1, zq2 + wq̄2),

where p, q are given above, and to evaluate its formal partial derivatives with
respect to z, w at z = w = 0, obtaining g20 = Gzz, g11 = Gzw, and g21 = Gzzw.
In this way no multilinear functions are necessary. See Exercise 4.
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g11 = 〈p,B(q, q̄)〉 = − rcd2

(c + d)
, g21 = 〈p, C(q, q, q̄)〉 = −3rc2d2,

and compute the first Lyapunov coefficient by formula (3.20),

0E
E 0

x2x2

x1x1

α < α 0 α > α 0

0 01 1

FIGURE 3.11. Hopf bifurcation in the predator-prey model.

l1(α0) =
1

2ω2 Re(ig20g11 + ωg21) = −rc
2d2

ω
< 0.

It is clear that l1(α0) < 0 for all combinations of the fixed parameters.
Thus, the nondegeneracy condition (B.1) of Theorem 3.3 holds as well.
Therefore, a unique and stable limit cycle bifurcates from the equilibrium
via the Hopf bifurcation for α < α0 (see Figure 3.11). ✸

3.6 Exercises

(1) (Fold bifurcation in ecology) Consider the following differential
equation, which models a single population under a constant harvest:

ẋ = rx
(

1− x

K

)
− α,

where x is the population number; r and K are the intrinsic growth rate and
the carrying capacity of the population, respectively, and α is the harvest
rate, which is a control parameter. Find a parameter value α0 at which
the system has a fold bifurcation, and check the genericity conditions of
Theorem 3.1. Based on the analysis, explain what might be a result of
overharvesting on the ecosystem dynamics. Is the bifurcation catastrophic
in this example?

(2) (Complex notation) Verify that

ż = iz + (i + 1)z2 + 2izz̄ + (i− 1)z̄2
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is a complex form of the system(
ẋ1
ẋ2

)
=

(
1 2

−1 −1

)(
x1
x2

)
+

6√
3

(
0

x1x2

)
,

provided that the eigenvectors are selected in the form

q =
1

2
√

3

(
2

−1 + i

)
, p =

3
2
√

3

(
1 + i

2i

)
.

How will the complex form change if one instead adopts a different setting
of q, p satisfying 〈p, q〉 = 1?

(3) (Nonlinear stability) Write the system{
ẋ = −y − xy + 2y2,
ẏ = x− x2y,

in terms of the complex coordinate z = x + iy, and compute the normal
form coefficient c1(0) by formula (3.18). Is the origin stable?

(4) (Hopf bifurcation in the Brusselator) Consider the Brusselator
system (1.8) from Chapter 1:{

ẋ1 = A− (B + 1)x1 + x2
1x2 ≡ F1(x1, x2, A,B),

ẋ2 = Bx1 − x2
1x2 ≡ F2(x1, x2, A,B).

Fix A > 0 and take B as a bifurcation parameter. Using one of the available
computer algebra systems, prove that at B = 1 +A2 the system exhibits a
supercritical Hopf bifurcation.

(Hint: The following sequence of MAPLE commands solves the problem:

> with(linalg);
> readlib(mtaylor);
> readlib(coeftayl);

The first command above allows us to use the MAPLE linear alge-
bra package. The other two commands load the procedures mtaylor and
coeftayl, which compute the truncated multivariate Taylor series expan-
sion and its individual coefficients, respectively, from the MAPLE library.

> F[1]:=A-(B+1)*X[1]+X[1]ˆ2*X[2];
> F[2]:=B*X[1]-X[1]ˆ2*X[2];
> J:=jacobian([F[1],F[2]],[X[1],X[2]]);
> K:=transpose(J);

By these commands we input the right-hand sides of the system into
MAPLE and compute the Jacobian matrix and its transpose.
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> sol:=solve({F[1]=0,F[2]=0,trace(J)=0},{X[1],X[2],B});
> assign(sol);
> assume(A>0);
> omega:=sqrt(det(J));

These commands solve the following system of equations{
F (x1, x2, A,B) = 0,

tr Fx(x1, x2, A,B) = 0,

for (x1, x2, B) and allow us to check that detFx = A2 > 0 at the found
solution. Thus, at B = 1 + A2 the Brusselator has the equilibrium

X =
(
A,

1 + A2

A

)T

with purely imaginary eigenvalues λ1,2 = ±iω, ω = A > 0.

> ev:=eigenvects(J,’radical’);
> q:=ev[1][3][1];
> et:=eigenvects(K,’radical’);
> P:=et[2][3][1];

These commands show that

q =
(
− iA + A2

1 + A2 , 1
)T

, p =
(−iA + A2

A2 , 1
)T

,

are the critical eigenvectors6 of the Jacobian matrix J = Fx and its trans-
pose,

Jq = iωq, JT p = −iωp.
> s1:=simplify(evalc(conjugate(P[1])*q[1]+conjugate(P[2]*q[2]));
> c:=simplify(evalc(1/conjugate(s1)));
> p[1]:=simplify(evalc(c*P[1]);
> p[2]:=simplify(evalc(c*P[2]);
> simplify(evalc(conjugate(p[1])*q[1]+conjugate(p[2])*q[2]));

By the commands above, we achieve the normalization 〈p, q〉 = 1, finally
taking

q =
(
− iA + A2

1 + A2 , 1
)T

, p =
(
− i(1 + A2)

2A
,

1− iA

2

)T

.

6Some implementations of MAPLE may produce the eigenvectors in a different
form.
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> F[1]:=A-(B+1)*x[1]+x[1]ˆ2*x[2];
> F[2]:=B*x[1]-x[1]ˆ2*x[2];
> x[1]:=evalc(X[1]+z*q[1]+z1*conjugate(q[1]));
> x[2]:=evalc(X[2]+z*q[2]+z1*conjugate(q[2]));
> H:=simplify(evalc(conjugate(p[1])*F[1]+conjugate(p[2])*F[2]));

By means of these commands, we compose x = X+zq+ z̄q̄ and evaluate
the function

H(z, z̄) = 〈p, F (X + zq + z̄q̄, A, 1 + A2)〉.
(In the MAPLE commands, z1 stands for z̄.)

> g[2,0]:=simplify(2*evalc(coeftayl(H,[z,z1]=[0,0],[2,0])));
> g[1,1]:=simplify(evalc(coeftayl(H,[z,z1]=[0,0],[1,1])));
> g[2,1]:=simplify(2*evalc(coeftayl(H,[z,z1]=[0,0],[2,1])));
> x[2]:=evalc(X[2]+z*q[2]+z1*conjugate(q[2]));

The above commands compute the needed Taylor expansion of H(z, z̄)
at (z, z̄) = (0, 0),

H(z, z̄) = iωz +
∑

2≤j+k≤3

1
j!k!

gjkz
kz̄k + O(|z|4),

giving

g20 = A− i, g11 =
(A− i)(A2 − 1)

1 + A2 , g21 = −A(3A− i)
1 + A2 .

> l[1]:=factor(1/(2*omegaˆ2)*Re(I*g[2,0]*g[1,1]+omega*g{2,1]));

This final command computes the first Lyapunov coefficient

l1 =
1

2ω2 Re(ig20g11 + ωg2,1) = − 2 + A2

2A(1 + A2)
< 0,

and allows us to check that it is negative.)

(5) Check that each of the following systems has an equilibrium that ex-
hibits the Hopf bifurcation at some value of α, and compute the first Lya-
punov coefficient:

(a) Rayleigh’s equation:

ẍ + ẋ3 − 2αẋ + x = 0;

(Hint: Introduce y = ẋ and rewrite the equation as a system of two differ-
ential equations.)

(b) Van der Pol’s oscillator:

ÿ − (α− y2)ẏ + y = 0;
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(c) Bautin’s example:{
ẋ = y,
ẏ = −x + αy + x2 + xy + y2;

(d) Advertising diffusion model [Feichtinger 1992]:{
ẋ1 = α[1− x1x

2
2 + A(x2 − 1)],

ẋ2 = x1x
2
2 − x2.

(6) Suppose that a system at the critical parameter values corresponding
to the Hopf bifurcation has the form

ẋ = −ωy +
1
2
fxxx

2 + fxyxy +
1
2
fyyy

2

+
1
6
fxxxx

3 +
1
2
fxxyx

2y +
1
2
fxyyxy

2 +
1
6
fyyyy

3 + · · · ,

ẏ = ωx +
1
2
gxxx

2 + gxyxy +
1
2
gyyy

2

+
1
6
gxxxx

3 +
1
2
gxxyx

2y +
1
2
gxyyxy

2 +
1
6
gyyyy

3 + · · · .

Compute Re c1(0) in terms of the f ’s and g’s. (Hint: See Guckenheimer
& Holmes [1983, p. 156]. To apply the resulting formula, one needs to
transform the system explicitly into its eigenbasis, which can always be
avoided by using eigenvectors and complex notation, as described in this
chapter.)

3.7 Appendix 1: Proof of Lemma 3.2

The following statement, which is Lemma 3.2 rewritten in complex form,
will be proved in this appendix.

Lemma 3.8 The system

ż = (α + i)z − z|z|2 + O(|z|4) (A.1)

is locally topologically equivalent near the origin to the system

ż = (α + i)z − z|z|2. (A.2)

Proof:
Step 1 (Existence and uniqueness of the cycle). Write system (A.1) in polar
coordinates (ρ, ϕ): {

ρ̇ = ρ(α− ρ2) + Φ(ρ, ϕ),
ϕ̇ = 1 + Ψ(ρ, ϕ), (A.3)
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0ρ1ρ ρ
ϕ

FIGURE 3.12. Poincaré map for the Hopf bifurcation.

where Φ = O(|ρ|4),Ψ = O(|ρ|3), and the α-dependence of these functions
is not indicated to simplify notations. An orbit of (A.3) starting at (ρ, ϕ) =
(ρ0, 0) has the following representation (see Figure 3.12): ρ = ρ(ϕ; ρ0), ρ0 =
ρ(0; ρ0) with ρ satisfying the equation

dρ

dϕ
=
ρ(α− ρ2) + Φ

1 + Ψ
= ρ(α− ρ2) + R(ρ, ϕ), (A.4)

where R = O(|ρ|4). Notice that the transition from (A.3) to (A.4) is equiv-
alent to the introduction of a new time parametrization in which ϕ̇ = 1,
which implies that the return time to the half-axis ϕ = 0 is the same for
all orbits starting on this axis with ρ0 > 0. Since ρ(ϕ; 0) ≡ 0, we can write
the Taylor expansion for ρ(ϕ; ρ0),

ρ = u1(ϕ)ρ0 + u2(ϕ)ρ2
0 + u3(ϕ)ρ3

0 + O(|ρ0|4). (A.5)

Substituting (A.5) into (A.4) and solving the resulting linear differential
equations at corresponding powers of ρ0 with initial conditions u1(0) =
1, u2(0) = u3(0) = 0, we get

u1(ϕ) = eαϕ, u2(ϕ) ≡ 0, u3(ϕ) = eαϕ
1− e2αϕ

2α
.

Notice that these expressions are independent of the term R(ρ, ϕ). There-
fore, the return map ρ0 �→ ρ1 = ρ(2π, ρ0) has the form

ρ1 = e2παρ0 − e2πα[2π + O(α)]ρ3
0 + O(ρ4

0) (A.6)

for all R = O(ρ4). The map (A.6) can easily be analyzed for sufficiently
small ρ0 and |α|. There is a neighborhood of the origin in which the map
has only a trivial fixed point for small α < 0 and an extra fixed point,
ρ
(0)
0 =

√
α + · · ·, for small α > 0 (see Figure 3.13). The stability of the

fixed points is also easily obtained from (A.6). Taking into account that a
positive fixed point of the map corresponds to a limit cycle of the system,
we can conclude that system (A.3) (or (A.1)) with any O(|z|4) terms has
a unique (stable) limit cycle bifurcating from the origin and existing for
α > 0 as in system (A.2). Therefore, in other words, higher-order terms do
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0
(0)ρ    (α)

ρ1

α < 0

α = 0

α > 0

ρ0

FIGURE 3.13. Fixed point of the return map.

not affect the limit cycle bifurcation in some neighborhood of z = 0 for |α|
sufficiently small.

Step 2 (Construction of a homeomorphism). The established existence and
uniqueness of the limit cycle is enough for all applications. Nevertheless,
extra work must be done to prove the topological equivalence of the phase
portraits.

ρ 0 ρ 0

τ 0 τ 0

x  , x1 2(          ) x  , x1 2(          )~ ~

FIGURE 3.14. Construction of the homeomorphism near the Hopf bifurcation.

Fix α small but positive. Both systems (A.1) and (A.2) have a limit cycle
in some neighborhood of the origin. Assume that the time reparametriza-
tion resulting in the constant return time 2π is performed in system (A.1)
(see the previous step). Also, apply a linear scaling of the coordinates in
system (A.1) such that the point of intersection of the cycle and the hori-
zontal half-axis is at x1 =

√
α.

Define a map z �→ z̃ by the following construction. Take a point z =
x1 + ix2 and find values (ρ0, τ0), where τ0 is the minimal time required
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for an orbit of system (A.2) to approach the point z starting from the
horizontal half-axis with ρ = ρ0. Now, take the point on this axis with
ρ = ρ0 and construct an orbit of system (A.1) on the time interval [0, τ0]
starting at this point. Denote the resulting point by z̃ = x̃1+ix̃2 (see Figure
3.14). Set z̃ = 0 for z = 0.

The map constructed is a homeomorphism that, for α > 0, maps orbits
of system (A.2) in some neighborhood of the origin into orbits of (A.1)
preserving time direction. The case α < 0 can be considered in the same
way without rescaling the coordinates. ✷

3.8 Appendix 2: Bibliographical notes

The fold bifurcation of equilibria has essentially been known for centuries.
Since any scalar system can be written as ẋ = −ψx(x, α), for some func-
tion ψ, results on the classification of generic parameter-dependent gradient
systems from catastrophe theory are relevant. Thus, the topological nor-
mal form for the fold bifurcation appeared in the list of seven elementary
catastrophes by Thom [1972]. Actually, there are many interconnections
between bifurcation theory of dynamical systems and singularity theory
of smooth functions. The books by Poston & Stewart [1978] and Arnold
[1984] are recommended as an introduction to this latter subject. It should
be noticed, however, that most results from singularity theory are directly
applicable to the analysis of equilibria but not to the analysis of phase
portraits.

The normalization technique used in the analysis of limit cycle bifur-
cations was developed by Poincaré [1879]. A general presentation of the
theory of normal forms can be found in Arnold [1983], Guckenheimer &
Holmes [1983], and Vanderbauwhede [1989], where it is also explained how
to apply this theory to local bifurcation problems. Actually, for the limit
cycle bifurcation analysis only a small part of this theory is really required.
Theorem 3.4 was stated and briefly proved by Arnold [1972, 1983]. We
follow his approach.

Phase-portrait bifurcations in a generic one-parameter system on the
plane near an equilibrium with purely imaginary eigenvalues was studied
first by Andronov & Leontovich [1939]. They used a succession function
(return map) technique originally due to Lyapunov [1892] without benefit-
ing from the normalization. An explicit expression for the first Lyapunov
coefficient in terms of Taylor coefficients of a general planar system was
obtained by Bautin [1949]. An exposition of the results by Andronov and
his co-workers on this bifurcation can be found in Andronov et al. [1973].

Hopf [1942] proved the appearance of a family of periodic solutions of
increasing amplitude in n-dimensional systems having an equilibrium with
a pair of purely imaginary eigenvalues at some critical parameter value.
He did not consider bifurcations of the whole phase portrait. An English-
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language translation of Hopf’s paper is included in Marsden & McCracken
[1976]. This very useful book also contains a derivation of the first Lyapunov
coefficient and a proof of Hopf’s result based on the Implicit Function
Theorem.

A much simpler derivation of the Lyapunov coefficient (actually, c1) is
given by Hassard, Kazarinoff & Wan [1981] using the complex form of
the Poincaré normalization. We essentially use their technique, although
we do not assume that the Poincaré normal form is known a priori. For-
mulas to compute Taylor coefficients of the complex equation without an
intermediate transformation of the system into its eigenbasis can also be ex-
tracted from their book (applying the center manifold reduction technique
to the trivial planar case; see Chapter 5). We also extensively use time
reparametrization to obtain a simpler normal form, which is then used to
prove existence and uniqueness of the cycle and in the analysis of the whole
phase-portrait bifurcations (see Appendix 1).

There exist other approaches to prove the generation of periodic solutions
under the Hopf conditions. An elegant one is to reformulate the problem as
that of finding a family of solutions of an abstract equation in a functional
space of periodic functions and to apply the Lyapunov-Schmidt reduction.
This approach, allowing a generalization to infinite-dimensional dynamical
systems, is far beyond the scope of this book (see, e.g., Chow & Hale [1982]
or Iooss & Joseph [1980]).



4
One-Parameter Bifurcations of
Fixed Points in Discrete-Time
Dynamical Systems

In this chapter, which is organized very much like Chapter 3, we present
bifurcation conditions defining the simplest bifurcations of fixed points in
n-dimensional discrete-time dynamical systems: the fold, the flip, and the
Neimark-Sacker bifurcations. Then we study these bifurcations in the low-
est possible dimension in which they can occur: the fold and flip bifurcations
for scalar systems and the Neimark-Sacker bifurcation for planar systems.
In Chapter 5 it will be shown how to apply these results to n-dimensional
systems when n is larger than one or two, respectively.

4.1 Simplest bifurcation conditions

Consider a discrete-time dynamical system depending on a parameter

x �→ f(x, α), x ∈ R
n, α ∈ R

1,

where the map f is smooth with respect to both x and α. Sometimes we
will write this system as

x̃ = f(x, α), x, x̃ ∈ R
n, α ∈ R

1,

where x̃ denotes the image of x under the action of the map. Let x = x0 be
a hyperbolic fixed point of the system for α = α0. Let us monitor this fixed
point and its multipliers while the parameter varies. It is clear that there
are, generically, only three ways in which the hyperbolicity condition can
be violated. Either a simple positive multiplier approaches the unit circle
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θ0

µ1

µ1 µ1

µ2

(a) (b) (c)

1 -1

FIGURE 4.1. Codim 1 critical cases.

and we have µ1 = 1 (see Figure 4.1(a)), or a simple negative multiplier
approaches the unit circle and we have µ1 = −1 (Figure 4.1(b)), or a pair
of simple complex multipliers reaches the unit circle and we have µ1,2 =
e±iθ0 , 0 < θ0 < π (Figure 4.1(c)), for some value of the parameter. It is
obvious that one needs more parameters to allocate extra eigenvalues on
the unit circle.

The rest of the chapter is devoted to the proof that a nonhyperbolic
fixed point satisfying one of the above conditions is structurally unstable,
and to the analysis of the corresponding bifurcations of the local phase
portrait under variation of the parameter. Let us finish this section with
the following definitions, the reasoning for which will become clear later.

Definition 4.1 The bifurcation associated with the appearance of µ1 = 1
is called a fold (or tangent) bifurcation.

Remark:
This bifurcation is also referred to as a limit point, saddle-node bifurca-

tion, turning point, among others. ♦
Definition 4.2 The bifurcation associated with the appearance of µ1 = −1
is called a flip (or period-doubling) bifurcation.

Definition 4.3 The bifurcation corresponding to the presence of µ1,2 =
e±iθ0 , 0 < θ0 < π, is called a Neimark-Sacker (or torus) bifurcation.

Notice that the fold and flip bifurcations are possible if n ≥ 1, but for
the Neimark-Sacker bifurcation we need n ≥ 2.

4.2 The normal form of the fold bifurcation

Consider the following one-dimensional dynamical system depending on
one parameter:

x �→ α + x + x2 ≡ f(x, α) ≡ fα(x). (4.1)

The map fα is invertible for |α| small in a neighborhood of the origin. The
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x(   )fα x(   )fα x(   )fα

x~ x~ x~
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µ = 1
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α < 0 α = 0 α > 0

x
0

x

FIGURE 4.2. Fold bifurcation.

system has at α = 0 a nonhyperbolic fixed point x0 = 0 with µ = fx(0, 0) =
1. The behavior of the system near x = 0 for small |α| is shown in Figure
4.2. For α < 0 there are two fixed points in the system: x1,2(α) = ±√−α,
the left of which is stable, while the right one is unstable. For α > 0 there
are no fixed points in the system. While α crosses zero from negative to
positive values, the two fixed points (stable and unstable) “collide,” forming
at α = 0 a fixed point with µ = 1, and disappear. This is a fold (tangent)
bifurcation in the discrete-time dynamical system.

There is, as usual, another way of presenting this bifurcation: plotting
a bifurcation diagram in the direct product of the phase and parameter
spaces, namely, in the (x, α)-plane. The fixed-point manifold x−f(x, α) = 0
is simply the parabola α = −x2 (see Figure 4.3). Fixing some α, we can
easily determine the number of fixed points in the system for this parameter
value. At (x, α) = (0, 0) a map projecting the fixed-point manifold onto the
α-axis has a singularity of the fold type.

1

x 2

x

 =    (       )

α

 + x   = 2 0α x

f  x,x α

FIGURE 4.3. Fixed point manifold.
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Remark:
The system x �→ α + x − x2 can be considered in the same way. The

analysis reveals two fixed points appearing for α > 0. ♦

Now add higher-order terms to system (4.1), i.e., consider the system

x �→ α + x + x2 + x3ψ(x, α) ≡ Fα(x), (4.2)

where ψ = ψ(x, α) depends smoothly on (x, α). It is easy to check that in
a sufficiently small neighborhood of x = 0 the number and the stability
of the fixed points are the same for system (4.2) as for system (4.1) at
corresponding parameter values, provided |α| is small enough. Moreover, a
homeomorphism hα of a neighborhood of the origin mapping orbits of (4.1)
into the corresponding orbits of (4.2) can be constructed for each small
|α|. This property was called local topological equivalence of parameter-
dependent systems in Chapter 2. It should be noted that construction of
hα is not as simple as in the continuous-time case (cf. Lemma 3.1). In the
present case, a homeomorphism mapping the fixed points of (4.1) into the
corresponding fixed points of (4.2) will not necessarily map other orbits of
(4.1) into orbits of (4.2). Nevertheless, a homeomorphism hα satisfying the
condition

fα(x) = h−1
α (Fα(hα(x)))

for all (x, α) in a neighbourghood of (0, 0) (cf. Chapter 2) exists. Thus, the
following lemma holds.

Lemma 4.1 The system

x �→ α + x + x2 + O(x3)

is locally topologically equivalent near the origin to the system

x �→ α + x + x2. ✷

4.3 Generic fold bifurcation

We shall show that system (4.1) (with a possible sign change of the term
x2) is a topological normal form of a generic one-dimensional discrete-time
system having a fold bifurcation. In Chapter 5 we will also see that in some
strong sense it describes the fold bifurcation in a generic n-dimensional
system.

Theorem 4.1 Suppose that a one-dimensional system

x �→ f(x, α), x ∈ R, α ∈ R
1, (4.3)

with smooth f , has at α = 0 the fixed point x0 = 0, and let µ = fx(0, 0) = 1.
Assume that the following conditions are satisfied:
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(A.1) fxx(0, 0) = 0;
(A.2) fα(0, 0) = 0.

Then there are smooth invertible coordinate and parameter changes trans-
forming the system into

η �→ β + η ± η2 + O(η3).

Proof:
Expand f(x, α) in a Taylor series with respect to x at x = 0:

f(x, α) = f0(α) + f1(α)x + f2(α)x2 + O(x3).

Two conditions are satisfied: f0(0) = f(0, 0) = 0 (fixed-point condition)
and f1(0) = fx(0, 0) = 1 (fold bifurcation condition). Since f1(0) = 1, we
may write

f(x, α) = f0(α) + [1 + g(α)]x + f2(α)x2 + O(x3),

where g(α) is smooth and g(0) = 0.
As in the proof of Theorem 3.1 in Chapter 3, perform a coordinate shift

by introducing a new variable ξ:

ξ = x + δ, (4.4)

where δ = δ(α) is to be defined suitably. The transformation (4.4) yields

ξ̃ = x̃ + δ = f(x, α) + δ = f(ξ − δ, α) + δ.

Therefore,

ξ̃ = [f0(α)− g(α)δ + f2(α)δ2 + O(δ3)]
+ ξ + [g(α)− 2f2(α)δ + O(δ2)]ξ
+ [f2(α) + O(δ)]ξ2 + O(ξ3).

Assume that

(A.1) f2(0) = 1
2fxx(0, 0) = 0.

Then there is a smooth function δ(α), which annihilates the parameter-
dependent linear term in the above map for all sufficiently small |α|. Indeed,
the condition for that term to vanish can be written as

F (α, δ) ≡ g(α)− 2f2(α)δ + δ2ϕ(α, δ) = 0

for some smooth function ϕ. We have

F (0, 0) = 0,
∂F

∂δ

∣∣∣∣
(0,0)

= −2f2(0) = 0,
∂F

∂α

∣∣∣∣
(0,0)

= g′(0),



118 4. One-Parameter Bifurcations of Fixed Points

which implies (local) existence and uniqueness of a smooth function δ =
δ(α) such that δ(0) = 0 and F (α, δ(α)) ≡ 0. It follows that

δ(α) =
g′(0)

2f2(0)
α + O(α2).

The map written in terms of ξ is given by

ξ̃ =
[
f ′
0(0)α + α2ψ(α)

]
+ ξ + [f2(0) + O(α)] ξ2 + O(ξ3), (4.5)

where ψ is some smooth function.
Consider as a new parameter µ = µ(α) the constant (ξ-independent)

term of (4.5):
µ = f ′

0(0)α + α2ψ(α).

We have

(a) µ(0) = 0;
(b) µ′(0) = f ′

0(0) = fα(0, 0).

If we assume

(A.2) fα(0, 0) = 0,

then the Inverse Function Theorem implies local existence and uniqueness
of a smooth inverse function α = α(µ) with α(0) = 0. Therefore, equation
(4.5) now reads

ξ̃ = µ + ξ + a(µ)ξ2 + O(ξ3),

where a(µ) is a smooth function with a(0) = f2(0) = 0 due to the first
assumption (A.1).

Let η = |a(µ)|ξ and β = |a(µ)|µ. Then we get

η̃ = β + η + sη2 + O(η3),

where s = sign a(0) = ±1. ✷

Using Lemma 4.1, we can also eliminate O(η3) terms and finally arrive
at the following general result.

Theorem 4.2 (Topological normal form for the fold bifurcation)
Any generic scalar one-parameter system

x �→ f(x, α),

having at α = 0 the fixed point x0 = 0 with µ = fx(0, 0) = 1, is locally
topologically equivalent near the origin to one of the following normal forms:

η �→ β + η ± η2. ✷

Remark:
The genericity conditions in Theorem 4.2 are the nondegeneracy condi-

tion (A.1) and the transversality condition (A.2) from Theorem 4.1. ♦
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4.4 The normal form of the flip bifurcation

Consider the following one-dimensional dynamical system depending on
one parameter:

x �→ −(1 + α)x + x3 ≡ f(x, α) ≡ fα(x). (4.6)

The map fα is invertible for small |α| in a neighborhood of the origin.
System (4.6) has the fixed point x0 = 0 for all α with multiplier µ =
−(1 + α). The point is linearly stable for small α < 0 and is linearly
unstable for α > 0. At α = 0 the point is not hyperbolic, since the multiplier
µ = fx(0, 0) = −1, but is nevertheless (nonlinearly) stable. There are no
other fixed points near the origin for small |α|.

Consider now the second iterate f2
α(x) of the map (4.6). If y = fα(x),

then

f2
α(x) = fα(y) = −(1 + α)y + y3

= −(1 + α)[−(1 + α)x + x3] + [−(1 + α)x + x3]3

= (1 + α)2x− [(1 + α)(2 + 2α + α2)]x3 + O(x5).

The map f2
α obviously has the trivial fixed point x0 = 0. It also has two

nontrivial fixed points for small α > 0:

x1,2 = f2
α(x1,2),

where x1,2 = ±(
√
α + O(α)) (see Figure 4.4). These two points are stable

~~ x~
~

x~
~

α x(   )f
2

α x(   )f
2

α x(   )f
2

x2

x

x

1 xx

α < 0 α = 0 α > 0

x
0

FIGURE 4.4. Second iterate map near a flip bifurcation.

and constitute a cycle of period two for the original map fα. This means
that

x2 = fα(x1), x1 = fα(x2),

with x1 = x2. Figure 4.5 shows the complete bifurcation diagram of system
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FIGURE 4.5. Flip bifurcation.
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FIGURE 4.6. A flip corresponds to a pitchfork bifurcation of the second iterate.

(4.6) with the help of a staircase diagram. As α approaches zero from above,
the period-two cycle “shrinks” and disappears. This is a flip bifurcation.

The other way to present this bifurcation is to use the (x, α)-plane (see
Figure 4.6). In this figure, the horizontal axis corresponds to the fixed point
of (4.6) (stable for α < 0 and unstable for α > 0), while the “parabola”
represents the stable cycle of period two {x1, x2} existing for α > 0.

As usual, let us consider the effect of higher-order terms on system (4.6).

Lemma 4.2 The system

x �→ −(1 + α)x + x3 + O(x4)

is locally topologically equivalent near the origin to the system

x �→ −(1 + α)x + x3. ✷

The analysis of the fixed point and the period-two cycle is a simple
exercise. The rest of the proof is not easy and is omitted here.
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The case
x �→ −(1 + α)x− x3 (4.7)

can be treated in the same way. For α = 0, the fixed point x0 = 0 has
the same stability as in (4.6). At the critical parameter value α = 0 the
fixed point is unstable. The analysis of the second iterate of (4.7) reveals
an unstable cycle of period two for α < 0 which disappears at α = 0. The
higher-order terms do not affect the bifurcation diagram.

Remark:
By analogy with the Andronov-Hopf bifurcation, the flip bifurcation in

system (4.6) is called supercritical or “soft,” while the flip bifurcation in
system (4.7) is referred to as subcritical or “sharp.” The bifurcation type
is determined by the stability of the fixed point at the critical parameter
value. ♦

4.5 Generic flip bifurcation

Theorem 4.3 Suppose that a one-dimensional system

x �→ f(x, α), x ∈ R
1, α ∈ R

1,

with smooth f , has at α = 0 the fixed point x0 = 0, and let µ = fx(0, 0) =
−1. Assume that the following nondegeneracy conditions are satisfied:

(B.1) 1
2 (fxx(0, 0))2 + 1

3fxxx(0, 0) = 0;
(B.2) fxα(0, 0) = 0.

Then there are smooth invertible coordinate and parameter changes trans-
forming the system into

η �→ −(1 + β)η ± η3 + O(η4).

Proof:
By the Implicit Function Theorem, the system has a unique fixed point

x0(α) in some neighborhood of the origin for all sufficiently small |α|, since
fx(0, 0) = 1. We can perform a coordinate shift, placing this fixed point at
the origin. Therefore, we can assume without loss of generality that x = 0
is the fixed point of the system for |α| sufficiently small. Thus, the map f
can be written as follows:

f(x, α) = f1(α)x + f2(α)x2 + f3(α)x3 + O(x4), (4.8)

where f1(α) = −[1 + g(α)] for some smooth function g. Since g(0) = 0 and

g′(0) = fxα(0, 0) = 0,
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according to assumption (B.2), the function g is locally invertible and can
be used to introduce a new parameter:

β = g(α).

Our map (4.8) now takes the form

x̃ = µ(β)x + a(β)x2 + b(β)x3 + O(x4),

where µ(β) = −(1 + β), and the functions a(β) and b(β) are smooth. We
have

a(0) = f2(0) =
1
2
fxx(0, 0), b(0) =

1
6
fxxx(0, 0).

Let us perform a smooth change of coordinate:

x = y + δy2, (4.9)

where δ = δ(β) is a smooth function to be defined. The transformation
(4.9) is invertible in some neighborhood of the origin, and its inverse can
be found by the method of unknown coefficients:

y = x− δx2 + 2δ2x3 + O(x4). (4.10)

Using (4.9) and (4.10), we get

ỹ = µy + (a + δµ− δµ2)y2 + (b + 2δa− 2δµ(δµ + a) + 2δ2µ3)y3 + O(y4).

Thus, the quadratic term can be “killed” for all sufficiently small |β| by
setting

δ(β) =
a(β)

µ2(β)− µ(β)
.

This can be done since µ2(0)− µ(0) = 2 = 0, giving

ỹ = µy +
(
b +

2a2

µ2 − µ

)
y3 + O(y4) = −(1 + β)y + c(β)y3 + O(y4)

for some smooth function c(β), such that

c(0) = a2(0) + b(0) =
1
4

(fxx(0, 0))2 +
1
6
fxxx(0, 0). (4.11)

Notice that c(0) = 0 by assumption (B.1).
Apply the rescaling

y =
η√|c(β)| .

In the new coordinate η the system takes the desired form:

η̃ = −(1 + β)η + sη3 + O(η4),

where s = sign c(0) = ±1. ✷

Using Lemma 4.2, we arrive at the following general result.
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Theorem 4.4 (Topological normal form for the flip bifurcation)
Any generic, scalar, one-parameter system

x �→ f(x, α),

having at α = 0 the fixed point x0 = 0 with µ = fx(0, 0) = −1, is locally
topologically equivalent near the origin to one of the following normal forms:

η �→ −(1 + β)η ± η3. ✷

Remark:
Of course, the genericity conditions in Theorem 4.4 are the nondegener-

acy condition (B.1) and the transversality condition (B.2) from Theorem
4.3. ♦

Example 4.1 (Ricker’s equation) Consider the following simple pop-
ulation model [Ricker 1954]:

xk+1 = αxke
−xk ,

where xk is the population density in year k, and α > 0 is the growth
rate. The function on the right-hand side takes into account the negative
role of interpopulation competition at high population densities. The above
recurrence relation corresponds to the discrete-time dynamical system

x �→ αxe−x ≡ f(x, α). (4.12)

System (4.12) has a trivial fixed point x0 = 0 for all values of the parameter
α. At α0 = 1, however, a nontrivial positive fixed point appears:

x1(α) = lnα.

The multiplier of this point is given by the expression

µ(α) = 1− lnα.

Thus, x1 is stable for 1 < α < α1 and unstable for α > α1, where α1 =
e2 = 7.38907 . . .. At the critical parameter value α = α1, the fixed point
has multiplier µ(α1) = −1. Therefore, a flip bifurcation takes place. To
apply Theorem 4.4, we need to verify the corresponding nondegeneracy
conditions in which all the derivatives must be computed at the fixed point
x1(α1) = 2 and at the critical parameter value α1.

One can check that

c(0) =
1
6
> 0, fxα = − 1

e2
= 0.

Therefore, a unique and stable period-two cycle bifurcates from x1 for α >
α1.
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FIGURE 4.7. Cascade of period-doubling (flip) bifurcations in Ricker’s equation.

The fate of this period-two cycle can be traced further. It can be ver-
ified numerically (see Exercise 4) that this cycle loses stability at α2 =
12.50925 . . . via the flip bifurcation, giving rise to a stable period-four cy-
cle. It bifurcates again at α4 = 14.24425 . . ., generating a stable period-eight
cycle that loses its stability at α8 = 14.65267 . . .. The next period doubling
takes place at α16 = 14.74212 . . . (see Figure 4.7, where several doublings
are presented).

It is natural to assume that there is an infinite sequence of bifurcation
values: αm(k), m(k) = 2k, k = 1, 2, . . . (m(k) is the period of the cycle
before the kth doubling). Moreover, one can check that at least the first
few elements of this sequence closely resemble a geometric progression. In
fact, the quotient

αm(k) − αm(k−1)

αm(k+1) − αm(k)

tends to µF = 4.6692 . . . as k increases. This phenomenon is called Feigen-
baum’s cascade of period doublings, and the constant µF is referred to as
the Feigenbaum constant. The most surprising fact is that this constant is
the same for many different systems exhibiting a cascade of flip bifurca-
tions. This universality has a deep reasoning, which will be discussed in
Appendix 1 to this chapter. ✸
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4.6 The “normal form” of the Neimark-Sacker
bifurcation

Consider the following two-dimensional discrete-time system depending on
one parameter:(

x1
x2

)
�→ (1 + α)

(
cos θ − sin θ
sin θ cos θ

)(
x1
x2

)
+ (x2

1 + x2
2)

(
cos θ − sin θ
sin θ cos θ

)(
a −b
b a

)(
x1
x2

)
,

(4.13)
where α is the parameter; θ = θ(α), a = a(α), and b = b(α) are smooth
functions; and 0 < θ(0) < π, a(0) = 0.

This system has the fixed point x1 = x2 = 0 for all α with Jacobian
matrix

A = (1 + α)
(

cos θ − sin θ
sin θ cos θ

)
.

The matrix has eigenvalues µ1,2 = (1+α)e±iθ, which makes the map (4.13)
invertible near the origin for all small |α|. As can be seen, the fixed point at
the origin is nonhyperbolic at α = 0 due to a complex-conjugate pair of the
eigenvalues on the unit circle. To analyze the corresponding bifurcation,
introduce the complex variable z = x1 + ix2, z̄ = x1 − ix2, |z|2 = zz̄ =
x2

1 + x2
2, and set d = a + ib. The equation for z reads

z �→ eiθz(1 + α + d|z|2) = µz + cz|z|2,

where µ = µ(α) = (1 + α)eiθ(α) and c = c(α) = eiθ(α)d(α) are complex
functions of the parameter α.

Using the representation z = ρeiϕ, we obtain for ρ = |z|

ρ �→ ρ|1 + α + d(α)ρ2|.

Since

|1 + α + d(α)ρ2| = (1 + α)
(

1 +
2a(α)
1 + α

ρ2 +
|d(α)|2

(1 + α)2
ρ4

)1/2

= 1 + α + a(α)ρ2 + O(ρ3),

we obtain the following polar form of system (4.13):{
ρ �→ ρ(1 + α + a(α)ρ2) + ρ4Rα(ρ),
ϕ �→ ϕ + θ(α) + ρ2Qα(ρ), (4.14)

for functions R and Q, which are smooth functions of (ρ, α). Bifurcations of
the systems’s phase portrait as α passes through zero can easily be analyzed
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using the latter form, since the mapping for ρ is independent of ϕ. The first
equation in (4.14) defines a one-dimensional dynamical system that has the
fixed point ρ = 0 for all values of α. The point is linearly stable if α < 0;
for α > 0 the point becomes linearly unstable. The stability of the fixed
point at α = 0 is determined by the sign of the coefficient a(0). Suppose
that a(0) < 0; then the origin is (nonlinearly) stable at α = 0. Moreover,
the ρ-map of (4.14) has an additional stable fixed point

ρ0(α) =
√
− α

a(α)
+ O(α)

for α > 0. The ϕ-map of (4.14) describes a rotation by an angle depending
on ρ and α; it is approximately equal to θ(α). Thus, by superposition of
the mappings defined by (4.14), we obtain the bifurcation diagram for the
original two-dimensional system (4.13) (see Figure 4.8).

x 2 x 2 x 2

x1

α = 0

x1 x1

α > 0α < 0

FIGURE 4.8. Supercritical Neimark-Sacker bifurcation.

The system always has a fixed point at the origin. This point is stable
for α < 0 and unstable for α > 0. The invariant curves of the system near
the origin look like the orbits near the stable focus of a continuous-time
system for α < 0 and like orbits near the unstable focus for α > 0. At the
critical parameter value α = 0 the point is nonlinearly stable. The fixed
point is surrounded for α > 0 by an isolated closed invariant curve that is
unique and stable. The curve is a circle of radius ρ0(α). All orbits starting
outside or inside the closed invariant curve, except at the origin, tend to
the curve under iterations of (4.14). This is a Neimark-Sacker bifurcation.

This bifurcation can also be presented in (x1, x2, α)-space. The appearing
family of closed invariant curves, parametrized by α, forms a paraboloid
surface.

The case a(0) > 0 can be analyzed in the same way. The system under-
goes the Neimark-Sacker bifurcation at α = 0. Contrary to the considered
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x1x1
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x1

x

α = 0 α > 0α < 0

FIGURE 4.9. Subcritical Neimark-Sacker bifurcation.

case, there is an unstable closed invariant curve that disappears when α
crosses zero from negative to positive values (see Figure 4.9).

Remarks:
(1) As in the cases of the Andronov-Hopf and the flip bifurcations, these

two cases are often called supercritical and subcritical (or, better, “soft” and
“sharp”) Neimark-Sacker bifurcations. As usual, the type of the bifurcation
is determined by the stability of the fixed point at the bifurcation parameter
value.

(2) The structure of orbits of (4.14) on the invariant circle depends on
whether the ratio between the rotation angle ∆ϕ = θ(α)+ρ2Qα(ρ) and 2π
is rational or irrational on the circle. If it is rational, all the orbits on the
curve are periodic. More precisely, if

∆ϕ

2π
=
p

q

with integers p and q, all the points on the curve are cycles of period q of
the pth iterate of the map. If the ratio is irrational, there are no periodic
orbits and all the orbits are dense in the circle. ♦

Let us now add higher-order terms to system (4.13); for instance, consider
the system(

x1
x2

)
�→ (1 + α)

(
cos θ − sin θ
sin θ cos θ

)(
x1
x2

)
+ (x2

1 + x2
2)

(
cos θ − sin θ
sin θ cos θ

)(
a −b
b a

)(
x1
x2

)
+ O(‖x‖4).

(4.15)
Here, the O(‖x‖4) terms can depend smoothly on α. Unfortunately, it can-
not be said that system (4.15) is locally topologically equivalent to system
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(4.13). In this case, the higher-order terms do affect the bifurcation behav-
ior of the system. If one writes (4.15) in the polar form, the mapping for ρ
will depend on ϕ. The system can be represented in a form similar to (4.14)
but with 2π-periodic functions R and Q. Nevertheless, the phase portraits
of systems (4.13) and (4.15) have some important features in common.
Namely, the following lemma holds.

Lemma 4.3 O(‖x‖4) terms do not affect the bifurcation of the closed in-
variant curve in (4.15). That is, a locally unique invariant curve bifurcates
from the origin in the same direction and with the same stability as in
system (4.13). ✷

The proof of the lemma is rather involved and is given in Appendix 2.
The geometrical idea behind the proof is simple. We expect that map (4.15)
has an invariant curve near the invariant circle of the map (4.13). Fix α
and consider the circle

S0 =
{

(ρ, ϕ) : ρ =
√
− α

a(α)

}
,

which is located near the invariant circle of the “unperturbed” map without
O(‖x‖4) terms. It can be shown that iterations F kS0, k = 1, 2, . . ., where
F is the map defined by (4.15), converge to a closed invariant curve

S∞ = {(ρ, ϕ) : ρ = Ψ(ϕ)},
which is not a circle but is close to S0. Here, Ψ is a 2π-periodic function
of ϕ describing S∞ in polar coordinates. To establish the convergence, we
have to introduce a new “radial” variable u in a band around S0 (both the
band diameter and its width “shrink” as α → 0) and show that the map
F defines a contraction map F on a proper function space of 2π-periodic
functions u = u(ϕ). Then the Contraction Mapping Principle (see Chapter
1) gives the existence of a fixed point u(∞) of F : F(u(∞)) = u(∞). The
periodic function u(∞)(ϕ) represents the closed invariant curve S∞ we are
looking for at α fixed. Uniqueness and stability of S∞ in the band follow,
essentially, from the contraction. It can be verified that outside the band
there are no nontrivial invariant sets of (4.15).

Remarks:
(1) The orbit structure on the closed invariant curve and the variation

of this structure when the parameter changes are generically different in
systems (4.13) and (4.15). We will return to the analysis of bifurcations on
the invariant curve in Chapter 7. Here we just notice that, generically, there
is only a finite number of periodic orbits on the closed invariant curve. Let
a(0) < 0. Then, some iterate p of map (4.15) can have two q-periodic orbits:
a totally stable “node” cycle of period q and a saddle cycle of period q (see
Figure 4.10). The cycles exist in some “parameter window” and disappear
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FIGURE 4.10. Saddle {x1, x2, . . . , x6} and stable {y1, y2, . . . , y6} period-six orbits
on the invariant circle.

on its borders through the fold bifurcation. A generic system exhibits an
infinite number of such bifurcations corresponding to different windows.

(2) The bifurcating invariant closed curve in (4.15) has finite smoothness:
The function Ψ(ϕ) representing it in polar coordinates generically has only
a finite number of continuous derivatives with respect to ϕ, even if the
map (4.15) is differentiable infinitely many times. The number increases as
|α| → 0. The nonsmoothness appears when the saddle’s unstable (stable)
manifolds meet at the “node” points. ♦

4.7 Generic Neimark-Sacker bifurcation

We now shall prove that any generic two-dimensional system undergoing a
Neimark-Sacker bifurcation can be transformed into the form (4.15).

Consider a system

x �→ f(x, α), x = (x1, x2)T ∈ R
2, α ∈ R

1,

with a smooth function f , which has at α = 0 the fixed point x = 0 with
simple eigenvalues µ1,2 = e±iθ0 , 0 < θ0 < π. By the Implicit Function
Theorem, the system has a unique fixed point x0(α) in some neighborhood
of the origin for all sufficiently small |α|, since µ = 1 is not an eigenvalue of
the Jacobian matrix.1 We can perform a parameter-dependent coordinate
shift, placing this fixed point at the origin. Therefore, we may assume

1Since µ = 0 is not an eigenvalue, the system is invertible in some neighbor-
hood of the origin for sufficiently small |α|.
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without loss of generality that x = 0 is the fixed point of the system for |α|
sufficiently small. Thus, the system can be written as

x �→ A(α)x + F (x, α), (4.16)

where F is a smooth vector function whose components F1,2 have Taylor
expansions in x starting with at least quadratic terms, F (0, α) = 0 for all
sufficiently small |α|. The Jacobian matrix A(α) has two multipliers

µ1,2(α) = r(α)e±iϕ(α),

where r(0) = 1, ϕ(0) = θ0. Thus, r(α) = 1+β(α) for some smooth function
β(α), β(0) = 0. Suppose that β′(0) = 0. Then, we can use β as a new
parameter and express the multipliers in terms of β : µ1(β) = µ(β), µ2(β) =
µ̄(β), where

µ(β) = (1 + β)eiθ(β)

with a smooth function θ(β) such that θ(0) = θ0.

Lemma 4.4 By the introduction of a complex variable and a new param-
eter, system (4.16) can be transformed for all sufficiently small |α| into the
following form:

z �→ µ(β)z + g(z, z̄, β), (4.17)

where β ∈ R
1, z ∈ C

1, µ(β) = (1 + β)eiθ(β), and g is a complex-valued
smooth function of z, z̄, and β whose Taylor expansion with respect to (z, z̄)
contains quadratic and higher-order terms:

g(z, z̄, β) =
∑

k+l≥2

1
k!l!

gkl(β)zkz̄l,

with k, l = 0, 1, . . .. ✷

The proof of the lemma is completely analogous to that from the And-
ronov-Hopf bifurcation analysis in Chapter 3 and is left as an exercise for
the reader.

As in the Andronov-Hopf case, we start by making nonlinear (complex)
coordinate changes that will simplify the map (4.17). First, we remove all
the quadratic terms.

Lemma 4.5 The map

z �→ µz +
g20
2
z2 + g11zz̄ +

g02
2
z̄2 + O(|z|3), (4.18)

where µ = µ(β) = (1 + β)eiθ(β), gij = gij(β), can be transformed by an
invertible parameter-dependent change of complex coordinate

z = w +
h20

2
w2 + h11ww̄ +

h02

2
w̄2,
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for all sufficiently small |β|, into a map without quadratic terms:

w �→ µw + O(|w|3),

provided that
eiθ0 = 1 and e3iθ0 = 1.

Proof:
The inverse change of variables is given by

w = z − h20

2
z2 − h11zz̄ − h02

2
z̄2 + O(|z|3).

Therefore, in the new coordinate w, the map (4.18) takes the form

w̃ = µw +
1
2

(g20 + (µ− µ2)h20)w2

+ (g11 + (µ− |µ|2)h11)ww̄

+
1
2

(g02 + (µ− µ̄2)h02)w̄2

+ O(|w|3).

Thus, by setting

h20 =
g20

µ2 − µ
, h11 =

g11
|µ|2 − µ

, h02 =
g02

µ̄2 − µ
,

we “kill” all the quadratic terms in (4.18). These substitutions are valid if
the denominators are nonzero for all sufficiently small |β| including β = 0.
Indeed, this is the case, since

µ2(0)− µ(0) = eiθ0(eiθ0 − 1) = 0,
|µ(0)|2 − µ(0) = 1− eiθ0 = 0,
µ̄(0)2 − µ(0) = eiθ0(e−3iθ0 − 1) = 0,

due to our restrictions on θ0. ✷

Remarks:
(1) Let µ0 = µ(0). Then, the conditions on θ0 used in the lemma can be

written as
µ0 = 1, µ3

0 = 1.

Notice that the first condition holds automatically due to our initial as-
sumptions on θ0.

(2) The resulting coordinate transformation is polynomial with coeffi-
cients that are smoothly dependent on β. In some neighborhood of the
origin the transformation is near-identical.

(3) Notice the transformation changes the coefficients of the cubic terms
of (4.18). ♦

Assuming that we have removed all quadratic terms, let us try to elimi-
nate the cubic terms as well.
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Lemma 4.6 The map

z �→ µz +
g30
6
z3 +

g21
2
z2z̄ +

g12
2
zz̄2 +

g03
6
z̄3 + O(|z|4), (4.19)

where µ = µ(β) = (1 + β)eiθ(β), gij = gij(β), can be transformed by an
invertible parameter-dependent change of coordinates

z = w +
h30

6
w3 +

h21

2
w2w̄ +

h12

2
ww̄2 +

h03

6
w̄3,

for all sufficiently small |β|, into a map with only one cubic term:

w �→ µw + c1w
2w̄ + O(|w|4),

provided that
e2iθ0 = 1 and e4iθ0 = 1.

Proof:
The inverse transformation is

w = z − h30

6
z3 − h21

2
z2z̄ − h12

2
zz̄2 − h03

6
z̄3 + O(|z|4).

Therefore,

w̃ = λw +
1
6

(g30 + (µ− µ3)h30)w3 +
1
2

(g21 + (µ− µ|µ|2)h21)w2w̄

+
1
2

(g12 + (µ− µ̄|µ|2)h12)ww̄2 +
1
6

(g03 + (µ− µ̄3)h03)w̄3 + O(|w|4).

Thus, by setting

h30 =
g30

µ3 − µ
, h12 =

g12
µ̄|µ|2 − µ

, h03 =
g03

µ̄3 − µ
,

we can annihilate all cubic terms in the resulting map except the w2w̄-term,
which must be treated separately. The substitutions are valid since all the
involved denominators are nonzero for all sufficiently small |β| due to the
assumptions concerning θ0.

One can also try to eliminate the w2w̄-term by formally setting

h21 =
g21

µ(1− |µ|2)
.

This is possible for small β = 0, but the denominator vanishes at β = 0
for all θ0. Thus, no extra conditions on θ0 would help. To obtain a trans-
formation that is smoothly dependent on β, set h21 = 0, that results in

c1 =
g21
2
. ✷
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Remarks:
(1) The conditions imposed on θ0 in the lemma mean

µ2
0 = 1, µ4

0 = 1,

and therefore, in particular, µ0 = −1 and µ0 = i. The first condition holds
automatically due to our initial assumptions on θ0.

(2) The remaining cubic w2w̄-term is called a resonant term. Note that
its coefficient is the same as the coefficient of the cubic term z2z̄ in the
original map (4.19). ♦

We now combine the two previous lemmas.

Lemma 4.7 (Normal form for the Neimark-Sacker bifurcation)
The map

z �→ µz +
g20
2
z2 + g11zz̄ +

g02
2
z̄2

+
g30
6
z3 +

g21
2
z2z̄ +

g12
2
zz̄2 +

g03
6
z̄3

+ O(|z|4),

where µ = µ(β) = (1 + β)eiθ(β), gij = gij(β), and θ0 = θ(0) is such that
eikθ0 = 1 for k = 1, 2, 3, 4, can be transformed by an invertible parameter-
dependent change of complex coordinate, which is smoothly dependent on
the parameter,

z = w +
h20

2
w2 + h11ww̄ +

h02

2
w̄2

+
h30

6
w3 +

h12

2
ww̄2 +

h03

6
w̄3,

for all sufficiently small |β|, into a map with only the resonant cubic term:

w �→ µw + c1w
2w̄ + O(|w|4),

where c1 = c1(β). ✷

The truncated superposition of the transformations defined in the two
previous lemmas gives the required coordinate change. First, annihilate
all the quadratic terms. This will also change the coefficients of the cubic
terms. The coefficient of w2w̄ will be 1

2 g̃21, say, instead of 1
2g21. Then,

eliminate all the cubic terms except the resonant one. The coefficient of
this term remains 1

2 g̃21. Thus, all we need to compute to get the coefficient
of c1 in terms of the given equation is a new coefficient 1

2 g̃21 of the w2w̄-
term after the quadratic transformation. The computations result in the
following expression for c1(α):

c1 =
g20g11(µ̄− 3 + 2µ)
2(µ2 − µ)(µ̄− 1)

+
|g11|2
1− µ̄

+
|g02|2

2(µ2 − µ̄)
+
g21
2
, (4.20)
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which gives, for the critical value of c1,

c1(0) =
g20(0)g11(0)(1− 2µ0)

2(µ2
0 − µ0)

+
|g11(0)|2
1− µ̄0

+
|g02(0)|2

2(µ2
0 − µ̄0)

+
g21(0)

2
, (4.21)

where µ0 = eiθ0 .

We now summarize the obtained results in the following theorem.

Theorem 4.5 Suppose a two-dimensional discrete-time system

x �→ f(x, α), x ∈ R
2, α ∈ R

1,

with smooth f , has, for all sufficiently small |α|, the fixed point x = 0 with
multipliers

µ1,2(α) = r(α)e±iϕ(α),

where r(0) = 1, ϕ(0) = θ0.
Let the following conditions be satisfied:

(C.1) r′(0) = 0;
(C.2) eikθ0 = 1 for k = 1, 2, 3, 4.

Then, there are smooth invertible coordinate and parameter changes trans-
forming the system into(

y1
y2

)
�→ (1 + β)

(
cos θ(β) − sin θ(β)
sin θ(β) cos θ(β)

)(
y1
y2

)
+

(y2
1 + y2

2)
(

cos θ(β) − sin θ(β)
sin θ(β) cos θ(β)

)(
a(β) −b(β)
b(β) a(β)

)(
y1
y2

)
+ O(‖y‖4)

(4.22)
with θ(0) = θ0 and a(0) = Re(e−iθ0c1(0)), where c1(0) is given by the
formula (4.21).

Proof:
The only thing left to verify is the formula for a(0). Indeed, by Lemmas

4.4, 4.5, and 4.6, the system can be transformed to the complex Poincaré
normal form,

w �→ µ(β)w + c1(β)w|w|2 + O(|w|4),

for µ(β) = (1 + β)eiθ(β). This map can be written as

w �→ eiθ(β)(1 + β + d(β)|w|2)w + O(|w|4),

where d(β) = a(β) + ib(β) for some real functions a(β), b(β). A return to
the real coordinates (y1, y2), w = y1 + iy2, gives system (4.22). Finally,

a(β) = Re d(β) = Re(e−iθ(β)c1(β)).
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Thus,
a(0) = Re(e−iθ0c1(0)). ✷

Using Lemma 4.3, we can state the following general result.

Theorem 4.6 (Generic Neimark-Sacker bifurcation) For any gene-
ric two-dimensional one-parameter system

x �→ f(x, α),

having at α = 0 the fixed point x0 = 0 with complex multipliers µ1,2 = e±iθ0 ,
there is a neighborhood of x0 in which a unique closed invariant curve
bifurcates from x0 as α passes through zero. ✷

Remark:
The genericity conditions assumed in the theorem are the transversality

condition (C.1) and the nondegeneracy condition (C.2) from Theorem 4.5
and the additional nondegeneracy condition

(C.3) a(0) = 0.

It should be stressed that the conditions eikθ0 = 1 for k = 1, 2, 3, 4 are not
merely technical. If they are not satisfied, the closed invariant curve may
not appear at all, or there might be several invariant curves bifurcating
from the fixed point (see Chapter 9). ♦

The coefficient a(0), which determines the direction of the appearance
of the invariant curve in a generic system exhibiting the Neimark-Sacker
bifurcation, can be computed via

a(0) = Re
(
e−iθ0g21

2

)
−Re

(
(1− 2eiθ0)e−2iθ0

2(1− eiθ0)
g20g11

)
− 1

2
|g11|2− 1

4
|g02|2.
(4.23)

In Chapter 5 we will see how to deal with n-dimensional discrete-time
systems where n > 2 and how to apply the results to limit cycle bifurcations
in continuous-time systems.

Example 4.2 (Neimark-Sacker bifurcation in the delayed logistic
equation) Consider the following recurrence equation:

uk+1 = ruk(1− uk−1).

This is a simple population dynamics model, where uk stands for the density
of a population at time k, and r is the growth rate. It is assumed that the
growth is determined not only by the current population density but also
by its density in the past.
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FIGURE 4.11. Stable invariant curve in the delayed logistic equation.

If we introduce vk = uk−1, the equation can be rewritten as

uk+1 = ruk(1− vk),
vk+1 = vk,

which, in turn, defines the two-dimensional discrete-time dynamical system,(
x1
x2

)
�→

(
rx1(1− x2)

x1

)
≡

(
F1(x, r)
F2(x, r)

)
, (4.24)

where x = (x1, x2)T . The map (4.24) has the fixed point (0, 0)T for all
values of r. For r > 1, a nontrivial positive fixed point x0 appears, with
the coordinates

x0
1(r) = x0

2(r) = 1− 1
r
.

The Jacobian matrix of the map (4.24) evaluated at the nontrivial fixed
point is given by

A(r) =
(

1 1− r
1 0

)
and has eigenvalues

µ1,2(r) =
1
2
±

√
5
4
− r.

If r > 5
4 , the eigenvalues are complex and |µ1,2|2 = µ1µ2 = r−1. Therefore,

at r = r0 = 2 the nontrivial fixed point loses stability and we have a



4.7 Generic Neimark-Sacker bifurcation 137

Neimark-Sacker bifurcation: The critical multipliers are

µ1,2 = e±iθ0 , θ0 =
π

3
= 600.

It is clear that conditions (C.1) and (C.2) are satisfied.
To verify the nondegeneracy condition (C.3), we have to compute a(0).

The critical Jacobian matrix A0 = A(r0) have the eigenvectors

A0q = eiθ0q, AT
0 p = e−iθ0p,

where

q ∼
(

1
2

+ i

√
3

2
, 1

)T

, p ∼
(
−1

2
+ i

√
3

2
, 1

)T

.

To achieve the normalization 〈p, q〉 = 1, we can take, for example,

q =

(
1
2

+ i

√
3

2
, 1

)T

, p =

(
i

√
3

3
,

1
2
− i

√
3

6

)T

.

Now we compose
x = x0 + zq + z̄q̄

and evaluate the function

H(z, z̄) = 〈p, F (x0 + zq + z̄q̄, r0)− x0〉.

Computing its Taylor expansion at (z, z̄) = (0, 0),

H(z, z̄) = eiθ0z +
∑

2≤j+k≤3

1
j!k!

gjkz
j z̄k + O(|z|4),

gives

g20 = −2 + i
2
√

3
3

, g11 = i
2
√

3
3

, g02 = 2 + i
2
√

3
3

, g21 = 0,

that allows us to find the critical real part

a(0) = Re
(
e−iθ0g21

2

)
− Re

(
(1− 2eiθ0)e−2iθ0

2(1− eiθ0)
g20g11

)
− 1

2
|g11|2 − 1

4
|g02|2

= −2 < 0.

Therefore, a unique and stable closed invariant curve bifurcates from the
nontrivial fixed point for r > 2 (see Figure 4.11). ✸
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4.8 Exercises

(1) Prove that in a small neighborhood of x = 0 the number and stability of
fixed points and periodic orbits of the maps (4.1) and (4.8) are independent
of higher-order terms, provided |α| is sufficiently small. (Hint: To prove the
absence of long-period cycles, use asymptotic stability arguments.)

(2) Show that the normal form coefficient c(0) for the flip bifurcation (4.11)
can be computed in terms of the second iterate of the map:

c(0) = − 1
12

∂3

∂x3 f2
α(x)

∣∣∣∣
(x,α)=(0,0)

,

where fα(x) = f(x, α). (Hint: Take into account that fx(0, 0) = −1.)

(3) (Logistic map) Consider the following map (May [1976]):

fα(x) = αx(1− x),

depending on a single parameter α.
(a) Show that at α1 = 3 the map exhibits the flip bifurcation, namely, a

stable fixed point of fα becomes unstable, while a stable period-two cycle
bifurcates from this point for α > 3. (Hint: Use the formula from Exercise
2 above.)

(b) Prove that at α0 = 1 +
√

8 the logistic map has a fold bifurcation
generating a stable and an unstable cycle of period three as α increases.

(4) (Second period doubling in Ricker’s model) Verify that the sec-
ond period doubling takes place in Ricker’s map (4.12) at α2 = 12.50925 . . ..
(Hint: Introduce y = αxe−x and write a system of three equations for the
three unknowns (x, y, α) defining a period-two cycle {x, y} with multiplier
µ = −1. Use one of the standard routines implementing Newton’s method
(see Chapter 10) to solve the system numerically starting from some suit-
able initial data.)

(5) (Henon map) Consider the following invertible planar map(
x
y

)
�→

(
y

−εx + µ− y2

)
depending on two parameters. Find a curve in the (ε, µ)-plane correspond-
ing to the flip bifurcation of a fixed point.

(6) Derive formula (4.21) for c1(0) for the Neimark-Sacker bifurcation.
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(7) (Discrete-time predator-prey model)
Consider the following discrete-time system (Maynard Smith [1968]):

xk+1 = αxk(1− xk)− xkyk,

yk+1 =
1
β
xkyk,

which is a discrete-time version of a standard predator-prey model. Here xk
and yk are the prey and predator numbers, respectively, in year (generation)
k, and it is assumed that in the absence of prey the predators become
extinct in one generation.

(a) Prove that a nontrivial fixed point of the map undergoes a Neimark-
Sacker bifurcation on a curve in the (α, β)-plane, and compute the direction
of the closed invariant-curve bifurcation.

(b) Guess what happens to the emergent closed invariant curve for pa-
rameter values far from the bifurcation curve.

4.9 Appendix 1: Feigenbaum’s universality

As mentioned previously, many one-dimensional, parameter-dependent dy-
namical systems

x �→ fα(x), x ∈ R
1, (A1.1)

exhibit infinite cascades of period doublings. Moreover, the corresponding
flip bifurcation parameter values, α1, α2, . . . , αi, . . . , form (asymptotically)
a geometric progression:

αi − αi−1

αi+1 − αi
→ µF ,

as i → ∞, where µF = 4.6692 . . . is a system-independent (universal)
constant. The sequence {αi} has a limit α∞. At α∞ the dynamics of the
system become “chaotic,” since its orbits become irregular, nonperiodic
sequences.

The phenomenon was first explained for special noninvertible dynami-
cal systems (A1.1), that belong for all parameter values to some class Y.
Namely, a system

x �→ f(x) (A1.2)

from this class satisfies the following conditions:

(1) f(x) is an even smooth function, f : [−1, 1] → [−1, 1];
(2) f ′(0) = 0, x = 0 is the only maximum, f(0) = 1;
(3) f(1) = −a < 0;
(4) b = f(a) > a;
(5) f(b) = f2(a) < a;
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FIGURE 4.12. A map satisfying conditions (1) through (5) and its second iterate.

where a and b are positive (see Figure 4.12). The function fα(x) = 1−αx2

is in this class for α > 1.
Consider the second iterate f2

α of a map satisfying conditions (1) through
(5). In the square A′B′C ′D′ (see Figure 4.12), the graph of f2

α, after a
coordinate dilatation and a sign change, looks similar to the graph of fα
in the unit square ABCD. For example, if fα(x) = 1− αx2, then f2

α(x) =
(1− α) + 2α2x2 + · · ·. This observation leads to the introduction of a map
defined on functions in Y,

(Tf)(x) = −1
a
f(f(−ax)), (A1.3)

where a = −f(1). Notice that a depends on f .

Definition 4.4 The map T is called the doubling operator.

It can be checked that map (A1.3) transforms a function f ∈ Y into some
function Tf ∈ Y. Therefore, we can consider a discrete-time dynamical sys-
tem {Z+,Y, T k}. This is a dynamical system with the infinite-dimensional
state space Y, which is a function space. Moreover, the doubling operator is
not invertible in general. Thus, we have to consider only positive iterations
of T .

We shall state the following theorems without proof. They have been
proved with the help of a computer and delicate error estimates.

Theorem 4.7 (Fixed-point existence) The map T : Y → Y defined by
(A1.3) has a fixed point ϕ ∈ Y : Tϕ = ϕ. ✷

It has been found that

ϕ(x) = 1− 1.52763 . . . x2 + 0.104815 . . . x4 + 0.0267057 . . . x6 + . . . .
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In Exercise 1 of Chapter 10 we discuss how to obtain some approximations
to ϕ(x).

Theorem 4.8 (Saddle properties of the fixed point) The linear part
L of the doubling operator T at its fixed point ϕ has only one eigenvalue
µF = 4.6692 . . . with |µF | > 1. The rest of the spectrum of L is located
strictly inside the unit circle. ✷

The terms “linear part” and “spectrum” of L are generalizations to the
infinite-dimensional case of the notions of the Jacobian matrix and its eigen-
values. An interested reader can find exact definitions in standard textbooks
on functional analysis.

Theorems 4.7 and 4.8 mean that the system {Z+,Y, T k} has a saddle
fixed point. This fixed point ϕ (a function that is transformed by the dou-
bling operator into itself) has a codim 1 stable invariant manifold W s(ϕ)
and a one-dimensional unstable invariant manifold Wu(ϕ). The stable man-
ifold is composed by functions f ∈ Y, which become increasingly similar to
ϕ under iteration of T . The unstable manifold is composed of functions for
which all their preimages under the action of T remain close to ϕ. This is a
curve in the function space Y (Figure 4.13 sketches the manifold structure).

uW

W

(ϕ)

(ϕ)

ϕ

s

FIGURE 4.13. Stable and unstable manifolds of the fixed point ϕ.

Notice that maps Tf and f2 are topologically equivalent (the relevant
homeomorphism is a simple scaling; see (A1.3)). Hence, if Tf has a periodic
orbit of period N , f2 has a periodic orbit of the same period and f therefore
has a periodic orbit of period 2N . This simple observation plays the central
role in the following. Consider all maps from Y having a fixed point with
multiplier µ = −1. Such maps form a codim 1 manifold Σ ⊂ Y. The
following result has also been established with the help of a computer.

Theorem 4.9 (Manifold intersection) The manifold Σ intersects the
unstable manifold Wu(ϕ) transversally. ✷



142 4. One-Parameter Bifurcations of Fixed Points
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FIGURE 4.14. Preimages of a surface Σ intersecting the unstable manifold
Wu(ϕ).

By analogy with a finite-dimensional saddle, it is clear that the preimages
T−kΣ will accumulate on W s(ϕ) as k →∞ (see Figure 4.14). Taking into
account the previous observation, we can conclude that T−1Σ is composed
of maps having a cycle of period two with a multiplier −1, that T−2Σ
is formed by maps having a cycle of period four with a multiplier −1,
and so forth. Any generic one-parameter dynamical system fα from the
considered class corresponds to a curve Λ in Y. If this curve is sufficiently
close to Wu(ϕ), it will intersect all the preimages T−kΣ. The points of
intersection define a sequence of bifurcation parameter values α1, α2, . . .
corresponding to a cascade of period doublings. Asymptotic properties of
this sequence are clearly determined by the unstable eigenvalue µF . Indeed,
let ξ be a coordinate along Wu(ϕ), and let ξk denote the coordinate of the
intersection of Wu(ϕ) with T−kΣ. The doubling operator restricted to the
unstable manifold has the form

ξ �→ µF ξ + O(ξ2)

and is invertible, with the inverse given by

ξ �→ 1
µF

ξ + O(ξ2).

Since
ξk+1 =

1
µF

ξk + O(ξ2k),

we have
ξk − ξk−1

ξk+1 − ξk
→ µF

as k →∞, as does the sequence of the bifurcation parameter values on the
curve Λ.
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4.10 Appendix 2: Proof of Lemma 4.3

In this appendix we prove the following lemma, which is the complex analog
of Lemma 4.3.

Lemma 4.8 The map

z̃ = eiθ(α)z(1 + α + d(α)|z|2) + g(z, z̄, α), (A2.1)

where d(α) = a(α) + ib(α); a(α), b(α), and θ(α) are smooth real-valued
functions; a(0) < 0, 0 < θ(0) < π, g = O(|z|4) is a smooth complex-valued
function of z, z̄, α, has a stable closed invariant curve for sufficiently small
α > 0.

Proof:
Step 1 (Rescaling and shifting). First, introduce new variables (s, ϕ) by the
formula

z =
√
− α

a(α)
eiϕ(1 + s). (A2.2)

Substitution of (A2.2) into (A2.1) gives

eiϕ̃(1 + s̃) = ei(ϕ+θ(α))(1 + s)
[
1− α(2s + s2) + iαν(α)(1 + s)2

]
+ α3/2h(s, ϕ, α),

where

ν(α) = − b(α)
a(α)

,

and h is a smooth complex-valued function of (s, ϕ, α1/2). Thus, the map
(A2.1) in (s, ϕ)-coordinates reads{

s̃ = (1− 2α)s− α(3s2 + s3) + α3/2p(s, ϕ, α),
ϕ̃ = ϕ + θ(α) + αν(α)(1 + s)2 + α3/2q(s, ϕ, α),

(A2.3)

where p, q are smooth real-valued functions of (s, ϕ, α1/2). Now apply the
scaling

s =
√
αξ. (A2.4)

After rescaling accounting to (A2.4), the map (A2.3) takes the form{
ξ̃ = (1− 2α)ξ − α3/2(3ξ2 + α1/2ξ3) + αp(1)(ξ, ϕ, α),
ϕ̃ = ϕ + [θ(α) + αν(α)] + α3/2ν(α)(2ξ + α1/2ξ2) + α3/2q(1)(ξ, ϕ, α),

(A2.5)
where

p(1)(ξ, ϕ, α) = p(α1/2ξ, ϕ, α), q(1)(ξ, ϕ, α) = q(α1/2ξ, ϕ, α),
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are smooth with respect to (ξ, ϕ, α1/2). Denote ω(α) = θ(α) + αν(α), and
notice that p(1) can be written as

p(1)(ξ, ϕ, α) = r(0)(ϕ, α) + α1/2r(1)(ξ, ϕ, α).

Now (A2.5) can be represented by{
ξ̃ = (1− 2α)ξ + αr(0)(ϕ, α) + α3/2r(2)(ξ, ϕ, α),
ϕ̃ = ϕ + ω(α) + α3/2q(2)(ξ, ϕ, α),

(A2.6)

with

r(2)(ξ, ϕ, α) = −(3ξ2 + α1/2ξ3) + r(1)(ξ, ϕ, α),
q(2)(ξ, ϕ, α) = ν(α)(2ξ + α1/2ξ2) + q(1)(ξ, ϕ, α).

The functions r(2) and q(2) have the same smoothness as p(1) and q(1).
Finally, perform a coordinate shift, eliminating the term αr(0)(ϕ, α) from
the first equation in (A2.6):

ξ = u + 1
2r

(0)(ϕ, α). (A2.7)

This gives a map F , which we will work with from now on,

F :
{

ũ = (1− 2α)u + α3/2Hα(u, ϕ),
ϕ̃ = ϕ + ω(α) + α3/2Kα(u, ϕ),

(A2.8)

where ω(α) is smooth and

Hα(u, ϕ) = r(2)
(
u + 1

2r
(0)(ϕ, α), ϕ, α

)
,

Kα(u, ϕ) = q(2)
(
u + 1

2r
(0)(ϕ, α), ϕ, α

)
,

are smooth functions of (u, ϕ, α1/2) that are 2π-periodic in ϕ.
Notice that the band {(u, ϕ) : |u| ≤ 1, ϕ ∈ [0, 2π]} corresponds to a band

of O(α) width around the circle

S0(α) =
{
z : |z|2 = − α

a(α)

}
in (A2.1), which has an O(α1/2) radius in the original coordinate z. In what
follows, it is conveinient to introduce a number

λ = sup
|u|≤1,ϕ∈[0,2π]

{
|Hα|, |Kα|,

∣∣∣∣∂Hα

∂u

∣∣∣∣ , ∣∣∣∣∂Kα

∂u

∣∣∣∣ , ∣∣∣∣∂Hα

∂ϕ

∣∣∣∣ , ∣∣∣∣∂Kα

∂ϕ

∣∣∣∣} . (A2.9)

So defined, λ depends on α but remains bounded as α→ 0.

Step 2 (Definition of the function space). We will characterize the closed
curves by elements of a function space U . By definition, u ∈ U is a 2π-
periodic function u = u(ϕ) satisfying the following two conditions:
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(U.1) |u(ϕ)| ≤ 1 for all ϕ;
(U.2) |u(ϕ1)− u(ϕ2)| ≤ |ϕ1 − ϕ2| for all ϕ1, ϕ2.

The first property means that u(ϕ) is absolutely bounded by unity, while
the second means that u(ϕ) is Lipschitz continuous with Lipschitz constant
equal to one. Space U is a complete metric space with respect to the norm

‖u‖ = sup
ϕ∈[0,2π]

|u(ϕ)|.

Recall from Chapter 1 that a map F : U → U (transforming a function
u(ϕ) ∈ U into some other function ũ(ϕ) = (Fu)(ϕ) ∈ U) is a contraction
if there is a number ε, 0 < ε < 1, such that

‖F(u1)−F(u2)‖ ≤ ε‖u1 − u2‖

for all u1,2 ∈ U . A contraction map in a complete normed space has a
unique fixed point u(∞) ∈ U :

F(u(∞)) = u(∞).

Moreover, the fixed point u(∞) is a globally stable equilibrium of the
infinite-dimensional dynamical system {U,F}, that is,

lim
k→+∞

‖Fk(u)− u(∞)‖ = 0,

for all u ∈ U (see Figure 4.15). The above two facts are often referred to
as the Contraction Mapping Principle.

2(ϕ)

u 0(ϕ)

u

(    )

ϕ

u 1(ϕ)

u (ϕ)8

FIGURE 4.15. Accumulating closed curves.

Step 3 (Construction of the map F). We will consider a map F induced by
F on U . This means that if u represents a closed curve, then ũ = F(u)
represents its image under the map F defined by (A2.8).
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Suppose that a function u = u(ϕ) from U is given. To construct the map
F , we have to specify a procedure for each given ϕ that allows us to find
the corresponding ũ(ϕ) = (Fu)(ϕ). Notice, however, that F is nearly a
rotation by the angle ω(α) in ϕ. Thus, a point (ũ(ϕ), ϕ) in the resulting
curve is the image of a point (u(ϕ̂), ϕ̂) in the original curve with a different
angle coordinate ϕ̂ (see Figure 4.16).

u~

(  (ϕ),ϕ)u

(  (ϕ),ϕ)u

(  (ϕ),ϕ)

^ ^

FIGURE 4.16. Definition of the map.

To show that ϕ̂ is uniquely defined, we have to prove that the equation

ϕ = ϕ̂ + ω(α) + α3/2Kα(u(ϕ̂), ϕ̂) (A2.10)

has a unique solution ϕ̂ = ϕ̂(ϕ) for any given u ∈ U . This is the case, since
the right-hand side of (A2.10) is a strictly increasing function of ϕ̂. Indeed,
let ϕ2 > ϕ1; then, according to (A2.8),

ϕ̃2 − ϕ̃1 = ϕ2 − ϕ1 + α3/2 [Kα(u(ϕ2), ϕ2)−Kα((ϕ1), ϕ1)]
≥ ϕ2 − ϕ1 − α3/2 |Kα(u(ϕ2), ϕ2)−Kα((ϕ1), ϕ1)| .

Taking into account that Kα is a smooth function with (A2.9) and (U.2),
we get

|Kα(u(ϕ2), ϕ2)−Kα(u(ϕ1), ϕ1)| ≤ λ[|u(ϕ2)− u(ϕ1)|+ |ϕ2 − ϕ1|]
≤ 2λ|ϕ2 − ϕ1| = 2λ(ϕ2 − ϕ1).

This last estimate can also be written as

− |Kα(u(ϕ2), ϕ2)−Kα((ϕ1), ϕ1)| ≥ −2λ(ϕ2 − ϕ1),

which implies
ϕ̃2 − ϕ̃1 ≥ (1− 2λα3/2)(ϕ2 − ϕ1).

Thus, the right-hand side of (A2.10) is a strictly increasing function, pro-
vided α is small enough, and its solution ϕ̂ is uniquely defined.2 From the

2Meanwhile, ϕ̂ ≈ ϕ − ω(α).
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above estimates, it also follows that ϕ̂(ϕ) – that is, the inverse function to
the function given by (A2.10) – is Lipschitz continuous:

|ϕ̂(ϕ1)− ϕ̂(ϕ2)| ≤ (1− 2λα3/2)−1|ϕ1 − ϕ2|. (A2.11)

Now we can define the map ũ = F(u) by the formula

ũ(ϕ) = (1− 2α)u(ϕ̂) + α3/2Kα(u(ϕ̂), ϕ̂), (A2.12)

where ϕ̂ is the solution of (A2.10). The mere definition, of course, is not
enough and we have to verify that F(u) ∈ U , if u ∈ U , namely, to check
(U.1) and (U.2) for ũ = F(u).

Condition (U.1) for ũ follows from the estimate

|ũ(ϕ)| ≤ (1− 2α)|u(ϕ̂)|+ α3/2|Hα(u(ϕ̂), ϕ̂)| ≤ 1− 2α + λα3/2,

where we have used (U.1) for u and the definition (A2.9) of λ. Thus, |ũ| ≤ 1
if α is small enough and positive. Condition (U.2) for ũ is obtained by the
sequence of estimates:

|ũ(ϕ1)− ũ(ϕ2)| ≤ (1− 2α)|u(ϕ̂1)− u(ϕ̂2)|
+ α3/2|Hα(u(ϕ̂1), ϕ̂1)−Hα(u(ϕ̂2), ϕ̂2)|

≤ (1− 2α)|u(ϕ̂1)− u(ϕ̂2)|
+ α3/2λ[|ũ(ϕ1)− ũ(ϕ2)|+ |ϕ̂1 − ϕ̂2|]

≤ (1− 2α + 2λα3/2)|ϕ̂1 − ϕ̂2|,

where the final inequality holds due to the Lipschitz continuity of u. In-
serting the estimate (A2.11), we get

|ũ(ϕ1)− ũ(ϕ2)| ≤ (1− 2α + 2λα3/2)(1− 2λα3/2)−1|ϕ1 − ϕ2|.

Thus, (U.2) also holds for ũ for all sufficiently small positive α. Therefore,
the map ũ = F(u) is well defined.

Step 4 (Verification of the contraction property). Now suppose two functions
u1, u2 ∈ U are given. What we need to obtain is the estimation of ‖ũ1− ũ2‖
in terms of ‖u1 − u2‖. By the definition (A2.12) of ũ = F(u),

‖ũ1(ϕ)− ũ2(ϕ))‖ ≤ (1− 2α)|u1(ϕ̂1)− u2(ϕ̂2)|
+ α3/2|Hα(u1(ϕ̂1), ϕ̂1)−Hα(u2(ϕ̂2), ϕ̂2)|

≤ (1− 2α)|u1(ϕ̂1)− u2(ϕ̂2)|
+ α3/2λ[|u1(ϕ̂1)− u2(ϕ̂2)|+ |ϕ̂1 − ϕ̂2|],

(A2.13)
where ϕ̂1 and ϕ̂2 are the unique solutions of

ϕ = ϕ̂1 + ω(α) + α3/2Kα(u1(ϕ̂1), ϕ̂1) (A2.14)
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and
ϕ = ϕ̂2 + ω(α) + α3/2Kα(u2(ϕ̂2), ϕ̂2), (A2.15)

respectively. The estimates (A2.13) have not solved the problem yet, since
we have to use only ‖u1−u2‖ in the right-hand side. First, express |u1(ϕ̂1)−
u2(ϕ̂2)| in terms of ‖u1 − u2‖ and |ϕ̂1 − ϕ̂2|:

|u1(ϕ̂1)− u2(ϕ̂2)| = |u1(ϕ̂1)− u2(ϕ̂1) + u2(ϕ̂1)− u2(ϕ̂2)|
≤ |u1(ϕ̂1)− u2(ϕ̂1)|+ |u2(ϕ̂1)− u2(ϕ̂2)|
≤ ‖u1 − u2‖+ |ϕ̂1 − ϕ̂2|.

(A2.16)

The last inequality has been obtained using the definition of the norm
and the Lipschitz continuity of u2. To complete the estimates, we need to
express |ϕ̂1− ϕ̂2| in terms of ‖u1− u2‖. Subtracting (A2.15) from (A2.14),
transposing, and taking absolute values yield

|ϕ̂1 − ϕ̂2| ≤ α3/2|Kα(u1(ϕ̂1), ϕ̂1)−Kα(u2(ϕ̂2), ϕ̂2)|
≤ α3/2λ[|u1(ϕ̂1)− u2(ϕ̂2)|+ |ϕ̂1 − ϕ̂2|].

Inserting (A2.16) into this inequality and collecting all the terms involving
|ϕ̂1 − ϕ̂2| on the left, result in

|ϕ̂1 − ϕ̂2| ≤ (1− 2α3/2λ)−1α3/2λ‖u1 − u2‖. (A2.17)

Using the estimates (A2.16) and (A2.17), we can complete (A2.13) as fol-
lows:

‖ũ1(ϕ)− ũ2(ϕ))‖ ≤ ε‖u1 − u2‖,
where

ε = (1−2α)
[
1 + α3/2λ(1− 2α3/2λ)−1

]
+α3/2λ

[
1 + 2α3/2λ(1− 2α3/2λ)−1

]
.

Since
ε = 1− 2α + O(α3/2),

the map F is a contraction in U for small positive α. Therfore, it has a
unique stable fixed point u(∞) ∈ U .

Step 5 (Stability of the invariant curve). Now take a point (u0, ϕ0) within
the band {(u, ϕ) : |u| ≤ 1, ϕ ∈ [0, 2π]}. If the point belongs to the curve
given by u(∞), it remains on this curve under iterations of F , since the
map F maps this curve into itself. If the point does not lie on the invariant
curve, take some (noninvariant) closed curve passing through it represented
by u(0) ∈ U , say. Such a curve always exists. Let us apply the iterations of
the map F defined by (A2.8) to this point. We get a sequence of points

{(uk, ϕk)}∞
k=0 .
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It is clear that each point from this sequence belongs to the correspond-
ing iterate of the curve u(0) under the map F . We have just shown that
the iterations of the curve converge to the invariant curve given by u(∞).
Therefore, the point sequence must also converge to the curve. This proves
the stability of the closed invariant curve as the invariant set of the map
and completes the proof. ✷

4.11 Appendix 3: Bibliographical notes

The dynamics generated by one-dimensional maps is a classical mathemat-
ical subject, studied in detail (see Whitley [1983] and van Strien [1991] for
surveys). Properties of the fixed points and period-two cycles involved in
the fold and flip bifurcations were known long ago. Explicit formulation
of the topological normal form theorems for these bifurcations is due to
Arnold [1983]. A complete proof, that the truncation of the higher-order
terms in the normal forms results in locally topologically equivalent sys-
tems, happens to be unexpectedly difficult (see Newhouse, Palis & Takens
[1983], Arnol’d et al. [1994]) and remains unpublished.

The appearance of a closed invariant curve surrounding a fixed point
while a pair of complex multipliers crosses the unit circle was known to
Andronov and studied by Neimark [1959] (without explicit statement of all
the genericity conditions). A complete proof was given by Sacker [1965],
who discovered the bifurcation independently. It became widely known as
“Hopf bifurcation for maps” after Ruelle & Takens [1971] and Marsden &
McCracken [1976]. A modern treatment of the Neimark-Sacker bifurcation
for planar maps can be found in Iooss [1979], where the normal form co-
efficient a(0) is computed (see also Wan [1978b]). In our Appendix 2 we
follow, essentially, the proof given in Marsden & McCracken [1976].

The normal form theory for maps is presented by Arnold [1983]. In our
analysis of the codimension-one bifurcations of fixed points we need only a
small portion of this theory which we develop “on-line.”

Cascades of period doubling bifurcations were observed by mathemati-
cal ecologists in one-dimensional discrete-time population models (Shapiro
[1974] analyzed a model by Ricker [1954], while May [1974] used the logistic
map). Feigenbaum [1978] discovered the universality in such cascades and
explained its mechanism based on the properties of the doubling operator.
The relevant theorems were proved by Lanford [1980] with the help of a
computer and delicate error estimates (see also Collet & Eckmann [1980],
Babenko & Petrovich [1983]). Feigenbaum-type universality is also proved
for some classes of multidimensional discrete-time dynamical systems.

Both the delayed logistic and discrete-time predator-prey models origi-
nate in a book by Maynard Smith [1968]. The fate of the closed invariant
curve while a parameter “moves” away from the Neimark-Sacker bifurca-
tion was analyzed for the delayed logistic map by Aronson, Chory, Hall &
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McGehee [1982].



5
Bifurcations of Equilibria and
Periodic Orbits in n-Dimensional
Dynamical Systems

In the previous two chapters we studied bifurcations of equilibria and fixed
points in generic one-parameter dynamical systems having the minimum
possible phase dimensions. Indeed, the systems we analyzed were either
one- or two-dimensional. This chapter shows that the corresponding bi-
furcations occur in “essentially” the same way for generic n-dimensional
systems. As we shall see, there are certain parameter-dependent one- or
two-dimensional invariant manifolds on which the system exhibits the cor-
responding bifurcations, while the behavior off the manifolds is somehow
“trivial,” for example, the manifolds may be exponentially attractive. More-
over, such manifolds (called center manifolds) exist for many dissipative
infinite-dimensional dynamical systems. Below we derive explicit formulas
for the approximation of center manifolds in finite dimensions and for sys-
tems restricted to them at bifurcation parameter values. In Appendix 1 we
consider a reaction-diffusion system on an interval to illustrate the neces-
sary modifications of the technique to handle infinite-dimensional systems.

5.1 Center manifold theorems

We are going to formulate without proof the main theorems that allow us
to reduce the dimension of a given system near a local bifurcation. Let us
start with the critical case; we assume in this section that the parameters
of the system are fixed at their bifurcation values, which are those values
for which there is a nonhyperbolic equilibrium (fixed point). We will treat
continuous- and discrete-time cases separately.
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5.1.1 Center manifolds in continuous-time systems
Consider a continuous-time dynamical system defined by

ẋ = f(x), x ∈ R
n, (5.1)

where f is sufficiently smooth, f(0) = 0. Let the eigenvalues of the Jacobian
matrix A evaluated at the equilibrium point x0 = 0 be λ1, λ2, . . . , λn. Sup-
pose the equilibrium is not hyperbolic and that there are thus eigenvalues
with zero real part. Assume that there are n+ eigenvalues (counting multi-
plicities) with Re λ > 0, n0 eigenvalues with Re λ = 0, and n− eigenvalues
with Re λ < 0 (see Figure 5.1). Let T c denote the linear (generalized)

- n +

0n

n

Im

Re λ

λ

FIGURE 5.1. Critical eigenvalues of an equilibrium.

eigenspace of A corresponding to the union of the n0 eigenvalues on the
imaginary axis. The eigenvalues with Re λ = 0 are often called critical, as
is the eigenspace T c. Let ϕt denote the flow associated with (5.1). Under
the assumptions stated above, the following theorem holds.

Theorem 5.1 (Center Manifold Theorem) There is a locally defined
smooth n0-dimensional invariant manifold W c

loc(0) of (5.1) that is tangent
to T c at x = 0.
Moreover, there is a neighborhood U of x0 = 0, such that if ϕtx ∈ U for

all t ≥ 0(t ≤ 0), then ϕtx→W c
loc(0) for t→ +∞ (t→ −∞). ✷

Definition 5.1 The manifold W c
loc is called the center manifold.

We are not going to present the proof here. If n+ = 0, the mani-
fold W c

loc can be constructed as a local limit of iterations of T c under
ϕ1. From now on, we drop the subscript “loc” in order to simplify no-
tation. Figures 5.2 and 5.3 illustrate the theorem for the fold bifurcation
on the plane (n = 2, n0 = 1, n− = 1) and for the Hopf bifurcation in
R

3 (n = 3, n0 = 2, n− = 1). In the first case, the center manifold W c is
tangent to the eigenvector corresponding to λ1 = 0, while in the second
case, it is tangent to a plane spanned by the real and imaginary parts of
the complex eigenvector corresponding to λ1 = iω0, ω0 > 0.
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FIGURE 5.2. One-dimensional center manifold at the fold bifurcation.
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FIGURE 5.3. Two-dimensional center manifold at the Hopf bifurcation.

Remarks:
(1) The second statement of the theorem means that orbits staying near

the equilibrium for t ≥ 0 or t ≤ 0 tend to W c in the corresponding time
direction. If we know a priori that all orbits starting in U remain in this
region forever (a necessary condition for this is n+ = 0), then the theorem
implies that these orbits approach W c(0) as t → +∞. In this case the
manifold is “attracting.”

(2) W c need not be unique. The system{
ẋ = x2,
ẏ = −y,

has an equilibrium (x, y) = (0, 0) with λ1 = 0, λ2 = −1 (a fold case). It
possesses a family of one-dimensional center manifolds:

W c
β(0) = {(x, y) : y = ψβ(x)},
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where

ψβ(x) =
{

β exp
( 1
x

)
for x < 0,

0 for x ≥ 0,

(see Figure 5.4(a)). The system
ẋ = −y − x(x2 + y2),
ẏ = x− y(x2 + y2),
ż = −z,

has an equilibrium (x, y, z) = (0, 0, 0) with λ1,2 = ±i, λ3 = −1 (Hopf case).
There is a family of two-dimensional center manifolds in the system given

c
β

W
c

β

W

(b)

x ρ

y z

0 0

(a)

FIGURE 5.4. Nonuniqueness of the center manifold at (a) fold and (b) Hopf
bifurcations.

by

W c
β(0) = {(x, y, z) : z = φβ(x, y)},

where

φβ(x, y) =

{
β exp

(
− 1

2(x2+y2)

)
for x2 + y2 > 0,

0 for x = y = 0,

(see Figure 5.4(b)). As we shall see, this nonuniqueness is actually irrelevant
for applications.

(3) A center manifold W c has the same finite smoothness as f (if f ∈ Ck

with finite k, W c is also a Ck manifold) in some neighborhood U of x0.
However, as k →∞ the neighborhood U may shrink, thus resulting in the
nonexistence of a C∞ manifold W c for some C∞ systems (see Exercise 1).
♦
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In its eigenbasis,1 system (5.1) can be written as{
u̇ = Bu + g(u, v),
v̇ = Cv + h(u, v), (5.2)

where u ∈ R
n0 , v ∈ R

n++n− , B is an n0 × n0 matrix with all its n0 eigen-
values on the imaginary axis, while C is an (n+ + n−)× (n+ + n−) matrix
with no eigenvalue on the imaginary axis. Functions g and h have Taylor
expansions starting with at least quadratic terms. The center manifold W c

of system (5.2) can be locally represented as a graph of a smooth function:

W c = {(u, v) : v = V (u)}

(see Figure 5.5). Here V : R
n0 → R

n++n− , and due to the tangent property
of W c, V (u) = O(‖u‖2).

u1

u(  )V

T

c

c

{                 }

0

= {      0}v =

=

2u

v =W

v

FIGURE 5.5. Center manifold as the graph of a function v = V (u).

Theorem 5.2 (Reduction Principle) System (5.2) is locally topologi-
cally equivalent near the origin to the system{

u̇ = Bu + g(u, V (u)),
v̇ = Cv. ✷

(5.3)

Notice that the equations for u and v are uncoupled in (5.3). The first
equation is the restriction of (5.2) to its center manifold. Thus, the dy-
namics of the structurally unstable system (5.2) are essentially determined

1Recall that the eigenbasis is a basis formed by all (generalized) eigenvectors
of A (or their linear combinations if the corresponding eigenvalues are complex).
Actually, the basis used in the following may not be the true eigenbasis: Any
basis in the noncritical eigenspace is allowed. In other words, the matrix C may
not be in real canonical (Jordan) form.
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by this restriction, since the second equation in (5.3) is linear and has
exponentially decaying/growing solutions. For example, if u = 0 is the
asymptotically stable equilibrium of the restriction and all eigenvalues of
C have negative real part, then (u, v) = (0, 0) is the asymptotically stable
equilibrium of (5.2). Clearly, the dynamics on the center manifold are de-
termined not only by the linear but also by the nonlinear terms of (5.2). If
there is more than one center manifold, then all the resulting systems (5.3)
with different V are locally topologically equivalent.

The second equation in (5.3) can be replaced by the equations of a stan-
dard saddle: {

v̇ = −v,
ẇ = w,

(5.4)

with (v, w) ∈ R
n− × R

n+ . Therefore, the Reduction Principle can be ex-
pressed neatly in the following way: Near a nonhyperbolic equilibrium the
system is locally topologically equivalent to the suspension of its restriction
to the center manifold by the standard saddle.

5.1.2 Center manifolds in discrete-time systems
Consider now a discrete-time dynamical system defined by

x �→ f(x), x ∈ R
n, (5.5)

where f is sufficiently smooth, f(0) = 0. Let the eigenvalues of the Jaco-
bian matrix A evaluated at the fixed point x0 = 0 be µ1, µ2, . . . , µn. Recall,
that we call them multipliers. Suppose that the equilibrium is not hyper-
bolic and there are therefore multipliers on the unit circle (with absolute
value one). Assume that there are n+ multipliers outside the unit circle, n0
multipliers on the unit circle, and n− multipliers inside the unit circle (see
Figure 5.6). Let T c denote the linear invariant (generalized) eigenspace of

+

n0

Im µ

n

Re µn -

FIGURE 5.6. Critical multipliers of a fixed point.



5.2 Center manifolds in parameter-dependent systems 157

A corresponding to the union of n0 multipliers on the unit circle. Then,
Theorem 5.1 holds verbatim for system (5.5), if we consider only integer
time values and set ϕk = fk, the kth iterate of f . Using an eigenbasis, we
can rewrite the system as(

u
v

)
�→

(
Bu + g(u, v)
Cv + h(u, v)

)
(5.6)

with the same notation as before, but the matrix B now has eigenvalues
on the unit circle, while all the eigenvalues of C are inside and/or outside
it. The center manifold possesses the local representation v = V (u), and
the Reduction Principle remains valid.

Theorem 5.3 System (5.6) is locally topologically equivalent near the ori-
gin to the system (

u
v

)
�→

(
Bu + g(u, V (u))
Cv

)
. ✷ (5.7)

The construction of the standard saddle is more involved for the discrete-
time case, since we have to take into account the orientation properties
of the map in the expanding and contracting directions. First, suppose for
simplicity that there are no multipliers outside the unit circle, (i.e., n+ = 0).
Then, if detC > 0, the map v �→ Cv in (5.7) can be replaced by

v �→ 1
2v,

which is a standard orientation-preserving stable node. However, if detC <
0, the map v �→ Cv in (5.7) must be substituted by{

v1 �→ 1
2v1,

v2 �→ − 1
2v2,

where v1 ∈ R
n−−1, v2 ∈ R

1, which is a standard orientation-reversing stable
node. If there are now n+ multipliers outside the unit circle, the standard
unstable node w �→ w̃, w, w̃ ∈ R

n+ , should be added to (5.7). The standard
unstable node is defined similarly to the standard stable node but with
multiplier 2 instead of 1

2 . Standard stable and unstable nodes together
define the standard saddle map on R

n−+n+ .

5.2 Center manifolds in parameter-dependent
systems

Consider now a smooth continuous-time system that depends smoothly on
a parameter:

ẋ = f(x, α), x ∈ R
n, α ∈ R

1. (5.8)
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Suppose that at α = 0 the system has a nonhyperbolic equilibrium x = 0
with n0 eigenvalues on the imaginary axis and (n − n0) eigenvalues with
nonzero real parts. Let n− of them have negative real parts, while n+ have
positive real parts. Consider the extended system:{

α̇ = 0,
ẋ = f(x, α). (5.9)

Notice that the extended system (5.9) may be nonlinear, even if the original
system (5.8) is linear. The Jacobian of (5.9) at the equilibrium (α, x) =
(0, 0) is the (n + 1)× (n + 1) matrix

J =
(

0 0
fα(0, 0) fx(0, 0)

)
,

having (n0 + 1) eigenvalues on the imaginary axis and (n−n0) eigenvalues
with nonzero real part. Thus, we can apply the Center Manifold Theorem
to system (5.9). The theorem guarantees the existence of a center manifold
Wc ⊂ R

1 ×R
n,dimWc = n0 + 1. This manifold is tangent at the origin to

the (generalized) eigenspace of J corresponding to (n0+1) eigenvalues with
zero real part. Since α̇ = 0, the hyperplanes Πα0 = {(α, x) : α = α0} are
also invariant with respect to (5.9). Therefore, the manifold Wc is foliated
by n0-dimensional invariant manifolds

W c
α = Wc ∩Πα

(see Figure 5.7). Thus, we have the following lemma.

0

W

α

α

cc
WW

v

0 u

FIGURE 5.7. Center manifold of the extended system.

Lemma 5.1 System (5.8) has a parameter-dependent local invariant man-
ifold W c

α. If n+ = 0, this manifold is attracting. ✷

Notice that W c
0 is a center manifold of (5.9) at α = 0 as defined in the

previous section. Often, the manifold W c
α is called a center manifold for all
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α. For each small |α| we can restrict system (5.8) to W c
α. If we introduce

a (parameter-dependent) coordinate system on W c
α with u ∈ R

n0 as the
coordinate,2 this restriction will be represented by a smooth system:

u̇ = Φ(u, α). (5.10)

At α = 0, system (5.10) is equivalent to the restriction of (5.8) to its center
manifold W c

0 and will be explicitly computed up to the third-order terms
in Section 5.4 for all codim 1 bifurcations.

Theorem 5.4 (Shoshitaishvili [1975]) System (5.8) is locally topologi-
cally equivalent to the suspension of (5.10) by the standard saddle (5.4).
Moreover, (5.10) can be replaced by any locally topologically equivalent sys-
tem. ✷

This theorem means that all “essential” events near the bifurcation pa-
rameter value occur on the invariant manifold W c

α and are captured by
the n0-dimensional system (5.10). A similar theorem can be formulated
for discrete-time dynamical systems and for systems with more than one
parameter. Let us apply this theorem to the fold and Hopf bifurcations.

Example 5.1 (Generic fold bifurcation in R
2) Consider a planar

system
ẋ = f(x, α), x ∈ R

2, α ∈ R
1. (5.11)

Assume that at α = 0 it has the equilibrium x0 = 0 with one eigenvalue
λ1 = 0 and one eigenvalue λ2 < 0. Lemma 5.1 gives the existence of a
smooth, locally defined, one-dimensional attracting invariant manifold W c

α

for (5.11) for small |α|. At α = 0 the restricted equation (5.10) has the
form

u̇ = au2 + O(u3).

If a = 0 and the restricted equation depends generically on the parameter,
then, as proved in Chapter 3, it is locally topologically equivalent to the
normal form

u̇ = α + σu2,

where σ = sign a = ±1. Under these genericity conditions, Theorem 5.4
implies that (5.11) is locally topologically equivalent to the system{

u̇ = α + σu2,
v̇ = −v. (5.12)

Equations (5.12) are decoupled. The resulting phase portraits are presented
in Figure 5.8 for the case σ > 0. For α < 0, there are two hyperbolic

2Since W c
0 is tangent to T c, we can parametrize W c

α for small |α| by coordinates
on T c using a (local) projection from W c

α onto T c.
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α > 0α < 0 α = 0

FIGURE 5.8. Fold bifurcation in the standard system (5.12) for σ = 1.

equilibria: a stable node and a saddle. They collide at α = 0, forming a
nonhyperbolic saddle-node point, and disappear. There are no equilibria
for α > 0. The manifolds W c

α in (5.12) can be considered as parameter-
independent and as given by v = 0. Obviously, it is one of the infinite
number of choices (see the Remark following Example 5.2). The same events
happen in (5.11) on some one-dimensional, parameter-dependent, invariant
manifold, that is locally attracting (see Figure 5.9). All the equilibria belong

α > 0α < 0 α = 0

FIGURE 5.9. Fold bifurcation in a generic planar system.

to this manifold. Figures 5.8 and 5.9 explain why the fold bifurcation is
often called the saddle-node bifurcation. It should be clear how to generalize
these considerations to cover the case λ2 > 0, as well as the n-dimensional
case. ✸

Example 5.2 (Generic Hopf bifurcation in R
3) Consider a system

ẋ = f(x, α), x ∈ R
3, α ∈ R

1. (5.13)

Assume that at α = 0 it has the equilibrium x0 = 0 with eigenvalues
λ1,2 = ±iω0, ω0 > 0 and one negative eigenvalue λ3 < 0. Lemma 5.1 gives
the existence of a parameter-dependent, smooth, local two-dimensional at-
tracting invariant manifold W c

α of (5.15) for small |α|. At α = 0 the re-
stricted equation (5.10) can be written in complex form as

ż = iω0z + g(z, z̄), z ∈ C
1.
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α > 0α = 0α < 0

FIGURE 5.10. Hopf bifurcation in the standard system (5.14) for σ = −1.

If the Lyapunov coefficient l1(0) of this equation is nonzero and the re-
stricted equation depends generically on the parameter, then, as proved in
Chapter 3, it is locally topologically equivalent to the normal form

ż = (α + i)z + σz2z̄,

where σ = sign l1(0) = ±1. Under these genericity conditions, Theorem
5.4 implies that (5.13) is locally topologically equivalent to the system{

ż = (α + i)z + σz2z̄,
v̇ = −v. (5.14)

The phase portrait of (5.14) is shown in Figure 5.8 for σ = −1. The su-
percritical Hopf bifurcation takes place in the invariant plane v = 0, which
is attracting. The same events happen for (5.13) on some two-dimensional
attracting manifold (see Figure 5.11). The construction allows a general-
ization to arbitrary dimension n ≥ 3. ✸

α > 0α = 0α < 0

FIGURE 5.11. Supercritical Hopf bifurcation in a generic three-dimensional sys-
tem.

Remark:
It should be noted that the manifold W c

α is not unique in either the
fold or Hopf cases, but the bifurcating equilibria or cycle belong to any of
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the center manifolds (cf. Remark (2) after the Center Manifold Theorem
in Section 5.1.1). In the fold bifurcation case, the manifold is unique near
the saddle and coincides with its unstable manifold as far as it exists. The
uniqueness is lost at the stable node. Similarly, in the Hopf bifurcation
case, the manifold is unique and coincides with the unstable manifold of
the saddle-focus until the stable limit cycle Lα, where the uniqueness breaks
down. Figure 5.12 shows the possible freedom in selecting W c

α in the Hopf
case for α > 0 in (ρ, v)-coordinates in system (5.14) with σ = −1. ♦

v

ρ

W c
α

FIGURE 5.12. Nonuniqueness of the parameter-dependent center manifold near
the Hopf bifurcation.

5.3 Bifurcations of limit cycles

A combination of the Poincaré map (see Chapter 1) and the center mani-
fold approaches allows us to apply the results of Chapter 4 to limit cycle
bifurcations in n-dimensional continuous-time systems.

Let L0 be a limit cycle (isolated periodic orbit) of system (5.8) at α = 0.
Let Pα denote the associated Poincaré map for nearby α;Pα : Σ → Σ, where
Σ is a local cross-section to L0. If some coordinates ξ = (ξ1, ξ2, . . . , ξn−1)
are introduced on Σ, then ξ̃ = Pα(ξ) can be defined to be the point of
the next intersection with Σ of the orbit of (5.8) having initial point with
coordinates ξ on Σ. The intersection of Σ and L0 gives a fixed point ξ0 for
P0: P0(ξ0) = ξ0. The map Pα is smooth and locally invertible.

Suppose that the cycle L0 is nonhyperbolic, having n0 multipliers on the
unit circle. The center manifold theorems then give a parameter-dependent
invariant manifold W c

α ⊂ Σ of Pα on which the “essential” events take place.
The Poincaré map Pα is locally topologically equivalent to the suspension
of its restriction to this manifold by the standard saddle map. Fix n = 3,
for simplicity, and consider the implications of this theorem for the limit
cycle bifurcations.
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2L1L

α = 0

L 0

α < 0 α > 0

FIGURE 5.13. Fold bifurcation of limit cycles.

Fold bifurcation of cycles

Assume that at α = 0 the cycle has a simple multiplier µ1 = 1 and its
other multiplier satisfies 0 < µ2 < 1. The restriction of Pα to the invariant
manifold W c

α is a one-dimensional map, having a fixed point with µ1 = 1 at
α = 0. As has been shown in Chapter 4, this generically implies the collision
and disappearance of two fixed points of Pα as α passes through zero.
Under our assumption on µ2, this happens on a one-dimensional attracting
invariant manifold of Pα; thus, a stable and a saddle fixed point are involved
in the bifurcation (see Figure 5.13). Each fixed point of the Poincaré map
corresponds to a limit cycle of the continuous-time system. Therefore, two
limit cycles (stable and saddle) collide and disappear in system (5.8) at
this bifurcation (see the figure).

Flip bifurcation of cycles

Suppose that at α = 0 the cycle has a simple multiplier µ1 = −1, while
−1 < µ2 < 0. Then, the restriction of Pα to the invariant manifold will
demonstrate generically the period-doubling (flip) bifurcation: A cycle of
period two appears for the map, while the fixed point changes its stability
(see Figure 5.14). Since the manifold is attracting, the stable fixed point,
for example, loses stability and becomes a saddle point, while a stable cycle
of period two appears. The fixed points correspond to limit cycles of the
relevant stability. The cycle of period-two points for the map corresponds
to a unique stable limit cycle in (5.8) with approximately twice the period of
the “basic” cycle L0. The double-period cycle makes two big “excursions”
near L0 before the closure. The exact bifurcation scenario is determined
by the normal form coefficient of the restricted Poincaré map evaluated at
α = 0.
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0L L 0

α < 0

L 0L 1

α > 0 α = 0

FIGURE 5.14. Flip bifurcation of limit cycles.

Neimark-Sacker bifurcation of cycles

The last codim 1 bifurcation corresponds to the case when the multipli-
ers are complex and simple and lie on the unit circle: µ1,2 = e±iθ0 . The
Poincaré map then has a parameter-dependent, two-dimensional, invari-
ant manifold on which a closed invariant curve generically bifurcates from
the fixed point (see Figure 5.15). This closed curve corresponds to a two-
dimensional invariant torus T

2 in (5.8). The bifurcation is determined by
the normal form coefficient of the restricted Poincaré map at the critical
parameter value. The orbit structure on the torus T

2 is determined by the
restriction of the Poincaré map to this closed invariant curve. Thus, generi-
cally, there are long-period cycles of different stability types located on the
torus (see Chapter 7).

L 0

0L0L

α < 0α > 0 α = 0

FIGURE 5.15. Neimark-Sacker bifurcation of a limit cycle.
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5.4 Computation of center manifolds

As pointed out in the previous sections, the analysis of bifurcations of equi-
libria and fixed points (and, therefore, limit cycles) in multidimensional sys-
tems reduces to that for the equations (maps) restricted to the invariant
manifold W c

α. Since these bifurcations are determined by the normal form
coefficients of the restricted systems at the critical parameter value α = 0,
we have to be able to compute the center manifold W c = W c

0 and the equa-
tions or maps restricted to this manifold up to sufficiently high-order terms.
Coefficients of the Taylor expansion of the function v = V (u) representing
the center manifold W c can be computed via a recursive procedure, each
step of which involves solving a linear system of algebraic equations. The
coefficients so obtained are the same for all nonunique center manifolds of
the system. In the C∞ case this means that these manifolds can only differ
by “flat” functions. Ahead, we derive explicit formulas for the quadratic
Taylor coefficients of the center manifolds for all codim 1 bifurcations of
equilibria and fixed points. As should now be clear, for these cases W c

is either one- or two-dimensional, n0 = 1, 2. Note that in order to analyze
these bifurcations it is sufficient, in the generic case, to obtain the restricted
equations up to (and including) third-order terms only.

5.4.1 Quadratic approximation to center manifolds in
eigenbasis

In this section we assume that the system at the bifurcation parameter
value is transformed into its eigenbasis and has the form (5.2) or (5.6). In
the next section we will show how to avoid this transformation while leaving
the obtained formulas virtually unchanged. Thus, in practice, this latter
method should be used in the analysis of systems arising in applications,
since they are almost never written in the eigenform (5.2) or (5.6).

Let us start with the continuous-time systems.

Fold bifurcation (λ1 = 0)

In this case, n0 = 1 and system (5.2) can be written as

{
u̇ = 1

2σu
2 + u〈b, v〉+ 1

6δu
3 + · · · ,

v̇ = Cv + 1
2au

2 + · · · , (5.15)

where u ∈ R
1, v ∈ R

n−1, σ, δ ∈ R
1, a, b ∈ R

n−1, and C is an (n−1)×(n−1)
matrix without eigenvalues on the imaginary axis. Here 〈b, v〉 =

∑n−1
i=1 bivi

is the standard scalar product in R
n−1, and the dots mean all undisplayed
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terms.3 Using the functions h and g from (5.2), we obtain

σ =
∂2

∂u2 g(u, 0)
∣∣∣∣
u=0

, (5.16)

δ =
∂3

∂u3 g(u, 0)
∣∣∣∣
u=0

, (5.17)

a =
∂2

∂u2h(u, 0)
∣∣∣∣
u=0

, (5.18)

and the components (b1, b2, . . . , bn−1) of the vector b are given by

bi =
∂2

∂vi∂u
g(u, v)

∣∣∣∣
u=0,v=0

, (5.19)

where i = 1, 2, . . . , n− 1.
We seek the second-order term in the Taylor expansion for v = V (u)

representing the center manifold:

v = V (u) = 1
2w2u

2 + O(u3), (5.20)

where w2 ∈ R
n−1 is an unknown vector. Substituting expansion (5.20) into

the second equation of (5.15), and using the first equation, we get

w2u(σu2 + 〈b, w2u
2〉) + O(u4) = Cw2u

2 + au2 + O(u3),

which results in the following linear equation for w2 at u2-terms:

Cw2 + a = 0.

This linear system has a unique solution, since C is invertible (because
λ = 0 is not an eigenvalue of C). Thus,

w2 = −C−1a,

and the restriction of (5.15) to the center manifold (5.22) up to (and in-
cluding) the third-order term is given by

u̇ = 1
2σu

2 + 1
6

(
δ − 3〈b, C−1a〉)u3 + O(u4). (5.21)

Notice that, in fact, the quadratic term in (5.21) is exactly the same as in
the first equation of (5.15). Thus, to analyze the fold (tangent) bifurcation,
the linear approximation to the center manifold is sufficient, provided σ =

3For example, O(‖v‖2) terms in both equations of (5.15), and O(|u|‖v‖) terms
in the second equation of (5.15) are irrelevant in the following, because they do
not affect the quadratic terms of the restricted equations.
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0. It is enough, therefore, to substitute v = 0 into the first equation of
(5.15). This way of approximating W c by the eigenspace T c obviously fails
to determine even stability of the equilibrium if σ = 0.

Example 5.3 (Failure of the tangent approximation) Consider the
following planar system: {

ẋ = xy + x3,
ẏ = −y − 2x2.

(5.22)

There is an equilibrium at (x, y) = (0, 0). Is it stable or unstable? The
Jacobian matrix

A =
(

0 0
0 −1

)
has eigenvalues λ1 = 0, λ2 = −1. Thus, system (5.22) is written in the
form (5.2) and has a one-dimensional center manifold W c represented by
the scalar function

y = V (x) = 1
2wx

2 + · · · .
Then,

ẏ = wxẋ + · · · = wx2y + wx4 + · · · = w
( 1

2w + 1
)
x4 + · · · ,

or alternatively,

ẏ = −y − 2x2 = − ( 1
2w + 2

)
x2 + · · · .

Therefore, w + 4 = 0 and
w = −4.

Thus, the center manifold has the following quadratic approximation:

V (x) = −2x2 + O(x3),

and the restriction of (5.22) to its center manifold is given by

ẋ = xV (x) + x3 = −2x3 + x3 + O(x4) = −x3 + O(x4).

Therefore, the origin is stable and the phase portrait of the system near
the equilibrium is as sketched in Figure 5.16. By restriction of (5.22) onto
its critical eigenspace y = 0, one gets

ẋ = x3.

This equation has an unstable point at the origin and thus gives the wrong
answer to the stability question. Figure 5.17 compares the equations re-
stricted to W c and T c. ✸
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y

x
0

FIGURE 5.16. Phase portrait of (5.22): The origin is stable.
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FIGURE 5.17. Restricted equations: (a) to the center manifold W c; (b) to the
tangent line T c.

Hopf bifurcation (λ1,2 = ±iω0)

Now n0 = 2 and system (5.1) in its eigenbasis takes the form
(

u̇1
u̇2

)
=

(
0 −ω0
ω0 0

)(
u1
u2

)
+

(
G1(u1, u2, v)
G2(u1, u2, v)

)
,

v̇ = Cv + H1(u1, u2, v),
(5.23)

where u = (u1, u2)T ∈ R
2, v ∈ R

n−2. It is convenient to rewrite (5.23) into
complex form by introducing z = u1 + iu2:{

ż = iω0z + G(z, z̄, v),
v̇ = Cv + H(z, z̄, v). (5.24)

Here G and H are smooth complex-valued functions of z, z̄ ∈ C
1, and

v ∈ R
n−2. Actually, z can be viewed as a new “coordinate” on the critical
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eigenspace T c = {v = 0} of (5.23). The center manifold W c therefore has
the representation

v = V (z, z̄) = 1
2w20z

2 + w11zz̄ + 1
2w02z̄

2 + O(|z|3), (5.25)

with unknown wij ∈ C
n−2. Since V must be real, w11 is real and w20 = w̄02.

Let us write system (5.24) in more detail using the Taylor expansions in
z, z̄, and v:

ż = iω0z + 1
2G20z

2 + G11zz̄ + 1
2G02z̄

2 + 1
2G21z

2z̄

+ 〈G10, v〉z + 〈G01, v〉z̄ + · · · ,
v̇ = Cv + 1

2H20z
2 + H11zz̄ + 1

2H02z̄
2 + · · · ,

(5.26)

where G20, G11, G02, G21 ∈ C
1; G01, G10, Hij ∈ C

n−2; H11 is real; and
H20 = H02. The scalar product now means that 〈G, v〉 =

∑n−2
i=1 Givi. In

terms of the functions G and H from (5.24), we get

Gij =
∂i+j

∂zi∂z̄j
G(z, z̄, 0)

∣∣∣∣
z=0

, i + j ≥ 2, (5.27)

G10,i =
∂2

∂vi∂z
G(z, z̄, v)

∣∣∣∣
z=0,v=0

, i = 1, 2, . . . , n− 2, (5.28)

G01,i =
∂2

∂vi∂z̄
G(z, z̄, v)

∣∣∣∣
z=0,v=0

, i = 1, 2, . . . , n− 2, (5.29)

Hij =
∂i+j

∂zi∂z̄j
H(z, z̄, 0)

∣∣∣∣
z=0

, i + j = 2. (5.30)

Substitution of (5.25) into (5.26) gives, at the quadratic level,
(2iω0E − C)w20 = H20,

−Cw11 = H11,
(−2iω0E − C)w02 = H02.

(5.31)

Thus,

w20 = (2iω0E − C)−1H20,

w11 = −C−1H11,

w02 = (−2iω0E − C)−1H02.

Here E is the identity matrix and the matrices (2iω0E−C), C, (−2iω0E−
C) are invertible, since 0 and ±2iω0 are not eigenvalues of C. Now, the
restriction of (5.24) to its center manifold, up to cubic terms, can be written
as follows:

ż = iω0z + 1
2G20z

2 + G11zz̄ + 1
2G02z̄

2

+ 1
2 (G21 − 2〈G10, C

−1H11〉+ 〈G01, (2iω0E − C)−1H20〉)z2z̄ + · · · ,
(5.32)
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where only the cubic term needed for the Hopf bifurcation analysis is dis-
played.

Now consider the discrete-time case.

Fold bifurcation of maps (µ1 = 1)

In this case, system (5.6) can be written as{
ũ = u + 1

2σu
2 + u〈b, v〉+ 1

6δu
3 + · · · ,

ṽ = Cv + 1
2au

2 + · · · , (5.33)

where u, ũ ∈ R
1, v, ṽ ∈ R

n−1; σ, δ ∈ R
1, a, b ∈ R

n−1 are given by equations
(5.16) through (5.19); and C is an (n− 1)× (n− 1) matrix without eigen-
values on the unit circle. Here 〈·, ·〉 denotes the scalar product in R

n−1, and
only the terms needed in what follows are presented. The center manifold
of (5.33) is given by

v = V (u) = 1
2w2u

2 + O(u3),

where w2 ∈ R
n−1 is unknown. Substituting this expansion into the second

equation of (5.33), using the first equation and the invariance of the center
manifold (if v = V (u), then ṽ = V (ũ)), we get the following linear equation
for w2, collecting u2-terms:

(C − E)w2 + a = 0. (5.34)

This linear system has a unique solution, since (C−E) is invertible because
µ = 1 is not an eigenvalue of C. Thus,

w2 = (E − C)−1a,

and the restriction of (5.33) to the center manifold, up to (and including)
the third-order term, is given by

u �→ u + 1
2σu

2 + 1
6

(
δ + 3〈b, (E − C)−1a〉)u3 + O(u4). (5.35)

The quadratic term in (5.35) is exactly the same as in the first equation of
(5.33). Thus, to analyze the fold (tangent) bifurcation of maps we need no
nonlinear approximations to the center manifold, provided σ = 0. Substi-
tution of v = 0 into the first equation of (5.33) gives the correct restriction
up to second-order terms.

Flip bifurcation (µ1 = −1)

Now system (5.6) can be written as{
ũ = −u + 1

2σu
2 + u〈b, v〉+ 1

6δu
3 + · · · ,

ṽ = Cv + 1
2au

2 + · · · , (5.36)
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with the same notation as in the previous case, and σ, δ, a, and b are given
by equations (5.16)–(5.19). The center manifold is again represented by
v = V (u) = 1

2w2u
2 + O(u3), where w2 ∈ R

n−1 is a vector satisfying the
same linear equation (5.34). Therefore, the restriction of (5.36) to the center
manifold is

u �→ −u + 1
2σu

2 + 1
6

(
δ + 3〈b, (E − C)−1a〉)u3 + O(u4).

Neimark-Sacker bifurcation (µ1,2 = e±iθ0)

In the eigenbasis and written with complex notation, system (5.6) can be
denoted as

z̃ = eiθ0z + 1
2G20z

2 + G11zz̄ + 1
2G02z̄

2 + 1
2G21z

2z̄

+ 〈G10, v〉z + 〈G01, v〉z̄ + · · · ,
ṽ = Cv + 1

2H20z
2 + H11zz̄ + 1

2H02z̄
2 + · · · ,

(5.37)

where the notation is the same as in the Hopf case, and Gij and Hij are
given by the expressions (5.27)–(5.30). The center manifold of (5.37) has
the representation

v = V (z, z̄) = 1
2w20z

2 + w11zz̄ + 1
2w02z̄

2 + O(|z|3),

with wij ∈ C
n−2. The Taylor coefficients satisfy the linear equations

(e2iθ0E − C)w20 = H20,
(E − C)w11 = H11,

(e−2iθ0E − C)w02 = H02.
(5.38)

Thus,
w20 = (e2iθ0E − C)−1H20,
w11 = (E − C)−1H11,
w02 = (e−2iθ0E − C)−1H02.

The matrices in (5.38) are invertible since e±2iθ0 and 1 are not eigenvalues
of C. The restriction of (5.37) to the center manifold therefore has the form

z �→ eiθ0z + 1
2G20z

2 + G11zz̄ + 1
2G02z̄

2 + 1
2G21z

2z̄

+ 1
2

(
2〈G10, (E − C)−1H11〉+ 〈G01, (e2iθ0E − C)−1H20〉

)
z2z̄ + · · · ,

where the only cubic terms retained are those that are necessary for ana-
lyzing a generic Neimark-Sacker bifurcation.

5.4.2 Projection method for center manifold computation
There is a useful method for center manifold computation which avoids
the transformation of the system into its eigenbasis (to the form (5.2) or
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(5.6)). Instead, only eigenvectors corresponding to the critical eigenvalues
of A and its transpose AT are used to “project” the system into the crit-
ical eigenspace and its complement. This method can be applied to both
continuous- and discrete-time finite-dimensional systems, as well as to some
infinite-dimensional systems (see Appendix 1) with few modifications.

As usual, we start with the continuous-time case. Suppose system (5.1)
is written as

ẋ = Ax + F (x), x ∈ R
n, (5.39)

where F (x) = O(‖x‖2) is a smooth function.

Fold bifurcation

In this case, A has a simple zero eigenvalue λ1 = 0, and the corresponding
critical eigenspace T c is one-dimensional and spanned by an eigenvector q ∈
R
n such that Aq = 0. Let p ∈ R

n be the adjoint eigenvector, that is, AT p =
0, where AT is the transposed matrix.4 It is possible and convenient to
normalize p with respect to q : 〈p, q〉 = 1, where 〈·, ·〉 is the standard scalar
product in R

n. The following lemma follows from the Fredholm Alternative
Theorem.

Lemma 5.2 Let T su denote an (n − 1)-dimensional linear eigenspace of
A corresponding to all eigenvalues other than 0. Then y ∈ T su if and only
if 〈p, y〉 = 0. ✷

Using the lemma, we can “decompose” any vector x ∈ R
n as

x = uq + y,

where uq ∈ T c, y ∈ T su. If q and p are normalized as above, we get explicit
expressions for u and y: {

u = 〈p, x〉,
y = x− 〈p, x〉q. (5.40)

Two operators can thus be defined:

Pcx = 〈p, x〉q, Psux = x− 〈p, x〉q.

These operators are projections onto T c and T su, respectively, and

P 2
c = Pc, P

2
su = Psu, PcPsu = PsuPc = 0.

The scalar u and the vector y can be considered as new “coordinates”
on R

n. Although y ∈ R
n, its components always satisfy the orthogonality

4Recall that 〈x,Ay〉 = 〈ATx, y〉 for any x, y ∈ R
n.
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condition 〈p, y〉 = 0. In these new coordinates, system (5.39) can be written
as {

u̇ = 〈p, F (uq + y)〉,
ẏ = Ay + F (uq + y)− 〈p, F (uq + y)〉q. (5.41)

To obtain these equations, one has to take into account (5.40) and the
eigenvector definitions and normalizations. Equivalently, one can apply the
above projection operators to system (5.39). Using Taylor expansions, we
can write (5.41) in a form similar to (5.15):{

u̇ = 1
2σu

2 + u〈b, y〉+ 1
6δu

3 + · · · ,
ẏ = Ay + 1

2au
2 + · · · , (5.42)

where u ∈ R
1, y ∈ R

n, σ, δ ∈ R
1, a, b ∈ R

n, and 〈b, y〉 =
∑n

i=1 biyi is now
the standard scalar product in R

n. For σ, δ, a, and b we get the following
expressions:

σ =
∂2

∂u2 〈p, F (uq)〉
∣∣∣∣
u=0

, (5.43)

δ =
∂3

∂u3 〈p, F (uq)〉
∣∣∣∣
u=0

, (5.44)

a =
∂2

∂u2F (uq)
∣∣∣∣
u=0

− σq, (5.45)

and the components of the vector b are given by

bi =
∂2

∂yi∂u
〈p, F (uq + y)〉

∣∣∣∣
u=0,y=0

, (5.46)

where i = 1, 2, . . . , n.
We can now proceed exactly in the same way as in Section 5.4.1. The

center manifold has the representation

y = V (u) = 1
2w2u

2 + O(u3),

where now w2 ∈ T su ⊂ R
n, which means 〈p, w2〉 = 0. The vector w2 satisfies

an equation in R
n that formally resembles the corresponding equation in

Section 5.4.1,
Aw2 + a = 0. (5.47)

Here, however, we have a slight complication, since A is obviously nonin-
vertible in R

n (λ = 0 is its eigenvalue). This difficulty is easy to overcome.
Notice that a ∈ T su, since 〈p, a〉 = 0. The restriction of the linear trans-
formation corresponding to A to its invariant subspace T su is invertible.
Thus, equation (5.47) has a unique solution w2 ∈ T su. If we denote this
solution by

w2 = −AINV a,
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the restriction of (5.42) to the center manifold takes the form

u̇ = 1
2σu

2 + 1
6

(
δ − 3〈b, AINV a〉)u3 + O(u4). (5.48)

To check that a fold bifurcation is nondegenerate, we need only to compute
σ. For this, the linear approximation of W c is enough, and σ is given by
(5.43), where f from (5.1) can be used instead of F . If σ = 0, the third-order
term must be computed.

Actually, explicit computation of the vector b using (5.46) is not neces-
sary for finding the restricted equation. Indeed, let the function F (x) be
written as

F (x) = 1
2B(x, x) + 1

6C(x, x, x) + O(‖x‖4),

where B(x, y) and C(x, y, z) are multilinear functions. In coordinates, we
have

Bi(x, y) =
n∑

j,k=1

∂2Fi(ξ)
∂ξj∂ξk

∣∣∣∣
ξ=0

xjyk,

and

Ci(x, y, z) =
n∑

j,k,l=1

∂3Fi(ξ)
∂ξj∂ξk∂ξl

∣∣∣∣
ξ=0

xjykzl,

where i = 1, 2, . . . , n. Then the scalar product 〈b, y〉 can be expressed as

〈b, y〉 = 〈p,B(q, y)〉,

and the restricted equation (5.48) takes the form

u̇ = 1
2σu

2 + 1
6

(
δ − 3〈p,B(q, AINV a)〉)u3 + O(u4), (5.49)

where

σ = 〈p,B(q, q)〉, δ = 〈p, C(q, q, q)〉, a = B(q, q)− 〈p,B(q, q)〉q. (5.50)

Remarks:
(1) One can compute w = AINV a by solving the following (n + 1)-

dimensional bordered system(
A q
pT 0

)(
w
u

)
=

(
a
0

)
(5.51)

for w ∈ R
n and u ∈ R

1. Here q and p are the above-defined and normalized
eigenvectors of A and AT , respectively. The (n+ 1)× (n+ 1) matrix of this
system is nonsingular. Indeed,(

A q
pT 0

)(
w
u

)
=

(
0
0

)
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implies w = 0 and u = 0, so the null-space of the bordered matrix is trivial.
Suppose now that (w, u)T is the solution to (5.51). Equivalently,{

Aw + uq = a,
〈p, w〉 = 0.

Thus, according to the second equation, w ∈ T su. Taking the scalar product
of the first equation with p, we obtain

〈p,Aw〉+ u〈p, q〉 = 〈p, a〉.

However, 〈p, q〉 = 1, 〈p, a〉 = 0, and 〈p,Aw〉 = 〈AT p, w〉 = 0. Therefore,
u = 0 and

Aw = a.

Thus, by definition, w = AINV a.
(2) The choice of normalization for q is irrelevant. Indeed, if the vector q is

substituted by γq with some nonzero γ ∈ R
1 but the relative normalization

〈p, q〉 = 1 is preserved, the coefficients of the restricted equation will change,
although the equation can easily be scaled back to the original form by the
substitution u �→ 1

γu. For the quadratic and cubic terms this can easily be
seen from (5.49) and (5.50). ♦

Hopf bifurcation

In this case, A has a simple pair of complex eigenvalues on the imaginary
axis: λ1,2 = ±iω0, ω0 > 0, and these eigenvalues are the only eigenvalues
with Re λ = 0. Let q ∈ C

n be a complex eigenvector corresponding to λ1:

Aq = iω0q, Aq̄ = −iω0q̄

(as in the fold case, its particular normalization is not important). Introduce
also the adjoint eigenvector p ∈ C

n having the properties

AT p = −iω0p, AT p̄ = iω0p̄,

and satisfying the normalization

〈p, q〉 = 1, (5.52)

where 〈p, q〉 =
∑n

i=1 p̄iqi is the standard scalar product in C
n (linear with

respect to the second argument). The critical real eigenspace T c corre-
sponding to ±iω0 is now two-dimensional and is spanned by {Re q, Im q}.
The real eigenspace T su corresponding to all eigenvalues of A other than
±iω0 is (n− 2)-dimensional. The following lemma is valid.

Lemma 5.3 y ∈ T su if and only if 〈p, y〉 = 0. ✷
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Here y ∈ R
n is real, while p ∈ C

n is complex. Therefore, the condition in
the lemma implies two real constraints on y (the real and imaginary parts
of 〈p, y〉 must vanish). As in the previous case, this lemma allows us to
decompose any x ∈ R

n as

x = zq + z̄q̄ + y,

where z ∈ C
1, and zq + z̄q̄ ∈ T c, y ∈ T su. The complex variable z is a

coordinate on T c. We have{
z = 〈p, x〉,
y = x− 〈p, x〉q − 〈p̄, x〉q̄. (5.53)

(Notice that 〈p, q̄〉 = 0, see Lemma 3.3.) In the coordinates of (5.53), system
(5.39) has the form

ż = iω0z + 〈p, F (zq + z̄q̄ + y)〉,
ẏ = Ay + F (zq + z̄q̄ + y)

− 〈p, F (zq + z̄q̄ + y)〉q
− 〈p̄, F (zq + z̄q̄ + y)〉q̄.

(5.54)

System (5.54) is (n+2)-dimensional, but one has to remember the two real
constraints imposed on y. The system can now be written in a form similar
to (5.26):

ż = iω0z + 1
2G20z

2 + G11zz̄ + 1
2G02z̄

2 + 1
2G21z

2z̄

+ 〈G10, y〉z + 〈G01, y〉z̄ + · · · ,
ẏ = Ay + 1

2H20z
2 + H11zz̄ + 1

2H02z̄
2 + · · · ,

(5.55)

where G20, G11, G02, G21 ∈ C
1; G01, G10, Hij ∈ C

n; and the scalar prod-
uct in C

n is used. Complex number and vectors involved in (5.55) can be
computed by the following formulas:

Gij =
∂i+j

∂zi∂z̄j
〈p, F (zq + z̄q̄)〉

∣∣∣∣
z=0

, i + j ≥ 2,

G10,i =
∂2

∂yi∂z
〈p, F (zq + z̄q̄ + y)〉

∣∣∣∣
z=0,y=0

, i = 1, 2, . . . , n,

G01,i =
∂2

∂yi∂z̄
〈p, F (zq + z̄q̄ + y)〉

∣∣∣∣
z=0,y=0

, i = 1, 2, . . . , n,

Hij =
∂i+j

∂zi∂z̄j
F (zq + z̄q̄)

∣∣∣∣
z=0

−Gijq −Gjiq̄, i + j = 2.

The center manifold now has the representation

y = V (z, z̄) = 1
2w20z

2 + w11zz̄ + 1
2w02z̄

2 + O(|z|3),
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where 〈p, wij〉 = 0. The vectors wij ∈ C
n can be found from the linear

equations 
(2iω0E −A)w20 = H20,

−Aw11 = H11,
(−2iω0E −A)w02 = H02

(cf. (5.31)). These equations have unique solutions since the matrices in
their left-hand sides are invertible in the ordinary sense because 0,±2iω0
are not eigenvalues of A. Thus, this case is even simpler than that of the
fold, and the restricted equation can be written in the same way as (5.32):

ż = iω0z + 1
2G20z

2 + G11zz̄ + 1
2G02z̄

2

+ 1
2 (G21 − 2〈G10, A

−1H11〉+ 〈G01, (2iω0E −A)−1H20〉)z2z̄ + · · · ,
(5.56)

where the scalar product in C
n is used. A nice feature of the above algo-

rithm is that it gives the restricted system (5.56) directly in the complex
form suitable for the Lyapunov coefficient computations as described in
Chapter 3.

As in the fold case, write F (x) in terms of multilinear functions B(x, y)
and C(x, y, z):

F (x) = 1
2B(x, x) + 1

6C(x, x, x) + O(‖x‖4). (5.57)

Then we can express

〈G10, y〉 = 〈p,B(q, y)〉, 〈G01, y〉 = 〈p,B(q̄, y)〉,
and write the restricted equation (5.56) in the form

ż = iω0z + 1
2G20z

2 + G11zz̄ + 1
2G02z̄

2

+ 1
2 (G21 − 2〈p,B(q, A−1H11)〉+ 〈p,B(q̄, (2iω0E −A)−1H20)〉)z2z̄

+ · · · ,
(5.58)

where

G20 = 〈p,B(q, q)〉, G11 = 〈p,B(q, q̄)〉, G02 = 〈p,B(q̄, q̄)〉, (5.59)

G21 = 〈p, C(q, q, q̄)〉, (5.60)

and {
H20 = B(q, q)− 〈p,B(q, q)〉q − 〈p̄, B(q, q)〉q̄,
H11 = B(q, q̄)− 〈p,B(q, q̄)〉q − 〈p̄, B(q, q̄)〉q̄.

(5.61)

Substituting of (5.59)–(5.61) into (5.58), taking into account the identities

A−1q =
1
iω0

q, A−1q̄ = − 1
iω0

q̄, (2iω0E −A)−1q =
1
iω0

q,
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(2iω0E −A)−1q̄ =
1

3iω0
q̄,

transforms (5.58) into the equation

ż = iω0z + 1
2g20z

2 + g11zz̄ + 1
2g02z̄

2 + 1
2g21z

2z̄ + · · · ,

where
g20 = 〈p,B(q, q)〉, g11 = 〈p,B(q, q̄)〉,

and

g21 = 〈p, C(q, q, q̄)〉
− 2〈p,B(q, A−1B(q, q̄)))〉+ 〈p,B(q̄, (2iω0E −A)−1B(q, q))〉
+

1
iω0

〈p,B(q, q)〉〈p,B(q, q̄)〉

− 2
iω0

|〈p,B(q, q̄)〉|2 − 1
3iω0

|〈p,B(q̄, q̄)〉|2 .

Notice that the terms in the last line are purely imaginary while the term
in the third line contains the same scalar products as in the product g20g11.
Thus, the application of formula (3.20) from Chapter 3,

l1(0) =
1

2ω2
0

Re(ig20g11 + ω0g21),

gives the following invariant expression for the first Lyapunov coefficient:

l1(0) =
1

2ω0
Re

[〈p, C(q, q, q̄)〉 − 2〈p,B(q, A−1B(q, q̄))〉
+ 〈p,B(q̄, (2iω0E −A)−1B(q, q))〉] . (5.62)

This formula seems to be the most convenient for analytical treatment of
the Hopf bifurcation in n-dimensional systems with n ≥ 2. It does not
require a preliminary transformation of the system into its eigenbasis, and
it expresses l1(0) using original linear, quadratic, and cubic terms, assuming
that only the critical (ordinary and adjoint) eigenvectors of the Jacobian
matrix are known. In Chapter 10 it will be shown how to implement this
formula for the numerical evaluation of l1(0).

Example 5.4 (Hopf bifurcation in a feedback-control system)
Consider the following nonlinear differential equation depending on positive
parameters (α, β):

d3y

dt3
+ α

d2y

dt2
+ β

dy

dt
+ y(1− y) = 0,
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which describes a simple feedback control system of Lur’e type. By intro-
ducing x1 = y, x2 = ẋ1, and x3 = ẋ2, we can rewrite the equation as the
equivalent third-order system

ẋ1 = x2,
ẋ2 = x3,
ẋ3 = −αx3 − βx2 − x1 + x2

1.
(5.63)

For all values of (α, β), system (5.63) has two equilibria x(0) = (0, 0, 0) and
x(1) = (1, 0, 0). We will analyze the equilibrium at the origin. The Jacobian
matrix of (5.63) evaluated at x(0) has the form 0 1 0

0 0 1
−1 −β −α


with the characteristic equation

λ3 + αλ2 + βλ + 1 = 0.

To find a relation between α and β corresponding to the Hopf bifurcation of
x(0), substitute λ = iω into the last equation. This shows that the charac-
teristic polynomial has a pair of purely imaginary roots λ1,2 = ±iω, ω > 0,
if

α = α0(β) =
1
β
, β > 0. (5.64)

It is easy to check that the origin is stable if α > α0 and unstable if α < α0.
The transition is caused by a simple pair of complex-conjugate eigenvalues
crossing the imaginary axis at λ = ±iω, where

ω2 = β.

The velocity of the crossing is nonzero and the third eigenvalue λ3 remains
negative for nearby parameter values.5 Thus, a Hopf bifurcation takes place.
In order to analyze the bifurcation (i.e., to determine the direction of the
limit cycle bifurcation), we have to compute the first Lyapunov coefficient
l1(0) of the restricted system on the center manifold at the critical param-
eter values. If l1(0) < 0, the bifurcation is supercritical and a unique stable
limit cycle bifurcates from the origin for α < α0(β). As we shall see, this
is indeed the case in system (5.63).

Therefore, fix α at its critical value α0 given by (5.64) and leave β free to
vary. Notice that the elements of the Jacobian matrix are rational functions
of ω2:

A =

 0 1 0
0 0 1

−1 −ω2 −1/ω2

 .

5At the critical parameter value (5.64), λ3 = − 1
β
< 0.
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Since the matrix A is not in real canonical form, we will proceed by the
projection method.

It is easy to check that the vectors

q ∼
 1

iω
−ω2

 , p ∼
 iω

iω3 − 1
−ω2


are eigenvectors of A and AT , respectively, corresponding to the eigenvalues
iω and −iω, respectively:

Aq = iωq, AT p = −iωp.
In order to achieve the normalization (5.52) properly, we should scale these
vectors. The following scaling, for example, suffices:

q =

 1
iω
−ω2

 , p =
1

2ω(ω3 + i)

 iω
iω3 − 1
−ω2

 .

The linear part of the analysis is now complete.
There is only one nonlinear (quadratic) term in (5.63). Therefore, the

bilinear function B(x, y), defined for two vectors x = (x1, x2, x3)T ∈ R
3

and y = (y1, y2, y3)T ∈ R
3 (see (5.57)), can be expressed as

B(x, y) =

 0
0

2x1y1

 ,

while C(x, y, z) ≡ 0. Therefore,

B(q, q) = B(q, q̄) =

 0
0

2q21

 =

 0
0
2

 ,

and solving the corresponding linear systems yields

s = A−1B(q, q̄) =

 −2
0
0


and

r = (2iωE −A)−1B(q, q) = − 2
3(1 + 2iω3)

 1
2iω
−4ω2

 .

Finally, formula (5.62) gives the first Lyapunov coefficient

l1(0) =
1

2ω
Re(−4p̄3q1s1 + 2p̄3q̄1r1) = − ω3(1 + 8ω6)

(1 + 4ω6)(1 + ω6)
.
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We can now return to the parameter β by making the substitution ω2 = β:

l1(0) = − (1 + 8β3)β
√
β

(1 + 4β3)(1 + β3)
< 0.

The Lyapunov coefficient is clearly negative for all positive β. Thus, the
Hopf bifurcation is nondegenerate and always supercritical. ✸

Now we develop the projection technique for the discrete-time case. In
this case, we can write system (5.5) as

x̃ = Ax + F (x), x ∈ R
n, (5.65)

where F (x) = O(‖x‖2) is a smooth function. As before, represent its Taylor
expansion in the form

F (x) = 1
2B(x, x) + 1

6C(x, x, x) + O(‖x‖4),

where B(x, y) and C(x, y, z) are multilinear functions. The following cal-
culations will closely resemble those of the previous sections.

Fold and flip bifurcations

Consider the fold and flip cases together. In each case, A has a simple
critical eigenvalue (multiplier) µ1 = ±1, and the corresponding critical
eigenspace T c is one-dimensional and spanned by an eigenvector q ∈ R

n

such that Aq = µ1q. Let p ∈ R
n be the adjoint eigenvector, that is, AT p =

µ1p, where AT is the transposed matrix. Normalize p with respect to q such
that 〈p, q〉 = 1. As in the previous section, let T su denote an (n−1)-dimen-
sional linear eigenspace of A corresponding to all eigenvalues other than
µ1. Appying Lemma 5.2 to the matrix (A− µ1E) and taking into account
that it has common invariant spaces with the matrix A, we conclude that
y ∈ T su if and only if 〈p, y〉 = 0.

Now we can “decompose” any vector x ∈ R
n as

x = uq + y,

where uq ∈ T c, y ∈ T su, and{
u = 〈p, x〉,
y = x− 〈p, x〉q.

In the coordinates (u, y), the map (5.65) can be written as{
ũ = µ1u + 〈p, F (uq + y)〉,
ỹ = Ay + F (uq + y)− 〈p, F (uq + y)〉q. (5.66)
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Using Taylor expansions, we can write (5.66) in a form similar to (5.33)
and (5.36): {

ũ = µ1u + 1
2σu

2 + u〈b, y〉+ 1
6δu

3 + · · · ,
ỹ = Ay + 1

2au
2 + · · · , (5.67)

where u ∈ R
1, y ∈ R

n, σ, δ ∈ R
1, a, b ∈ R

n, and 〈b, y〉 =
∑n

i=1 biyi is the
standard scalar product in R

n. Here σ, δ, and a are given by (5.50), while
the scalar product 〈b, y〉 can be expressed as

〈b, y〉 = 〈p,B(q, y)〉.

The center manifold of (5.67) has the representation

y = V (u) = 1
2w2u

2 + O(u3),

where w2 ∈ T su ⊂ R
n, so that 〈p, w2〉 = 0. The vector w2 satisfies in

both the fold and flip cases an equation in R
n that formally resembles the

corresponding equation (5.34),

(A− E)w2 + a = 0. (5.68)

In the fold case, the matrix (A−E) is noninvertible in R
n, since µ1 = 1

is the eigenvalue of A. As in the previous section, a ∈ T su since 〈p, a〉 = 0.
The restriction of the linear transformation corresponding to (A − E) to
its invariant subspace T su is invertible, so equation (5.68) has a unique
solution w2 ∈ T su. If we denote this solution by

w2 = −(A− E)INV a,

the restriction of (5.67) to the center manifold takes the form

ũ = u + 1
2σu

2 + 1
6

(
δ − 3〈p,B(q, (A− E)INV a)〉)u3 + O(u4),

where σ, δ, and a are defined by (5.50). As in the continuous-time case, we
can compute w = (A−E)INV a by solving the following (n+1)-dimensional
bordered system (

A− E q
pT 0

)(
w
u

)
=

(
a
0

)
for w ∈ R

n and u ∈ R
1.

In the flip case, the matrix (A− E) is invertible in R
n because λ = 1 is

not an eigenvalue of A. Thus, equation (5.68) can be solved directly giving
w2 = −(A − E)−1a, and the restriction of (5.67) to the center manifold
takes the form

ũ = −u + 1
2σu

2 + 1
6

(
δ − 3〈p,B(q, (A− E)−1a)〉)u3 + O(u4),
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where σ, δ, and a are again given by (5.50). This restricted map can be
simplified further. Using (5.50) and the identity

(A− E)−1q = −1
2
q,

we can write the restricted map as

ũ = −u + a(0)u2 + b(0)u3 + O(u4), (5.69)

with
a(0) =

1
2
〈p,B(q, q)〉

and

b(0) =
1
6
〈p, C(q, q, q)〉 − 1

4
(〈p,B(q, q)〉)2 − 1

2
〈p,B(q, (A− E)−1B(q, q))〉.

It has been shown in Section 4.5 of Chapter 4 that the map (5.69) can be
transformed to the normal form

ξ̃ = −ξ + c(0)ξ3 + O(ξ4),

where
c(0) = a2(0) + b(0)

(see formula (4.11)). Thus, the critical normal form coefficient c(0), that
determines the nondegeneracy of the flip bifurcation and allows us to pre-
dict the direction of bifurcation of the period-two cycle, is given by the
following invariant formula:

c(0) =
1
6
〈p, C(q, q, q)〉 − 1

2
〈p,B(q, (A− E)−1B(q, q))〉.

Neimark-Sacker bifurcation

In this case, A has a simple pair of complex eigenvalues (multipliers) on
the unit circle: µ1,2 = e±iθ0 , 0 < θ0 < π, and these multipliers are the
only eigenvalues of A with |µ| = 1. Let q ∈ C

n be a complex eigenvector
corresponding to µ1:

Aq = eiθ0q, Aq̄ = e−iθ0 q̄.

Introduce also the adjoint eigenvector p ∈ C
n having the properties

AT p = e−iθ0p, AT p̄ = eiθ0 p̄,

and satisfying the normalization

〈p, q〉 = 1,
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where 〈p, q〉 =
∑n

i=1 p̄iqi is the standard scalar product in C
n. The critical

real eigenspace T c corresponding to µ1,2 is two-dimensional and is spanned
by {Re q, Im q}. The real eigenspace T su corresponding to all eigenvalues
of A other than µ1,2 is (n− 2)-dimensional. Lemma 5.3 remains valid, i.e.,
y ∈ T su if and only if 〈p, y〉 = 0. Notice that y ∈ R

n is real, while p ∈ C
n

is complex. Therefore, the condition 〈p, y〉 = 0 implies two real constraints
on y. As in the previous sections, decompose x ∈ R

n as

x = zq + z̄q̄ + y,

where z ∈ C
1, and zq + z̄q̄ ∈ T c, y ∈ T su. The complex variable z is a

coordinate on T c. We have{
z = 〈p, x〉,
y = x− 〈p, x〉q − 〈p̄, x〉q̄.

In these coordinates, the map (5.65) takes the form
z̃ = eiθ0z + 〈p, F (zq + z̄q̄ + y)〉,
ỹ = Ay + F (zq + z̄q̄ + y)

− 〈p, F (zq + z̄q̄ + y)〉q
− 〈p̄, F (zq + z̄q̄ + y)〉q̄.

(5.70)

System (5.70) is (n+2)-dimensional, but we have to remember the two real
constraints imposed on y. The system can be written in a form similar to
(5.36), namely

z̃ = eiθ0z + 1
2G20z

2 + G11zz̄ + 1
2G02z̄

2 + 1
2G21z

2z̄

+ 〈G10, y〉z + 〈G01, y〉z̄ + · · · ,
ỹ = Ay + 1

2H20z
2 + H11zz̄ + 1

2H02z̄
2 + · · · ,

(5.71)

where G20, G11, G02, G21 ∈ C
1; G01, G10, Hij ∈ C

n; and the scalar product
in C

n is used. The complex numbers and vectors, involved in (5.71) can be
computed by the formulas (5.59)–(5.61), while

〈G10, y〉 = 〈p,B(q, y)〉, 〈G01, y〉 = 〈p,B(q̄, y)〉.
The center manifold in (5.71) has the representation

y = V (z, z̄) = 1
2w20z

2 + w11zz̄ + 1
2w02z̄

2 + O(|z|3),

where 〈p, wij〉 = 0. The vectors wij ∈ C
n can be found from the linear

equations 
(e2iθ0E −A)w20 = H20,

(E −A)w11 = H11,
(e−2iθ0E −A)w02 = H02
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(cf. (5.38)). These equations have unique solutions. The matrix (E −A) is
invertible because 1 is not an eigenvalue of A (eiθ0 = 1). If

e3iθ0 = 1,

the matrices (e±2iθ0E−A) are also invertible in C
n because e±2iθ0 are not

eigenvalues of A. Thus, generically,6 the restricted map can be written as

z̃ = iω0z + 1
2G20z

2 + G11zz̄ + 1
2G02z̄

2

+ 1
2 (G21 + 2〈p,B(q, (E −A)−1H11)〉

+ 〈p,B(q̄, (e2iθ0E −A)−1H20)〉)z2z̄ + · · · .
(5.72)

In this generic situation, substituting (5.59)–(5.61) into (5.72), and tak-
ing into account the identities

(E −A)−1q =
1

1− eiθ0
q, (e2iθ0E −A)−1q =

e−iθ0

eiθ0 − 1
q,

and

(E −A)−1q̄ =
1

1− e−iθ0
q̄, (e2iθ0E −A)−1q̄ =

eiθ0

e3iθ0 − 1
q̄,

transforms (5.72) into the map

z̃ = eiθ0z + 1
2g20z

2 + g11zz̄ + 1
2g02z̄

2 + 1
2g21z

2z̄ + · · · , (5.73)

where

g20 = 〈p,B(q, q)〉, g11 = 〈p,B(q, q̄)〉, g02 = 〈p,B(q̄, q̄)〉,

and

g21 = 〈p, C(q, q, q̄)〉
+ 2〈p,B(q, (E −A)−1B(q, q̄)))〉+ 〈p,B(q̄, (e2iθ0E −A)−1B(q, q))〉

+
e−iθ0(1− 2eiθ0)

1− eiθ0
〈p,B(q, q)〉〈p,B(q, q̄)〉

− 2
1− e−iθ0

|〈p,B(q, q̄)〉|2 − eiθ0

e3iθ0 − 1
|〈p,B(q̄, q̄)〉|2 .

As shown in Chapter 4, in the absence of strong resonances, i.e.,

eikθ0 = 1, for k = 1, 2, 3, 4,

6If e3iθ0 = 1, i.e., e2iθ0 = e−iθ0 , then w20 = (e−iθ0E − A)INV H20, w02 = w̄20,
where INV means the inverse in T su.
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the restricted map (5.73) can be transformed into the form

z̃ = eiθ0z(1 + d(0)|z|2) + O(|z|4),

where the real number a(0) = Re d(0), that determines the direction of
bifurcation of a closed invariant curve, can be computed by formula (4.23),

a(0) = Re
(
e−iθ0g21

2

)
−Re

(
(1− 2eiθ0)e−2iθ0

2(1− eiθ0)
g20g11

)
− 1

2
|g11|2− 1

4
|g02|2.

Using this formula with the above-defined coefficients, we obtain the fol-
lowing invariant expression

a(0) =
1
2

Re
{
e−iθ0

[〈p, C(q, q, q̄)〉+ 2〈p,B(q, (E −A)−1B(q, q̄))〉
+ 〈p,B(q̄, (e2iθ0E −A)−1B(q, q))〉]} . (5.74)

This compact formula allows us to verify the nondegeneracy of the nonlinear
terms at a nonresonant Neimark-Sacker bifurcation of n-dimensional maps
with n ≥ 2. Note that all the computations can be performed in the original
basis.

5.5 Exercises

(1) (Finite smoothness of the center manifold) Consider the system
[Arrowsmith & Place 1990]

ẋ = xz − x3,
ẏ = y + x4,
ż = 0.

Show that the system has a center manifold given by y = V (x, z), where V
is a C6 function in x if z < 1

6 but only a C4 function in x for z < 1
4 . (Hint:

Obtain the coefficients aj(z) of the expansion V (x, z) =
∑

j=0 aj(z)xj and
analyze their denominators.)

(2) (Neimark-Sacker bifurcation in the Lorenz system) Prove that
the Neimark-Sacker bifurcation of a limit cycle never occurs in the Lorenz
[1963] system: 

ẋ = −σx + σy,
ẏ = −xz + rx− y,
ż = xy − bz,

(E.1)

where the parameters (σ, r, b) are positive. (Hint: Use the formula for the
multiplier product and the fact that div f = −(σ + b + 1) < 0, where f is
the vector field given by the right-hand side of (E.1).)
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(3) Prove Lemma 5.2.

(4) Verify that

P 2
c = Pc, P

2
su = Psu, PcPsu = PsuPc = 0,

where Pc and Psu are the projection operators defined after Lemma 5.2 in
Section 5.4.2.

(5) (Feedback-control model of Moon & Rand [1985]) Show that
the origin (x, y, z) = (0, 0, 0) of the system

ẋ = y,
ẏ = −x− xv,
v̇ = −v + αx2,

is asymptotically stable if α < 0 and unstable if α > 0.

(6) (Center manifolds in the Lorenz system)
(a) Compute the second-order approximation to the family of one-dimen-

sional center manifolds of the Lorenz system (E.1) near the origin (x, y, z) =
(0, 0, 0) for fixed (σ, b) and r close to r0 = 1. Then, calculate the restricted
system up to third-order terms in ξ. (Hint: See Chapter 7.)

(b) Show that for fixed b, σ > b + 1, and

r1 =
σ(σ + b + 3)
σ − b− 1

,

a nontrivial equilibrium of (E.1) exhibits the Hopf bifurcation, giving rise
to a unique saddle limit cycle for r > r1 [Roschin 1978]. (Hint: Translate
the origin of the coordinate system to the equilibrium; find the eigenvector
and the adjoint eigenvector of the Jacobian; use a bilinear representation
of the right-hand sides and apply the projection method for the computa-
tion of the restricted equation on the center manifold; finally, compute the
Lyapunov coefficient. Symbolic manipulation software is useful here, but
not necessary.)

(7) Prove that the origin (x, y) = (0, 0) is a stable fixed point of the planar
map (

x
y

)
�→

(
0 1

− 1
2

3
2

)(
x
y

)
−

(
0
y3

)
,

using: (a) transformation to its eigenbasis (Hint: See Wiggins [1990, pp.
207–209].); (b) the projection technique from Section 5.4.2 in this chapter
(Hint: Do not forget that the matrix (A−E) is noninvertible in this case.)
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(8) (Adaptive control system of Golden & Ydstie [1988])
(a) Demonstrate that the fixed point (x0, y0, z0) = (1, 1, 1− b− k) of the

discrete-time dynamical system x
y
z

 �→

 y
bx + k + yz

z − ky
c + y2 (bx + k + zy − 1)


exhibits the flip bifurcation at

bF = 1−
[

1
2

+
1

4(c + 1)

]
k,

and the Neimark-Sacker bifurcation at

bNS = −c + 1
c + 2

.

(b) Determine the direction of the period-doubling bifurcation that oc-
curs as b increases and passes through bF .

(c) Compute the normal form coefficient and show that the Neimark-
Sacker bifurcation in the system under variation of the parameter b can be
either sub- or supercritical depending on the values of (c, k).

(9) (Hopf bifurcation in Brusselator; read Appendix 1 first) The
Brusselator on the unit interval is a reaction-diffusion system with two
components

∂X

∂t
= d

∂2X

∂r2
+ C − (B + 1)X + X2Y,

∂Y

∂t
= θd

∂2Y

∂r2
+ BX −X2Y,

where X = X(r, t), Y = Y (r, t); r ∈ [0, 1]; t ≥ 0; A,B, d, θ > 0 (see
Chapter 1 and Lefever & Prigogine [1968]). Consider the case when X and
Y are kept constant at their equilibrium values at the end points:

X(0, t) = X(1, t) = C, Y (0, t) = Y (1, t) =
B

C
.

Fix
C0 = 1, δ0 = 2, θ0 =

1
2
,

and show that at
B0 = 1 + C2

0 + δ0(1 + θ0) = 5

the system exhibits a supercritical Hopf bifurcation giving rise to a stable
limit cycle (periodic standing wave). (Hint: See Auchmuty & Nicolis [1976]
and Hassard et al. [1981].)
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(10) (Hopf transversality condition) Let A(α) be a parameter-depen-
dent real (n × n)-matrix which has a simple pair of complex eigenvalues
λ1,2(α) = µ(α)± iω(α), µ(0) = 0, ω(0) > 0. Prove that

µ′(0) = Re 〈p,A′(0)q〉,

where q, p ∈ C
n satisfy

A(0)q = iω(0)q, AT (0)p = −iω(0)p, 〈p, q〉 = 1.

(Hint: Differentiate the equation A(α)q(α) = λ1(α)q(α) with respect to α
at α = 0, and then compute the scalar product of both sides of the resulting
equation with p.)

5.6 Appendix 1: Hopf bifurcation in
reaction-diffusion systems on the interval with
Dirichlet boundary conditions

Consider a reaction-diffusion system

∂u

∂t
= D

∂2u

∂ξ2
+ A(α)u + F (u, α), (A.1)

where u = u(ξ, t) is a vector-valued function describing the distribution of n
reacting components over a one-dimensional space, ξ ∈ [0, π], at time t ≥ 0.
D is a positive diagonal matrix, A(α) is a parameter-dependent matrix, and
F = O(‖u‖2) is a smooth function depending on a single parameter α. Let
us assume that u satisfies Dirichlet boundary conditions:

u(0, t) = u(π, t) = 0 (A.2)

for all t ≥ 0. As we have seen in Chapter 1, system (A.1), (A.2) defines
an infinite-dimensional dynamical system {R1

+, H, ϕ
t
α} on several function

spaces H. We can take H, for example, to be the completion of the space
C2

0 ([0, π],Cn) of twice continuously differentiable, complex-valued, vector
functions on the interval [0, π] vanishing at ξ = 0, π, with respect to the
norm ‖w‖ = 〈w,w〉1/2. Here 〈·, ·〉 is the scalar product defined on functions
from C2

0 ([0, π],Cn) by

〈w, v〉 =
1
µ0

n∑
i=1

∫ π

0

(
w̄ivi +

dw̄i

dξ

dvi
dξ

+
d2w̄i

dξ2
d2vi
dξ2

)
dξ, (A.3)

where µ0 > 0 is a constant to be specified later. By continuity, this scalar
product can be defined for all u, v ∈ H. Thus the introduced space H is
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a Hilbert space.7 Of course, (A.1), (A.2) also define a dynamical system
on the real subspace of H. Actually, any orbit of {R1

+, H, ϕ
t
α} with initial

point at u0 ∈ H belongs to C2
0 ([0, π],Cn) for t > 0, and

u(ξ, t) = (ϕt
αu)(ξ)

is a classical solution to (A.1), (A.2) for t > 0.
Obviously, u0(ξ) ≡ 0 is a stationary solution of (A.1). The linear part of

(A.1) defines the linearized operator

Mαv = D
d2v

dξ2
+ A(α)v, (A.4)

which can be extended to a closed operator Mα in H. An operator defined
by

M∗
αu = D

d2u

dx2 + AT (α)u (A.5)

can be extended to be a closed adjoint operator M∗
α in H with the charac-

teristic property
〈u,Mαv〉 = 〈M∗

αu, v〉
whenever both sides are defined. An eigenvalue λk of Mα is a complex
number such that Mαψk = λkψk for some eigenfunction ψk. Equivalently,
the eigenvalues and eigenfunctions satisfy the following linear boundary-
value spectral problem:

D
d2ψk

dξ2
+ A(α)ψk = λkψk,

ψk(0) = ψk(π) = 0.

The spectrum of Mα consists entirely of eigenvalues. There is a countable
number of eigenvalues. Any eigenfunction in this case has the form

ψk(ξ) = Vk sin kξ

for some integer k ≥ 1. The vector Vk ∈ C
n satisfies

(−k2D + A(α))Vk = λkVk.

Suppose that at α = 0 the operator Mα has a pair of imaginary eigenvalues
±iω0 and all its other eigenvalues lie strictly in the left half-plane of C

1.
Assume that the eigenvalues on the imaginary axis correspond to k = k0,
and that iω0 is a simple eigenvalue of (−k2

0D+A(0)). The critical eigenspace
T c ⊂ H of M0 is spanned by the real and imaginary parts of the complex
function

q(ξ) = V sin k0ξ,

7Its elements are continuous vector-valued functions defined on the interval.
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where V ∈ C
n is the eigenvector corresponding to iω0.

For systems of the considered class, and, actually, for more general infinite-
dimensional systems, the Center Manifold Theorem remains valid (see the
bibliographical notes in Appendix 2). Under the formulated assumptions,
there is a local two-dimensional invariant manifold W c

α ⊂ H of the system
{R1

+, H, ϕ
t
α} defined by (A.1), (A.2) which depends on the parameter α.

The manifold is locally attracting in terms of the norm of H and is tangent
to T c at α = 0. Moreover, the manifold is composed of twice continuously
differentiable real functions. The restriction of the system onto the mani-
fold W c

α is given by a smooth system of two ordinary differential equations
that depend on α. Thus, the restricted system generically exhibits the Hopf
bifurcation at α = 0, and a unique limit cycle appears for nearby parameter
values. The bifurcation is determined by the first Lyapunov coefficient. To
compute this coefficient, we need to know the restricted equations at α = 0
up to (and including) third-order terms. If the bifurcation is supercriti-
cal, the cycle that appears is stable within W c

α and, therefore, it is stable
as a periodic orbit of (A.1), (A.2) in the H-norm. This cycle describes a
spatially nonhomogeneous, time-periodic solution to the reaction-diffusion
system. Solutions of this type are sometimes called spatial-temporal dissi-
pative structures (standing waves).

Let us outline how the restricted equations can be derived. Formally, the
procedure will be exactly the same as that in Section 5.4.2. To proceed, we
need the adjoint eigenfunction p : M∗

0 p = −iω0p. It is given by

p(ξ) = W sin k0ξ,

where (−k2
0D + AT (0))W = −iω0W, W ∈ C

n. We are free to choose V
and W such that

〈p, q〉 = 1. (A.6)

There is a useful but simple property of the scalar product (A.3) involving
an (adjoint) eigenfunction; namely, such a scalar product in H is propor-
tional to the corresponding scalar product in L2:

〈p, u〉 =
1
µ0

(1 + k2
0 + k4

0)〈p, u〉L2 ,

where

〈p, u〉L2 =
n∑

i=1

∫ π

0
p̄i(ξ)ui(ξ) dξ.

Therefore, if we assume
µ0 = 1 + k2

0 + k4
0,

all the scalar products can be computed in L2. The normalization (A.6)
implies

〈W,V 〉Cn =
2
π
. (A.7)
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Now we can decompose any function u ∈ H (and, in particular, smooth
functions corresponding to solutions of (A.1), (A.2)) as in Section 5.4.2,
since an analog of Lemma 5.3 is valid for the operator M0:

u = zq + z̄q̄ + v,

where z ∈ C
1, v ∈ H, 〈p, v〉 = 0. Hence, we can write (A.1), (A.2) in the

form (5.54): 
ż = iω0z + 〈p, F (zq + z̄q̄ + v, 0)〉,
vt = M0v + F (zq + z̄q̄ + v, 0)

− 〈p, F (zq + z̄q̄ + v, 0)〉q
− 〈p̄, F (zq + z̄q̄ + v, 0)〉q̄.

(A.8)

The center manifold W c
0 of (A.6) has the representation

v =
1
2
w20z

2 + w11zz̄ +
1
2
w02z̄

2 + O(|z|3), (A.9)

with wij ∈ H, 〈p, wi,j〉 = 0. The functions wij(ξ) are the unique solutions
to the linear boundary-value problems

(2iω0E −M0)w20 = H20,
−M0w11 = H11,

(−2iω0E −M0)w02 = H02,
(A.10)

where the functions on the right-hand sides are given by the expression

Hij =
∂i+j

∂zi∂z̄j
F (zq + z̄q̄, 0)

∣∣∣∣
z=0

−Gijq −Gjiq̄,

with

Gij =
∂i+j

∂zi∂z̄j
〈p, F (zq + z̄q̄, 0)〉

∣∣∣∣
z=0

, i + j ≥ 2.

The boundary-value problems (A.10) can be written in a more “classical”
way:

D
d2w20

dξ2
(ξ) + [A(0)− 2iω0E]w20(ξ) = −H20(ξ),

D
d2w11

dξ2
(ξ) + A(0)w11(ξ) = −H11(ξ),

D
d2w02

dξ2
(ξ) + [A(0) + 2iω0E]w02(ξ) = −H02(ξ).

Here wij vanish at ξ = 0, π. Notice that all the functions on the right-hand
side have the same spatial dependence

Hij(ξ) =
(
sin2 k0ξ − γ0 sin k0ξ

)
hij ,
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where hij ∈ C
n, while γ = γ0(k0) is determined by the critical eigenfunc-

tions. The boundary-value problems can be solved, for example, by the
Fourier method.

Substitution of (A.9) into the first equation of (A.8) gives an approxima-
tion to the restricted equations on the center manifold correct to third-order
and allows the computation of the Lyapunov coefficient l1(0).

5.7 Appendix 2: Bibliographical notes

The Center Manifold Theorem in finite dimensions has been proved by Pliss
[1964] for the attracting case n+ = 0 and by Kelley [1967] and Hirsch et
al. [1977] in general. In the Russian literature the center manifold is often
called the neutral manifold. Proofs of the Center Manifold Theorem can be
found in Carr [1981] and Vanderbauwhede [1989]. Topological normal forms
for multidimensional bifurcations of equilibria and limit cycles are based on
the article by Shoshitaishvili [1975], where the topological versality of the
suspended system is also established, given that of the restricted system.
The first example showing that a C∞ system may have no C∞ center
manifold was constructed by van Strien [1979].

One-parameter bifurcations of limit cycles and corresponding metamor-
phoses of the local phase portraits in n-dimensional systems were known
to mathematicians of Andronov’s school since the late 1940s. Their de-
tailed presentation can be found in Neimark [1972] and Butenin, Neimark
& Fufaev [1976].

The existence of center manifolds for several classes of partial differential
equations and delay differential equations has been established during the
last two decades. The main technical steps of such proofs are to show that
the original system can be formulated as an abstract ordinary differential
equation on an appropriate (i.e., Banach or Hilbert) function space H, and
to use the variation-of-constants formula (Duhamel’s integral equation) to
prove that this equation defines a smooth dynamical system (semiflow) on
H. For such flows, a general theorem is valid that guarantees existence of
a center manifold under certain conditions on the linearized operator. See
Marsden & McCracken [1976], Carr [1981], Henry [1981], Hale [1977], and
Diekmann et al. [1995], for details and examples.

The projection technique, which avoids putting the linear part in nor-
mal form, was originally developed to study bifurcations in some partial
differential equations (mainly from hydrodynamics) using the Lyapunov-
Schmidt reduction (see, e.g., Iooss & Joseph [1980]). Our presentation is
based on the book by Hassard et al. [1981], where the Hopf bifurcation
in continuous-time (finite- and infinite-dimensional) systems is treated. An
invariant expression equivalent to (5.62) for the first Lyapunov coefficient
was derived by Howard and Kopell in their comments to the translation of
the original Hopf paper in Marsden & McCracken [1976]. Independently,
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it was obtained by van Gils [1982] and published by Diekmann & van Gils
[1984] within an infinite-dimensional context. This formula can also be ob-
tained using asymptotic expansions for the bifurcating periodic solution
(see, e.g., Nayfeh & Balachandran [1995]). Computational formulas for the
discrete-time flip case were given by Kuznetsov & Rinaldi [1991]. The for-
mula (5.74) to analyze the Neimark-Sacker bifurcation was first derived by
Iooss, Arneodo, Coullet & Tresser [1981] using asymptotic expansions for
the bifurcating invariant closed curve.



6
Bifurcations of Orbits Homoclinic
and Heteroclinic to Hyperbolic
Equilibria

In this chapter we will study global bifurcations corresponding to the ap-
pearance of homoclinic or heteroclinic orbits connecting hyperbolic equi-
libria in continuous-time dynamical systems. First we consider in detail
two- and three-dimensional cases where geometrical intuition can be fully
exploited. Then we show how to reduce generic n-dimensional cases to the
considered ones plus a four-dimensional case. This remaining case is treated
in Appendix 1.

6.1 Homoclinic and heteroclinic orbits

Consider a continuous-time dynamical system {R1,Rn, ϕt} defined by a
system of ODEs

ẋ = f(x), x = (x1, x2, . . . , xn)T ∈ R
n, (6.1)

where f is smooth. Let x0, x(1), and x(2) be equilibria of the system.

Definition 6.1 An orbit Γ0 starting at a point x ∈ R
n is called homoclinic

to the equilibrium point x0 of system (6.1) if ϕtx→ x0 as t→ ±∞.

Definition 6.2 An orbit Γ0 starting at a point x ∈ R
n is called heteroclinic

to the equilibrium points x(1) and x(2) of system (6.1) if ϕtx → x(1) as
t→ −∞ and ϕtx→ x(2) as t→ +∞.

Figure 6.1 shows examples of homoclinic and heteroclinic orbits to saddle
points if n = 2, while Figure 6.2 presents relevant examples for n = 3.
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FIGURE 6.1. (a) Homoclinic and (b) heteroclinic orbits on the plane.
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FIGURE 6.2. (a) Homoclinic and (b) heteroclinic orbits in three-dimensional
space.

It is clear that a homoclinic orbit Γ0 to the equilibrium x0 belongs to
the intersection of its unstable and stable sets: Γ0 ⊂ Wu(x0) ∩ W s(x0).
Similarly, a heteroclinic orbit Γ0 to the equilibria x(1) and x(2) satisfies
Γ0 ⊂ Wu(x(1)) ∩W s(x(2)). It should be noticed that the Definitions 6.1
and 6.2 do not require the equilibria to be hyperbolic. Figure 6.3 shows,
for example, a homoclinic orbit to a saddle-node point with an eigenvalue
λ1 = 0. Actually, orbits homoclinic to hyperbolic equilibria are of partic-
ular interest since their presence results in structural instability while the
equilibria themselves are structurally stable.

Lemma 6.1 A homoclinic orbit to a hyperbolic equilibrium of (6.1) is
structurally unstable. ✷

This lemma means that we can perturb a system with an orbit Γ0 that is
homoclinic to x0 such that the phase portrait in a neighborhood of Γ0 ∪x0
becomes topologically nonequivalent to the original one. As we shall see,
the homoclinic orbit simply disappears for generic C1 perturbations of the
system. This is a bifurcation of the phase portrait.

To prove the lemma, we need a small portion of transversality theory.
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FIGURE 6.3. Homoclinic orbit Γ0 to a saddle-node equilibrium.

Definition 6.3 Two smooth manifolds M,N ⊂ R
n intersect transversally

if there exist n linearly independent vectors that are tangent to at least one
of these manifolds at any intersection point.

For example, a surface and a curve intersecting with a nonzero angle at
some point in R

3 are transversal. The main property of transversal inter-
section is that it persists under small C1 perturbations of the manifolds.
In other words, if manifolds M and N intersect transversally, so will all
sufficiently C1-close manifolds. Conversely, if the manifolds intersect non-
transversally, generic perturbations make them either nonintersecting or
transversally intersecting.

Since in this chapter we deal exclusively with saddle (or saddle-focus)
hyperbolic equilibria, the sets Wu and W s are smooth (immersed) invariant
manifolds.1 Any sufficiently C1-close system has a nearby saddle point, and
its invariant manifolds Wu,s are C1-close to the corresponding original ones
in a neighborhood of the saddle.

Proof of Lemma 6.1:
Suppose that system (6.1) has a hyperbolic equilibrium x0 with n+ eigen-

values having positive real parts and n− eigenvalues having negative real
parts, n± > 0, n+ + n− = n. Assume that the corresponding stable and
unstable manifolds Wu(x0) and W s(x0) intersect along a homoclinic or-
bit. To prove the lemma, we shall show that the intersection cannot be
transversal. Indeed, at any point x of this orbit, the vector f(x) is tangent
to both manifolds Wu(x0) and W s(x0). Therefore, we can find no more
than n+ + n−− 1 = n− 1 independent tangent vectors to these manifolds,
since dimWu = n+, dimW s = n−. Moreover, any generic perturbation
of (6.1) splits the manifolds in that remaining direction and they do not
intersect anymore near Γ0. ✷

1Meanwhile, the manifolds Wu(x0) and W s(x0) intersect transversally at x0.
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Let us characterize the behavior of the stable and unstable manifolds
near homoclinic bifurcations in two- and three-dimensional systems in more
detail.

Case n = 2. Consider a planar system having a homoclinic orbit to a
saddle x0, as shown in the central part of Figure 6.4. Introduce a one-
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FIGURE 6.4. Split function in the planar case (n = 2).

dimensional local cross-section Σ to the stable manifold W s(x0) near the
saddle, as shown in the figure. Select a coordinate ξ along Σ such that the
point of the intersection with the stable manifold corresponds to ξ = 0. This
construction can be carried out for all sufficiently close systems. For such
systems, however, the unstable manifold Wu generically does not return to
the saddle. Figure 6.4 illustrates the two possibilities: The manifolds split
either “down” or “up.” Denote by ξu the ξ-value of the intersection of Wu

with Σ.

Definition 6.4 The scalar β = ξu is called a split function.

Actually, the split function is a functional defined on the original and
perturbed systems. It becomes a smooth function of parameters for a
parameter-dependent system. The equation

β = 0

is a bifurcation condition for the homoclinic bifurcation in R
2. Thus, the

homoclinic bifurcation in this case has codimension one.

Remark:
There is a constructive proof of Lemma 6.1 in the planar case due to

Andronov. A one-parameter perturbation destroying the homoclinic (het-
eroclinic) orbit can be constructed explicitly. For example, if a system{

ẋ1 = f1(x1, x2),
ẋ2 = f2(x1, x2), (6.2)
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FIGURE 6.5. Split function in the case n = 3.

has a homoclinic orbit to a saddle, then the system{
ẋ1 = f1(x1, x2)− αf2(x1, x2),
ẋ2 = αf1(x1, x2) + f2(x1, x2), (6.3)

has no nearby homoclinic orbits to this saddle for any sufficiently small
|α| = 0. System (6.3) is obtained from (6.2) by a rotation of the vector
field. The proof is left as an exercise to the reader. ♦

Case n = 3. It is also possible to define a split function in this case.
Consider a system in R

3 with a homoclinic orbit Γ0 to a saddle x0. Assume
that dimWu = 1 (otherwise, reverse the time direction), and introduce a
two-dimensional cross-section Σ with coordinates (ξ, η) as in Figure 6.5.
Suppose that ξ = 0 corresponds to the intersection of Σ with the stable
manifold W s of x0. As before, this can be done for all sufficiently close
systems. Let the point (ξu, ηu) correspond to the intersection of Wu with
Σ. Then, a split function can be defined as in the planar case before: β = ξu.
Its zero

β = 0

gives a condition for the homoclinic bifurcation in R
3.

Remarks:
(1) The preceding cases are examples of nontransversal intersections of

the invariant manifolds Wu and W s. One can construct a three-dimensional
system with a structurally stable heteroclinic orbit connecting two saddles:
This orbit must be a transversal intersection of the corresponding two-
dimensional stable and unstable manifolds.

(2) There are particular classes of dynamical systems (such as Hamilto-
nian) for which the presence of a nontransversal homoclinic orbit is generic.
♦

Thus, we have found that under certain conditions the presence of a
homo-/hetero-clinic orbit Γ0 to a saddle/saddles implies a bifurcation. Our
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goal in the next sections will be to describe the phase portrait bifurcations
near such an orbit under small C1 perturbations of the system. “Near”
means in a sufficiently small neighborhood U0 of Γ0 ∪x0 or Γ0 ∪x(1) ∪x(2).
This task is more complex than for bifurcations of equilibria since it is not
easy to construct a continuous-time system that would be a topological
normal form for the bifurcation. In some cases ahead, all one-parameter
systems satisfying some generic conditions are topologically equivalent in a
neighborhood of the corresponding homoclinic bifurcation. In these cases,
we will characterize the relevant universal bifurcation diagram by draw-
ing key orbits of the corresponding phase portraits. This will completely
describe the diagram up to topological equivalence.

Unfortunately, there are more involved cases in which such an equivalence
is absent. In these cases no universal bifurcation diagrams can be presented.
Nevertheless, topologically nonequivalent bifurcation diagrams reveal some
features in common, and we will give schematic phase portraits describing
the bifurcation for such cases as well.

The nontransversal heteroclinic case is somehow trivial since the disap-
pearance of the connecting orbit is the only essential event in U0 (see Figure
6.6). Therefore, in this chapter we will focus on the homoclinic orbit bifur-
cations and return to nonhyperbolic homoclinic orbits and their associated
bifurcations in Chapter 7.

β < 0β < 0 β = 0

FIGURE 6.6. Heteroclinic bifurcation on the plane.

6.2 Andronov-Leontovich theorem

In the planar case, the homoclinic bifurcation is completely characterized
by the following theorem.

Theorem 6.1 (Andronov & Leontovich [1939]) Consider a two-dim-
ensional system

ẋ = f(x, α), x ∈ R
2, α ∈ R

1, (6.4)

with smooth f , having at α = 0 a saddle equilibrium point x0 = 0 with
eigenvalues λ1(0) < 0 < λ2(0) and a homoclinic orbit Γ0. Assume the
following genericity conditions hold:

(H.1) σ0 = λ1(0) + λ2(0) = 0;
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(H.2) β′(0) = 0, where β(α) is the previously defined split function.

Then, for all sufficiently small |α|, there exists a neighborhood U0 of Γ0∪x0
in which a unique limit cycle Lβ bifurcates from Γ0. Moreover, the cycle is
stable and exists for β > 0 if σ0 < 0, and is unstable and exists for β < 0
if σ0 > 0.

The following definition is quite useful.

Definition 6.5 The real number σ = λ1 +λ2 is called the saddle quantity.

β > 0β = 0β < 0

0Γ

βL

FIGURE 6.7. Homoclinic bifurcation on the plane (σ0 < 0).

Γ0

β < 0 β = 0 β > 0

L β

FIGURE 6.8. Homoclinic bifurcation on the plane (σ0 > 0).

Figures 6.7 and 6.8 illustrate the above theorem. If α = 0, the system
has an orbit homoclinic to the origin. A saddle equilibrium point exists
near the origin for all sufficiently small |α| = 0, while the homoclinic orbit
disappears, splitting “up” or “down.” According to condition (H.2), the
split function β = β(α) can be considered as a new parameter.

If the saddle quantity satisfies σ0 < 0, the homoclinic orbit at β = 0
is stable from the inside, and the theorem gives the existence of a unique
and stable limit cycle Lβ ⊂ U0 for β > 0. For β < 0 there are no periodic
orbits in U0. If the saddle quantity satisfies σ0 > 0, the homoclinic orbit at
β = 0 is unstable from the inside, and the theorem gives the existence of
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a unique but unstable limit cycle Lβ ⊂ U0 for β < 0. For β > 0 there are
no periodic orbits in U0. Thus, the sign of σ0 determines the direction of
bifurcation and the stability of the appearing limit cycle. As usual, the term
“direction” has a conventional meaning and is related to our definition of
the split function.

As |β| → 0, the cycle passes closer and closer to the saddle and becomes
increasingly “angled” (see Figure 6.9). Its period Tβ tends to infinity as β

0x

βL

FIGURE 6.9. A cycle near a homoclinic bifurcation.

approaches zero since a phase point moving along the cycle spends more
and more time near the equilibrium (see Figure 6.10). The corresponding

β0

βT

FIGURE 6.10. Period of the cycle near a homoclinic bifurcation.

time series (x1(t), x2(t)) demonstrates “peaks” of finite length interspersed
by very long “near-equilibrium” intervals.

Proof of Theorem 6.1:
The main idea of the proof is to introduce two local cross-sections near

the saddle, Σ and Π, which are transversal to the stable and the unstable
manifolds, respectively (see Figure 6.11). Then it is possible to define a
Poincaré map P on a half-section Σ+,

P : Σ+ → Σ,
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FIGURE 6.11. Poincaré map for homoclinic bifurcation on the plane.

as a superposition of a near-to-saddle map ∆ : Σ+ → Π and a map Q :
Π → Σ near the global part of the homoclinic orbit:

P = Q ◦∆.

Finally, we have to take into account the usual correspondence between
limit cycles of (6.4) and fixed points of P . The proof proceeds through
several steps.

Step 1 (Introduction of eigenbasis coordinates). Without loss of generality,
assume that the origin is a saddle equilibrium of (6.4) for all sufficiently
small |α|. We consider β as a new parameter but do not indicate the pa-
rameter dependence for a while in order to simplify notation.

There is an invertible linear coordinate transformation that allows us to
write (6.4) in the form{

ẋ1 = λ1x1 + g1(x1, x2),
ẋ2 = λ2x2 + g2(x1, x2), (6.5)

where x1,2 denote the new coordinates and g1,2 are smooth O(‖x‖2)-functions,
x = (x1, x2)T , ‖x‖2 = x2

1 + x2
2.

Step 2 (Local linearization of the invariant manifolds). According to the
Local Stable Manifold Theorem (see Chapter 3), the stable and unstable
invariant manifolds W s and Wu of the saddle exist and have the local
representations

W s : x2 = S(x1), S(0) = S′(0) = 0;
Wu : x1 = U(x2), U(0) = U ′(0) = 0,

with smooth S,U (see Figure 6.12). Introduce new variables y = (y1, y2)T

near the saddle: {
y1 = x1 − U(x2),
y2 = x2 − S(x1).
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FIGURE 6.12. Local stable and unstable manifolds in x-coordinates.

This coordinate change is smooth and invertible in some neighborhood of
the origin.2 We can assume that this neighborhood contains the unit square
Ω = {y : −1 < y1,2 < 1}, which is a matter of an additional linear scaling
of system (6.5). Thus, system (6.5) in the new coordinates takes in Ω the
form {

ẏ1 = λ1y1 + y1h1(y1, y2),
ẏ2 = λ2y2 + y2h2(y1, y2), (6.6)

where h1,2 = O(‖y‖). Notice that (6.6) is a nonlinear smooth system with
a saddle at the origin whose invariant manifolds are linear and coincide
with the coordinate axes in Ω (see Figure 6.13).

Step 3 (Local C1-linearization of the system). Now introduce new coordi-
nates (ξ, η) in Ω in which system (6.6) becomes linear:{

ξ̇ = λ1ξ,
η̇ = λ2η.

(6.7)

More precisely, we show that the flow corresponding to (6.6) is C1-equivalent
in Ω to the flow generated by the linear system (6.7). To construct the con-
jugating map {

ξ = ϕ(y1, y2),
η = ψ(y1, y2),

we use the following geometric construction. Take a point y = (y1, y2) ∈
Ω and the orbit passing through this point (see Figure 6.14(a)). Let τ1
and τ2 be the absolute values of the positive and negative times required

2To be more precise, we have to consider a global invertible smooth change of
the coordinates that coincides with the specified one in a neighborhood of the
saddle and is the identity outside some other neighborhood of the saddle. The
same should be noticed concerning the map Φ to be constructed later.
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FIGURE 6.13. Locally linearized stable and unstable manifolds in y-coordinates.

for such an orbit to reach the boundary of Ω in system (6.6). It can be
checked (Exercise 7(a)) that the pair (τ1, τ2) is uniquely defined for y = 0
within each quadrant of Ω.3 Now find a point (ξ, η) in the same quadrant
of Ω with the same “exit” times τ1 and τ2 for the corresponding orbit
of (6.7) (see Figure 6.14(b)). Let us take ξ = η = 0 for y = 0. Thus,

Φ (   )

ξ

y τ

τ

τ

τ

y

η

y

2y

-1

1

1
1 -1

(b)

-1

1

2 2

1

1

1-1

(a)

FIGURE 6.14. Construction of C1-equivalence.

a map Φ : (y1, y2) �→ (ξ, η) is constructed. It clearly maps orbits of the
nonlinear system (6.6) into orbits of the linear system (6.7), preserving
time parametrization. Map Φ : Ω → Ω is a homeomorphism transforming

3For points on the coordinate axes we allow one of τ1,2 to be equal to ±∞.
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each component of the boundary of Ω into itself; it is identical along the
axes. To define a useful coordinate change it must be at least continuously
differentiable in Ω. Indeed, the map Φ is a C1 map. Actually, it is smooth
away from the origin but has only first-order continuous partial derivatives
at y = 0 (the relevant calculations are left to the reader as Exercise 7(b)).

Step 4 (Analysis of the superposition). Using the new coordinates (ξ, η), we
can compute the near-to-saddle map analytically. We can assume that the
cross-section Σ has the representation ξ = 1,−1 ≤ η ≤ 1. Then, η can be
used as a coordinate on it, and Σ+ is defined by ξ = 1, 0 ≤ η ≤ 1. The map
acts from Σ+ into a cross-section Π, which is defined by η = 1,−1 ≤ ξ ≤ 1,
and has ξ as a coordinate (see Figure 6.15). Integrating the linear system
(6.7), we obtain

∆ : ξ = η− λ1
λ2 .

Notice that the resulting map is nonlinear regardless of the linearity of
system (6.7). We assumed ξ = 0 for η = 0 by continuity.

Σ

Σ

W

u
W

β
s

+

Q

∆

Π

-1 1

-1

1

ξ

η

0

FIGURE 6.15. Poincaré map in locally linearizing coordinates.

The global map expressed in ξ and η is continuously differentiable and
invertible and has the following general form:

Q : η = β + aξ + O(ξ2),

where β is the split function and a > 0 since the orbits cannot intersect.
Actually, λ1,2 = λ1,2(β), a = a(β), but as we shall see below only values
at β = 0 are relevant. Fixed points with small |η| of the Poincaré map

P : η �→ β + aη− λ1
λ2 + · · ·

can be easily analyzed for small |β| (see Figure 6.16). Therefore, we have
existence of a positive fixed point (limit cycle) for β > 0 if σ0 < 0 and for
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FIGURE 6.16. Fixed points of the Poincaré map: (a) σ0 < 0; (b) σ0 > 0.

β < 0 if σ0 > 0. Stability and uniqueness of the cycle also simply follow
from analysis of the map. ✷

Remark:
Until now we have considered only so-called “small” homoclinic orbits

in this section. There is another type of homoclinic orbits, namely, “big”
homoclinic orbits corresponding to the different return direction. All the

Γ

β > 0

0

β = 0β < 0

βL

FIGURE 6.17. Bifurcation of a “big” saddle homoclinic orbit.

results obtained are valid for them as well (see Figure 6.17, where a bifur-
cation diagram for the case σ0 < 0 is presented). ♦

Example 6.1 (Explicit homoclinic bifurcation) Consider the fol-
lowing system due to Sandstede [1997a]:{

ẋ = −x + 2y + x2,
ẏ = (2− α)x− y − 3x2 + 3

2xy,
(6.8)

where α is a parameter.
The origin (x, y) = (0, 0) is a saddle for all sufficiently small |α|. At

α = 0, this saddle has eigenvalues

λ1 = 1, λ2 = −3,
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with σ0 = −2 < 0. Moreover, at this parameter value, there exists a homo-
clinic orbit to the origin (see Figure 6.18). Indeed, the Cartesian leaf,

(   ,   ) 

∆H x y

(  ,  ) = 0H x y

v  x  y

(  ,  ) 

0 1

y

x

FIGURE 6.18. The homoclinic orbit of (6.8) at α = 0.

α > 0α < 0 α = 0

FIGURE 6.19. Homoclinic bifurcation in (6.8): A stable limit cycle exists for
small α > 0.

H(x, y) ≡ x2(1− x)− y2 = 0,

consists of orbits of (6.8) for α = 0. One of these orbits is homoclinic to
the saddle 0 = (0, 0). To verify this fact, we have to prove that the vector
field defined by (6.8) with α = 0,

v(x, y) =
(
−x + 2y + x2, 2x− y − 3x2 +

3
2
xy

)T

,

is tangent to the curve H(x, y) = 0 at all nonequilibrium points. Equiva-
lently, it is sufficient to check that v is orthogonal along the curve to the
normal vector to the curve. A normal vector is given by the gradient of the
function H:

(∇H)(x, y) = (2x− 3x2,−2y)T .
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Then, a direct calculation shows that

〈v,∇H〉 = 0

along the curve H = 0 (check!).
Thus, system (6.8) has an algebraic homoclinic orbit at α = 0 with

σ0 < 0. One can prove that the transversality condition β′ = 0 also holds
at α = 0 (see Exercise 13). Therefore, Theorem 6.1 is applicable, and a
unique and stable limit cycle bifurcates from the homoclinic orbit under
small variation of α (see Figure 6.19). ✸

Example 6.2 (Homoclinic bifurcation in a slow-fast system) Con-
sider the following system{

ẋ = 1 + x− y − x2 − x3,
ẏ = ε [−1 + (1− 4α)x + 4xy] , (6.9)

where α is a “control” parameter and 0 < ε # 1. We shall show that
the system undergoes a homoclinic bifurcation at some value of α close to
zero. More precisely, there is a continuous function α0 = α0(ε) defined for
sufficiently small ε ≥ 0, α0(0) = 0 such that the system has a homoclinic
orbit to a saddle at α = α0(ε). Moreover, the genericity conditions of the
Andronov-Leontovich theorem are satisfied, and a unique and stable limit
cycle bifurcates from the homoclinic orbit under the variation of α for
α < α0.

The nontrivial zero-isoclines of (6.9) are graphs of the following functions:

ẋ = 0 : y = (x + 1)(1− x2)

and
ẏ = 0 : y =

1− x

4x
+ α;

their shape at α = 0 is presented in Figure 6.20.
If α = 0, the system has a saddle equilibrium point E0 : (x, y) = (1, 0)

for all ε > 0. It can easily be checked that near the saddle E0 the sta-
ble invariant manifold W s(E0) approaches the x-axis while the unstable
manifold Wu(E0) tends to the zero-isocline ẋ = 0, as ε → 0. The global
behavior of the upper branch Wu

1 of the unstable manifold as ε→ 0 is also
clear. It approaches a singular orbit composed of two slow motions along
the isocline ẋ = 0 (E0A and BC) and two fast jumps in the horizontal
direction (AB and CE0; the latter happens along the x-axis) (see Figure
6.20). This singular orbit returns to E0, thus forming a singular homoclinic
orbit.

This construction can be carried out for all sufficiently small α = 0 (see
Figure 6.21). The equilibrium point will shift away from the x-axis and will
have the y-coordinate equal to α. Despite this, a singular orbit to which
Wu

1 tends as ε → 0 still arrives at a neighborhood of the saddle along
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FIGURE 6.20. Zero-isoclines of (6.9) and the corresponding singular homoclinic
orbit.
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FIGURE 6.21. Singular homoclinic bifurcation in (6.9).

the x-axis. Therefore, there is a singular split function β0(α) measured
along a vertical cross-section near the saddle which equals α : β0(α) = α.
Obviously, β′

0(0) > 0. Meanwhile, the singular orbit tends to a singular
limit cycle if α < 0.

Thus, we have a generic singular homoclinic bifurcation at α = 0 in the
singular limit ε = 0. This implies the existence of a generic homoclinic
bifurcation at α = α0(ε) for sufficiently small ε > 0. One can show this
using nonstandard analysis. To prove it in a standard way, one has to check
that the split function β(α, ε) can be represented for all sufficiently small
ε > 0 as

β(α, ε) = β0(α) + ϕ(α, ε),
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where ϕ(α, ε) (considered as a function of α for small |α|) vanishes uni-
formly with its first derivative as ε → 0. Then, elementary arguments4

show the existence of a unique continuous function α0(ε), α0(0) = 0, such
that

β(α0(ε), ε) = 0

for all sufficiently small ε ≥ 0. Actually, α0(ε) is smooth for ε > 0. There-
fore, the system has a homoclinic orbit at α = α0(ε) for all sufficiently small
ε. The corresponding saddle quantity σ0 is negative and βα(α0(ε), ε) = 0,
thus, Theorem 6.1 is applicable to (6.9). ✸

More remarks on Theorem 6.1:
(1) Condition (H.2) of Theorem 6.1 is equivalent to the transversality of

the intersection of certain invariant manifolds of the extended system{
ẋ = f(x, α),
α̇ = 0. (6.10)

Let x0(α) denote a one-parameter family of the saddles in (6.4) for small |α|.
This family defines an invariant set of (6.10) – a curve of equilibria. This
curve has two-dimensional unstable and stable manifolds, Wu and Ws,
whose slices α = const coincide with the corresponding one-dimensional
unstable and stable manifolds Wu and W s of the saddle x0(α) in (6.4) (see
Figure 6.22). Condition (H.2) (meaning that Wu and W s split with nonzero

x 0

x2

x 1

α
0Γ

W
s

W u

FIGURE 6.22. Transversal intersection of invariant manifolds Wu and Ws.

velocity as α crosses α = 0) translates exactly to the transversality of the
intersection of Wu and Ws along Γ0 at α = 0 in the three-dimensional

4The only difficulty that should be overcome is that ϕ(α, ε) is not differentiable
with respect to ε at ε = 0 (see Exercise 8).
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state space of (6.10). In Section 6.4.1 we will show that the transversality
is equivalent to the Melnikov condition:∫ +∞

−∞
exp

[
−

∫ t

0

(
∂f1

∂x1
+
∂f2

∂x2

)
dτ

](
f1
∂f2

∂α
− f2

∂f1

∂α

)
dt = 0,

where all expressions involving f = (f1, f2)T are evaluated at α = 0 along
a solution x0(·) of (6.4) corresponding to the homoclinic orbit Γ0.

(2) One can construct a topological normal form for the homoclinic bifur-
cation on the plane. Consider the (ξ, η)-plane and introduce two domains:

the unit square

Ω0 = {(ξ, η) : |ξ| ≤ 1, |η| ≤ 1}
and the rectangle

Ω1 = {(ξ, η) : 1 ≤ ξ ≤ 2, |η| ≤ 1}
(see Figure 6.23). Define a two-dimensional manifold Ω by glueing Ω0 and

Ω0 Ω1

-1

1

0 21

η

ξβ

-1

FIGURE 6.23. Topological normal form for homoclinic bifurcation.

Ω1 along the vertical segment {ξ = 1, |η| ≤ 1} and identifying the upper
boundary of Ω0 with the right boundary of Ω1 (i.e., glueing points (ξ, 1)
and (2, ξ) for |ξ| ≤ 0). The resulting manifold is homeomorphic to a simple
band.

Consider a system of ODEs in Ω that is defined by{
ξ̇ = λ1(α)ξ,
η̇ = λ2(α)η,

(6.11)

in Ω0 and by {
ξ̇ = −1,
η̇ = β(α)η,

(6.12)

in Ω1, where λ1,2 and β are smooth functions of a parameter α. The be-
havior of thus defined piecewise-smooth system in Ω is similar to that of
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(6.4) near the homoclinic orbit (cf. Figures 6.15 and 6.23). If λ1 < 0 < λ2,
the constructed system has a saddle at the origin. At β = 0 this saddle has
a homoclinic orbit Γ̃0 composed by two segments of the coordinate axes:
{ξ = 0, 0 < η ≤ 1} and {η = 0, 0 < ξ ≤ 2}. For small β = 0 this homoclinic
orbit breaks down, with the parameter β playing the role of the split func-
tion. Provided the saddle quantity σ0 = λ1(0) + λ2(0) = 0, a unique limit
cycle bifurcates from Γ̃0. This can be seen from the Poincaré map defined
by the system (6.11), (6.12) in the cross-section {ξ = 1, 0 ≤ η ≤ 1}:

η �→ β + η− λ1
λ2 .

Actually, the following theorem holds.

Theorem 6.2 Under the assumptions of Theorem 6.1, the system (6.4)
is locally topologically equivalent near the homoclinic orbit Γ0 for nearby
parameter values to the system defined by (6.11) and (6.12) in Ω near Γ̃0
for small |β|. Moreover, all such systems with σ0 < 0 (σ0 > 0) are locally
topologically equivalent near the respective homoclinic orbits for nearby pa-
rameter values. ✷

The last statement of the theorem follows from the fact that, for σ0 < 0,
the constructed system in Ω is locally topologically equivalent near Γ̃0 for
small |β| to this system with constant λ1 = −2, λ2 = 1, while, for σ0 > 0,
it is equivalent to that with λ1 = −1, λ2 = 2. ♦

6.3 Homoclinic bifurcations in three-dimensional
systems: Shil’nikov theorems

A three-dimensional state space gives rise to a wider variety of homoclinic
bifurcations, some of which involve an infinite number of periodic orbits. As
is known from Chapter 3, the two simplest types of hyperbolic equilibria in
R

3 allowing for homoclinic orbits are saddles and saddle-foci. We assume
from now on that these points have a one-dimensional unstable manifold
Wu and a two-dimensional stable manifold W s (otherwise, reverse the time
direction). In the saddle case, we assume that the eigenvalues of the equi-
librium are simple and satisfy the inequalities λ1 > 0 > λ2 > λ3. Then, as
we have seen in Chapter 2, all the orbits on W s approach the equilibrium
along a one-dimensional eigenspace of the Jacobian matrix corresponding
to λ2 except two orbits approaching the saddle along an eigenspace corre-
sponding to λ3 (see Figure 2.4(a)).

Definition 6.6 The eigenvalues with negative real part that are closest to
the imaginary axis are called leading (or principal) eigenvalues, while the
corresponding eigenspace is called a leading (or principal) eigenspace.
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Thus, almost all orbits on W s approach a generic saddle along the one-
dimensional leading eigenspace. In the saddle-focus case, there are two lead-
ing eigenvalues λ2 = λ̄3, and the leading eigenspace is two-dimensional (see
Figure 2.4(b)).

Definition 6.7 A saddle quantity σ of a saddle (saddle-focus) is the sum
of the positive eigenvalue and the real part of a leading eigenvalue.

Therefore, σ = λ1 + λ2 for a saddle, and σ = λ1 + Re λ2,3 for a saddle-
focus.

The table below briefly presents some general results Shil’nikov obtained
concerning the number and stability of limit cycles generated via homoclinic
bifurcations in R

3. The column entries specify the type of the equilibrium
having a homoclinic orbit, while the row entries give the possible sign of
the corresponding saddle quantity.

Saddle Saddle-focus
σ0 < 0 one stable cycle one stable cycle
σ0 > 0 one saddle cycle ∞ saddle cycles

The following theorems give more precise information.

Theorem 6.3 (Saddle, σ0 < 0) Consider a three-dimensional system

ẋ = f(x, α), x ∈ R
3, α ∈ R

1, (6.13)

with smooth f , having at α = 0 a saddle equilibrium point x0 = 0 with real
eigenvalues λ1(0) > 0 > λ2(0) ≥ λ3(0) and a homoclinic orbit Γ0. Assume
the following genericity conditions hold:

(H.1) σ0 = λ1(0) + λ2(0) < 0;
(H.2) λ2(0) = λ3(0);
(H.3) Γ0 returns to x0 along the leading eigenspace;
(H.4) β′(0) = 0, where β(α) is the split function defined earlier.

Then, the system (6.13) has a unique and stable limit cycle Lβ in a neig-
borhood U0 of Γ0 ∪ x0 for all sufficiently small β > 0. Moreover, all such
systems are locally topologically equivalent near Γ0 ∪ x0 for small |α|. ✷

The theorem is illustrated in Figure 6.24. The unstable manifold Wu(x0)
tends to the cycle Lβ . The period of the cycle tends to infinity as β ap-
proaches zero. The (nontrivial) multipliers of the cycle are positive and
inside the unit circle: |µ1,2| < 1. There are no periodic orbits of (6.13) in
U0 for all sufficiently small β ≤ 0. Thus, the bifurcation is completely anal-
ogous to that in the planar case. The proof of the theorem will be sketched
later (see also Exercise 10).
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FIGURE 6.24. Saddle homoclinic bifurcation with σ0 < 0.

Theorem 6.4 (Saddle-focus, σ0 < 0) Suppose that a three-dimensional
system

ẋ = f(x, α), x ∈ R
3, α ∈ R

1, (6.14)

with a smooth f , has at α = 0 a saddle-focus equilibrium point x0 = 0 with
eigenvalues λ1(0) > 0 > Re λ2,3(0) and a homoclinic orbit Γ0. Assume the
following genericity conditions hold:

(H.1) σ0 = λ1(0) + Re λ2,3(0) < 0;
(H.2) λ2(0) = λ3(0);
(H.3) β′(0) = 0, where β(α) is the split function.

Then, system (6.14) has a unique and stable limit cycle Lβ in a neighbor-
hood U0 of Γ0 ∪ x0 for all sufficiently small β > 0, as presented in Figure
6.25. ✷
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FIGURE 6.25. Saddle-focus homoclinic bifurcation with σ0 < 0.

There are no periodic orbits of (6.14) in U0 for all sufficiently small
β ≤ 0. The unstable manifold Wu(x0) tends to the cycle Lβ . The cycle
period tends to infinity as β approaches zero. The (nontrivial) multipliers
of the cycle are complex, µ2 = µ̄1, and lie inside the unit circle: |µ1,2| < 1.

The analogy with the planar case, however, terminates here. We cannot
say that the bifurcation diagrams of all systems (6.10) satisfying (H.1)–
(H.3) are topologically equivalent. As a rule, they are nonequivalent since
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the real number

ν0 = − λ1(0)
Re λ2,3(0)

(6.15)

is a topological invariant for systems with a homoclinic orbit to a saddle-
focus. The nature of this invariant will be clearer later. Thus, although there
is a unique limit cycle for β > 0 in all such systems, the exact topology of
their phase portraits can differ. Fortunately, this is not very important in
most applications.

Before treating the saddle case with σ0 > 0, we have to look at the
topology of the invariant manifold W s(x0) near Γ0 more closely. Suppose
we have a three-dimensional system with a saddle equilibrium point x0 hav-
ing simple eigenvalues and a homoclinic orbit returning along the leading
eigenspace to this saddle. Let us fix a small neighborhood U0 of Γ0 ∩ x0.
The homoclinic orbit Γ0 belongs to the stable manifold W s(x0) entirely.
Therefore, the manifold W s(x0) can be extended “back in time” along Γ0

(b)(a)

Γ0Γ0

W
s s

W

FIGURE 6.26. (a) Simple and (b) twisted stable manifolds near a homoclinic
orbit to a saddle.

within the fixed neighborhood. At each point ϕtx ∈ Γ0, a tangent plane
to this manifold is well defined. For t → +∞, this plane is spanned by
the stable eigenvectors v2 and v3. Generically, it approaches the plane
spanned by the unstable eigenvector v1 and the nonleading eigenvector v3,
as t → −∞. Thus, generically the manifold W s(x0) intersects itself near
the saddle along the two exceptional orbits on W s(x0) that approach the
saddle along the nonleading eigenspace5 (see Figure 6.26). Therefore, the
part of W s(x0) in U0 to which belongs the homoclinic orbit Γ0 is (generi-
cally) a two-dimensional nonsmooth submanifoldM. As is well known from

5This property (often called the strong inclination property) was first estab-
lished by Shil’nikov and is discussed in Exercise 9. See also Chapter 10, where
we describe how to verify this property numerically.
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elementary topology, such a manifold is topologically equivalent to either
a simple or a twisted band. The latter is known as the Möbius band.

Definition 6.8 If M is topologically equivalent to a simple band, the ho-
moclinic orbit Γ0 is called simple (or nontwisted). If M is topologically
equivalent to a Möbius band, the homoclinic orbit is called twisted.

We are now ready to formulate the relevant theorem.

Theorem 6.5 (Saddle, σ0 > 0) Consider a three-dimensional system

ẋ = f(x, α), x ∈ R
3, α ∈ R

1, (6.16)

with smooth f , having at α = 0 a saddle equilibrium point x0 = 0 with real
eigenvalues λ1(0) > 0 > λ2(0) ≥ λ3(0) and a homoclinic orbit Γ0. Assume
that the following genericity conditions hold:

(H.1) σ0 = λ1(0) + λ2(0) > 0;
(H.2) λ2(0) = λ3(0);
(H.3) Γ0 returns to x0 along the leading eigenspace;
(H.4) Γ0 is simple or twisted;
(H.5) β′(0) = 0, where β(α) is the split function.

Then, for all sufficiently small |α|, there exists a neighborhood U0 of Γ0∩x0
in which a unique saddle limit cycle Lβ bifurcates from Γ0. The cycle exists
for β < 0 if Γ0 is nontwisted, and for β > 0 if Γ0 is twisted. Moreover,
all such systems (6.16) with simple (twisted) Γ0 are locally topologically
equivalent in a neighborhood U0 of Γ0 ∩ x0 for sufficiently small |α|. ✷
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FIGURE 6.27. Simple saddle homoclinic bifurcation with σ0 > 0.

The bifurcation diagrams to both cases are presented in Figures 6.27
and 6.28, respectively. In both (simple and twisted) cases a unique saddle
limit cycle Lβ bifurcates from the homoclinic orbit. Its period tends to
infinity as β approaches zero. Remarkably, the direction of the bifurcation
is determined by the topology of M.
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FIGURE 6.28. Twisted saddle homoclinic bifurcation with σ0 > 0.

If the homoclinic orbit is simple, there is a saddle cycle Lβ for β < 0.
Its multipliers are positive: µ1 > 1 > µ2 > 0. The stable and unstable
manifolds W s,u(Lβ) of the cycle are (locally) simple bands.

If the homoclinic orbit is twisted, there is a saddle cycle Lβ for β > 0.
Its multipliers are negative: µ1 < −1 < µ2 < 0. The stable and unstable
manifolds W s,u(Lβ) of the cycle are (locally) Möbius bands.

Sketch of the proof of Theorems 6.2 and 6.4:
We outline the proof of the theorems in the saddle cases. There are

coordinates in R
3 in which the manifolds W s(x0) and Wu(x0) are linear

in some neighborhood of x0. Suppose system (6.13) (or (6.16)) is already
written in these coordinates and, moreover, locally: W s(x0) ⊂ {x1 = 0},
Wu(x0) ⊂ {x2 = x3 = 0}. Let the x2-axis be the leading eigenspace and
the x3-axis be the nonleading eigenspace. Introduce a rectangular two-
dimensional cross-section Σ ⊂ {x2 = ε2} and an auxiliary rectangular
cross-section Π ⊂ {x1 = ε1}, where ε1,2 are small enough. Assume that Γ0
intersects both local cross-sections (see Figure 6.29). As in the planar case,
define a Poincaré map P : Σ+ → Σ along the orbits of (6.13), mapping
the upper part Σ+ of Σ corresponding to x1 ≥ 0 into Σ. Represent P as a
superposition

P = Q ◦∆,

where ∆ : Σ+ → Π is a near-to-saddle map, and Q : Π → Σ is a map along
the global part of Γ0. The construction can be carried out for all sufficiently
small |β|.

The local map ∆ is “essentially”6 defined by the linear part of (6.13)
near the saddle. It can be seen that the image of Σ+ under the action of
map ∆, ∆Σ+, looks like a “horn” with a cusp on the x1-axis (on Γ0, in
other words). Actually, the cross-sections Σ and Π should be chosen in such
a way that ∆Σ+ ⊂ Π. The global map Q maps this “horn” back into the

6Unfortunately, there are obstacles to Ck-linearization with k ≥ 1 in this case.
For example, C1-linearization is impossible if λ2 = λ1 + λ3 (see Appendix 2).
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FIGURE 6.29. Construction of the Poincaré map in the saddle case.

plane {x2 = ε2}. If Γ0 is simple, PΣ+ intersects nontrivially with Σ+ at
β = 0; otherwise, the intersection with Σ− ≡ Σ \ Σ+ is nontrivial (see
Figure 6.29). Note that the transversality of the “horn” to the intersection
of W s(x0) with Σ follows from the orientability or nonorientability of the
manifold M.

According to the sign of the saddle quantity σ0 and the twisting of the
homoclinic orbit, there are several cases of relative position of PΣ+ with
respect to Σ (Figures 6.30 and 6.31). A close look at these figures, actually,
completes the proof. If σ0 < 0 (Theorem 6.2, Figure 6.29), the map P is a
contraction in Σ+ for β > 0 and thus has a unique and stable fixed point in
PΣ+ corresponding to a stable limit cycle. If σ0 > 0 (Theorem 6.4, Figure
6.30), the map P contracts along the x3-axis and expands along the “horn.”
Therefore it has a saddle fixed point in PΣ+ for β < 0 or β > 0, depending
on the twisting of the homoclinic orbit. ✷

Remark:
Because the map P always acts as a contraction along the x3-axis, the

fixed-point analysis reduces (see Exercise 10) to the analysis of a one-
dimensional map having the form

x1 �→ β + Ax
− λ1

λ2
1 + · · ·

that is similar to that in the Andronov-Leontovich theorem but A can be
either positive (simple homoclinic orbit) or negative (twisted homoclinic
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FIGURE 6.30. The relative position of PΣ+ with respect to Σ in the case σ0 < 0.

orbit).
Actually, this analogy can be extended further, since in this case there is a

two-dimensional attracting invariant “center manifold” near the homoclinic
orbit (see Section 6.4). ♦

The last case is the most difficult.

Theorem 6.6 (Saddle-focus, σ0 > 0) Suppose that a three-dimensional
system

ẋ = f(x, α), x ∈ R
3, α ∈ R

1, (6.17)

with a smooth f , has at α = 0 a saddle-focus equilibrium point x0 = 0 with
eigenvalues λ1(0) > 0 > Re λ2,3(0) and a homoclinic orbit Γ0. Assume that
the following genericity conditions hold:

(H.1) σ0 = λ1(0) + Re λ2,3(0) > 0;
(H.2) λ2(0) = λ3(0).

Then, system (6.17) has an infinite number of saddle limit cycles in a
neighborhood U0 of Γ0 ∪ x0 for all sufficiently small |β|. ✷

Sketch of the proof of Theorems 6.3 and 6.5:
To outline the proof, select a coordinate system in which W s(x0) is (lo-

cally) the plane x1 = 0, while Wu(x0) is (also locally) the line x2 = x3 = 0
(see Figure 6.32). Introduce two-dimensional cross-sections Σ and Π, and
represent the Poincaré map P : Σ+ → Σ as a superposition P = Q ◦∆ of
two maps: a near-to-saddle ∆ : Σ+ → Π and a global Q : Π → Σ, as in the
proof of Theorems 6.2 and 6.4.7

7Actually, in the case of the saddle-focus, there is a C1 change of coordinates
that locally linearizes the system (see Appendix 2). It allows one to compute ∆
analytically.
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FIGURE 6.31. Relative position of PΣ+ with respect to Σ in the case σ0 > 0.

The image ∆Σ+ of Σ+ on Π is no longer a horn but a “solid spiral”
(sometimes called a Shil’nikov snake). The global map Q maps the “snake”
to the plane containing Σ.

Assume, first, that β = 0 and consider the intersection of the “snake”
image (i.e., PΣ+) with the local cross-section Σ. The origin of the “snake”
is at the intersection of Γ0 with Σ. The intersection of Σ with W s(x0) splits
the “snake” into an infinite number of upper and lower “half-spirals.” The
preimages Σi of the upper “half-spirals” PΣi, i = 1, 2, . . . , are horizontal
strips in Σ+ (see Figure 6.33). If the saddle quantity σ0 > 0, the inter-
section Σi ∩ PΣi is nonempty and consists of two components for i ≥ i0,
where i0 is some positive number (i0 = 2 in Figure 6.33(a)). Each of these
intersections forms a Smale horseshoe (see Chapter 1). It can be checked
that the necessary expansion conditions are satisfied. Thus, each horseshoe
gives an infinite number of saddle fixed points. These fixed points corre-
spond to saddle limit cycles of (6.17). If σ0 < 0, there is some i0 > 0 such
that for i ≥ i0 the intersection Σi∩PΣi is empty (i0 = 2 in Figure 6.33(b)).
Thus, there are no fixed points of P in Σ+ close to Γ0.

If β = 0, the point corresponding to Γ0 is displaced from the horizontal
line in Σ. Therefore, if σ0 > 0, there remains only a finite number of Smale
horseshoes. They still give an infinite number of saddle limit cycles in (6.17)
for all sufficiently small |β|. In the case σ0 < 0, the map P is a contraction
in Σ+ for β > 0 and thus has a unique attracting fixed point corresponding
to a stable limit cycle of (6.14). There are no periodic orbits if β < 0. ✷

Remarks:
(1) As in the saddle-focus case with σ0 < 0, it cannot be said that the

bifurcation diagrams of all systems (6.15) satisfying (H.1)–(H.2) are topo-
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FIGURE 6.32. Construction of the Poincaré map in the saddle-focus case.

logically equivalent. The reason is the same: the topological invariance of ν0
given by (6.15). Actually, the complete topological structure of the phase
portrait near the homoclinic orbit is not known, although some substan-
tial information is available due to Shil’nikov. Let Ω̃(ν) be the set of all
nonequivalent bi-infinite sequences

ω = {. . . , ω−2, ω−1, ω0, ω1, ω2, . . .},
where ωi are nonnegative integers such that

ωi+1 < νωi

for all i = 0,±1,±2, . . . , and for some real number ν > 0. Then, at β = 0
there is a subset of orbits of (6.17) located in a neighborhood U0 of Γ0 ∪x0
for all t ∈ R

1, whose elements are in one-to-one correspondence with Ω̃(ν),
where ν does not exceed the topological invariant ν0. The value ωi can
be viewed as the number of “small” rotations made by the orbit near the
saddle after the ith “global” turn.

(2) As β approaches zero taking positive or negative values, an infinite
number of bifurcations results. Some of these bifurcations are related to
a “basic” limit cycle, which makes one global turn along the homoclinic
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FIGURE 6.34. Period of the cycle near a saddle-focus homoclinic bifurcation: (a)
σ0 < 0; (b) σ0 > 0.

orbit. It can be shown that this cycle undergoes an infinite number of tan-
gent bifurcations as |β| tends to zero. To understand the phenomenon, it
is useful to compare the dependence on β of the period Tβ of the cycle
in the saddle-focus cases with σ0 < 0 and σ0 > 0. The relevant graphs
are presented in Figure 6.34. In the σ0 < 0 case, the dependence is mono-
tone, while if σ0 > 0 it becomes “wiggly.” The presence of wiggles means
that the basic cycle disappears and appears via tangent (fold) bifurcations
infinitely many times. Notice that for any sufficiently small |β| there is
only a finite number of these “basic” cycles (they differ in the number of
“small” rotations near the saddle-focus; the higher the period, the more
rotations the cycle has). Moreover, the cycle also exhibits an infinite num-
ber of period-doubling bifurcations. The tangent and flip bifurcations are
marked by t and f , respectively, in the figure. The flip bifurcations generate
double-period cycles. Each of them makes two global turns before closure.
These cycles themselves bifurcate while approaching the homoclinic orbit,
making the picture more involved. The basic cycle, as well as the secondary
cycles generated by period doublings, are stable or repelling, depending on
the sign of the divergence of (6.17) at the saddle-focus:

σ1 = (div f)(x0, 0) = λ1 + λ2 + λ3 = λ1 + 2 Re λ2,3.

If σ1 < 0 the basic cycle near the bifurcation can be stable (actually, there
are only short intervals of β within which it is stable). If σ1 > 0 there
are intervals where the basic cycle is totally unstable (repelling). Thus, the
saddle cycles mentioned in the theorem and coded at β = 0 by periodic
sequences of Ω(ν) are not the only cycles in U0.

(3) Other bifurcations near the homoclinic orbit are due to secondary
homoclinic orbits. Under the conditions of Theorem 6.5, there is an infinite
sequence of βi > 0, βi → 0, for which the system has double homoclinic
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orbits with different (increasing) number of rotations near the saddle-focus
(see Figure 6.35). Other subsidiary homoclinic orbits are also present, like
the triple making three global turns before final return.

(4) Recall that in this section we assumed n− = dimW s = 2 and
n+ = dimWu = 1. To apply the results in the opposite case (i.e., n− =
1, n+ = 2), we have to reverse the direction of time. This boils down to
these substitutions: λj �→ −λj , σi �→ −σi, and “stable” �→ “repelling.” ♦

Example 6.3 (Complex impulses in the FitzHugh-Nagumo mo-
del) The following system of partial differential equations is the FitzHugh-
Nagumo caricature of the Hodgkin-Huxley equations modeling the nerve
impulse propagation along an axon (FitzHugh [1961], Nagumo, Arimoto &
Yoshizawa [1962]):

∂u

∂t
=

∂2u

∂x2 − fa(u)− v,

∂v

∂t
= bu,

where u = u(x, t) represents the membrane potential; v = v(x, t) is a
phenomenological “recovery” variable; fa(u) = u(u − a)(u − 1), 1 > a >
0, b > 0, −∞ < x < +∞, t > 0.
Traveling waves are solutions to these equations of the form

u(x, t) = U(ξ), v(x, t) = V (ξ), ξ = x + ct,

where c is an a priori unknown wave propagation speed. The functions U(ξ)
and V (ξ) define profiles of the waves. They satisfy the following system of
ordinary differential equations:

U̇ = W,

Ẇ = cW + fa(U) + V,

V̇ = b
cU,

(6.18)

where the dot means differentiation with respect to “time” ξ. System (6.18)
is called a wave system. It depends on three positive parameters (a, b, c).

(c)(a) (b)

FIGURE 6.35. Basic (a) and double (b, c) homoclinic orbits.
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Any bounded orbit of (6.18) corresponds to a traveling wave solution of
the FitzHugh-Nagumo system at parameter values (a, b) propagating with
velocity c.

(1)P
b1

(1)P
b2

(1)P
b3

b3
D b2

D b1
D

c

a

FIGURE 6.36. Bifurcation curves of the wave system (6.16):
b1 = 0.01; b2 = 0.005; b3 = 0.0025.

For all c > 0 the wave system has a unique equilibrium 0 = (0, 0, 0) with
one positive eigenvalue λ1 and two eigenvalues λ2,3 with negative real parts
(see Exercise 2 in Chapter 2). The equilibrium can be either a saddle or a
saddle-focus with a one-dimensional unstable and a two-dimensional stable
invariant manifold, Wu,s(0). The transition between saddle and saddle-
focus cases is caused by the presence of a double negative eigenvalue; for
fixed b > 0 this happens on the curve

Db = {(a, c) : c4(4b− a2) + 2ac2(9b− 2a2) + 27b2 = 0}.

Several boundaries Db in the (a, c)-plane for different values of b are de-
picted in Figure 6.36 as dotted lines. The saddle-focus region is located
below each boundary and disappears as b→ 0.

A branch Wu
1 (0) of the unstable manifold leaving the origin into the

positive octant can return back to the equilibrium, forming a homoclinic
orbit Γ0 at some parameter values [Hastings 1976]. These parameter values
can be found only numerically with the help of the methods described in
Chapter 10. Figure 6.36 presents several homoclinic bifurcation curves P (1)

b

in the (a, c)-plane computed by Kuznetsov & Panfilov [1981] for different
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FIGURE 6.38. Impulses with (a) monotone and (b) oscillating “tails”.
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but fixed values of b. Looking at Figure 6.36, we can conclude that for
all b > 0 the bifurcation curve P (1)

b passes through the saddle-focus region
delimited by Db (see Figure 6.37, where the curves Db and P (1)

b correspond-
ing to b = 0.0025 are superimposed). Actually, for b > 0.1, the homoclinic
bifurcation curve belongs entirely to the saddle-focus region. Any homo-
clinic orbit defines a traveling impulse. The shape of the impulse depends
very much on the type of the corresponding equilibrium: It has a monotone
“tail” in the saddle case and an oscillating “tail” in the saddle-focus case
(see Figure 6.38).

The saddle quantity σ0 is always positive for c > 0 (see Exercise 11).
Therefore, the phase portraits of (6.14) near the homoclinic curve P

(1)
b

are described by Theorems 6.4 and 6.5. In particular, near the homoclinic
bifurcation curve P

(1)
b in the saddle-focus region, system (6.18) has an

infinite number of saddle cycles. These cycles correspond to periodic wave
trains in the FitzHugh-Nagumo model [Feroe 1981]. Secondary homoclinic
orbits existing in (6.18) near the primary homoclinic bifurcation correspond
to double traveling impulses (see Figure 6.39) [Evans, Fenichel & Feroe
1982]. It can be shown using results by Belyakov [1980] (see Kuznetsov

c

FIGURE 6.39. A double impulse.

& Panfilov [1981]) that secondary homoclinic bifurcation curves P
(2)
b,j in

(6.18) originate at points A1,2 where P (1)
b intersects Db (see Figure 6.37 for

a sketch). ✸

6.4 Homoclinic bifurcations in n-dimensional
systems

It has been proved (see references in Appendix 2) that there exists a
parameter-dependent invariant center manifold near homoclinic bifurca-
tions. This allows one to reduce the study of generic bifurcations of orbits
homoclinic to hyperbolic equilibria in n-dimensional systems with n > 3
to that in two-, three-, or four-dimensional systems. In this section, we
discuss which homoclinic orbits are generic in n-dimensional case and for-
mulate the Homoclinic Center Manifold Theorem for such orbits. Then we
derive from this theorem some results concerning generic homoclinic bifur-
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cations in n-dimensional systems, first obtained by L.P. Shil’nikov without
a center-manifold reduction.

6.4.1 Regular homoclinic orbits: Melnikov integral
Consider a system

ẋ = f(x, α), x = (x1, x2, . . . , xn)T ∈ R
n, α ∈ R

1, (6.19)

where f is C∞ smooth and n ≥ 3. Suppose, that (6.19) has a hyperbolic
equilibrium x0 at α = 0, and the Jacobian matrix A0 = fx(x0, 0) has n+
eigenvalues with positive real parts

0 < Re λ1 ≤ Re λ2 ≤ · · · ≤ Re λn+

and n− eigenvalues with negative real parts

Re µn− ≤ Re µn−−1 ≤ · · · ≤ Re µ1 < 0.

For all sufficiently small |α|, the equilibrium persists and has unstable and
stable local invariant manifolds Wu and W s that can be globally extended,
dimWu,s = n±, n+ + n− = n. Assume that (6.19) has at α = 0 an orbit
Γ0 homoclinic to x0 and denote by x0(t) a solution of (6.19) corresponding
to Γ0.

As we have seen in Section 6.1, the intersection of W s(x0) and Wu(x0)
along Γ0 cannot be transversal, since the vector ẋ0(t0) = f(x0(t0), 0) is
tangent to both manifolds at any point x0(t0) ∈ Γ0. However, in the generic
case, ẋ0(t0) is the only such vector:

Tx0(t0)W
u(x0) ∩ Tx0(t0)W

s(x0) = span{ẋ0(t0)}.

Thus, generically,

codim(Tx0(t0)W
s(x0) + Tx0(t0)W

s(x0)) = 1.

A generic perturbation splits the manifolds W s(x0) and Wu(x0) by an
O(α)-distance in the remaining direction for α = 0. Such homoclinic orbits
are called regular.

As in Section 6.2, introduce the extended system:{
ẋ = f(x, α),
α̇ = 0, (6.20)

with the phase variables (x, α)T ∈ R
n+1. Let x0(α) denote a one-parameter

family of the saddles in (6.19) for small |α|, x0(0) = x0. This family defines
an invariant set of (6.20) – a curve of equilibria. This curve has the unstable
and stable manifolds, Wu and Ws, whose slices α = const coincide with
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the corresponding unstable and stable manifolds Wu and W s of the sad-
dle x0(α). It is clear that the regularity of the homoclinic orbit translates
exactly into the transversality of the intersection of Wu and Ws along Γ0
at α = 0 in the (n + 1)-dimensional phase space of (6.20):

T(x0(t0),0)Wu + T(x0(t0),0)Ws = R
n+1.

Figure 6.22 in Section 6.2 illustrates the case n = 2.
The transversality of the intersection of Wu and Ws can be expressed

analytically. Namely, consider the linearization of (6.20) around x0(t) at
α = 0: {

u̇ = fx(x0(t), 0)u + fα(x0(t), 0)µ,
µ̇ = 0. (6.21)

If (u0, µ0)T is a vector tangent to either Wu or Ws, then the solution vector
(u(t), µ(t))T of this system with the initial data (u0, µ0)T is always tangent
to the corresponding invariant manifold. The vector function(

ζ(t)
µ(t)

)
=

(
ẋ0(t)

0

)
is a bounded solution to (6.21) that is tangent to both invariant mani-
folds Wu and Ws along the curve of their intersection.8 We can multiply
this solution by a scalar to get another bounded solution to (6.21). The
transversality of the intersection of Wu and Ws along Γ0 at α = 0 means
that (ẋ0(t), 0)T is the unique to within a scalar multiple bounded solution
to the extended system (6.21). Taking into account that the equation for
µ in (6.21) is trivial, we can conclude that ẋ0(t) is the unique to within a
scalar multiple solution to the variational equation around Γ0:

u̇ = A(t)u, u ∈ R
n, (6.22)

where A(t) = fx(x0(t), 0). This implies that the adjoint variational equation
around Γ0:

v̇ = −AT (t)v, v ∈ R
n, (6.23)

has the unique to within a scalar multiple bounded solution v(t) = η(t).
Indeed, if X(t) is the fundamental matrix solution to (6.22), i.e., Ẋ(t) =
A(t)X(t), X(0) = In, then Y (t) = [XT (t)]−1 is the fundamental matrix
solution to (6.23), so equations (6.22) and (6.23) have the same number of
linearly independent bounded solutions. Actually, the vectors ζ(t) and η(t)
are orthogonal for each t ∈ R

1. Using (6.22) and (6.23), we get

d

dt
〈η, ζ〉 = 〈η̇, ζ〉+ 〈η, ζ̇〉 = −〈AT η, ζ〉+ 〈η,Aζ〉 = −〈η,Aζ〉+ 〈η,Aζ〉 = 0,

8Actually, this solution tends to zero exponentially fast as t → ±∞ since
ẋ0(t) = f(x0(t), 0).
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i.e., 〈η(t), ζ(t)〉 = C. The constant C is zero, since both η(t) and ζ(t) tend
to zero exponentially fast as t→ ±∞:

〈η(t), ζ(t)〉 = 0, t ∈ R
1.

Meanwhile, similar arguments show that η(t) is orthogonal to any vector
tangent to either W s(x0) or Wu(x0). Moreover, the transversality is equiv-
alent to the condition

Mα(0) =
∫ +∞

−∞
〈η(t), fα(x0(t), 0)〉 dt = 0. (6.24)

If the intersection of Wu and Ws is nontransversal, there exists another
bounded solution (ζ0(t), µ0)T to (6.21) with µ0 = 0. Taking the scalar
product of (6.21) with η and integrating over time, we get

µ0

∫ +∞

−∞
〈η(t), fα(x0(t), 0)〉 dt =

∫ +∞

−∞
〈η(t), ζ̇0(t)−A(t)ζ0(t)〉 dt

= 〈η(t), ζ0(t)〉|+∞
−∞ −

∫ +∞

−∞
〈η̇(t) + AT (t)η(t), ζ0(t)〉 dt = 0.

The integral in (6.24) is called the Melnikov integral. This condition al-
lows us to verify the regularity of the manifold splitting in n-dimensional
systems with n ≥ 2. Moreover, one can introduce a scalar split function
M(α) that measures the displacement of the invariant manifolds W s(x0)
and Wu(x0) near the point x0(0) ∈ Γ0 in the direction defined by the vector
η(0) and has the property

M(α) = Mα(0)α + O(α2),

where Mα(0) is given by (6.24).
In the two-dimensional case the Melnikov integral Mα(0) can be com-

puted more explicitly. Write (6.19) in coordinates:{
ẋ1 = f1(x, α),
ẋ2 = f2(x, α).

The solution ζ(t) to the variational equation (6.22) has the form

ζ(t) = ẋ0(t) =
(

f1(x0(t), 0)
f2(x0(t), 0)

)
.

Since η(t) ⊥ ζ(t), we have

η(t) = ϕ(t)
( −f2(x0(t), 0)

f1(x0(t), 0)

)
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for some scalar function ϕ(t). It is easy to verify that this function satisfies
the equation

ϕ̇(t) = −(div f)(x0(t), 0)ϕ(t),

where

div f =
(
∂f1

∂x1
+
∂f2

∂x2

)
is the divergence of the vector field f . Assuming ϕ(0) = 1, we obtain

ϕ(t) = e
−
∫ t

0
(div f)(x0(τ),0) dτ

and

Mα(0) =
∫ +∞

−∞
exp

[
−

∫ t

0

(
∂f1

∂x1
+
∂f2

∂x2

)
dτ

](
f1
∂f2

∂α
− f2

∂f1

∂α

)
dt,

(6.25)
where all expressions with f = (f1, f2)T are evaluated along the homoclinic
solution x0(·) at α = 0.

Remark:
Suppose that (6.4) is a Hamiltonian system at α = 0, and α is a small

parameter in front of the perturbation, i.e.,

ẋ = J(∇H)(x) + αg(x), x ∈ R
2, α ∈ R

1,

where

J =
(

0 1
−1 0

)
, ∇H =

(
∂H

∂x1
,
∂H

∂x2

)T

,

and H = H(x) is the Hamiltonian function. Then the Melnikov integral
(6.25) can be simplifyed further. In such a case, div f ≡ 0 and the ho-
moclinic orbit Γ0 belongs to a level curve {x : H(x) = H(x0)}. Assume
that its interior is a domain Ω = {H(x) ≤ H(x0)}. Then, applying Green’s
theorem reduces the Melnikov integral along Γ0 to the following domain
integral:

Mα(0) =
∫

Ω
(div g)(x0(t)) dω. ♦

6.4.2 Homoclinic center manifolds
To formulate the Homoclinic Center Manifold Theorem, it is useful to dis-
tinguish the eigenvalues that are closest to the imaginary axis (see Figure
6.40).

Definition 6.9 The eigenvalues with positive (negative) real part that are
closest to the imaginary axis are called the unstable (stable) leading eigen-
values, while the corresponding eigenspaces are called the unstable (stable)
leading eigenspaces.
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FIGURE 6.40. Splitting of the eigenvalues.

Definition 6.10 The stable and unstable leading eigenvalues together are
called central eigenvalues, while the corresponding eigenspace is called the
central eigenspace.

Almost all orbits on Wu(W s) tend to the equilibrium as t → −∞
(t → +∞) along the corresponding leading eigenspace that we denote by
Tu(T s). Exceptional orbits form a nonleading manifold Wuu(W ss) tangent
to the eigenspace Tuu(T ss) corresponding to the nonleading eigenvalues.
The central eigenspace T c is the direct sum of the stable and unstable
leading eigenspaces: T c = Tu ⊕ T s. Denote by λ0 the minimal Re λj cor-
responding to the nonleading unstable eigenvalues and by µ0 the maximal
Re µj corresponding to the nonleading stable eigenvalues (see Figure 6.40).
By the construction,

µ0 < Re µ1 < 0 < Re λ1 < λ0,

where λ1 is a leading unstable eigenvalue and µ1 is a leading stable eigen-
value. Provided both nonleading eigenspaces are nonempty, introduce two
real numbers:

gs =
µ0

Re µ1
, gu =

λ0

Re λ1
.

These numbers characterize the relative gaps between the corresponding
nonleading and leading eigenvalues and satisfy gs,u > 1. If one of the non-
leading eigenspaces is empty, set formally gs = −∞ or gu = +∞.

Now notice that the variational equation (6.22) is a nonautonomous lin-
ear system with matrix A(t) that approaches asymptotically a constant
matrix, namely

lim
t→±∞A(t) = A0.
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Therefore, for t → ±∞, solutions of (6.21) behave like solutions of the
autonomous linear system

v̇ = A0v

and we can introduce four linear subspaces of R
n:

Euu(t0) =
{
v0 : lim

t→−∞
v(t)
‖v(t)‖ ∈ Tuu

}
,

Ess(t0) =
{
v0 : lim

t→+∞
v(t)
‖v(t)‖ ∈ T ss

}
,

Ecu(t0) =
{
v0 : lim

t→−∞
v(t)
‖v(t)‖ ∈ T c ⊕ Tuu

}
,

Ecs(t0) =
{
v0 : lim

t→+∞
v(t)
‖v(t)‖ ∈ T c ⊕ T ss

}
,

where v(t) = Φ(v0, t0, t) is the solution to (6.21) with the initial data v = v0
at t = t0, and ⊕ stands for the direct sum of the linear subspaces. Finally,
define

Ec(t0) = Ecu(t0) ∩ Ecs(t0).

Now we can formulate without proof the following theorem.

Theorem 6.7 (Homoclinic Center Manifold) Suppose that (6.19) has
at α = 0 a hyperbolic equilibrium x0 = 0 with a homoclinic orbit

Γ0 = {x ∈ R
n : x = x0(t), t ∈ R

1}.

Assume the following conditions hold:

(H.1) ẋ0(0) ∈ Ec(0);
(H.2) Euu(0)⊕ Ec(0)⊕ Ess(0) = R

n.

Then, for all sufficiently small |α|, (6.19) has an invariant manifold Mα

defined in a small neighborhood U0 of Γ0 ∪ x0 and having the following
properties:

(i) x0(t0) ∈ M0 and the tangent space Tx0(t0)M0 = Ec(t0), for all
t0 ∈ R

1;
(ii) any solution to (6.19) that stays inside U0 for all t ∈ R

1 belongs to
Mα;

(iii) each Mα is Ck smooth, where k ≥ 1 is the maximal integer number
satisfying both

gs > k and gu > k. ✷

Definition 6.11 The manifold Mα is called the homoclinic center mani-
fold.
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Remarks:
(1) The conditions (H.1) and (H.2) guarantee that similar conditions

hold for all t0 = 0. The first condition implies that the homoclinic orbit
Γ0 approaches the equilibrium x0 along the leading eigenspaces for both
t → +∞ and t → −∞. The second condition means that the invariant
manifolds W s(x0) and Wu(x0) intersect at α = 0 along the homoclinic
orbit Γ0 in the “least possible” nontransversal manner.

(2) The manifoldM0 is exponentially attracting along the Ess-directions
and exponentially repelling along the Euu-directions. The same property
holds for Mα for small |α| = 0 with Ess,uu replaced by close subspaces.

(3) The homoclinic center manifold has only finite smoothness Ck that
increases with the relative gaps gs,u. The restriction of (6.19) to the invari-
ant manifold Mα is a Ck-system of ODEs, provided proper coordinates on
Mα are choosen. This restricted system has an orbit homoclinic to x0 at
α = 0.

(4) Actually, under the assumptions of Theorem 6.7, the homoclinic cen-
ter manifold belongs to the class Ck,β with some 0 < β < 0, i.e., can locally
be represented as the graph of a function whose derivatives of order k are
Hölder-continuous with index β. ♦

Γ

Γ0

(a)

0

(b)
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FIGURE 6.41. Homoclinic center manifold in R
3.

The theorem is illustrated for R
3 in Figure 6.41. Only the critical ho-

moclinic center manifold M0 at α = 0 is presented. It is assumed that
all eigenvalues of x0 are real and simple: µ2 < µ1 < 0 < λ1. The central
eigenspace T c of the saddle x0 is two-dimensional and is spanned by the
(leading) unstable eigenvector v1 (A0v1 = λ1v1) and the leading stable
eigenvector w1 (A0w1 = µ1w1). The manifold M0 is two-dimensional, con-
tains Γ0, and is tangent to T c at x0. It is exponentially attracting in the
Ess-direction. The manifold can be either orientable (Figure 6.41(a)) or
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nonorientable (Figure 6.41(b)). In this case, condition (H.2) is equivalent
to the strong inclination property (see Section 6.3), so the orientability of
M0 depends on whether the closure of Wu near Γ0 is orientable or nonori-
entable (cf. Figure 6.26).

6.4.3 Generic homoclinic bifurcations in R
n

Generically, the leading eigenspaces T s,u are either one- or two-dimensional.
In the first case, an eigenspace corresponds to a simple real eigenvalue, while
in the second case, it corresponds to a simple pair of complex-conjugate
eigenvalues. Reversing the time direction if necessary, we have only three
typical configurations of the leading eigenvalues:

(a) (saddle) The leading eigenvalues are real and simple: µ1 < 0 < λ1
(Figure 6.42(a));

(b) (saddle-focus) The stable leading eigenvalues are complex and simple:
µ1 = µ̄2, while the unstable leading eigenvalue λ1 is real and simple (Figure
6.42(b));

(c) (focus-focus) The leading eigenvalues are complex and simple: λ1 =
λ̄2, µ1 = µ̄2 (Figure 6.42(c)).

(b) (c)(a)

µ1

λ 2

λ

1

µ2

µ1

λ

1

1

µ1

µ2

λ

FIGURE 6.42. Leading eigenvalues in generic Shil’nikov cases.

Definition 6.12 The saddle quantity σ of a hyperbolic equilibrium is the
sum of the real parts of its leading eigenvalues.

Therefore,
σ = Re λ1 + Re µ1,

where λ1 is a leading unstable eigenvalue and µ1 is a leading stable eigen-
value. Assume that the following nondegeneracy condition holds at α = 0:

(H.0) σ0 = 0 and the leading eigenspaces T s,u are either one- or two-di-
mensional.

The following theorems are direct consequences of Theorem 6.7 and the
results obtained in Sections 6.2–6.4.
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Theorem 6.8 (Saddle) For any generic one-parameter system having a
saddle equilibrium point x0 with a homoclinic orbit Γ0 at α = 0 there exists
a neighborhood U0 of Γ0 ∪ x0 in which a unique limit cycle Lα bifurcates
from Γ0 as α passes through zero. Moreover, dimW s(Lα) = n− + 1 if
σ0 < 0, and dimW s(Lα) = n− if σ0 > 0. ✷

In the saddle case, the homoclinic center manifoldMα is two-dimensional
and is a simple (orientable) or a twisted (nonorientable or Möbius) band. At
α = 0 the restricted system has a homoclinic orbit. The proof of Theorem
6.2 (see Section 6.2) can be carried out with only a slight modification.
Namely, the coefficient a(β) of the global map Q can now be either positive
(orientable case) or negative (Möbius case). In this case conditions (H.1)
and (H.2) imply that the Wu,s intersects itself near the saddle along the
corresponding nonleading manifold W ss,uu. In the three-dimensional case
this condition means that the homoclinic orbit Γ0 is either simple or twisted
(as defined in Section 6.3). Thus, we have an alternative way to prove
Theorems 6.2 and 6.4.

Theorem 6.9 (Saddle-focus) For any generic one-parameter system hav-
ing a saddle-focus equilibrium point x0 with a homoclinic orbit Γ0 at α = 0
there exists a neighborhood U0 of Γ0 ∪ x0 such that one of the following
alternatives hold:

(a) if σ0 < 0, a unique limit cycle Lα bifurcates from Γ0 in U0 as α
passes through zero, dimW s(Lα) = n− + 1;

(b) if σ0 > 0, the system has an infinite number of saddle limit cycles in
U0 for all sufficiently small |α|. ✷

In this case, the homoclinic center manifold Mα is three-dimensional. At
α = 0 the restricted system has a homoclinic orbit to the saddle-focus, so
we can repeat the proof of Theorem 6.5 (in case (a)) and that of Theorem
6.5 (in case (b)) on this manifold.

Theorem 6.10 (Focus-focus) For any generic one-parameter system hav-
ing a focus-focus equilibrium point x0 with a homoclinic orbit Γ0 at α = 0
there exists a neighborhood U0 of Γ0∪x0 in which the system has an infinite
number of saddle limit cycles in U0 for all sufficiently small |α|. ✷

Here, the homoclinic center manifold Mα is four-dimensional and carries
a homoclinic orbit to the focus-focus at α = 0. Thus, the proof of Theorem
6.11 from Appendix 1 is valid.

The genericity conditions mentioned in the theorems are the nondegener-
acy conditions (H.0), (H.1), and (H.2) listed above, as well as the transver-
sality condition:

(H.3) the homoclinic orbit Γ0 is regular, i.e., the intersection of the tan-
gent spaces Tx0(t)W

s and Tx0(t)W
u at each point x0(t) ∈ Γ0 is one-dimen-

sional and W s and Wu split by an O(α) distance as α moves away from
zero.
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Recall that (H.3) can be reformulated using the Melnikov integral as∫ +∞

−∞
〈η(t), fα(x0(t), 0)〉 dt = 0,

where η(t) is the unique to within a scalar multiple bounded solution to
the adjoint variational equation around Γ0:

u̇ = −AT (t)u, u ∈ R
n.

6.5 Exercises

(1) Construct a one-parameter family of two-dimensional Hamiltonian sys-
tems {

ẋ = Hy,
ẏ = −Hx,

where H = H(x, y, α) is a (polynomial) Hamilton function, having a ho-
moclinic orbit. (Hint: Orbits of the system belong to level curves of the
Hamiltonian: H(x, y, α) = const.)

(2) (Homoclinc orbit in a non-Hamiltonian system) Show that the
system {

ẋ = y,
ẏ = x3 + x + xy,

has a saddle at the origin with a “big” homoclinic orbit. (Hint: Use the
symmetry of the system under a reflection and time reversal: x �→ −x, t �→
−t.) Is this orbit nondegenerate?

(3) Prove Lemma 6.1 in the planar case using rotation of the vector field.
(Hint: See Andronov et al. [1973].)

(4) (Heteroclinic bifurcation) Prove that the system{
ẋ = α + 2xy,
ẏ = 1 + x2 − y2,

undergoes a heteroclinic bifurcation at α = 0.

(5) (Asymptote of the period) Find an asymptotic form of the cycle
period T (β) near the homoclinic bifurcation on the plane. Is this result
valid for the n-dimensional case? (Hint: Use the fact that a point on the
cycle spends the most time near the saddle.)
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(6) (Multiplier of the cycle near homoclinic bifurcation) Show that
the (nontrivial) multiplier of the cycle bifurcating from a homoclinic orbit
in a planar system approaches zero as β → 0. Can this result be generalized
to higher dimensions?

(7) (C1-linearization near the saddle on the plane)
(a) Draw isochrones, τ1,2 = const, of constant “exit” times from the unit

square Ω for the linear system (6.7). Check that these lines are transversal.
How will the figure change in the nonlinear case? Prove that the map Φ(y)
constructed in the proof of Theorem 6.1 is a homeomorphism.

(b) Prove that the map Φ(y) has only first-order continuous partial
derivatives at y = 0. (Hint: Φy(0) = I, see Deng [1989].)

(8) (Dependence of orbits upon a singular parameter) Consider the
following slow-fast system: {

ẋ = x2 − y,
ẏ = −ε,

where ε is small but positive. Take an orbit of the system starting at

x0 = −(1 + ε),
y0 = 1.

Let y1 = y1(ε) be the ordinate of the point of intersection between the
orbit and the vertical line x = 1.

(a) Show that the derivative of y1(ε) with respect to ε tends to −∞ as
ε → 0. (Hint: y′

1(ε) = −T (ε), where T is the “flight” time from the initial
point (x0, y0) to the point (1, y1).)

(b) Check that the result will not change if we take x0 = −(1 + ϕ(ε))
with any smooth positive function ϕ(ε) → 0 for ε→ 0.

(c) Explain the relationship between the above results and nondifferen-
tiability of the split function in the slow-fast planar system used as the
example in Section 2.

(d) Prove that, actually, y1(ε) ∼ ε2/3. (Hint: See Mishchenko & Rozov
[1980].)

(9) (Strong inclination property) Consider a system that is linear,
ẋ1 = λ1x1,
ẋ2 = λ2x2,
ẋ3 = λ3x3,

where λ1 > 0 > λ2 > λ3, inside the unit cube Ω = {(x1, x2, x3) : −1 ≤
xi ≤ 1, i = 1, 2, 3}. Let ϕt denote its evolution operator (flow).

(a) Take a line l0 within the plane x1 = 1 passing through the x1-axis
and show that its image under the flow (i.e., l(t) = ϕtl with t < 0) is also
a line in some plane x1 = const passing through the same axis.
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(b) Show that the limit
lim

t→−∞ϕtl

is the same for all initial lines except the line l0 = {x1 = 1} ∩ {x3 = 0}.
What is the limit?

(c) Assume that the system outside the cube Ω possesses an orbit that
is homoclinic to the origin. Using part (b), show that generically the sta-
ble manifold W s(0) intersects itself along the nonleading eigenspace x1 =
x2 = 0. Reformulate the genericity condition as the condition of transversal
intersection of W s(0) with some other invariant manifold near the saddle.

(d) Sketch the shape of the stable manifold in the degenerate case. Guess
which phase portraits can appear under perturbations of this degenerate
system. (Hint: See Yanagida [1987], Deng [1993a].)

(10) (Proofs of Theorems 6.2–6.4 revisited)
(a) Compute the near-to-saddle map ∆ in the saddle and saddle-focus

cases in R
3 assuming that the system is linear inside the unit cube Ω =

{(x1, x2, x3) : −1 ≤ xi ≤ 1, i = 1, 2, 3} and the equilibrium point is located
at the origin.

(b) Write a general form of the linear part of the global mapQ : (x2, x3) �→
(x1, x3) using the split function as a parameter. How does the formula re-
flect the twisting of the orbit that is homoclinic to the saddle?

(c) Compose a superposition of the maps defined in parts (a) and (b)
of the exercise and write the system of equations for its fixed points in
the saddle and saddle-focus cases. Analyze the solutions of this system by
reducing it to a scalar equation for the x1-coordinate of the fixed points.

(11) Show that the saddle quantity σ0 of the equilibrium in the wave system
for the FitzHugh-Nagumo model is positive. (Hint: σ1 = λ1 + λ2 + λ3 =
c > 0.)

(12) (Singular homoclinic in R
3)

(a) Check that the following slow-fast system (cf. Deng [1994]),
ẋ = (z + 1) + (1− z)[(x− 1)− y],
ẏ = (1− z)[(x− 1) + y],
εż = (1− z2)[z + 1−m(x + 1)]− εz,

has a homoclinic orbit to the equilibrium (1, 0,−1) in the singular limit
ε = 0, provided m = 1. (Hint: First, formally set ε = 0 and analyze the
equations on the slow manifolds defined by z = ±1. Then plot the shape
of the surface ż = 0 for small but positive ε.)

(b) Could you prove that there is a continuous functionm = m(ε), m(0) =
1, defined for ε ≥ 0, such that for the corresponding parameter value the
system has a saddle-focus with a homoclinic orbit for small ε > 0? What is
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the sign of the saddle quantity? How many periodic orbits we one expect
near the bifurcation?

(c) If part (b) of the exercise is difficult for you, try to find the homoclinic
orbit numerically using the boundary-value method described in Chapter
10 and the singular homoclinic orbit from part (a) as the initial guess.

(13) (Melnikov integral) Prove that the Melnikov integral (6.25) is
nonzero for the homoclinic orbit Γ0 in the system (6.8) from Example 6.1.
(Hint: Find t± = t±(x) along the upper and lower halfs of Γ0 by integrating
the first equation of (6.8). Then transform the integral (6.25) into the sum
of two integrals over x ∈ [0, 1].)

6.6 Appendix 1: Focus-focus homoclinic
bifurcation in four-dimensional systems

In this appendix we study dynamics of four-dimensional systems near an
orbit homoclinic to a hyperbolic equilibrium with two complex pairs of
eigenvalues (focus-focus). This case is similar to the saddle-focus homoclinic
case.

Consider a system

ẋ = f(x, α), x ∈ R
4, α ∈ R

1, (A.1)

where f is a smooth function. Assume that at α = 0 the system has a hy-
perbolic equilibrium x0 = 0 with two pairs of complex eigenvalues, namely,

λ1,2(0) = ρ1(0)± iω1(0), λ3,4(0) = ρ2(0)± iω2(0),

where
ρ1(0) < 0 < ρ2(0), ω1,2(0) > 0,

(see Figure 6.43). Generically, the saddle quantity is nonzero:

(H.1) σ0 = ρ1(0) + ρ2(0) = 0.

Actually, only the case

σ0 = ρ1(0) + ρ2(0) < 0

will be treated, because we can reverse time otherwise. Since λ = 0 is
not an eigenvalue of the Jacobian matrix fx(x0, 0), the Implicit Function
Theorem guarantees the persistence of a close hyperbolic equilibrium with
two pairs of complex eigenvalues for all sufficiently small |α|. Assuming
that the origin of coordinates is already shifted to this equlibrium, we can
write (A.1) in the form

ẋ = A(α)x + F (x, α), (A.2)
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FIGURE 6.43. Eigenvalues of a focus-focus.

where F = O(‖x‖2) and the matrix A(α) has the eigenvalues

λ1,2(α) = ρ1(α)± iω1(α), λ3,4(α) = ρ2(α)± iω2(α),

with ρi(0), ωi(0) satisfying the imposed conditions.
The focus-focus equilibrium has the two-dimensional stable and unsta-

ble manifolds W s,u that can be globally extended. Suppose that at α = 0
the manifolds Wu and W s intersect along a homoclinic orbit Γ0. We as-
sume that the intersection of the tangent spaces to the stable and unstable
manifolds is one-dimensional at any point x ∈ Γ0:9

(H.2) dim (TxWu ∩ TxW s) = 1.

This condition holds generically for systems with a homoclinic orbit to a
hyperbolic equilibrium.

The following theorem by Shil’nikov is valid.

Theorem 6.11 For any system (A.2), having a focus-focus equilibrium
point x0 with a homoclinic orbit Γ0 at α = 0 and satisfying the nondegen-
eracy conditions (H.1) and (H.2), there exists a neighborhood U0 of Γ0∪x0
in which the system has an infinite number of saddle limit cycles in U0 for
all sufficiently small |α|. ✷

Sketch of the proof:
First consider the case α = 0. Write the system (A.2) in its real eigen-

basis. This can be done by applying to (A.2) a nonsingular linear transfor-
mation putting A in its real Jordan form. In the eigenbasis, the system at
α = 0 will take the form

ẋ1 = ρ1x1 − ω1x2 + G1(x),
ẋ2 = ω1x1 + ρ1x2 + G2(x),
ẋ3 = ρ2x3 − ω2x4 + G3(x),
ẋ4 = ω2x3 + ρ2x4 + G4(x),

(A.3)

9This intersection is spanned by the phase velocity vector f(x, 0) for x ∈ Γ0.
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where old notations for the phase variable are preserved and G = O(‖x‖2).
Now introduce new coordinates y that locally linearize the system (A.3).
Due to a theorem by Belitskii (see Appendix 2) there exists a nonlinear
transformation

y = x + g(x),

where g is a C1 function (gx(0) = 0), that locally conjugates the flow
corresponding to (A.3) with the flow generated by the linear system:

ẏ1 = ρ1y1 − ω1y2,
ẏ2 = ω1y1 + ρ1y2,
ẏ3 = ρ2y3 − ω2y4,
ẏ4 = ω2y3 + ρ2y4.

(A.4)

In the coordinates y ∈ R
4 the unstable manifold Wu is locally represented

by y1 = y2 = 0, while the stable manifold W s is given by y3 = y4 = 0.
Suppose that the linearization (A.4) is valid in the unit 4-cube {|yi| ≤
1, i = 1, 2, 3, 4} which can always be achieved by a linear scaling.
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FIGURE 6.44. Cross-sections Σ0 and Π0.

Write (A.4) in the polar coordinates
ṙ1 = ρ1r1,

θ̇1 = ω1,
ṙ2 = ρ2r2,

θ̇2 = ω2,

(A.5)

by substituting

y1 = r1 cos θ1, y2 = r1 sin θ1, y3 = r2 cos θ2, y4 = r2 sin θ2.

Introduce two three-dimensional cross-sections for (A.5):

Σ = {(r1, θ1, r2, θ2) : r2 = 1},
Π = {(r1, θ1, r2, θ2) : r1 = 1},



244 6. Homoclinic Bifurcations

and two submanifolds within these cross-sections, namely:

Σ0 = {(r1, θ1, r2, θ2) : r1 ≤ 1, r2 = 1} ⊂ Σ,
Π0 = {(r1, θ1, r2, θ2) : r1 = 1, r2 ≤ 1} ⊂ Π.

Σ0 and Π0 are three-dimensional solid tori that can be vizualized as in
Figure 6.44, identifying the left and the right faces. The stable manifold
W s intersects Σ0 along the center circle r1 = 0, while the unstable manifold
Wu intersects Π0 along the center circle r2 = 0. Without loss of generality,
assume that the homoclinic orbit Γ0 crosses Σ0 at the point with θ1 = 0,
while its intersection with Π0 occurs at θ2 = 0.

As usual, define a Poincaré map P : Σ → Σ along the orbits of the
system and represent this map as a superposition P = Q ◦∆ of two maps:
a near-to-saddle map ∆ : Σ → Π and a map Q : Π → Σ near the global
part of the homoclinic orbit Γ0. Now introduce a three-dimensional solid
cylinder S ⊂ Σ0

S = {(r1, θ1, r2, θ2) : r1 ≤ 1, r2 = 1, −δ ≤ θ2 ≤ δ}

with some δ > 0 fixed (see Figure 6.44), and trace its image under the
Poincaré map P .

����

W0Γ u

∆S

FIGURE 6.45. The image ∆S in Π0.

The map ∆ : Σ → Π can be computed explicitly using (A.5). Namely,

∆ :


r1
θ1
1
θ2

 �→


1

θ1 + ω1
ρ1

ln 1
r1

r
− ρ2

ρ1
1

θ2 + ω2
ρ1

ln 1
r1

 , (A.6)

since the flight time from Σ to Π is equal to

T =
1
ρ1

ln
1
r1
.
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FIGURE 6.46. The section of ∆S by the plane θ1 = 0.
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FIGURE 6.47. The image P (S) and the preimage S in Σ.
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P  Sk
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(    )

FIGURE 6.48. The image P (Sk) and the preimage Sk in Σ.

According to (A.6), the image ∆S ⊂ Π0 is a solid “toroidal scroll” sketched
in Figure 6.45. The section of the image by the plane θ2 = 0 is presented
in Figure 6.46.

The C1 map Q : Π → Σ places the scroll back into the cross-section Σ
by rotating and deforming it such that the image Q(∆S) cuts through the
cylinder S (see Figure 6.47). The center circle r2 = 0 of Π0 is transformed
by Q into a curve intersecting the center circle r1 = 0 of Σ0 at a nonzero
angle due to the condition (H.2).

The geometry of the constructed Poincaré map P implies the presence
of three-dimensional analogs of Smale’s horseshoe. Indeed, let us partition
S into a series of solid annuli: S = ∪∞

k=0Sk, where

Sk =

{
(r1, θ1, r2, θ2) : e−2π(k + 1)ρ2

ω1 < r1 ≤ e
−2πkρ2

ω1 , r2 = 1, |θ2| ≤ δ

}
.

Provided k is sufficiently large, Sk is mapped by P into a “one-turn scroll”
P (Sk) that intersects Sk by two disjoint domains (see Figure 6.48). This
is a key feature of Smale’s example. Thus, at α = 0, the system (A.1)
has an infinite number of Smale’s horseshoes, each of them implying the
existence of a Cantor invariant set containing an infinite number of saddle
limit cycles.

If |α| is small but nonzero, the above construction can still be carried out.
However, generically, the manifolds W s and Wu split by O(α) distance, so
the image of the center circle of Π0 does not intersect that of Σ0. Thus, only
a finite number of the three-dimensional horseshoes remain. Nevertheless,
they still give an infinite number of cycles near Γ0.
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6.7 Appendix 2: Bibliographical notes

The homoclinic orbit bifurcation in planar dynamical systems was analyzed
by Andronov & Leontovich [1939] (an exposition with much detail can
be found in Andronov et al. [1973]). C1-linearization was not known to
Andronov; therefore he had to give delicate estimates for the near-to-saddle
map (see Wiggins [1988] for such estimates in the n-dimensional case). Ck-
linearization near a hyperbolic equilibrium is studied by Sternberg [1957]
and Belitskii [1973, 1979], as well as by many other authors. A theorem by
Belitskii provides the C1-equivalence of the flow corresponding to a system
in R

n to the flow generated by its linear part near a hyperbolic equilibrium
with eigenvalues λ1, λ2, . . . , λn such that

Re λi = Re λj + Re λk

for all combinations of i, j, k = 1, 2, . . . , n. An elementary proof of C1-
linearization near a hyperbolic saddle on the plane, which is reproduced in
the proof of Theorem 6.1, is due to Deng [1989].

Integrals over homoclinic orbits characterizing splitting of invariant man-
ifolds first appeared in the paper by Melnikov [1963] devoted to periodic
perturbations of planar autonomous systems. If the unperturbed system has
a homoclinic orbit to a saddle equilibrium, the perturbed system (consid-
ered as an autonomous system in R

2 × S
1) will have a saddle limit cycle

with two-dimensional stable and unstable invariant manifolds. These man-
ifolds could intersect along orbits homoclinic to the cycle, giving rise to
the Poincaré homoclinic structure and associated chaotic dynamics (see
Chapter 2). In a fixed cross-section t = t0, the points corresponding to
a homoclinic orbit can be located near the unperturbed homoclinic loop
as zeros of the so-called Melnikov function (see details in Sanders [1982],
Guckenheimer & Holmes [1983], Wiggins [1990]). The generalization of Mel-
nikov’s technique to n-dimensional situations using the variational and ad-
joint variational equations is due to Palmer [1984] (see also Lin [1990]).
In the papers by Beyn [1990b, 1990a] the equivalence of the transversal-
ity of the intersection of the stable and unstable manifolds in the extended
system (6.20) to the nonvanishing of the Melnikov integral (6.24) is proved.

Bifurcations of phase portraits near orbits homoclinic to a hyperbolic
equilibrium in n-dimensional autonomous systems were first studied by
Shil’nikov [1963] and Neimark & Shil’nikov [1965] under simplifying as-
sumptions. The general theory has been developed by Shil’nikov [1968,
1970] (there are also two preceding papers by him in which three- and four-
dimensional cases were analyzed: Shil’nikov [1965, 1967a]). The main tool
of his analysis is a representation of the near-to-saddle map as the solution
to a boundary-value problem (the so-called parametric representaion), see
Deng [1989] for the modern treatment of this technique. This parametriza-
tion allowed Shil’nikov to prove one-to-one correspondence between the
saddle cycles and periodic sequences of symbols. A particular feature that
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makes Shil’nikov’s main papers difficult to read is the absence of figures.
For example, the notion of “orientation” or “twisting” never appeared in
his original papers explicitly (it is hidden in the signs of some indirectly
defined determinants). A geometrical treatment of the saddle-focus case in
R

3 can be found in Guckenheimer & Holmes [1983] and Tresser [1984]. In
the later paper the C1-linearization near the saddle-focus is used. Wiggins
[1988, 1990] gives many details concerning homoclinic bifurcations in R

3

and R
4. Appendix 1 follows his geometrical approach to the focus-focus

homoclinic bifurcation.
Arnol’d et al. [1994] provide an excellent survey of codimension 1 homo-

clinic bifurcations. It includes a proof of topological invariance of ν0, as well
as the construction of topological normal forms for the saddle homoclinic
bifurcation.

The bifurcations of the “basic” limit cycle near an orbit homoclinic to the
saddle-focus were studied by Gaspard [1983], Gaspard, Kapral & Nicolis
[1984], and Glendinning & Sparrow [1984]. The existence of the secondary
homoclinic orbits is proved by Evans et al. [1982]. Actually, basic results
concerning these bifurcations follow from the analysis of a codim 2 bifur-
cation performed by Belyakov [1980], who studied the homoclinic bifur-
cation in R

3 near the saddle to saddle-focus transition (see also Belyakov
[1974, 1984] for the analysis of other codim 2 saddle-focus cases). Codim
2 homoclinic bifurcations in R

3 have recently attracted much interest (see,
e.g., Nozdrachova [1982], Yanagida [1987], Glendinning [1988], Chow, Deng
& Fiedler [1990], Kisaka, Kokubu & Oka [1993a, 1993b], Hirschberg &
Knobloch [1993], Deng [1993a], Homburg, Kokubu & Krupa [1994], and
Deng & Sakamoto [1995]).

Homoclinic bifurcations in n-dimensional cases with n > 4 were treated
in the original papers by Shil’nikov and by Ovsyannikov & Shil’nikov [1987]
(see also Deng [1993b]). The existence of Ck,β center manifolds near ho-
moclinic bifurcations in n-dimensional systems have been established by
Sandstede [1993, 1995] and Homburg [1993].

There is an alternative method to prove the bifurcation of a periodic
orbit from the homoclinic orbit: a function space approach based on the
Lyapunov-Schmidt method [Lin 1990].

Homoclinic bifurcations in planar slow-fast systems were treated by Di-
ener [1983] in the framework of nonstandard analysis. An elementary treat-
ment of the planar case is given by Kuznetsov, Muratori & Rinaldi [1995]
with application to population dynamics. Some higher-dimensional cases
have been considered by Szmolyan [1991]. Many examples of three-dimensi-
onal slow-fast systems that exhibit homoclinic bifurcations are constructed
by Deng [1994].

Explicit examples of two- and three-dimensional systems having alge-
braic homoclinic orbits of codim 1 and 2 have been presented by Sandstede
[1997a].



7
Other One-Parameter Bifurcations
in Continuous-Time Dynamical
Systems

The list of possible bifurcations in multidimensional systems is not ex-
hausted by those studied in the previous chapters. Actually, even the com-
plete list of all generic one-parameter bifurcations is unknown. In this chap-
ter we study several unrelated bifurcations that occur in one-parameter
continuous-time dynamical systems

ẋ = f(x, α), x ∈ R
n, α ∈ R

1, (7.1)

where f is a smooth function of (x, α). We start by considering global bi-
furcations of orbits that are homoclinic to nonhyperbolic equilibria. As we
shall see, under certain conditions they imply the appearance of complex
dynamics. We also briefly touch some other “exotic” bifurcations generat-
ing “strange” behavior, including homoclinic tangency and the “blue-sky”
catastrophe. Then we discuss bifurcations occuring on invariant tori. These
bifurcations are responsible for such phenomena as frequency and phase
locking. Finally, we give a brief introduction to the theory of bifurcations in
symmetric systems, which are those systems that are invariant with respect
to the representation of a certain symmetry group. After giving some general
results on bifurcations in such systems, we restrict our attention to bifur-
cations of equilibria and cycles in the presence of the simplest symmetry
group Z2, composed of only two elements.
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7.1 Codim 1 bifurcations of homoclinic orbits to
nonhyperbolic equilibria

Let x0 = 0 be a nonhyperbolic equilibrium of system (7.1) at α = 0; the
Jacobian matrix A = fx evaluated at (x0, 0) has eigenvalues with zero real
part. As in the hyperbolic case, we introduce two invariant sets:

W s(x0) = {x : ϕtx→ x0, t→ +∞},Wu(x0) = {x : ϕtx→ x0, t→ −∞},
where ϕt is the flow associated with (7.1); recall that W s(x0) is called
the stable set of x0, while Wu(x0) is called the unstable set of x0. If these
sets are both nonempty, they could intersect; in other words, there may
exist homoclinic orbits approaching x0 in both time directions. Since the
presence of a nonhyperbolic equilibrium is already a degeneracy, the codi-
mension of such a singularity is greater than or equal to one. As we can
easily see, if the equilibrium has a pair of complex-conjugate eigenvalues
on the imaginary axis, we need more than one parameter to tune in order
to get a homoclinic orbit to this equilibrium. Consider, for example, a sys-
tem depending on several parameters in R

3, having an equilibrium x0 with
one positive eigenvalue λ3 > 0 and a pair of complex-conjugate eigenvalues
that can cross the imaginary axis. To obtain a Shil’nikov-Hopf bifurcation,
we have to spend one parameter to satisfy the Hopf bifurcation condition
λ1,2 = ±iω0, and another parameter to place the unstable one-dimensional
manifold Wu(x0) of the equilibrium on its stable set W s(x0) (in fact, the
center manifold W c(x0)). Thus, the Shil’nikov-Hopf bifurcation has codim
2. Therefore, since we are interested here in codim 1 bifurcations, let us
instead consider the case when a simple zero eigenvalue is the only eigen-
value of the Jacobian matrix on the imaginary axis. We will start with the
two-dimensional case.

7.1.1 Saddle-node homoclinic bifurcation on the plane
Suppose that for α = 0, system (7.1) with n = 2 has the equilibrium x0 = 0
with a simple zero eigenvalue λ1 = 0. According to the Center Manifold
Theorem (see Chapter 5), for α = 0 there is a one-dimensional manifold
W c

0 (x0) tangent to the eigenvector of A corresponding to λ1 = 0. This
manifold is locally attracting or repelling, depending on the sign of the
second eigenvalue λ2 = 0. The restriction of (7.1) to W c

0 at α = 0 has the
form

ξ̇ = aξ2 + O(ξ3), (7.2)

where, generically, a = 0. Under this nondegeneracy condition, the system
is locally topologically equivalent at α = 0 near the origin to the normal
form {

ξ̇1 = aξ21 ,

ξ̇2 = σξ2,
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FIGURE 7.1. Planar saddle-nodes: (a) λ2 < 0; (b) λ2 > 0.

where σ = sign λ2 (see Figure 7.1, where the two cases with a > 0 are
shown). These equilibria are called saddle-nodes. Notice that in Figure
7.1(a) the stable set W s(x0) is the left half-plane ξ1 ≤ 0, while the un-
stable set Wu(x0) is the right half-axis {ξ1 ≥ 0, ξ2 = 0}. In Figure 7.1(b)
the unstable set Wu(x0) is given by {ξ1 ≥ 0}, and the stable set W s(x0)
by {ξ1 ≤ 0, ξ2 = 0}. There are infinitely many center manifolds passing
through the saddle-node (see Section 5.1.1 in Chapter 5); a part of each
center manifold W c

0 belongs to the stable set of the saddle-node, while the
other part belongs to the unstable set of the equilibrium.

If the restriction of (7.1) to its parameter-dependent center manifold W c
α

written in a proper coordinate ξ,

ξ̇ = β(α) + a(α)ξ2 + O(ξ3), (7.3)

depends generically on the parameter, a fold bifurcation occurs: The saddle-
node equilibrium either disappears or bifurcates into a saddle x1 and a node
x2.

Consider the case a > 0, λ2 < 0, and assume that there is an orbit
Γ0 homoclinic to the saddle-node x0. Clearly, there may be at most one
homoclinic orbit to such an equilibrium, and this orbit must locally coincide
with the one-dimensional unstable set Wu(x0). Thus, there is only one way
the homoclinic orbit can leave the saddle-node. However, it can return back
to the saddle-node along any of the infinitely many orbits composing the
stable set W s(x0). This “freedom” implies that the presence of a homoclinic
orbit to the saddle-node is not an extra bifurcation condition imposed on
the system, and therefore the codimension of the singularity is still one,
which is that of the fold bifurcation. Any of the orbits tending to the saddle-
node, apart from the two exceptional orbits that bound the stable set (the
vertical axis in Figure 7.1(a) or (b)), can be considered as a part of the
center manifold W c(x0). Thus, generically, the closure of the homoclinic
orbit is smooth and coincides with one of the center manifolds near the
saddle-node.

If the parameter is varied such that the equilibrium disappears (β > 0),
a stable limit cycle Lβ is born near the former smooth homoclinic orbit Γ0.
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This fact is almost obvious if we consider a cross-section transversal to the
center manifold. The Poincaré map defined on this section for β > 0 is a
contraction due to λ2 < 0. Let us summarize the discussion by formulating
the following theorem.

Theorem 7.1 (Andronov & Leontovich [1939]) Suppose the system

ẋ = f(x, α), x ∈ R
2, α ∈ R

1,

with smooth f , has at α = 0 the equilibrium x0 = 0 with λ1 = 0, λ2 < 0,
and there exists an orbit Γ0 that is homoclinic to this equilibrium.
Assume that the following genericity conditions are satisfied:

(SNH.1) the system exhibits a generic fold bifurcation at α = 0, so that
its restriction to the center manifold can be transformed to the form

ξ̇ = β(α) + a(α)ξ2 + O(ξ3),

where a(0) > 0 and β′(0) = 0;
(SNH.2) the homoclinic orbit Γ0 departs from and returns to the saddle-

node along one of its center manifolds, meaning that the closure of Γ0 is
smooth.

Then there is a neighborhood U0 of Γ0 ∪ x0 in which the system has a
bifurcation diagram topologically equivalent to the one presented in Figure
7.2. ✷

0

β = 0 β > 0β < 0

U0

01 2

L β

Γ

x x x

FIGURE 7.2. Saddle-node homoclinic bifurcation.

Remarks:
(1) Example 2.10 from Chapter 2 provides an explicit planar system

undergoing a generic saddle-node homoclinic bifurcation. It also happens
in Bazykin’s predator-prey system, which will be considered in Chapter 8
(Example 8.3).

(2) The saddle-node homoclinic bifurcation is a global bifurcation in
which a local bifurcation is also involved. Looking at only a small neigh-
borhood of the saddle-node equilibrium, we miss the appearance of the
cycle.
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(3) If we approach the saddle-node homoclinic bifurcation from param-
eter values for which the cycle is present (β > 0 in our consideration), the
cycle period Tβ tends to infinity (see Exercise 7.1). A phase point mov-
ing along the cycle spends more and more time near the place where the
saddle-node will appear: It “feels” the approaching fold bifurcation.

(4) The case λ2 > 0 brings nothing new. The only difference from the
considered one is that the appearing cycle is unstable. Actually, this case
can be reduced to that in Theorem 7.1 by reversing time. ♦

7.1.2 Saddle-node and saddle-saddle homoclinic bifurcations
in R

3

Now consider a system (7.1) in R
3 having at α = 0 the equilibrium x0 = 0

with a simple zero eigenvalue and no other eigenvalues on the imaginary
axis. There are more possibilities for such equilibria to allow for different
kinds of homoclinic orbit.

Saddle-nodes and saddle-saddles

As in the planar case, at α = 0 there is a one-dimensional manifold W c
0 (x0)

tangent to the eigenvector of A corresponding to the zero eigenvalue. The
restriction of (7.1) to W c

0 , at α = 0, in this case has the same form (7.2),

ξ̇ = aξ2 + O(ξ3),

where, generically, a = 0. Under this condition, the system is locally topo-
logically equivalent at α = 0 near the origin to the system

ξ̇1 = aξ21 ,

ξ̇2 = σ1ξ2,

ξ̇3 = σ2ξ3,

(7.4)

where (σ1, σ2) are the signs of the real parts of the nonzero eigenvalues.
Thus, we have three obvious possibilities (see Figure 7.3): (a) two nonzero

λ 3 λ 2

(b)

λ

λ 1

2

λ 3

(a)

λ 1

(c)

λ

λ

λ1 3

2

FIGURE 7.3. Three types of equilibria with λ1 = 0.

eigenvalues are located in the left half-plane, σ1 = σ2 = −1; (b) two nonzero
eigenvalues are located in the right half-plane, σ1 = σ2 = 1; (c) one of the
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nonzero eigenvalues is to the right of the imaginary axis, while the other is
to the left, σ1 = 1, σ2 = −1. Suppose that a > 0; otherwise, reverse time.

In case (a), system (7.4) reads
ξ̇1 = aξ21 ,

ξ̇2 = −ξ2,
ξ̇3 = −ξ3,

(7.5)

and has the phase portrait presented in Figure 7.4. The stable set W s(x0)

2,3

ξ1

0x

ξ2

ξ 3

λ

u

1λ(    )

x 0(    )

W
s x0

W

FIGURE 7.4. Saddle-node equilibrium with two stable eigenvalues.

is the half-space {ξ1 ≤ 0}, within which the majority of the orbits tend
to the equilibrium tangent to the ξ1-axis. The unstable set Wu(x0) is the
half-axis {ξ1 ≥ 0, ξ2 = ξ3 = 0}.

In case (b), system (7.4) has the form
ξ̇1 = aξ21 ,

ξ̇2 = ξ2,

ξ̇3 = ξ3.

(7.6)

Its phase portrait is presented in Figure 7.5. The stable set is now one-
dimensional, while the unstable set is three-dimensional. As in the planar
case, the equilibrium for either (a) or (b) is called a saddle-node. Note that
the nonzero eigenvalues can constitute a complex-conjugate pair. In such a
case, orbits of the original system within the corresponding half-space tend
to the equilibrium by spiraling.

In case (c), the system (7.4) turns out to be
ξ̇1 = aξ21 ,

ξ̇2 = ξ2,

ξ̇3 = −ξ3.
(7.7)

Its phase portrait is presented in Figure 7.6. It can be constructed by taking
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FIGURE 7.5. Saddle-node equilibrium with two unstable eigenvalues.

into account that all the coordinate planes ξk = 0, k = 1, 2, 3, are invariant
with respect to (7.7). Notice that both the stable and the unstable sets are
two-dimensional half-planes approaching each other transversally:

W s = {ξ : ξ1 ≤ 0, ξ2 = 0}, Wu = {ξ : ξ1 ≥ 0, ξ3 = 0}.
In this case, the equilibrium x0 is called a saddle-saddle.

Since the restriction of (7.1) to the center manifold has the form

ξ̇ = β(α) + a(α)ξ2 + O(ξ3),

a generic fold bifurcation takes place if a(0) = 0 and β′(0) = 0, leading
either to the disappearance of the equilibrium (for a(0)β > 0) or to the
appearance of two hyperbolic ones (for a(0)β < 0). In the case of a saddle-
node, one of the bifurcating equilibria is saddle, while the other is (stable
or unstable) three-dimensional node. On the contrary, in the saddle-saddle
case, both appearing equilibria are (topologically different) saddles.

Saddle-node homoclinic orbit

If there is an orbit Γ0 homoclinic to a saddle-node, then, generically, a
unique limit cycle appears when the equilibria disappear. The bifurcation
is similar to the planar one. The stability of the cycle is determined by the
sign of σ1,2. More precisely, the following theorem holds.

Theorem 7.2 (Shil’nikov [1966]) Suppose the system

ẋ = f(x, α), x ∈ R
3, α ∈ R

1,

with smooth f , has at α = 0 the equilibrium x = 0 with λ1 = 0,Re λ2,3 < 0
(or Re λ2,3 > 0), and there exists an orbit Γ0 that is homoclinic to this
equilibrium.
Assume that the following genericity conditions are satisfied:
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FIGURE 7.6. Saddle-saddle equilibrium.

(SNH.1) the system exhibits a generic fold bifurcation at α = 0, so that
its restriction to the center manifold can be transformed to the form

ξ̇ = β(α) + a(α)ξ2 + O(ξ3),

where a(0) = 0 and β′(0) = 0;
(SNH.2) the homoclinic orbit Γ0 departs from and returns to x0 along

one of its center manifolds, meaning that the closure of Γ0 is smooth.

Then there is a neighborhood U0 of Γ0 ∪ x0 in which the system has a
unique stable (or repelling) limit cycle Lβ for small |β| corresponding to
the disappearance of the equilibria, and no limit cycles for small |β| when
two hyperbolic equilibria exist. ✷

The theorem is illustrated in Figure 7.7, where a > 0 and the two stable
eigenvalues λ2,3 are complex. In this case, the multipliers of the appearing
cycle Lβ are also complex. The period of the cycle Tβ →∞, as β → 0.

Saddle-saddle with one homoclinic orbit

If there is a saddle-saddle equilibrium x0 with a single homoclinic orbit Γ0,
then, generically, a unique limit cycle appears when the equilibria disap-
pear. The cycle is saddle, since the Poincaré map defined on a transver-
sal cross-section to any center manifold is contracting in the direction of
the stable eigenvector of the saddle-saddle and expanding in the direction
of its unstable eigenvector. We also have to require that the stable set
W s(x0) intersects the unstable set Wu(x0) along the homoclinic orbit Γ0
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FIGURE 7.7. Saddle-node homoclinic bifurcation in R
3.

transversally. These heuristic arguments can be formalized by the following
theorem.

Theorem 7.3 (Shil’nikov [1966]) Suppose the system

ẋ = f(x, α), x ∈ R
3, α ∈ R

1,

with smooth f , has at α = 0 the equilibrium x = 0 with λ1 = 0, λ2 > 0, λ3 <
0, and there exists a single orbit Γ0 homoclinic to this equilibrium.
Assume that the following genericity conditions are satisfied:

(SNH.1) the system exhibits a generic fold bifurcation at α = 0, such that
its restriction to the center manifold can be transformed to the form

ξ̇ = β(α) + a(α)ξ2 + O(ξ3),

where a(0) = 0 and β′(0) = 0;
(SNH.2) the homoclinic orbit Γ0 departs from and returns to x0 along

one of its center manifolds, meaning that the closure of Γ0 is smooth.
(SNH.3) the stable set W s(x0) transversally intersects the unstable set

Wu(x0) along the homoclinic orbit Γ0.

Then there is a neighborhood U0 of Γ0 ∪ x0 in which the system has a
unique saddle limit cycle Lβ for small |β| corresponding to the disappear-
ance of the equilibria, and no limit cycles for small |β| when two saddle
equilibria exist. ✷

The theorem is illustrated in Figure 7.8. Actually, all systems exhibiting
the bifurcation described by this and the previous theorem are topologically
equivalent in U0 for small |α|.
Remark:

The topology of the stable and the unstable invariant manifolds of the
appearing cycle Lβ is determined by the global behavior of the stable and
the unstable set of the saddle-saddle around Γ0 at α = 0. The transversality
of the intersection Wu(x0) with W s(x0) implies that the closure of each
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of these sets in a tubular neighborhood U0 of Γ0 is either a nontwisted or
twisted two-dimensional band. In Figure 7.8, the manifold Wu(x0) is shown
as orientable at β = 0. If these manifolds are nontwisted (orientable), then
the appearing limit cycle has positive multipliers: 0 < µ1 < 1 < µ2. On
the contrary, if the manifolds are twisted (nonorientable), then the cycle
multipliers are both negative: µ1 < −1 < µ2 < 0. In the former case, the
stable and the unstable invariant manifolds of the cycle are also nontwisted,
while in the latter case, they are both twisted. ♦

Saddle-saddle with more than one homoclinic orbit

Since the stable and the unstable sets of a saddle-saddle are two-dimen-
sional, they can intersect along more than one homoclinic orbit. Such an
intersection leads to a bifurcation that has no analog in the planar systems:
It gives rise to an infinite number of saddle limit cycles when the equilibria
disappear. Let us formulate the corresponding theorem due to Shil’nikov
in the case where there are two homoclinic orbits, Γ1 and Γ2, present at
α = 0.

Theorem 7.4 (Shil’nikov [1969]) Suppose the system

ẋ = f(x, α), x ∈ R
3, α ∈ R

1,

with smooth f , has at α = 0 the equilibrium x = 0 with λ1 = 0, λ2 > 0, λ3 <
0, and there exist two orbits, Γ1 and Γ2, homoclinic to this equilibrium.
Assume that the following genericity conditions are satisfied:

(SNH.1) the system exhibits a generic fold bifurcation at α = 0, such that
its restriction to the center manifold can be transformed to the form

ξ̇ = β(α) + a(α)ξ2 + O(ξ3),

where a(0) = 0 and β′(0) = 0;
(SNH.2) both homoclinic orbits Γ1,2 depart from and return to x0 along

its center manifolds, meaning that the closure of each Γ1,2 is smooth;
(SNH.3) the stable setW s(x0) intersects the unstable setWu(x0) transver-

sally along two homoclinic orbits Γ1,2.

Then, there is a neighborhood U0 of Γ1 ∪ Γ2 ∪ x0 in which an infinite
number of saddle limit cycles exists for small positive or negative β, de-
pending on the parameter direction corresponding to the disappearance of
the equilibria.
Moreover, there is a one-to-one correspondence between the orbits located

entirely inside U0 for such values of β, and all nonequivalent sequences
{ωi}+∞

i=−∞ of two symbols, ωi ∈ {1, 2}.
Outline of the proof:

Introduce coordinates (ξ1, ξ2, ξ3) in such a way that, for α = 0, the
saddle-saddle is located at the origin and its unstable set Wu(0) is given,
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within the unit cube

{ξ : |ξk| ≤ 1, k = 1, 2, 3},

by {ξ1 ≥ 0, ξ3 = 0}; the stable set W s(x0) is defined in the same cube by
{ξ1 ≤ 0, ξ2 = 0} (see Figure 7.9 and compare it with the phase portrait of

ξ2

ξ3

u 0W x(    )

0W
s

x(    )

Π1 Π2

A1

B1 A2

B2

ξ

2

1

x0

Γ

Γ1

FIGURE 7.9. A saddle-saddle with two homoclinic orbits.

(7.7)). Consider two faces of the cube:

Π1 = {ξ : ξ1 = −1, |ξ2,3| ≤ 1}, Π2 = {ξ : ξ1 = 1, |ξ2,3| ≤ 1}.

Let A1, B1 be the points where the orbits Γ1,Γ2 intersect with the plane Π1
as they enter the unit cube while returning to the saddle-saddle. Similarly,
denote by A2, B2 the intersection points of Γ1,Γ2 with the plane Π2 as
these orbits leave the cube.

Take a small value of |β| with its sign corresponding to the disappearance
of the equilibrium. Then, the Poincaré map along orbits of the system
defined on Π1,

Pβ : Π1 → Π1,

can be represented as the superposition of a “local” map ∆β : Π1 → Π2
along orbits passing through the cube, and a “global” map Qβ : Π2 → Π1:

Pβ = Qβ ◦∆β .

Notice that ∆β is undefined for β = 0, as well as when there are hyperbolic
equilibria inside the cube.
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By solving the linearized system inside the cube, one can show that the
square Π1 is contracted by the map ∆β in the ξ3-direction and expanded in
the ξ2-direction. Thus, the intersection of its image ∆βΠ1 with the square
Π2 would be a horizontal strip Σ = ∆βΠ1 ∩Π2 (see Figure 7.10(b)), which
gets thinner and thinner as β → 0 (explain why).
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FIGURE 7.10. Cross-section near a saddle-saddle.

The strip Σ contains the points A2 and B2. Since for β = 0 the map Qβ

sends the point A2 into the point A1 and the point B2 into the point B1,

Qβ(A2) = A1, Qβ(B2) = B1,

there would be some neighborhoods of A2, B2 in Π2, that Qβ maps into
neighborhoods of A1 and B1 in Π1, respectively, for |β| > 0. Therefore, the
image Qβ(Σ) will intersect the square Π1 in two strips, Σ1 and Σ2,Σ1∪Σ2 =
QβΣ0∩Π1 (see Figure 7.10(a)), containing A1 and B1, respectively. Due to
the transversality assumption, Σ1,2 intersect the vertical axis at a nonzero
angle near the points A1 and B1, respectively.

Thus, the intersection of the image of Π1 under the Poincaré map Pβ =
Qβ ◦ ∆β with Π1 has the standard features of the Smale horseshoe (see
Chapter 1). For example, applying the construction once more, we first
obtain two strips inside Σ, and then two narrow strips inside each Σ1,2, and
so forth (see Figure 7.10). Inverting the procedure, we get vertical strips
with a Cantor structure. The presence of the Smale horseshoe implies the
possibility to code orbits near Γ1 ∪ Γ2 by sequences of two symbols, say
{1, 2}. Equivalent sequences code the same orbit. ✷

In the present context this coding has a clear geometrical interpreta-
tion. Indeed, let γ be an orbit located in a neighborhood U0 of the ho-
moclinic orbits Γ1,2 for all t ∈ (−∞,+∞). Then it passes outside the
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FIGURE 7.11. A cycle corresponding to the sequence {. . . , 1, 2, 1, 2, . . .}.

cube near either Γ1 or Γ2. The elements of the corresponding sequence
ω = {. . . , ω−2, ω−1, ω0, ω1, ω2, . . .} specify whether the orbit γ makes its
ith passage near Γ1 or Γ2; in the former case, ωi = 1, while in the latter,
ωi = 2. For example, the sequence

{. . . , 1, 1, 1, 1, 1, . . .}
corresponds to a unique saddle cycle orbiting around Γ1. The sequence

{. . . , 2, 2, 2, 2, 2, . . .}
describes a saddle cycle located near Γ2, while the periodic sequence

{. . . , 1, 2, 1, 2, 1, 2, . . .}
corresponds to a cycle making its first trip near Γ1, its second near Γ2, and
so on (see Figure 7.11).

The case when there are more than two homoclinic orbits, Γ1,Γ2, . . . ,ΓN ,
say, to the saddle-saddle at the critical parameter value can be treated
similarly. In such a case, orbits located entirely inside a neighborhood of
Γ1 ∪ Γ2 ∪ · · · ∪ΓN ∪ x0 are coded by sequences of N symbols, for example,
ωi ∈ {1, 2, . . . , N}.

We finish the consideration of nonhyperbolic homoclinic bifurcations by
pointing out that the results presented in this section for three-dimensional
systems can be generalized into arbitrary finite dimensions of the phase
space (see the appropriate references in the bibliographical notes).

7.2 “Exotic” bifurcations

Several other codim 1 bifurcations in generic one-parameter systems have
been analyzed theoretically. Let us briefly discuss some of them without
pretending to give a complete picture.



7.2 “Exotic” bifurcations 263

7.2.1 Nontransversal homoclinic orbit to a hyperbolic cycle
Consider a three-dimensional system (7.1) with a hyperbolic limit cycle Lα.
Its stable and unstable two-dimensional invariant manifolds, W s(Lα) and
Wu(Lα), can intersect along homoclinic orbits, tending to Lα as t→ ±∞.
Generically, such intersection is transversal. As we have seen in Chapter
2, it implies the presence of an infinite number of saddle limit cycles near
the homoclinic orbit. However, at a certain parameter value, say α = 0,
the manifolds can become tangent to each other and then no longer in-
tersect (see Figure 7.12, where a cross-section to the homoclinic structure
is sketched). At α = 0 there is a homoclinic orbit to L0 along which the

αLL

α = 0 α > 0α < 0

Lα 0

FIGURE 7.12. Homoclinic tangency.

manifolds W s(L0) and Wu(L0) generically have a quadratic tangency. It
has been proved (see the bibliographical notes to this chapter) that an in-
finite number of limit cycles can exist for sufficiently small |α|, even if the
manifolds do not intersect. Passing the critical parameter value is accom-
panied by an infinite number of period-doubling and fold bifurcations of
limit cycles.

7.2.2 Homoclinic orbits to a nonhyperbolic limit cycle
Suppose a three-dimensional system (7.1) has at α = 0 a nonhyperbolic
limit cycle N0 with a simple multiplier µ1 = 1, while the second multi-
plier satisfies |µ2| < 1. Under generic perturbations, this cycle will either
disappear or split into two hyperbolic cycles, N (1)

α and N
(2)
α (the fold bi-

furcation for cycles, see Section 5.3 in Chapter 5). However, the locally
unstable manifold Wu(N0) of the cycle can “return” to the cycle N0 at
the critical parameter value α = 0 forming a set composed of homoclinic
orbits which approach N0 as t→ ±∞. There are two cases, depending on
whether the closure of Wu(N0) is a manifold or not.

(1) Torus case. If Wu(N0) forms a torus, two subcases are still possi-
ble (see Figure 7.13, where a global Poincaré section to N0 is used, so the
torus appears as two concentric curves). Depending on whether the torus
is smooth (Figure 7.13(a)) or not (Figure 7.13(b)), the disappearance of
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FIGURE 7.13. Homoclinic structure of a saddle-node cycle depicted via a global
Poincaré map: (a) smooth and (b) nonsmooth cases.

the cycle N0 under parameter variation leads either to the creation of a
smooth invariant torus or a “strange” attracting invariant set that con-
tains an infinite number of saddle and stable limit cycles. For systems in
more than three dimensions, there may exist several tori (or Klein bottles)
at the critical parameter value, leading to more diverse and complicated
bifurcation pictures.
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FIGURE 7.14. The invariant “French horn” near a “blue-sky” bifurcation.

(2) “Blue-sky” case. A bifurcation known as a “blue-sky” catastrophe
appears in the case when Wu(N0) is not a manifold. More precisely, at
α = 0 the unstable set Wu(N0) of the cycle N0 can become a tube that
returns to N0 developing a “French horn” (Figure 7.14). In a local cross-
section to the cycle N0, the spiraling end of this horn appears as an infinite
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sequence of “circles” accumulating at the point corresponding to N0.
When the cycle N0 splits into two hyperbolic cycles, no other periodic

orbits exist near the horn. On the other side of the bifurcation, when the
cycle N0 disappears, there emerges a unique and stable hyperbolic limit
cycle Lα that makes one global turn and several local turns following the
horn. As α approaches α = 0, the cycle Lα makes more and more turns
near the would-be critical cycle N0. At the bifurcation parameter value,
Lα becomes an orbit homoclinic to N0, and its length and period become
infinite. Thus, the stable limit cycle Lα disappears as its length lα and
period Tα tend to infinity, while it remains bounded and located at a finite
distance from all equilibrium points. This bifurcation is called the “blue-
sky” catastrophe of Lα. In other words, the cycle Lα is “broken” at the
critical parameter value by another cycle N0 that appears in a “transverse”
direction to Lα and then splits into two hyperbolic cycles.

Example 7.1 (“Blue-sky” bifurcation model) Consider the follow-
ing system due to Gavrilov & Shilnikov [1996]:

ẋ = x[2 + µ− b(x2 + y2)] + z2 + y2 + 2y,
ẏ = −z3 − (y + 1)(z2 + y2 + 2y)− 4x + µy,
ż = z2(y + 1) + x2 − ε,

(7.8)

where µ, ε are positive parameters and b = 10 is fixed. If µ = ε = 0, the
circle

C0 = {(x, y, z) : x = 0, z2 + (y + 1)2 = 1}
is an invariant curve of (7.8). It consists of two equilibria: E0 = (0, 0, 0)
and E1 = (0,−2, 0), and two connecting orbits: from E0 to E1 and from E1
to E0. The equilibrium E0 has one zero eigenvalue λ1 = 0 and two purely
imaginary eigenvalues λ2,3 = ±iω0 with ω0 = 2, while the equilibrium E1
has one zero eigenvalue λ1 = 0 and two real eigenvalues λ2,3 < 0 (check!).
Thus, both equilibria are nonhyperbolic and should bifurcate when the
parameters change. One can prove that there is a curve B in the (µ, ε)-
plane along which the system (7.8) has a limit cycle N0 with a simple unit
multiplier. This cycle shrinks to the equilibrium E0 when we approach the
origin of the parameter plane along B. Crossing the curve B near the origin
results in a generic fold bifurcation of this cycle: Two small hyperbolic
cycles (one stable and one saddle) collide, forming the cycle N0 at the
critical parameter values, and disappear. Moreover, for parameter values
corresponding to the curve B, the equilibrium E1 does not exist and the
two-dimensional unstable set Wu(N0) returns to N0 near C0 forming a
“Fernch horn” configuration as in Figure 7.14. Therefore, there is another
limit cycle in (7.8) that stays near the circle C0 and undergoes the “blue-
sky” bifurcation if we cross B sufficiently close to (µ, ε) = (0, 0). Figure
7.15 shows phase orbits of (7.8) corresponding to ε = 0.02 at three different
values of µ. For µ = 0.4, there is a stable limit cycle Lµ that makes a number
of transversal turns near the origin. The blue-sky bifurcation happens at
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FIGURE 7.15. “Blue-sky” bifurcation in (7.8): (a) µ = 0.4; (b) µ = 0.3; and (c)
µ = 0.25.
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µ ≈ 0.3. For µ = 0.25, an orbit starting near the (invisible) saddle cycle
N

(1)
µ approaches the stable cycle N (2)

µ and stays there forever. ✸

For systems with more than three phase variables, the “blue-sky” bifur-
cation may generate an infinite number of saddle limit cycles which belong
to a Smale-Williams solenoid attractor. When the parameter approaches
its critical value, the attractor does not bifurcate but the period and length
of any cycle in it tend to infinity.

7.3 Bifurcations on invariant tori

Continuous-time dynamical systems with phase-space dimension n > 2
can have invariant tori. As we have seen in Chapters 4 and 5, an invariant
two-dimensional torus T

2 appears through a generic Neimark-Sacker bifur-
cation. For example, a stable cycle in R

3 can lose stability when a pair of
complex-conjugate multipliers crosses the unit circle. Then, provided there
are no strong resonances and the cubic normal form coefficient has the
proper sign, a smooth,1 stable, invariant torus bifurcates from the cycle.
In this section, we discuss changes of the orbit structure on an invariant
two-torus under variation of the parameters of the system.

7.3.1 Reduction to a Poincaré map
Let T

2 be a smooth, invariant two-torus of (7.1) at α = 0. For simplic-
ity, we can think of a three-dimensional system. Introduce a cross-section
Σ, codim Σ = 1, to the torus (see Figure 7.16). The intersection T

2 ∩ Σ

x

Σ

S

FIGURE 7.16. Poincaré map on the torus.

1Finitely differentiable.
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is a closed curve S, topologically (or even (finite-)smoothly) equivalent to
the unit circle S

1. Let us consider only the case when any orbit starting at
a point x ∈ S returns to S. Then, a Poincaré map

P : S → S

is defined. Alternatively, we can consider a Poincaré map defined by (7.1)
on the cross-section Σ. The closed curve S is obviously an invariant curve
of this map; its restriction to S is the map P introduced above. The map P
and its inverse are both differentiable. The standard relationship between
fixed points of P and limit cycles of (7.1) exists. All such cycles belong to
the torus.

Assume that the invariant torus T
2 persists under small parameter vari-

ations, meaning that there is a close invariant torus of (7.1) for all α with
sufficiently small |α|. Then, the above constriction can be carried out for
all nearby α, resulting in a Poincaré map Pα : S → S, smoothly depending
on the parameter.

Remark:
It can be proved (see the bibliographical notes) that a stable invariant

torus T
2 persists as a manifold under small parameter variations if it is

normally hyperbolic, i.e., the convergence of nearby orbits to T
2 is stronger

than orbit convergence on the torus, provided proper measures of conver-
gence are introduced. ♦

The problem now is to classify possible orbit structures of Pα : S → S
and to analyze their metamorphoses under variation of the parameter. To
proceed, let us introduce canonical coordinates on T

2. Namely, parametrize
the torus by two angular coordinates ψ,ϕ (mod 2π). Using these coordi-
nates, we can map the torus onto the square,

U = {(ψ,ϕ) : 0 ≤ ψ,ϕ ≤ 2π},

with opposite sides identified (see Figure 7.17). Assume that the intersec-
tion S = T

2 ∩ Σ is given by ψ = 0. Consider an orbit γ on T
2 starting

at a point (0, ϕ0) on S. By our assumption, γ returns to S at some point
(2π, P (ϕ0)) = (0, P (ϕ0)), where P : S

1 → S
1 is a smooth function.2 Since

orbits on the torus do not intersect,

P ′(ϕ) > 0,

so the map P preserves the orientation of S.

2We use the same notation for both the map of the curve S and the function
it defines on the unit circle S

1.
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FIGURE 7.17. An orbit γ on the torus.

7.3.2 Rotation number and orbit structure
A fixed point ϕ0 of the map P, P (ϕ0) = ϕ0, corresponds to a cycle on T

2

making one revolution along the parallel and some p revolutions along the
meridian before closure (see Figure 7.18(a)). A cycle of period q,

ψψ 2π

ϕ

2π

0 2π

ϕ

2π

0

(a) (b)

FIGURE 7.18. Cycles on the torus: (a) p = 2, q = 1; (b) p = 1, q = 2.

{ϕ0, P (ϕ0), P 2(ϕ0), . . . , P q(ϕ0) = ϕ0},
corresponds to a cycle on T

2 that makes q revolutions along the parallel
and some p revolutions along the meridian (Figure 7.18(b)). Such a cycle
is called a (p, q)-cycle. The local theory of fixed points and periodic orbits
of P on S is the same as that for scalar maps. In particular, a fixed point
ϕ0 is stable (unstable) if P ′(ϕ0) < 1 (P ′(ϕ0) > 1). Points with P ′(ϕ0) = 1
are called hyperbolic. As usual, these notions can be extended to q-periodic
orbits by considering P q, the qth iterate of P . Clearly, if a stable (p, q)-cycle
exists, an unstable (p, q)-cycle must also exist, since stable and unstable
fixed points of P q have to alternate (see Figure 7.19).

The difference a(ϕ) = P (ϕ)− ϕ is called the angular function.
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FIGURE 7.19. Stable and unstable (1, 2)-cycles on the torus.

Definition 7.1 The rotation number of P : S → S is defined by

ρ =
1

2π
lim
k→∞

a(ϕ) + a(P (ϕ)) + · · ·+ a(P k−1(ϕ))
k

.

One can prove that the limit in the definition exists and is independent of
the point ϕ ∈ S. Thus, ρ is well defined. It characterizes the average angle
by which P “rotates” S. For a rigid rotation through angle 2πν,

P (ϕ) = ϕ + 2πν (mod 2π), (7.9)

we have ρ = ν. The role of the rotation number is clarified by the following
two statements, which we give without proof.

Lemma 7.1 The rotation number of the map P : S → S is rational,
ρ = p

q , if and only if P has a (p, q)-periodic orbit. ✷

Note that Lemma 7.1 does not state that the periodic orbit is unique.

Lemma 7.2 (Denjoy [1932]) If the map P : S → S is at least twice
differentiable and its rotation number is irrational, then P is topologically
equivalent to rigid rotation through the angle 2πρ. ✷

Under the conditions of the lemma, any orbit of P on S is dense, as is
true for the rigid rotation (7.9) with irrational ν. There are examples of
C1 diffeomorphisms that do not satisfy Denjoy’s lemma. However, if the
right-hand side f of (7.1) is sufficiently smooth and its invariant torus T

2

is also smooth enough, P must satisfy Denjoy’s differentiability condition.

7.3.3 Structural stability and bifurcations
Let us now address the problem of structural stability of systems on tori. We
can use Chapter 2’s definitions of the distance between dynamical systems
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and their structural stability simply by making the substitution T
2 for U .

This problem is equivalent to that for discrete-time dynamical systems on
the circle S. The following theorem provides the complete characterization
of structurally stable systems on S.

Theorem 7.5 A smooth dynamical system P : S → S is structurally stable
if and only if its rotation number is rational and all periodic orbits are
hyperbolic. ✷

If the rotation number is irrational, we can always introduce an arbitrary
small perturbation, resulting in a topologically nonequivalent system. Actu-
ally, such a perturbation will generate long-period cycles instead of dense
orbits, resulting in a rational rotation number. The phase portrait of a
structurally stable system on T

2 is therefore rather simple: There is an
even number of hyperbolic limit cycles of (p, q) type; all other orbits tend
to one of these cycles in the correct time direction. The qth iterate of the
Poincaré map reveals an even number of fixed points of P q on S having
alternating stability.

Consider a one-parameter map Pα : S → S corresponding to system (7.1)
with an invariant torus. Let α = α0 provide a structurally stable system.
By Theorem 7.5 there is an open interval (α0−ε, α0 +ε) with ε > 0 within
which the system has topologically equivalent phase portraits. What are
the boundaries of this interval? Or, in other words, how does the rotation
number change?

First of all, let us point out that bifurcations can take place even if the
rotation number is constant. Indeed, the system may have an even number
of hyperbolic (p, q)-cycles on the torus. While these cycles collide and dis-
appear pairwise under parameter variation, the rotation number remains
constant (ρ = p

q ), provided that there remain at least two such cycles on
the torus. However, when the last two cycles (a stable and an unstable
one) collide and disappear, the rotation number becomes irrational un-
til another “structurally stable window” opens. Inside the windows, the
asymptotic behavior of the system is periodic, while it is quasiperiodic out-
side. In the former case, there are at least two limit cycles (possibly with
a very high period) on T

2, while in the latter case, the torus is filled by
dense nonperiodic orbits.

The bifurcation from quasiperiodic behavior to periodic oscillations is
called a phase locking. In periodically forced systems this phenomenon
appears as a frequency locking. Suppose, for simplicity, that we have a
two-dimensional, periodically forced system of ODEs that depends on a
parameter. Assume that the associated period-return (Poincaré) map has
an attracting closed invariant curve. If the rotation number of the map
restricted to this curve is rational, the system exhibits periodic oscilla-
tions with a period that is an integer multiple of the forcing period. The
frequency of the oscillations is “locked” at the external forcing frequency.
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Remark:
Theorem 7.5 establishes a delicate relationship between “genericity” and

structural stability. Consider a map Pα : S → S, depending on a single
parameter. The set of parameter values for which Pα is structurally stable
is open and dense. However, the measure of this set might be small com-
pared with that of the parameter set corresponding to irrational rotation
numbers. Thus, a map chosen “randomly” from this family would have an
irrational rotation number with a high probability. ♦

7.3.4 Phase locking near a Neimark-Sacker bifurcation:
Arnold tongues

We can apply the developed theory to an invariant torus (curve) appearing
via a Neimark-Sacker bifurcation. Consider a two-dimensional discrete-time
system near such a bifurcation. This system can be viewed as generated by
the Poincaré map (restricted to a center manifold, if necessary) associated
with a limit cycle of a continuous-time system (7.1). This map can be
transformed, for nearby parameter values, by means of smooth, invertible,
and smoothly parameter-dependent transformations to the form

z �→ λz(1 + d|z|2) + O(|z|3), z ∈ C
1, (7.10)

where λ and d are smooth complex-valued functions of α (see Chapter
4). Consider, for a while, Re λ and Im λ as two independent parameters.
On the plane of these parameters, the unit circle |λ| = 1 corresponds to
the Neimark-Sacker bifurcation locus (see Figure 7.20). Assume that the

0 1

1

λ

λ

Re  

Im  

|λ| = 1

FIGURE 7.20. Arnold tongues near the Neimark-Sacker bifurcation.

bifurcation occurs away from strong resonances and is supercritical. Then,
a stable closed invariant curve exists for nearby parameter values outside
the circle. Parameter regions in the (Re λ, Im λ)-plane corresponding to
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rational rotation numbers approach the circle |λ| = 1 at all rational points,

λ = eiθ, θ =
2πp
q

,

as narrow tongues.3 These regions are called Arnold tongues. Recall that
our system (7.1) depends on a single parameter α. Therefore, it defines a
curve in the λ-plane traced by λ(α). Near the circle |λ| = 1, this curve
crosses an infinite number of Arnold tongues corresponding to various ra-
tional rotation numbers. Therefore, near a generic Neimark-Sacker bifurca-
tion, an infinite number of long-periodic cycles are born and die as the pa-
rameter varies. Far from the Neimark-Sacker bifurcation curve, the tongues
can intersect. At such parameter values, the invariant torus does not exist4

and two independent fold bifurcations merely happen with unrelated re-
mote cycles.

Example 7.2 (Arnold tongue in the perturbed delayed logistic
map) Consider the following recurrence equation:

xk+1 = rxk(1− xk−1) + ε, (7.11)

where xk is the density of a population at year k, r is the growth rate, and
ε is the migration rate. For ε = 0, this model was studied in Chapter 4 (see
Example 4.2).

As in Chapter 4, introduce yk = xk−1 and rewrite (7.11) as a planar
dynamical system (

x
y

)
�→

(
rx(1− y) + ε

x

)
. (7.12)

The analysis in Chapter 4 revealed a supercritical Neimark-Sacker bifurca-
tion of (7.12) at r = 2 for ε = 0. There is a curve h(1) in the (r, ε)-plane
passing through the point (r, ε) = (2, 0) on which the fixed point of (7.12),

x0 = y0 =
1 + ε

2
,

undergoes a Neimark-Sacker bifurcation. The curve h(1) is given by the
expression

h(1) =
{

(r, ε) : r =
2

1 + ε

}
.

Iterating the map (7.12) with ε = 0 for r slightly greater than 2 (e.g., at
r = 2.1 or r = 2.15) yields a closed invariant curve apparently filled by
quasiperiodic orbits. An example of such a curve was shown in Figure 4.11
in Chapter 4. However, taking r = 2.177 results in a stable cycle of period
seven. Thus, these parameter values belong to a phase-locking window.

3Their width w at a distance d from the circle satisfies w ∼ d(q−2)/2, as d → 0.
4Otherwise, orbits on such a torus define two different rotation numbers, which

is impossible.
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r

x

FIGURE 7.21. Bifurcation diagram of period-seven cycles.

There is also an unstable (saddle) cycle of period seven, which is hard to
detect by numerical simulations. These two cycles are located on the closed
invariant curve. Actually, the curve is composed of the unstable manifolds
of the saddle cycle.

The seventh-iterate map (7.12), therefore, has seven stable fixed points
and the same number of unstable fixed points. While we increase or decrease
the parameter r, keeping ε = 0, the stable and unstable fixed points collide
and disappear at fold bifurcations. Plotting the coordinates of all the fixed
points against r reveals the peculiar closed curve shown in Figure 7.21.5

All seven stable fixed points collide with their respective saddle points
simultaneously at the fold points r1,2, since, actually, there are only two
period-seven cycles of the opposite stability, that collide at these parameter
values r1,2. Note that each stable fixed point of the seventh-iterate map
collides with one immediately neighboring unstable fixed point at the fold
bifurcation at r = r1 and the other one at r = r2. Thus, each stable fixed
point can be thought to migrate between its two neighboring unstable fixed
points as r varies from r1 to r2.

5In Chapter 10 we present a continuation technique by means of which the
fixed-point curve in Figure 7.21 is computed.
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The continuation of the boundary points of the phase-locking interval
gives two fold bifurcation curves, t(7)1 and t

(7)
2 , for cycles of period seven

(see Figure 7.22). They form a typical Arnold tongue, approaching a point

(1)
h

t 1
(7)

2t (7)1:6

1:7

f (7)

r

ε

FIGURE 7.22. 1:7 Arnold tongue in (7.10).

on the Neimark-Sacker curve h(1) where the multipliers of the original fixed
point have the representation

µ1,2 = e±iθ0 , θ0 =
2π
7
,

in accordance with the theory. Note that the point (r, ε) = (2, 0) is the
origin of another Arnold tongue, corresponding to cycles of period six (cf.
Example 4.2). This 1:6 tongue is not shown in Figure 7.22.

It is worthwhile mentioning that the stable period-seven cycle exhibits
a period doubling if ε increases and passes a certain critical value, while
r is fixed. The critical parameter values form a curve f (7), also presented
in Figure 7.22. Above (and near) this curve, a stable cycle of period 14 is
present, while the closed invariant curve no longer exists. This is one of
the possible ways in which an invariant curve can loose its smoothness and
disappear. ✸
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7.4 Bifurcations in symmetric systems

In this section we touch on an important topic: bifurcations in systems with
symmetry. First we summarize some general results on symmetric systems,
including a symmetric version of the Center Manifold Theorem. Then, we
analyze bifurcations of equilibria and limit cycles in the presence of the
simplest discrete symmetry.

Symmetric systems appear naturally in many applications. Often the
symmetry reflects certain spatial invariance of the dynamical system or
its finite-dimensional approximation. Normal forms for many bifurcations
also have certain symmetries. As we shall see, some bifurcations can have
a smaller codimension in the class of systems with a specified symmetry,
and the corresponding bifurcations usually have some unique features. In
contrast, some bifurcations become impossible in the presence of certain
symmetries.

7.4.1 General properties of symmetric systems
Suppose we have a (compact) group G that can be represented in R

n by
matrices {Tg}:

Te = I, Tg1g2 = Tg1Tg2 ,

for any g1,2 ∈ G. Here e ∈ G is the group unit (eg = ge = g), while I is the
n× n identity matrix.

Definition 7.2 A continuous-time system

ẋ = f(x), x ∈ R
n, (7.13)

is called invariant with respect to the representation {Tg} of the group G
(or, simply, G-equivariant) if

Tgf(x) = f(Tgx) (7.14)

for all g ∈ G and all x ∈ R
n.

Example 7.3. The famous Lorenz system
ẋ = −σx + σy,
ẏ = rx− y − xz,
ż = −bz + xy,

(7.15)

is invariant with respect to the transformation

T :

 x
y
z

 �→
 −x
−y
z

 .
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A matrix R corresponding to this transformation (R2 = I), together with
the unit matrix I, forms a three-dimensional representation of the group
Z2 (see Section 7.4.2). ✸

Equation (7.14) implies that the linear transformation

y = Tgx, g ∈ G,

does not change system (7.13). Indeed,

ẏ = Tgẋ = Tgf(x) = f(Tgx) = f(y).

Therefore, if x(t) is a solution to (7.13), then y(t) = Tgx(t) is also a solution.
For example, if (x0(t), y0(t), z0(t)), where z0 ≡ 0, is a homoclinic solution
to the origin in the Lorenz system (7.15), then there is another homoclinic
orbit to the same equilibrium, given by (−x0(t),−y0(t), z0(t)).

Definition 7.3 The fixed-point subspace XG ⊂ R
n is the set

XG = {x ∈ R
n : Tgx = x, for all g ∈ G}.

The set XG is a linear subspace of R
n. This subspace is an invariant set

of (7.13), because x ∈ XG implies ẋ ∈ XG. Indeed,

Tgẋ = Tgf(x) = f(Tgx) = f(x) = ẋ

for all g ∈ G. For system (7.15), we have only one symmetry transformation
T , so the fixed-point subspace is the z-axis, XG = {(x, y, z) : x = y = 0}.
This axis is obviously invariant under the flow associated with the system.

Let us explain the modifications that symmetry brings to the Center
Manifold Theorem. Suppose we have a smooth G-equivariant system (7.13).
Let x0 be an equilibrium point that belongs to the fixed-point subspace
XG, and assume the Jacobian matrix A = fx evaluated at x0 has n0
eigenvalues (counting multiplicity) on the imaginary axis. Let Xc denote
the corresponding critical eigenspace of A. The following lemma is a direct
consequence of the identity TgA = ATg, for all g ∈ G, that can be obtained
by differentiating (7.14) with respect to x at x = x0.

Lemma 7.3 Xc is G-invariant; in other words, if v ∈ Xc, then Tgv ∈ Xc

for all g ∈ G. ✷

Therefore, it is possible to consider the restriction {T c
g } of {Tg} on Xc.

If we fix some coordinates ξ = (ξ1, ξ2, . . . , ξn0) on Xc, {T c
g } will be given

by certain n0 × n0 matrices.

Theorem 7.6 (Ruelle [1973]) Any center manifold W c of the equilib-
rium x0 ∈ XG of (7.13) is locally G-invariant.
Moreover, there are local coordinates ξ ∈ R

n0 on W c in which the re-
striction of (7.13) to W c,

ξ̇ = ψ(ξ), ξ ∈ R
n0 , (7.16)
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is invariant with respect to the restriction of {Tg} to Xc,

T c
gψ(ξ) = ψ(T c

g ξ). ✷

Attraction properties of W c are determined, in the usual way, by the
eigenvalues of A with Re λ = 0. If (7.13) depends on parameters, one can
construct a parameter-dependent center manifold W c

α by appending the
equation α̇ = 0 to the system, as in Chapter 5. The restricted system
(7.16) depends on α and is invariant with respect to T c

g at each fixed α.
Similar results are valid for G-equavaliant discrete-time systems.

7.4.2 Z2-equivariant systems
The simplest possible nontrivial group G consists of two distinct elements
{e, r} such that

r2 = e, re = er = r, e2 = e.

This group is usually denoted by Z2. Let {I,R} be a linear representation
of Z2 in R

n, where I is the unit matrix and the n× n matrix R satisfies

R2 = I.

The matrix R defines the symmetry transformation: x �→ Rx.6 It is easy to
verify (Exercise 3) that the space R

n can be decomposed into a direct sum

R
n = X+ ⊕X−,

where Rx = x for x ∈ X+, and Rx = −x for x ∈ X−. Therefore, R is
the identity on X+ and a central reflection on X−. According to Definition
7.4, X+ is the fixed-point subspace associated with G. Let n± = dimX±,
n+ ≥ 0, n− ≥ 1. Clearly, there is a basis in R

n in which the matrix R has
the form

R =
(

In+ 0
0 −In−

)
,

where Im is the m×m unity matrix. From now on, we can assume that such
a basis is fixed, and we can thus consider a smooth parameter-dependent
system

ẋ = f(x, α), x ∈ R
n, α ∈ R

1, (7.17)

that satisfies
Rf(x, α) = f(Rx,α),

for all (x, α) ∈ R
n × R

1, where R is the matrix defined above. The fixed-
point subspace X+ is an invariant set of (7.17).

There is a simple classification of equilibria and periodic solutions of the
Z2-invariant system (7.17).

6Sometimes, we will also use the symbol R to denote this transformation. In
such cases, I will mean the identity map.
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Definition 7.4 An equilibrium x0 of (7.17) is called fixed if Rx0 = x0.

Thus, the symmetry transformation maps a fixed equilibrium into itself.
If an equilibrium is not fixed, Rx0 = x1 = x0, then x1 is also an equilibrium
of (7.17) (check!) and Rx1 = x0.

Definition 7.5 Two equilibria x0 and x1 of (7.17) are called R-conjugate
if x1 = Rx0.

Similar terminology can be introduced for periodic solutions.

Definition 7.6 A periodic solution xf (t) of (7.17) is called fixed if Rxf (t) =
xf (t) for all t ∈ R

1.

Obviously, the closed orbit corresponding to a fixed periodic solution
belongs to X+ and is invariant under the symmetry transformation R (see
Figure 7.23(a)). It can exist if n+ ≥ 2. However, there is another type of

+

+
XX

XX

(a) (b)

-

-

FIGURE 7.23. Invariant cycles: (a) F -cycle; (b) S-cycle.

periodic solution that defines a closed orbit that is R-invariant but not
fixed.

Definition 7.7 A periodic solution xs(t) of (7.17) with (minimal) period
Ts is called symmetric if

Rxs(t) = xs

(
t +

Ts
2

)
for all t ∈ R

1.

Thus, a symmetric periodic solution is transformed into itself by applying
R and shifting the time by half of the period. The orbit corresponding to a
symmetric solution cannot intersect X+ and requires n− ≥ 2 to exist. Its
projection to X− is symmetric with respect to the central reflection (see
Figure 7.23(b)). Notice that the X+-components of the symmetric periodic
solution oscillate with the double frequency.

We call a limit cycle L of (7.17) fixed (symmetric) if the corresponding
periodic solution is fixed (symmetric), and we denote them by F - and S-
cycle, respectively. Both F - and S-cycles are R-invariant as curves in R

n:
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R(L) = L. We leave the proof of the following lemma as an exercise to the
reader.

Lemma 7.4 Any R-invariant cycle of (7.17) is either an F - or an S-cycle.
✷

Of course, there may exist noninvariant limit cycles, R(L) = L. If x0(t)
is a periodic solution corresponding to such a cycle, then x1(t) = Rx0(t) is
another periodic solution of (7.17).

Definition 7.8 Two noninvariant limit cycles are called R-conjugate if
two of their corresponding periodic solutions satisfy x1(t) = Rx0(t) for all
t ∈ R

1.

7.4.3 Codim 1 bifurcations of equilibria in Z2-equivariant
systems

Our aim now is to analyze generic bifurcations of equilibria in Z2-equivari-
ant systems. Clearly, the bifurcations of R-conjugate equilibria happen in
the same way as in generic systems, being merely “doubled” by the symme-
try transformation R. For example, two pairs of R-conjugate equilibria of
opposite stability can collide and disappear via the fold bifurcation. Thus,
one can expect new phenomena only if the bifurcating equilibrium is of the
fixed type. Let us analyze the following simple example.

Example 7.4 (Symmetric pitchfork bifurcation) Consider the scalar
system

ẋ = αx− x3, x ∈ R
1, α ∈ R

1. (7.18)

The system is obviously Z2-equivariant. Indeed, in this case, Rx = −x
(reflection) and n+ = 0, n− = 1. At α = 0, system (7.18) has the fixed
equilibrium x0 = 0 with eigenvalue zero. The bifurcation diagram of (7.18)
is simple (see Figure 7.24). There is always a trivial equilibrium x0 = 0,
which is linearly stable for α < 0 and unstable for α > 0. It is fixed
according to Definition 7.5. There are also two stable nontrivial equilibria,
x1,2(α) = ±√α, existing for α > 0 and R-conjugate, Rx1(α) = x2(α).

Any Z2-equivariant system

ẋ = αx− x3 + O(x5)

is locally topologically equivalent near the origin to (7.18). Indeed, such a
system has the form

ẋ = αx− x3 + xψα(x2), (7.19)

with some ψα(x2) = O(x4), since any odd function vanishing at x = 0 can
be represented as xϕ(x), where ϕ(x) is even and, thus, ϕ(x) = ψ(x2). It is
clear that x = 0 is always an equilibrium of (7.19). The nontrivial equilibria
satisfy the equation

α− x2 + ψα(x2) = 0,
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0

x 1

x 2

x

R

x

α

FIGURE 7.24. Symmetric pitchfork bifurcation.

which can easily be analyzed near (x, α) = (0, 0) by means of the Implicit
Function Theorem. This proves that the number and stability of the equi-
libria in (7.18) and (7.19) are the same for corresponding small parameter
values with small |α|. The homeomorphism hα : R

1 → R
1 that identifies

the phase portraits of the systems can be constructed to satisfy

hα(−x) = −hα(x),

for all (x, α). In other words, the homeomorphism can be defined by an
odd function of x. ✸

This example has a fundamental meaning, due to the following theorem.

Theorem 7.7 (Bifurcations at a zero eigenvalue) Suppose that a Z2-
equivariant system

ẋ = f(x, α), x ∈ R
n, α ∈ R

1,

with smooth f , Rf(x, α) = f(Rx,α), R2 = I, has at α = 0 the fixed
equilibrium x0 = 0 with simple zero eigenvalue λ1 = 0, and let v ∈ R

n be
the corresponding eigenvector.
Then the system has a one-dimensional R-invariant center manifold W c

α,
and one of the following alternatives generically takes place:

(i) (fold) If v ∈ X+, then W c
α ⊂ X+ for all sufficiently small |α|, and

the restriction of the system to W c
α is locally topologically equivalent near

the origin to the following normal form:

ξ̇ = β ± ξ2;

(ii) (pitchfork) If v ∈ X−, then W c
α ∩X+ = x0 for all sufficiently small

|α|, and the restriction of the system toW c
α is locally topologically equivalent
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near the origin to the following normal form:

ξ̇ = βξ ± ξ3. ✷

In case (i), the standard fold bifurcation happens within the invariant
subspace X+, giving rise to two fixed-type equilibria. The genericity condi-
tions for this case are those formulated in Chapter 3 for the nonsymmetric
fold.

In case (ii), the pitchfork bifurcation studied in Example 7.3 happens,
resulting in the appearance of two R-conjugate equilibria, while the fixed
equilibrium changes its stability. The genericity conditions include nonva-
nishing of the cubic term of the restriction of the system to the center
manifold at α = 0. We leave the reader to work out the details.

The presence of Z2-symmetry in a system having a purely imaginary
pair of eigenvalues brings nothing new to nonsymmetric Hopf bifurcation
theory. Namely, one can prove the following.

Theorem 7.8 (Bifurcation at purely imaginary eigenvalues) Suppo-
se that a Z2-invariant system

ẋ = f(x, α), x ∈ R
n, α ∈ R

1,

with smooth f , Rf(x, α) = f(Rx,α), R2 = I, has at α = 0 the fixed
equilibrium x0 = 0 with a simple pair of imaginary eigenvalues λ1,2 =
±iω0, ω0 > 0.
Then, generically, the system has a two-dimensional R-invariant center

manifold W c
α, and the restriction of the system to W c

α is locally topologically
equivalent near the origin to the normal form:(

ξ̇1
ξ̇2

)
=

(
β −1
1 β

)(
ξ1
ξ2

)
± (ξ21 + ξ22)

(
ξ1
ξ2

)
. ✷

This normal form is the standard normal form for a generic Hopf bifur-
cation. It describes the appearance (or disappearance) of a unique limit
cycle having amplitude

√
β. There is a subtle difference, depending on

whether the critical eigenspace Xc belongs to X+ or X−. If Xc ⊂ X+,
then W c

α ⊂ X+ and the standard Hopf bifurcation happens within the
invariant subspace X+. The bifurcating cycle is of type F . In contrast, if
Xc ⊂ X−, then W c

α ∩ X+ = x0 and the system restricted to the center
manifold is Z2-invariant with respect to the transformation

R

(
ξ1
ξ2

)
= −

(
ξ1
ξ2

)
.

The bifurcating small-amplitude limit cycle is of type S.
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7.4.4 Codim 1 bifurcations of cycles in Z2-equivariant systems
As was the case for equilibria, bifurcations of noninvariant limit cycles
happen in the same manner as those in generic systems. Bifurcations of F -
and S-cycles are very different and have to be treated separately.

Codim 1 bifurcations of F -cycles

Consider a fixed limit cycle LF of (7.17), and select a codim 1 hyperplane
Σ that is transversal to the cycle and R-invariant, R(Σ) = Σ. Let Pα be
the Poincaré map defined on Σ near its intersection with LF (see Figure
7.25).

RX

X

Σ

X

-

+

-

FL

-Σ

+Σ

FIGURE 7.25. Poincaré map for an F -cycle.

Lemma 7.5 The Poincaré map Pα : Σ → Σ is G-equivariant,

RΣ ◦ Pα = Pα ◦RΣ,

where RΣ is the restriction of the map R to Σ.

Proof:
Let an orbit γ of (7.17) start at a point u ∈ Σ and return to a point v ∈ Σ

close to u: v = Pα(u). The R-conjugate orbit γ̃ = R(γ) starts at the point
ũ = RΣ(u) and returns to Σ at the point ṽ = RΣ(v). Since ṽ = Pα(ũ), we
have

RΣ(Pα(u)) = Pα(RΣ(u))

for all u ∈ Σ such that both sides of the equation are defined. ✷

Therefore, the analysis of bifurcations of F -cycles is reduced to that
of fixed points in a discrete-time dynamical system (map) having Z2-
symmetry. Introduce local coordinates ξ ∈ R

n−1 on Σ so that ξ = 0 corre-
sponds to the cycle LF . Let us use the same symbol R instead of RΣ, and
decompose Σ by

Σ = Σ+ ⊕ Σ−,
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where ξ ∈ Σ± if Rξ = ±ξ. Consider each codimension one case separately.
We give the following theorems, which are obvious enough, without proofs.

Theorem 7.9 (Bifurcations at µ = 1) Suppose that a Z2-equivariant sys-
tem

ẋ = f(x, α), x ∈ R
n, α ∈ R

1,

with smooth f , Rf(x, α) = f(Rx,α), R2 = I, has at α = 0 an F -cycle
L0 with a simple multiplier µ1 = 1, which is the only multiplier with |µ| =
1. Let v be the corresponding eigenvector of the Jacobian matrix of the
Poincaré map P0 associated with the cycle.
Then the map Pα has a one-dimensional R-invariant center manifold

W c
α, and the restriction of Pα to this manifold is, generically, locally topo-

logically equivalent near the cycle to one of the following normal forms:

(i) (fold) If v ∈ Σ+, then

η �→ β + η ± η2;

(ii) (pitchfork) If v ∈ Σ−, then

η �→ (1 + β)η ± η3. ✷

In case (i), W c
α ⊂ Σ+, and we have the standard fold bifurcation giving

rise to two F -cycles L1, L2 ∈ X+, with different stability (see Figure 7.26).

-X

RX Σ-

β < 0 β = 0 β > 0

+X + X

L 0

v
X +

L
L

2

1

FIGURE 7.26. Tangent bifurcation of an F -cycle.

In case (ii), W c
α∩Σ+ = 0, and we have the appearance (or disappearance)

of two R-conjugate limit cycles L1,2, L2 = R(L1), as the original F -cycle
changes its stability (see Figure 7.27).

Theorem 7.10 (Bifurcation at µ = −1) Suppose that a Z2-equivariant
system

ẋ = f(x, α), x ∈ R
n, α ∈ R

1,

with smooth f , Rf(x, α) = f(Rx,α), R2 = I, has at α = 0 an F -cycle
L0 with a simple multiplier µ1 = −1, which is the only multiplier with
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+X +XX +

β > 0
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0
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FIGURE 7.27. Pitchfork bifurcation of an F -cycle.

|µ| = 1. Let v be the corresponding eigenvector of the Jacobian matrix of
the associated Poincaré map P0.
Then the map Pα has a one-dimensional R-invariant center manifold

W c
α, and the restriction of Pα to this manifold is, generically, locally topo-

logically equivalent near the cycle to the normal form:

η �→ −(1 + β)η ± η3.

Moreover, the double-period limit cycle corresponding to the fixed points
of P 2

α has F -type if v ∈ Σ+ and S-type if v ∈ Σ−. ✷

Theorem 7.11 (Bifurcation at complex multipliers |µ1,2| = 1) Sup-
pose that a Z2-equivariant system

ẋ = f(x, α), x ∈ R
n, α ∈ R

1,

with smooth f , Rf(x, α) = f(Rx,α), R2 = I, has at α = 0 an F -cycle
L0 with simple multipliers µ1,2 = e±iθ0 , which are the only multipliers with
|µ| = 1.
Then the map Pα has a two-dimensional R-invariant center manifold

W c
α on which a unique invariant closed curve generically bifurcates from

the fixed point corresponding to L0. This curve corresponds to an invariant
two-torus T

2 of the system, R(T2) = T
2. ✷

Remark:
The fold and pitchfork bifurcations are the only possible codim 1 bifur-

cations in generic, one-parameter, Z2-equivariant systems in R
3. ♦

Codim 1 bifurcations of S-cycles

As one can see, in this case the cross-section Σ cannot be selected to be
R-invariant. Instead, one can choose two secant hyperplanes to the cycle
L0, Σ1 and Σ2, such that

R(Σ1) = Σ2,
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and the Poincaré map Pα can be represented for all sufficiently small |α| as
the superposition of two maps Q(1)

α : Σ1 → Σ2 and Q
(2)
α : Σ2 → Σ1 defined

near the cycle
Pα = Q(2)

α ◦Q(1)
α

(see Figure 7.28).

Σ

Σ

1

2
X

X

+

-
R

R

L S

FIGURE 7.28. Poincaré map for an S-cycle.

Lemma 7.6 There is a smooth map Qα : Σ1 → Σ1 such that

Pα = Q2
α. (7.20)

Proof:
In the proper coordinates the map Q

(2)
α coincides with Q

(1)
α . More pre-

cisely, due to the symmetry of the system,

Q(2)
α ◦R = R ◦Q(1)

α ,

or, equivalently, Q(2)
α = R ◦Q(1)

α ◦R−1. Now introduce a map

Qα = R−1 ◦Q(1)
α

transforming Σ1 into itself: First we allow a point to fly along the orbit of
the system from Σ1 to Σ2 and then apply the inverse symmetry transfor-
mation R−1 placing it back to Σ1. We have

Pα = R ◦Q(1)
α ◦R−1 ◦Q(1)

α = R ◦ (R ◦R−1) ◦Q(1)
α ◦R−1 ◦Q(1)

α = R2 ◦Q2
α,

that gives (7.20), since R2 = I. ✷

Consequently, the analysis of bifurcations of S-cycles is reduced to that
for fixed points of the map Qα that has no special symmetry. However,
equation (7.20) imposes strong restrictions on possible bifurcations.
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Proposition 7.1 An S-cycle cannot have the simple multiplier µ = −1.

Proof:
Let A and B be the Jacobian matrices of P0 and Q0 evaluated at their

common fixed point. Then (7.20) implies

A = B2.

If µ is a simple real eigenvalue of A, then there exists a simple real eigenvalue
λ of B. Therefore, µ = λ2 > 0. ✷

Thus, only the cases µ1 = 1 and µ1,2 = e±iθ0 have to be considered.

Theorem 7.12 (Bifurcation at µ = 1) Suppose that a Z2-equivariant sy-
stem

ẋ = f(x, α), x ∈ R
n, α ∈ R

1,

with smooth f , Rf(x, α) = f(Rx,α), R2 = I, has at α = 0 an S-cycle L0
with a simple multiplier µ1 = 1, which is the only multiplier with |µ| = 1.
Let v be the corresponding eigenvector of the Jacobian matrix A = B2 of
the associated Poincaré map P0 = Q2

0.
Then the map Pα has a one-dimensional R-invariant center manifold

W c
α, and the restriction of Pα to this manifold is, generically, locally topo-

logically equivalent near the cycle to one of the following normal forms:

(i) (fold) If Bv = v, then

η �→ β + η ± η2;

(ii) (pitchfork) If Bv = −v, then
η �→ (1 + β)η ± η3.

Outline of the proof:
In case (i), we have a standard fold bifurcation of Qα (λ1 = 1). Therefore,

on its center manifold (which is also a center manifold for Pα) the map Qα

is generically equivalent to

ξ �→ γ + ξ ± ξ2.

The fixed points of this map correspond to S-cycles of the system. Its
second iterate

ξ �→ (2γ + · · ·) + (1 + · · ·)ξ ± (2 + · · ·)ξ2 + · · ·
is topologically equivalent to the normal form (i).

In case (ii), we have a standard flip bifurcation for Qα (λ1 = −1, λ2
1 = 1).

On its center manifold, the map Qα is equivalent to

ξ �→ −(1 + γ)ξ ± ξ3.
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The cycle of period two of this map corresponds to a pair of R-conjugate
cycles of the original system. The second iterate of this map,

ξ �→ (1 + 2γ + · · ·)ξ ∓ (2 + · · ·)ξ3 + · · · ,

is topologically equivalent to the normal form (ii). ✷

Theorem 7.13 (Bifurcation at complex multipliers |µ1,2| = 1) Sup-
pose that a Z2-equivariant system

ẋ = f(x, α), x ∈ R
n, α ∈ R

1,

with smooth f , Rf(x, α) = f(Rx,α), has at α = 0 an S-cycle L0 with
simple multipliers µ1 = e±iθ0 , which are the only multipliers with |µ| = 1.
Then the map Pα has a two-dimensional R-invariant center manifold

W c
α on which a unique invariant closed curve generically bifurcates from

the fixed point corresponding to L0. This curve corresponds to an invariant
two-torus T

2 of the system, R(T2) = T
2. ✷

Remark:
A system in R

3 that is invariant under the transformation Rx = −x, x ∈
R

3 cannot exhibit the Neimark-Sacker bifurcation of an S-cycle. ♦

7.5 Exercises

(1) (Asymptotics of the cycle period near saddle-node homoclinic
bifurcation) Find an asymptotic expression for the period Tβ of the cycle
as a function of β, when it approaches the homoclinic orbit at a saddle-node
bifurcation. (Hint: The leading term of the expansion is given by

Tβ ∼
∫ 1

−1

dξ

β + ξ2
,

where ξ is a coordinate on a center manifold W c
β near the saddle-node.)

(2) (Arnold’s circle map) Consider the following two-parameter smooth
map Pα,ε : S

1 → S
1,

Pα,ε(ϕ) = ϕ + α + ε sin θ,

where 0 ≤ ε < 1, ϕ, α (mod 2π). Compute asymptotic expressions for the
curves that bound a region in the (α, ε)-plane corresponding to the map
having rotation number ρ = 1

2 . (Hint: A rotation number ρ = 1
2 implies

the presence of cycles of period two, and the boundaries are defined by the
fold bifurcation of these cycles.)
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(3) (Symmetry decomposition) Let R be a real n×n matrix such that
R2 = I. Prove that the space R

n can be decomposed as R
n = X+ ⊕X−,

where Rx = x for x ∈ X+, and Rx = −x for x ∈ X−. (Hint: Any eigenvalue
λ of R satisfies λ2 = 1.)

(4) (Hopf bifurcation in Z2-equivariant planar systems) Prove that
the Hopf bifurcation never happens in the planar systems invariant under
the transformation

R

(
x
y

)
=

(
x

−y
)
.

(Hint: Any real matrix A satisfying AR = RA, where R is defined above,
is diagonal.)

(5) (Pitchfork bifurcation in the Lorenz system) Prove that the
equilibrium (x, y, z) = (0, 0, 0) of the Lorenz system (7.15) exhibits a non-
degenerate pitchfork bifurcation at r0 = 1, for any fixed positive (σ, b).
(Hints:

(a) Verify that at r0 = 1 the equilibrium at the origin has a simple zero
eigenvalue, and compute the corresponding eigenvector v. Check that Av =
−v, where A is the Jacobian matrix of (7.15) evaluated at x = y = z = 0
for r = 1, so that case (ii) of Theorem 7.6 is applicable.

(b) Compute the second-order approximation to the center manifold W c

at r0 = 1 and prove that it is R-invariant.
(c) Check that the restriction of the system to the center manifold has

no quadratic term. Could one expect this a priori?
(d) Compute the coefficient of the cubic term as a function of (σ, b) and

verify that it is nonzero for positive parameter values.)

(6) (Normal form for O(2)-symmetric Hopf bifurcation) Consider
the following smooth, four-dimensional system written as two complex
equations:{

ż1 = z1(β + iω(β) + A(β)|z1|2 + B(β)|z2|2),
ż2 = z2(β + iω(β) + B(β)|z1|2 + A(β)|z2|2), (7.21)

where β is the bifurcation parameter, ω(0) > 0, A(β) and B(β) are complex-
valued functions, and for a(β) = Re A(β), b(β) = Re B(β),

a(0)b(0)(a2(0)− b2(0)) = 0.

This is a (truncated) normal form for the Hopf bifurcation with a four-
dimensional center manifold of O(2)-equivariant systems (see van Gils &
Mallet-Paret [1986], Kuznetsov [1984, 1985]. Notice that the critical pair
of eigenvalues ±iω(0) is double.

(a) Verify that system (7.21) is invariant with respect to the representa-
tion of the orthogonal group O(2) in C

2 by the transformations

R(z1, z2) = (z2, z1), Tθ(z1, z2) = (eiθz1, e−iθz2) (θ mod 2π). (7.22)
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(b) Write system (7.21) in polar coordinates zk = ρke
iϕ, k = 1, 2, and

check that equations for ρk are independent of those for ϕk.
(c) Introduce rk = ρ2

k, k = 1, 2, and derive a quadratic planar system for
rk. Assume a(0) < 0 and obtain the bifurcation diagrams of the resulting
system as β varies. (Hint: There are three subcases: (i) b(0) < a(0); (ii)
b(0) > a(0), a(0) + b(0) < 0; (iii) b(0) > 0, a(0) + b(0) > 0. In all cases, the
amplitude system cannot have limit cycles.)

(d) Interpret the results of part (c) in terms of the four-dimensional
system (7.21). Prove that, besides the trivial equilibrium at the origin,
the system can have a pair of R-conjugate limit cycles, and/or a two-
dimensional R− and Tθ-invariant torus foliated by closed orbits. Explain
why this structurally unstable orbit configuration on the torus persists
under parameter variations. Prove that when they exist simultaneously,
the cycles and the torus have opposite stability.

(e) Show that any smooth system{
ż1 = λ(α)z1 + f1(z1, z̄1, z2, z̄2, α),
ż1 = λ(α)z2 + f2(z1, z̄1, z2, z̄2, α), (7.23)

which is invariant with respect to the transformations (7.22) and has λ(0) =
iω(0), can be reduced to within cubic terms by smooth and smoothly
parameter-dependent invertible transformations to the form (7.21), where
β = β(α). Verify that the resulting transformation preserves the symmetry
(i.e., is invariant under (7.22)).

(f) Prove that the limit cycles and the torus survive under adding any
O(2)-equivariant higher-order terms to the truncated normal form (7.21).

(g) Assume that (7.21) is a truncated normal form of the equations on
a center manifold of a reaction-diffusion system on a two-dimensional do-
main Ω, having the spatial symmetry group O(2), composed of rotations
and a reflection. Convince yourself that the cycles in the system on the cen-
ter manifold correspond to rotating waves in the reaction-diffusion system,
while the torus describes standing waves in the system.

7.6 Appendix 1: Bibliographical notes

The saddle-node homoclinic bifurcation was described, among other pla-
nar codim 1 bifurcations, by Andronov in the 1940s (see Andronov et al.
[1973]). Multidimensional theorems on saddle-node and saddle-saddle ho-
moclinic bifurcations are due to Shil’nikov [1963, 1966, 1969]. Our presen-
tation of the saddle-saddle multiple-homoclinic case follows a lecture given
by Yu. Il’yashenko at Moscow State University in 1987. Two-parameter
unfolding of a nontransversal homoclinic orbit to a saddle-saddle equilib-
rium has been analyzed by Champneys, Härterich & Sandstede [1996], who
also constructed a polynomial system having two orbits homoclinic to a
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saddle-saddle. Another codim 2 case, when the homoclinic orbit returns to
a saddle-node along the noncentral direction, was analyzed by Lukyanov
[1982] for planar systems and by Chow & Lin [1990] and Deng [1990] in
general.

Nontransversal intersections of the invariant manifolds of a saddle cy-
cle were studied by Gavrilov & Shilnikov [1972, 1973] who analyzed how
Smale horseshoes are created and destroyed near the critical parameter
value. Wiggins [1990] gives a readable introduction to this bifurcation. The
analysis of bifurcations of homoclinic orbits to a nonhyperbolic cycle was
initiated by Afraimovich & Shil’nikov [1972, 1974, 1982]. The “blue-sky”
problem was first formulated by Palis & Pugh [1975]. Medvedev [1980] has
constructed the first explicit example of this bifurcation on the Klein bottle.
However, the constructed limit cycle exhibited infinitely many fold bifur-
cations while approaching the “blue-sky” parameter value. The “French
horn” mechanism of the “blue-sky” bifurcation of a stable cycle is pro-
posed and analyzed by Turaev & Shil’nikov [1995]. Some authors naively
tend to consider any homoclinic bifurcation as a “blue-sky” catastrophe.

Bifurcations of continuous-time systems on tori and the associated bifur-
cations of maps of a circle is a classical topic dating back to Poincaré. A
good introduction to the theory of differential equations on the torus can
be found in Arnold [1983], including the proof of Denjoy’s theorem (see
Denjoy [1932] and also Nitecki [1971]). The persistence of normally hy-
perbolic invariant manifolds (including tori) under perturbations is proved
by Fenichel [1971]. When the normal hyperbolicity is lost, the torus can
break-up. Possible break-up scenaria are classified by Arnol’d, Afraimovich,
Il’yashenko & Shil’nikov [1994]. For an example showing the complexity in
the bifurcation sequence leading to the break-up of an invariant torus, see
Aronson et al. [1982].

Bifurcation with symmetry is a huge and rapidly developing field. The
standard references here are the books by Golubitsky & Schaeffer [1985]
and by Golubitsky, Stewart & Schaeffer [1988]. Their reading, however,
requires a rather high mathematical sophistication. The Center Manifold
Theorem in the presence of a compact symmetry group was formulated by
Ruelle [1973]. Its generalization to the noncompact case has been proved
by Sandstede, Scheel & Wulff [1997]. The main results on limit cycles and
their bifurcations in the presence of discrete symmetries were obtained by
Fiedler [1988] and Nikolaev [1994]. Our presentation of cycle bifurcations
in Z2-equivariant systems closely follows Nikolaev [1992, 1995].
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8
Two-Parameter Bifurcations of
Equilibria in Continuous-Time
Dynamical Systems

This chapter is devoted to bifurcations of equilibria in generic two-parame-
ter systems of differential equations. First, we make a complete list of such
bifurcations. Then, we derive a parameter-dependent normal form for each
bifurcation in the minimal possible phase dimension and specify relevant
genericity conditions. Next, we truncate higher-order terms and present the
bifurcation diagrams of the resulting system. The analysis is completed by
a discussion of the effect of the higher-order terms. In those cases where
the higher-order terms do not qualitatively alter the bifurcation diagram,
the truncated systems provide topological normal forms for the relevant
bifurcations. The results of this chapter can be applied to n-dimensional
systems by means of the parameter-dependent version of the Center Mani-
fold Theorem (see Chapter 5).

The reader is warned that the parameter and coordinate transforma-
tions required to put a system into the normal form can lead to lengthy
intermediate calculations and expressions that can make the theory seem
unnecessarily complicated. While many such expressions are included here,
the reader is advised against trying to follow the calculations “by hand.”
Instead, we strongly urge you to use one of the symbolic manipulation
packages, which are well suited for such problems (see Exercise 15 at the
end of the chapter and the bibliographical notes to Chapter 10).
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8.1 List of codim 2 bifurcations of equilibria

Consider a two-parameter system

ẋ = f(x, α), (8.1)

where x = (x1, x2, . . . , xn)T ∈ R
n, α = (α1, α2)T ∈ R

2, and f is a suffi-
ciently smooth function of (x, α).

8.1.1 Bifurcation curves
Suppose that at α = α0, system (8.1) has an equilibrium x = x0 for which
either the fold or Hopf bifurcation conditions are satisfied. Then, generi-
cally, there is a bifurcation curve B in the (α1, α2)-plane along which the
system has an equilibrium exhibiting the same bifurcation. Let us consider
two simple examples.

Example 8.1 (Fold bifurcation curve in a scalar system) Assume
that at α = α0 = (α0

1, α
0
2)T the system

ẋ = f(x, α), x ∈ R
1, α = (α1, α2)T ∈ R

2, (8.2)

has an equilibrium x = x0 with eigenvalue λ = fx(x0, α0) = 0. Consider
the following system of scalar nonlinear equations:{

f(x, α) = 0,
fx(x, α) = 0. (8.3)

This is a system of two equations in R
3 with coordinates (x, α1, α2). Gener-

ically, it defines a smooth one-dimensional manifold (curve) Γ ⊂ R
3 passing

through the point (x0, α0
1, α

0
2) (see Figure 8.1). Here “generically” means

that the rank of the Jacobian matrix of (8.3),

J =
(

fx fα1 fα2

fxx fxα1 fxα2

)
,

is maximal, i.e., equal to 2. For example, if the conditions of Theorem 3.1
(see Chapter 3) for the fold bifurcation are satisfied with respect to α1 at
α0:

(A.1) fxx(x0, α0) = 0;
(A.2) fα1(x0, α0) = 0;

then rank J = 2 at (x0, α0) since

det
(

fx fα1

fxx fxα1

)
= det

(
0 fα1

fxx fxα1

)
= −fxxfα1 = 0.
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FIGURE 8.1. A bifurcation curve Γ and its corresponding bifurcation boundary
B.

In this case, the Implicit Function Theorem provides the (local) existence
of two smooth functions:{

x = X(α2),
α1 = A(α2),

satisfying (8.3) and such that

X(α0
2) = x0, A(α0

2) = α0
1.

These functions define the curve Γ parametrized by α2 near the point
(x0, α0). By continuity, the genericity conditions (A.1) and (A.2) will be
satisfied at nearby points on Γ. Therefore, the construction can be repeated
to extend the curve farther.

If fα1 = 0 but fα2 = 0 at a certain point where fxx = 0, similar argu-
ments give the local existence of Γ parametrized by α1. Even if fxx = 0 at
some point, which would mean that the nondegeneracy condition (A.1) is
violated, system (8.3) can still define a curve, provided that

det
(

fα1 fα2

fxα1 fxα2

)
= 0.

At such a point, rank J = 2 as before, and the curve Γ is locally parametrized
by x.

Each point (x, α) ∈ Γ defines an equilibrium point x of system (8.2) with
zero eigenvalue at the parameter value α (see system (8.3)). The standard
projection

π : (x, α) �→ α
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maps Γ onto a curve B = πΓ in the parameter plane (see Figure 8.1). A
fold bifurcation takes place on this curve. ✸

Example 8.2 (Hopf bifurcation curve in a planar system) Con-
sider a planar system

ẋ = f(x, α), x = (x1, x2)T ∈ R
2, α = (α1, α2)T ∈ R

2, (8.4)

having, at α = α0 = (α0
1, α

0
2)T , an equilibrium x0 = (x0

1, x
0
2)T with a pair of

eigenvalues on the imaginary axis: λ1,2 = ±iω0. Consider now the following
system of three scalar equations in R

4 with coordinates (x1, x2, α1, α2):{
f(x, α) = 0,

tr(fx(x, α)) = 0, (8.5)

where tr stands for the sum of the diagonal matrix elements (trace). Clearly,
(x0, α0) satisfies (8.5), since the trace equals the sum of the eigenvalues
of fx. We leave the reader to show that the Jacobian matrix of (8.5) has
maximal rank (equal to 3) at (x0, α0) if the equilibrium x0 exhibits a generic
Hopf bifurcation at α0. Actually, the rank remains equal to 3 under less
restrictive assumptions. Therefore, system (8.5) defines a curve Γ in R

4

passing through (x0, α0). Each point on the curve specifies an equilibrium
of (8.4) with λ1,2 = ±iω0, ω0 > 0, as long as det(fx(x, α)) > 0. The
standard projection of Γ onto the (α1, α2)-plane yields the Hopf bifurcation
boundary B = πΓ.

Notice that the second equation in (8.5) is also satisfied by an equilibrium
with real eigenvalues

λ1 = τ, λ2 = −τ,
where τ > 0. In this case, det(fx(x, α)) < 0 and the equilibrium is called a
neutral saddle. For a neutral saddle, the saddle quantity σ = λ1 + λ2 = 0
(see Chapter 6). ✸

The constructions of Examples 8.1 and 8.2 can be generalized to an
arbitrarily high phase-space dimension n. Suppose, as before, that at α =
α0, system (8.1) has an equilibrium x = x0 satisfying either the fold or Hopf
bifurcation conditions. In each case, a smooth scalar function ψ = ψ(x, α)
can be constructed in terms of the elements of the Jacobian matrix fx.
Adding this function to the equilibrium equation yields the system{

f(x, α) = 0,
ψ(x, α) = 0, (8.6)

which, generically, defines a curve Γ passing through the point (x0, α0) in
R
n+2 with coordinates (x, α). Γ consists of equilibria satisfying the defining

bifurcation condition. The standard projection of Γ onto the α-plane results
in the corresponding bifurcation boundary B.
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The function ψ is most easily constructed in the case of the fold bifurca-
tion. System (8.6), with

ψ = ψt(x, α) = det(fx(x, α)), (8.7)

defines a curve of equilibria having at least one zero eigenvalue. Indeed, ψt is
the product of all the eigenvalues of fx and thus vanishes at an equilibrium
with a zero eigenvalue. One can check that rank J = n + 1 at a generic
fold point (x0, α0), where J is the Jacobian matrix of (8.6) with respect to
(x, α).

A function ψ = ψH(x, α) can also be constructed for the Hopf bifurca-
tion. Namely,

ψH(x, α) = det (2fx(x, α)+ I) , (8.8)

where + denotes the bialternate product of two matrices. This product is a
certain square matrix of order 1

2n(n− 1). The function ψH is equal to the
product of all formally distinct sums of the eigenvalues of fx:

ψH =
∏
i>j

(λi + λj);

and it therefore vanishes at an equilibrium having a pair of eigenvalues
with zero sum. It can also be shown that rank J = n + 1 at a generic
Hopf bifurcation. We will return to the precise definition and practical
computation of the bialternate product in Chapter 10.

8.1.2 Codimension two bifurcation points
Let the parameters (α1, α2) be varied simultaneously to track a bifurcation
curve Γ (or B). Then, the following events might happen to the monitored
nonhyperbolic equilibrium at some parameter values:

(i) extra eigenvalues can approach the imaginary axis, thus changing the
dimension of the center manifold W c;

(ii) some of the genericity conditions for the codim 1 bifurcation can be
violated.

For nearby parameter values we can expect the appearance of new phase
portraits of the system, implying that a codim 2 bifurcation has occurred.
It is worthwhile to recall that the different genericity conditions for either
the fold or Hopf bifurcation have differing natures. As we saw in Chapter 3,
some conditions (called “nondegeneracy conditions”) imply that a certain
coefficient in the normal form of the equation on the center manifold is
nonzero at the critical point. These coefficients can be computed in terms
of the Taylor coefficients of f(x, 0) at the equilibrium. In contrast, there are
conditions (called “transversality conditions”) in which certain derivatives
of f(x, α) with respect to some parameter αi are involved. These two types
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of conditions play differing roles in the bifurcation analysis. The nonde-
generacy conditions essentially determine the number and stability of the
equilibria and cycles appearing under parameter perturbations, while the
transversality conditions merely suggest the introduction of a new param-
eter to “unfold” the bifurcation (see Chapter 3). Thus, only violating a
nondegeneracy condition can produce new phase portraits. For example, if

∂

∂αi
Re λ1,2(α) = 0

at the Hopf bifurcation point, then, generically, the eigenvalues do not cross
the imaginary axis as αi passes the critical value. This results in the same
local phase portrait for both sub- and supercritical parameter values.

Let us first follow the fold bifurcation curve Bt. A typical point in this
curve defines an equilibrium with a simple zero eigenvalue λ1 = 0 and no
other eigenvalues on the imaginary axis. The restriction of (8.1) to a center
manifold W c has the form

ξ̇ = aξ2 + O(ξ3). (8.9)

The formula for the coefficient a was derived in Chapter 5. By definition,
the coefficient a is nonzero at a nondegenerate fold bifurcation point. While
the curve is being tracked, the following singularities can be met:

(1) An additional real eigenvalue λ2 approaches the imaginary axis, and
W c becomes two-dimensional:

λ1,2 = 0

(see Figure 8.2(a)). These are the conditions for the Bogdanov-Takens (or
double-zero) bifurcation. To have this bifurcation, we need n ≥ 2.

(2) Two extra complex eigenvalues λ2,3 arrive at the imaginary axis, and
W c becomes three-dimensional:

λ1 = 0, λ2,3 = ±iω0,

λ 1

λ 3

λ 2

λ 1

λ 2

λ 3

λ  = λ  
λ 4

(a) (b) (c)

1 2

FIGURE 8.2. Linear singularities of codim 2.
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for ω0 > 0 (see Figure 8.2(b)). These conditions correspond to the zero-
pair or fold-Hopf bifurcation, sometimes called a Gavrilov-Guckenheimer
bifurcation. We obviously need n ≥ 3 for this bifurcation to occur.

(3) The eigenvalue λ1 = 0 remains simple and the only one on the imagi-
nary axis (dimW c = 1), but the normal form coefficient a in (8.9) vanishes:

λ1 = 0, a = 0.

These are the conditions for a cusp bifurcation, which is possible in systems
with n ≥ 1. Notice that this bifurcation is undetectable by looking at only
the eigenvalues of the equilibrium, since quadratic terms of f(x, 0) are
involved in the computation of a. Bifurcations of this type are sometimes
referred to as “degeneracy of nonlinear terms.”

Let us now follow a Hopf bifurcation curve BH in system (8.1). At a
typical point on this curve, the system has an equilibrium with a simple
pair of purely imaginary eigenvalues λ1,2 = ±iω0, ω0 > 0, and no other
eigenvalues with Re λ = 0. The center manifold W c is two-dimensional in
this case, and there are (polar) coordinates (ρ, ϕ) for which the restriction
of (8.1) to this manifold is orbitally equivalent to{

ρ̇ = l1ρ
3 + O(ρ4),

ϕ̇ = 1 + O(ρ3). (8.10)

The formula for the coefficient l1 was derived in Chapters 3 and 5. By
definition, l1 = 0 at a nondegenerate Hopf point.

While moving along the curve, we can encounter the following new pos-
sibilities:

(4) Two extra complex-conjugate eigenvalues λ3,4 approach the imagi-
nary axis, and W c becomes four-dimensional:

λ1,2 = ±iω0, λ3,4 = ±iω1,

with ω0,1 > 0 (Figure 8.2(c)). These conditions define the two-pair or Hopf-
Hopf bifurcation. It is possible only if n ≥ 4.

(5) Finally, the first Lyapunov coefficient l1 might vanish while λ1,2 =
±iω0 remain simple and, therefore, dimW c = 2:

λ1,2 = ±iω0, l1 = 0.

At this point, a “soft” Andronov-Hopf bifurcation turns into a “sharp” one
(or vice versa). We call this event a Bautin bifurcation (see the bibliograph-
ical notes); it is often called a generalized (or degenerate) Hopf bifurcation.
It is possible if n ≥ 2. As with the cusp bifurcation, the Bautin bifurca-
tion cannot be detected by merely monitoring the eigenvalues. We have to
take into account the quadratic and cubic Taylor series coefficients of the
right-hand side of (8.1) at the equilibrium.
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Clearly, the Bogdanov-Takens bifurcation can also be located along a
Hopf bifurcation curve, as ω0 approaches zero. At this point, two purely
imaginary eigenvalues collide and we have a double zero eigenvalue. If we
continue to trace the curve defined by (8.6) with ψ = ψH given by (8.8),
we will follow a neutral saddle equilibrium with real eigenvalues λ1 = −λ2.
Obviously, a zero-pair bifurcation can also be found while tracing a Hopf
bifurcation curve.

Thus, we have identified five bifurcation points that one can meet in
generic two-parameter systems while moving along codim 1 curves. Each of
these bifurcations is characterized by two independent conditions (and is
therefore of codim 2). There are no other codim 2 bifurcations in generic
continuous-time systems. The rest of this chapter is devoted to a systematic
study of these bifurcations in the least possible phase-space dimensions. The
analysis of each codim 2 bifurcation will be organized in a similar manner
to the study of codim 1 bifurcations:

(i) First, we derive the simplest parameter-dependent form to which any
generic two-parameter system exhibiting the bifurcation can be transformed
by smooth invertible changes of coordinates and parameters and (if neces-
sary) time reparametrizations. In the course of this derivation, certain non-
degeneracy and transversality conditions will be imposed on the system to
make the transformation possible. These conditions explicitly specify which
systems are “generic.”
(ii) Then we truncate higher-order terms and present bifurcation diagrams
of the resulting system, sometimes called the “approximate normal form”
or “model system.” For this system to have a nondegenerate bifurcation
diagram, some extra genericity conditions might have to be imposed at this
stage.
(iii) Finally, we discuss the influence of the higher-order terms.

It turns out that for the cusp, Bautin, and Bogdanov-Takens bifurcations
the higher-order terms do not qualitatively affect the bifurcation diagrams,
and the model systems provide topological normal forms for the correspond-
ing bifurcations (see Chapter 2 for a definition). Notice that these are ex-
actly those codim 2 bifurcations possible in generic scalar or planar systems.
For the remaining codim 2 bifurcations (zero-pair and two-pair cases, with
minimal phase dimensions n = 3 and 4, respectively), the situation is more
involved, since higher-order terms do change bifurcation diagrams. We dis-
cuss which features of the behavior of the system will persist, if one takes
these terms into account, and which will not. In any case, the study of the
approximate normal form provides important information on the behavior
of the system near the bifurcation point.
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8.2 Cusp bifurcation

8.2.1 Normal form derivation
Suppose the system

ẋ = f(x, α), x ∈ R
1, α ∈ R

2, (8.11)

with a smooth function f , has at α = 0 the equilibrium x = 0 for which
the cusp bifurcation conditions are satisfied, namely λ = fx(0, 0) = 0 and
a = 1

2fxx(0, 0) = 0. As in the analysis of the fold bifurcation in Chapter 3,
expansion of f(x, α) as a Taylor series with respect to x at x = 0 yields

f(x, α) = f0(α) + f1(α)x + f2(α)x2 + f3(α)x3 + O(x4).

Since x = 0 is an equilibrium, we have f0(0) = f(0, 0) = 0. The cusp
bifurcation conditions yield f1(0) = fx(0, 0) = 0 and f2(0) = 1

2fxx(0, 0) =
0.

As in Chapter 3, let us analyze the simplification of the right-hand side
of (8.11) that can be achieved by a parameter-dependent shift of the coor-
dinate

ξ = x + δ(α). (8.12)

Substituting (8.12) into (8.11), taking into account the expansion of f(x, α),
yields

ξ̇ =
[
f0(α)− f1(α)δ + δ2ϕ(α, δ)

]
+

[
f1(α)− 2f2(α)δ + δ2φ(α, δ)

]
ξ

+
[
f2(α)− 3f3(α)δ + δ2ψ(α, δ)

]
ξ2 + [f3(α) + δθ(α, δ)] ξ3 + O(ξ4)

for some smooth functions ϕ, φ, ψ, and θ. Since f2(0) = 0, we cannot use the
Implicit Function Theorem to select a function δ(α) to eliminate the linear
term in ξ in the above equation (as we did in Chapter 3). However, there
is a smooth shift function δ(α), δ(0) = 0, which annihilates the quadratic
term in the equation for all sufficiently small ‖α‖, provided that

(C.1) f3(0) =
1
6
fxxx(0, 0) = 0.

To see this, denote the coefficient in front of ξ2 by F (α, δ):

F (α, δ) = f2(α)− 3f3(α)δ + δ2ψ(α, δ).

We have

F (0, 0) = 0,
∂F

∂δ

∣∣∣∣
(0,0)

= −3f3(0) = 0.

Therefore, the Implicit Function Theorem gives the (local) existence and
uniqueness of a smooth scalar function δ = δ(α), such that δ(0) = 0 and

F (α, δ(α)) ≡ 0,
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for ‖α‖ small enough. The equation for ξ, with δ(α) constructed as above,
contains no quadratic terms. Now we can introduce new parameters µ =
(µ1, µ2) by setting{

µ1(α) = f0(α)− f1(α)δ(α) + δ2(α)ϕ(α, δ(α)),
µ2(α) = f1(α)− 2f2(α)δ(α) + δ2(α)φ(α, δ(α)). (8.13)

Here µ1 is the ξ-independent term in the equation, while µ2 is the coefficient
in front of ξ. Clearly, µ(0) = 0. The parameters (8.13) are well defined if
the Jacobian matrix of the map µ = µ(α) is nonsingular at α1 = α2 = 0:

(C.2) det
(
∂µ

∂α

)∣∣∣∣
α=0

= det
(

fα1 fα2

fxα1 fxα2

)∣∣∣∣
α=0

= 0.

Then the Inverse Function Theorem implies the local existence and unique-
ness of a smooth inverse function α = α(µ) with α(0) = 0. Therefore, the
equation for ξ now reads

ξ̇ = µ1 + µ2ξ + c(µ)ξ3 + O(ξ4),

where c(µ) = f3(α(µ)) + δ(α(µ))θ(α(µ), δ(α(µ))) is a smooth function of µ
and

c(0) = f3(0) =
1
6
fxxx(0, 0) = 0

due to (C.1).
Finally, perform a linear scaling

η =
ξ

|c(µ)| ,

and introduce new parameters:

β1 =
µ1

|c(µ)| ,
β2 = µ2.

This gives
η̇ = β1 + β2η + sη3 + O(η4), (8.14)

where s = sign c(0) = ±1, and the O(η4) terms can depend smoothly on
β.

Thus, the following lemma is proved.

Lemma 8.1 Suppose that a one-dimensional system

ẋ = f(x, α), x ∈ R
1, α ∈ R

2,

with smooth f , has at α = 0 the equilibrium x = 0, and let the cusp
bifurcation conditions hold:

λ = fx(0, 0) = 0, a =
1
2
fxx(0, 0) = 0.
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Assume that the following genericity conditions are satisfied:

(C.1) fxxx(0, 0) = 0;
(C.2) (fα1fxα2 − fα2fxα1)(0, 0) = 0.

Then there are smooth invertible coordinate and parameter changes trans-
forming the system into

η̇ = β1 + β2η ± η3 + O(η4). ✷

Remarks:
(1) Notice that (C.2) implies that a unique and smooth fold bifurcation

curve Γ, defined by {
f(x, α) = 0,
fx(x, α) = 0,

passes through (x, α) = (0, 0) in R
3-space with coordinates (x, α) and can

be locally parametrized by x (see Section 8.1.1).
(2) Given fx(0, 0) = fxx(0, 0) = 0, the nondegeneracy condition (C.1)

and the transversality condition (C.2) together are equivalent to the reg-
ularity (nonsingularity of the Jacobian matrix) of a map F : R

3 → R
3

defined by
F : (x, α) �→ (f(x, α), fx(x, α), fxx(x, α))

at the point (x, α) = (0, 0). ♦
System (8.14) with the O(η4) terms truncated is called the approximate

normal form for the cusp bifurcation. In the following subsections we study
its bifurcation diagrams and see that higher-order terms do not actually
change them. This justifies calling

η̇ = β1 + β2η ± η3

the topological normal form for the cusp bifurcation.

8.2.2 Bifurcation diagram of the normal form
Consider the normal form corresponding to s = −1:

η̇ = β1 + β2η − η3. (8.15)

Its bifurcation diagram is easy to analyze. System (8.15) can have from one
to three equilibria. A fold bifurcation occurs at a bifurcation curve T on
the (β1, β2)-plane that is given by the projection of the curve

Γ :
{

β1 + β2η − η3 = 0,
β2 − 3η2 = 0,
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FIGURE 8.3. One-dimensional cusp bifurcation.

onto the parameter plane. Elimination of η from these equations gives the
projection

T = {(β1, β2) : 4β3
2 − 27β2

1 = 0}.
It is called a semicubic parabola (see Figure 8.3). The curve T has two
branches, T1 and T2, which meet tangentially at the cusp point (0, 0). The
resulting wedge divides the parameter plane into two regions. In region
1, inside the wedge, there are three equilibria of (8.15), two stable and
one unstable; in region 2, outside the wedge, there is a single equilibrium,
which is stable (Figure 8.3). As we can easily check, a nondegenerate fold
bifurcation (with respect to the parameter β1) takes place if we cross either
T1 or T2 at any point other than the origin. If the curve T1 is crossed from
region 1 to region 2, the right stable equilibrium collides with the unstable
one and both disappear. The same happens to the left stable equilibrium
and the unstable equilibrium at T2. If we approach the cusp point from
inside region 1, all three equilibria merge together into a triple root of the
right-hand side of (8.15).

A useful way to present this bifurcation is to plot the equilibrium manifold
of (8.15),

M = {(η, β1, β2) : β1 + β2η − η3 = 0},
in R

3 (see Figure 8.4). The standard projection of M onto the (β1, β2)-
plane has singularities of the fold type along Γ except the origin, where a
cusp singularity shows up. Notice that the curve Γ is smooth everywhere
and has no geometrical singularity at the cusp point. It is the projection
that makes the fold parametric boundary nonsmooth.
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FIGURE 8.4. Equilibrium manifold near a cusp bifurcation.

The cusp bifurcation implies the presence of the phenomenon known
as hysteresis. More precisely, a catastrophic “jump” to a different stable
equilibrium (caused by the disappearance of a traced stable equilibrium
via a fold bifurcation as the parameters vary) happens at branch T1 or T2
depending on whether the equilibrium being traced belongs initially to the
upper or lower sheet of M (see Figure 8.5). If we make a roundtrip in the
parameter plane, crossing the wedge twice, a jump occurs on each branch
of T .

The case s = 1 can be treated similarly or reduced to the considered
case using the substitutions t → −t, β1 → −β1, β3 → −β2. In this case,
the truncated system typically has either one unstable equilibrium or one
stable and two unstable equilibria that can pairwise collide and disappear
through fold bifurcations.

8.2.3 Effect of higher-order terms
The following lemma actually indicates that the higher-order terms in
(8.14) are irrelevant.

Lemma 8.2 The system

η̇ = β1 + β2η ± η3 + O(η4)
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is locally topologically equivalent near the origin to the system

η̇ = β1 + β2η ± η3. ✷

An elementary proof of the lemma is sketched in the hints to Exercise 2
for this chapter. We can now complete the analysis of the cusp bifurcation
by formulating a general theorem.

Theorem 8.1 (Topological normal form for the cusp bifurcation)
Any generic scalar two-parameter system

ẋ = f(x, α)

having at α = 0 an equilibrium x = 0 exhibiting the cusp bifurcation is
locally topologically equivalent near the origin to one of the normal forms

η̇ = β1 + β2η ± η3. ✷

Remark:
If an n-dimensional system has a cusp bifurcation, the above theorem

should be applied to the equation on the center manifold (see Chapter 5).
Recall that c(0) (and thus the sign in the normal form) can be computed by
formulas (5.49) and (5.50) from Chapter 5. Shoshitaishvili’s theorem gives
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FIGURE 8.6. Cusp bifurcation on the plane.

the following topological normal forms for this case:
η̇ = β1 + β2η ± η3,

ζ̇− = −ζ−,
ζ̇+ = ζ+,

where ζ± ∈ R
n± , and n− and n+ are the numbers of eigenvalues of the

critical equilibrium with Re λ > 0 and Re λ < 0. Figure 8.6 presents the
bifurcation diagram for n = 2 in the case where c(0) < 0 and the second
eigenvalue at the cusp point is negative (n− = 1, n+ = 0). ♦

8.3 Bautin (generalized Hopf) bifurcation

8.3.1 Normal form derivation
Assume that the system

ẋ = f(x, α), x ∈ R
2, α ∈ R

2, (8.16)

with f smooth has at α = 0 the equilibrium x = 0, which satisfies the
Bautin bifurcation conditions. More precisely, the equilibrium has purely
imaginary eigenvalues λ1,2 = ±iω0, ω0 > 0, and the first Lyapunov coeffi-
cient vanishes: l1 = 0. Since λ = 0 is not an eigenvalue, the equilibrium in
general moves as α varies but remains isolated and close to the origin for all
sufficiently small ‖α‖. As in the analysis of the Andronov-Hopf bifurcation,
we can always perform a (parameter-dependent) shift of coordinates that
puts this equilibrium at x = 0 for all α with ‖α‖ small enough, and assume
from now on that f(0, α) ≡ 0.
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Lemma 3.3 from Chapter 3 allows us to write (8.16) in the complex form

ż = (µ(α) + iω(α))z + g(z, z̄, α), (8.17)

where µ, ω, and g are smooth functions of their arguments, µ(0) = 0, ω(0) =
ω0, and formally

g(z, z̄, α) =
∑

k+l≥2

1
k!l!

gkl(α)zkz̄l

for smooth functions gkl(α).

Lemma 8.3 (Poincaré normal form for the Bautin bifurcation)
The equation

ż = λ(α)z +
∑

2≤k+l≤5

1
k!l!

gkl(α)zkz̄l + O(|z|6), (8.18)

where λ(α) = µ(α) + iω(α), µ(0) = 0, ω(0) = ω0 > 0, can be transformed
by an invertible parameter-dependent change of the complex coordinate,
smoothly depending on the parameters:

z = w +
∑

2≤k+l≤5

1
k!l!

hkl(α)wkw̄l, h21(α) = h32(α) = 0,

for all sufficiently small ‖α‖, into the equation

ẇ = λ(α)w + c1(α)w|w|2 + c2(α)w|w|4 + O(|w|6). ✷ (8.19)

The lemma can be proved using the same method as for Lemma 3.6
in Chapter 3. By Lemma 3.6, we can assume that all the quadratic and
nonresonant cubic terms in (8.18) are already eliminated: g20 = g11 = g02 =
g30 = g12 = g21 = 0, and 1

2g21 = c1. Then, by a proper selection of hij with
i + j = 4, we can annihilate all the order-four terms in (8.18), having the
coefficient of the resonant cubic term c1(α) untouched while changing the
coefficients of the fifth- and higher-order terms. Finally, we can “remove”
all the fifth-order terms except the resonant one shown in (8.19). These
calculations make a good exercise in symbolic manipulations.

The coefficients c1(α) and c2(α) are complex. They can be made simul-
taneously real by a time reparametrization.

Lemma 8.4 System (8.19) is locally orbitally equivalent to the system

ẇ = (ν(α) + i)w + l1(α)w|w|2 + l2(α)w|w|4 + O(|w|6), (8.20)

where ν(α), l1(α), and l2(α) are real functions, ν(0) = 0.

Proof:
First, introduce the new time τ = ω(α)t. The direction of time is pre-

served for all sufficiently small ‖α‖, since ω(0) = ω0 > 0. This gives
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dw

dτ
= (ν(α) + i)w + d1(α)w|w|2 + d2(α)w|w|4 + O(|w|5), (8.21)

with

ν(α) =
µ(α)
ω(α)

, d1(α) =
c1(α)
ω(α)

, d2(α) =
c2(α)
ω(α)

.

Notice that ν, d1, and d2 are smooth and that d1,2 are still complex-valued.
Next, change the time parametrization along the orbits of (8.21) by in-

troducing a new time θ such that

dτ = (1 + e1(α)|w|2 + e2(α)|w|4) dθ,

where the real functions e1,2 have yet to be defined. In terms of θ, (8.21)
can be written as

dw

dθ
= (ν+i)w+((ν+i)e1+d1)w|w|2+((ν+i)e2+e1d1+d2)w|w|4+O(|w|5).

Therefore, setting

e1(α) = −Im d1(α), e2(α) = −Im d2(α) + [Im d1(α)]2

yields

dw

dθ
= (ν(α) + i)w + l1(α)w|w|2 + l2(α)w|w|4 + O(|w|5),

where

l1(α) = Re d1(α)− ν(α) Im d1(α) =
Re c1(α)
ω(α)

− µ(α)
Im c1(α)
ω2(α)

(8.22)

is the first Lyapunov coefficient introduced in Chapter 3, and

l2(α) = Re d2(α)− Re d1(α) Im d1(α) + ν(α)
(
[Im d1(α)]2 − Im d2(α)

)
.

The functions ν(α), l1(α), and l2(α) are smooth and real-valued. ✷

Definition 8.1 The real function l2(α) is called the second Lyapunov co-
efficient.

Recall that c1 = c1(α) used in (8.22) can be computed by the formula
(see Chapter 3)

c1 =
g21
2

+
g20g11(2λ + λ̄)

2|λ|2 +
|g11|2
λ

+
|g02|2

2(2λ− λ̄)
,

where λ = λ(α) and gkl = gkl(α).
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At the Bautin bifurcation point, where

µ(0) = 0, l1(0) =
Re c1(0)

ω0
=

1
2ω0

(
Re g21(0)− 1

ω0
Im(g20(0)g11(0)

)
= 0,

we obtain

l2(0) =
Re c2(0)

ω0
.

The following formula gives a rather compact expression for l2(0) at the
Bautin point

12l2(0) =
1
ω0

Re g32

+
1
ω2

0
Im [g20ḡ31 − g11(4g31 + 3ḡ22)− 1

3
g02(g40 + ḡ13)− g30g12]

+
1
ω3

0
{Re [g20(ḡ11(3g12 − ḡ30) + g02

(
ḡ12 − 1

3
g30

)
+

1
3
ḡ02g03)

+ g11(ḡ02

(
5
3
ḡ30 + 3g12

)
+

1
3
g02ḡ03 − 4g11g30)]

+ 3 Im(g20g11) Im g21}
+

1
ω4

0

{
Im

[
g11ḡ02

(
ḡ2
20 − 3ḡ20g11 − 4g2

11
)]

+ Im(g20g11)
[
3 Re(g20g11)− 2|g02|2

]}
, (8.23)

where all the gkl are evaluated at α = 0. In deriving this formula, we have
taken the equation l1(0) = 0 (or, equivalently, Re g21 = 1

ω0
Im(g20g11)) into

account.
Suppose that at a Bautin point

(B.1) l2(0) = 0.

A neighborhood of the point α = 0 can be parametrized by two new
parameters, the zero locus of the first one corresponding to the Hopf bi-
furcation condition, while the simultaneous vanishing of both specifies the
Bautin point. Clearly, we might consider ν(α) as the first parameter and
l1(α) as the second one. Notice that both are defined for all sufficiently
small ‖α‖ and vanish at α = 0. Thus, let us introduce new parameters
(µ1, µ2) by the map {

µ1 = ν(α),
µ2 = l1(α), (8.24)

assuming its regularity at α = 0:

(B.2) det


∂ν
∂α1

∂ν
∂α2

∂l1
∂α1

∂l1
∂α2


∣∣∣∣∣∣∣∣
α=0

=
1
ω0

det


∂µ
∂α1

∂µ
∂α2

∂l1
∂α1

∂l1
∂α2


∣∣∣∣∣∣∣∣
α=0

= 0.
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This condition can easily be expressed in terms of µ(α), Re c1(α), and
Im c1(α), since ω0 = 0. It is equivalent to local smooth invertibility of the
map (8.24), so we can write α in terms of µ, thus obtaining the equation

ẇ = (µ1 + i)w + µ2w|w|2 + L2(µ)w|w|4 + O(|w|6),

where L2(µ) = l2(α(µ)) is a smooth function of µ, such that L2(0) =
l2(0) = 0 due to (B.1). Then, rescaling

w = 4
√
|L2(µ)| u, u ∈ C

1,

and defining the parameters{
β1 = µ1,

β2 =
√|L2(µ)| µ2,

yield the normal form

u̇ = (β1 + i)u + β2u|u|2 + su|u|4 + O(|u|6).

Here s = sign l2(0) = ±1, where l2(0) is given by (8.23).
Summarizing the results obtained, we can formulate the following theo-

rem.

Theorem 8.2 Suppose that a planar system

ẋ = f(x, α), x ∈ R
2, α ∈ R

2,

with smooth f , has the equilibrium x = 0 with eigenvalues

λ1,2(α) = µ(α)± iω(α),

for all ‖α‖ sufficiently small, where ω(0) = ω0 > 0. For α = 0, let the
Bautin bifurcation conditions hold:

µ(0) = 0, l1(0) = 0,

where l1(α) is the first Lyapunov coefficient. Assume that the following
genericity conditions are satisfied:

(B.1) l2(0) = 0, where l2(0) is the second Lyapunov coefficient given by
(8.23);

(B.2) the map α �→ (µ(α), l1(α))T is regular at α = 0.

Then, by the introduction of a complex variable, applying smooth invertible
coordinate transformations that depend smoothly on the parameters, and
performing smooth parameter and time changes, the system can be reduced
to the following complex form:

ż = (β1 + i)z + β2z|z|2 + sz|z|4 + O(|z|6), (8.25)

where s = sign l2(0) = ±1. ✷
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We will proceed in the same way as in analyzing the cusp bifurcation.
First, we will study the approximate normal form resulting from (8.25) by
dropping the O(|z|6) terms. As we shall then see, this approximate normal
form is also the topological normal form for the Bautin bifurcation.

8.3.2 Bifurcation diagram of the normal form
Set s = −1 and write system (8.25) without the O(|z|6) terms in polar
coordinates (ρ, ϕ), where z = ρeiϕ:{

ρ̇ = ρ(β1 + β2ρ
2 − ρ4),

ϕ̇ = 1. (8.26)

The equations in (8.26) are independent. The second equation describes a
rotation with unit angular velocity. The trivial equilibrium ρ = 0 of the
first equation corresponds to the only equilibrium, z = 0, of the truncated
system. Positive equilibria of the first equation in (8.26) satisfy

β1 + β2ρ
2 − ρ4 = 0 (8.27)

and describe circular limit cycles. Equation (8.27) can have zero, one, or
two positive solutions (cycles). These solutions branch from the trivial one
along the line

H = {(β1, β2) : β1 = 0}
and collide and disappear at the half-parabola

T = {(β1, β2) : β2
2 + 4β1 = 0, β2 > 0}.

The stability of the cycles is also clearly detectable from the first equation
in (8.26). The bifurcation diagram of (8.26) is depicted in Figure 8.7. The
line H corresponds to the Hopf bifurcation: Along this line the equilibrium
has eigenvalues λ1,2 = ±i. The equilibrium is stable for β1 < 0 and un-
stable for β1 > 0. The first Lyapunov coefficient l1(β) = β2. Therefore,
the Bautin bifurcation point β1 = β2 = 0 separates two branches, H− and
H+, corresponding to a Hopf bifurcation with negative and with positive
Lyapunov coefficient, respectively (i.e., “soft” and “sharp”). A stable limit
cycle bifurcates from the equilibrium if we cross H− from left to right,
while an unstable cycle appears if we cross H+ in the opposite direction.
The cycles collide and disappear on the curve T , corresponding to a nonde-
generate fold bifurcation of the cycles (studied in Chapters 4 and 5). Along
this curve the system has a critical limit cycle with multiplier µ = 1 and a
nonzero normal form coefficient a of the Poincaré map. The curves divide
the parameter plane into three regions (see Figure 8.7).

To fully understand the bifurcation diagram, let us make an excursion
on the parameter plane around the Bautin point counterclockwise, starting
at a point in region 1, where the system has a single stable equilibrium
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FIGURE 8.7. Bautin bifurcation

and no cycles. Crossing the Hopf bifurcation boundary H− from region
1 to region 2 implies the appearance of a unique and stable limit cycle,
which survives when we enter region 3. Crossing the Hopf boundary H+
creates an extra unstable cycle inside the first one, while the equilibrium
regains its stability. Two cycles of opposite stability exist inside region 3
and disappear at the curve T through a fold bifurcation that leaves a single
stable equilibrium, thus completing the circle.

The case s = 1 in (8.25) can be treated similarly or can be reduced to
the one studied by the transformation (z, β, t) �→ (z̄,−β,−t).

8.3.3 Effect of higher-order terms
Lemma 8.5 The system

ż = (β1 + i)z + β2z|z|2 ± z|z|4 + O(|z|6)

is locally topologically equivalent near the origin to the system

ż = (β1 + i)z + β2z|z|2 ± z|z|4. ✷

The proof of the lemma can be obtained by deriving the Taylor expan-
sion of the Poincaré map for the first system and analyzing its fixed points.
It turns out that the terms of order less than six are independent of O(|z|6)
terms and thus coincide with those for the second system. This means that
the two maps have the same number of fixed points for corresponding pa-
rameter values and that these points undergo similar bifurcations as the
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parameters vary near the origin. Then, one can construct a homeomor-
phism (actually, a diffeomorphism) identifying the parametric portraits of
the systems near the origin and a homeomorphism that maps the phase
portrait of the first system near the origin into that of the second system
for all parameter values (as in Appendix 1 to Chapter 3). Therefore, we
can complete the analysis of the Bautin bifurcation by stating the following
theorem.

Theorem 8.3 (Topological normal form for Bautin bifurcation)
Any generic planar two-parameter system

ẋ = f(x, α),

having at α = 0 an equilibrium x = 0 that exhibits the Bautin bifurcation,
is locally topologically equivalent near the origin to one of the following
complex normal forms:

ż = (β1 + i)z + β2z|z|2 ± z|z|4. ✷

This theorem means that the described normal form captures the topol-
ogy of any two-dimensional system having a Bautin bifurcation and satis-
fying the genericity conditions (B.1) and (B.2). In particular, although the
limit cycles in such a system would not be perfect circles, we can expect
the existence of two of them for nearby parameter values. Moreover, they
will collide and disappear along a curve emanating from the codim 2 point.

The Bautin bifurcation is the first example that demonstrates the ap-
pearance of limit cycle bifurcations near codim 2 bifurcations of equilibria.
In this case, by purely local analysis (computing the Lyapunov coefficients
l1 and l2 at a Hopf point), we can prove the existence of a fold bifurcation
of limit cycles for nearby parameter values.

The multidimensional case of the Bautin bifurcation can be treated by a
center manifold reduction to the studied planar case. Then, (8.16) should
be considered as the equations on the center manifold. Notice, however,
that we need the Taylor expansion for the center manifold at the criti-
cal parameter values up to and including fourth-order terms, since certain
fifth-order derivatives of the right-hand side of (8.16) are involved in the
computation of l2(0).

8.4 Bogdanov-Takens (double-zero) bifurcation

8.4.1 Normal form derivation
Consider a planar system

ẋ = f(x, α), x ∈ R
2, α ∈ R

2, (8.28)
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where f is smooth. Suppose that (8.28) has, at α = 0, the equilibrium x = 0
with two zero eigenvalues (the Bogdanov-Takens condition), λ1,2(0) = 0.

Step 0 (Preliminary transformation). We can write (8.28) at α = 0 in
the form

ẋ = A0x + F (x), (8.29)

where A0 = fx(0, 0) and F (x) = f(x, 0)−A0x is a smooth function, F (x) =
O(‖x‖2). The bifurcation conditions imply that

∆(0) = detA0 = 0, σ(0) = tr A0 = 0.

Assume that

(BT.0) A0 = 0,

that is, A0 has at least one nonzero element. Then there exist two real
linearly independent vectors, v0,1 ∈ R

2, such that

A0v0 = 0, A0v1 = v0. (8.30)

The vector v0 is the eigenvector of A0 corresponding to the eigenvalue 0,
while v1 is the generalized eigenvector of A0 corresponding to this eigen-
value. Moreover, there exist similar adjoint eigenvectors w1,2 ∈ R

2 of the
transposed matrix AT

0 :

AT
0 w1 = 0, AT

0 w0 = w1. (8.31)

The vectors v1 and w0 are not uniquely defined even if v0 and w1 are fixed.1

Nevertheless, we can always select four vectors satisfying (8.30) and (8.31)
such that

〈v0, w0〉 = 〈v1, w1〉 = 1, (8.32)

where 〈·, ·〉 stands for the standard scalar product in R
2 : 〈x, y〉 = x1y1 +

x2y2. The Fredholm Alternative Theorem implies

〈v1, w0〉 = 〈v0, w1〉 = 0. (8.33)

If v0 and v1 are selected as basis, then any vector x ∈ R
2 can be uniquely

represented as
x = y1v0 + y2v1,

for some real y1,2 ∈ R
1. Taking into account (8.32) and (8.33), we find that

these new coordinates (y1, y2) are given by{
y1 = 〈x,w0〉,
y2 = 〈x,w1〉. (8.34)

1For example, if v1 satisfies the second equation of (8.30), then v′
1 = v1 + γv0

with any γ ∈ R
1 also satisfies this equation.
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In the coordinates (y1, y2), system (8.29) takes the form{(
ẏ1
ẏ2

)
=

(
0 1
0 0

)(
y1
y2

)
+

( 〈F (y1v0 + y2v1), w0〉
〈F (y1v0 + y2v1), w1〉

)
. (8.35)

Notice the particular form of the Jacobian matrix, which is the zero Jordan
block of order 2.

Let us use the same coordinates (y1, y2) for all α with ‖α‖ small. In these
coordinates, system (8.28) reads:{(

ẏ1
ẏ2

)
=

( 〈f(y1v0 + y2v1, α), w0〉
〈f(y1v0 + y2v1, α), w1〉

)
(8.36)

and for α = 0 reduces to (8.35). Expand the right-hand side of (8.36) as a
Taylor series with respect to y at y = 0:

ẏ1 = y2 + a00(α) + a10(α)y1 + a01(α)y2
+ 1

2a20(α)y2
1 + a11(α)y1y2 + 1

2a02(α)y2
2 + P1(y, α),

ẏ2 = b00(α) + b10(α)y1 + b01(α)y2
+ 1

2b20(α)y2
1 + b11(α)y1y2 + 1

2b02(α)y2
2 + P2(y, α),

(8.37)

where akl(α) and P1,2(y, α) = O(‖y‖3) are smooth functions of their argu-
ments. We have

a00(0) = a10(0) = a01(0) = b00(0) = b10(0) = b01(0) = 0.

The functions akl(α) can be expressed in terms of the right-hand side
f(x, α) of (8.28) and the vectors v0,1, w0,1. For example,

a20(α) =
∂2

∂y2
1
〈f(y1v0 + y2v1, α), w0〉

∣∣∣∣
y=0

,

b20(α) =
∂2

∂y2
1
〈f(y1v0 + y2v1, α), w1〉

∣∣∣∣
y=0

,

b11(α) =
∂2

∂y1∂y2
〈f(y1v0 + y2v1, α), w1〉

∣∣∣∣
y=0

.

Now we start transforming (8.37) into a simpler form by smooth in-
vertible transformations (smoothly depending upon parameters) and time
reparametrization. At a certain point, we will introduce new parameters.

Step 1 (Reduction to a nonlinear oscillator). Introduce new variables
(u1, u2) by denoting the right-hand side of the first equation in (8.37) by
u2 and renaming y1 to be u1:{

u1 = y1,
u2 = y2 + a00 + a10y1 + a01y2 + 1

2a20y
2
1 + a11y1y2 + 1

2a02y
2
2 + P1(y, ·).
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This transformation is invertible in some neighborhood of y = 0 for small
‖α‖ and depends smoothly on the parameters. If α = 0, the origin y = 0 is
a fixed point of this map. The transformation brings (8.37) into

u̇1 = u2,
u̇2 = g00(α) + g10(α)u1 + g01(α)u2

+ 1
2g20(α)u2

1 + g11(α)u1u2 + 1
2g02(α)u2

2 + Q(u, α),
(8.38)

for certain smooth functions gkl(α), g00(0) = g10(0) = g01(0) = 0, and a
smooth function Q(u, α) = O(‖u‖3). We can verify that

g20(0) = b20(0),
g11(0) = a20(0) + b11(0),
g02(0) = b02(0) + 2a11(0).

(8.39)

Furthermore, we have

g00(α) = b00(α) + · · · ,
g10(α) = b10(α) + a11(α)b00(α)− b11(α)a00(α) + · · · ,
g01(α) = b01(α) + a10(α) + a02(α)b00(α)

− (a11(α) + b02(α))a00(α) + · · · ,
(8.40)

where dots represent all terms containing at least one product of some
akl, bij with k + l ≤ 1 (i+ j ≤ 1). Since akl(α) and bkl(α) vanish at α = 0,
for all k + l ≤ 1, the displayed terms are sufficient to compute the first
partial derivatives of g00(α), g10(α), and g01(α) with respect to (α1, α2) at
α = 0.

Note that system (8.38) can be written as a single second-order differen-
tial equation for w = u1:

ẅ = G(w,α) + ẇH(w,α) + ẇ2Z(w, ẇ, α),

which provides the general form for the equation of motion of a nonlinear
oscillator.

Step 2 (Parameter-dependent shift). A parameter-dependent shift of co-
ordinates in the u1-direction{

u1 = v1 + δ(α),
u2 = v2,

transforms (8.38) into
v̇1 = v2,
v̇2 = g00 + g10δ + O(δ2)

+
(
g10 + g20δ + O(δ2)

)
v1 +

(
g01 + g11δ + O(δ2)

)
v2

+ 1
2 (g20 + O(δ))v2

1 + (g11 + O(δ))v1v2 + 1
2 (g02 + O(δ))v2

2
+ O(‖v‖3).
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Assume that

(BT.1) g11(0) = a20(0) + b11(0) = 0.

Then, standard arguments based on the Implicit Function Theorem provide
local existence of a smooth function

δ = δ(α) ≈ −g01(α)
g11(0)

,

annihilating the term proportional to v2 in the equation for v2, which leads
to the following system:

v̇1 = v2,
v̇2 = h00(α) + h10(α)v1

+ 1
2h20(α)v2

1 + h11(α)v1v2 + 1
2h02(α)v2

2 + R(v, α),
(8.41)

where hkl(α) and R(v, α) = O(‖v‖3) are smooth. We find

h00(α) = g00(α) + · · · , h10(α) = g10(α)− g20(0)
g11(0)

g01(α) + · · · , (8.42)

where again only the terms needed to compute the first partial derivatives
with respect to (α1, α2) at α = 0 are kept (see (8.40)). Clearly, h00(0) =
h10(0) = 0. The only relevant values of hkl(α), k + l = 2, are, as we shall
see, at α = 0. These terms are given by

h20(0) = g20(0), h11(0) = g11(0), h02(0) = g02(0), (8.43)

where gkl(0), k + l = 2, are determined by (8.39).

Step 3 (Time reparametrization and second reduction to a nonlinear
oscillator). Introduce the new time τ via the equation

dt = (1 + θv1) dτ,

where θ = θ(α) is a smooth function to be defined later. The direction of
time is preserved near the origin for small ‖α‖. Assuming that a dot over
a variable now means differentiation with respect to τ , we obtain

v̇1 = v2 + θv1v2,
v̇2 = h00 + (h10 + h00θ)v1 + 1

2 (h20 + 2h10θ)v2
1 + h11v1v2 + 1

2h02v
2
2

+ O(‖v‖3).

The above system has a similar form to (8.37), which is a bit discourag-
ing. However, we can reduce it once more to a nonlinear oscillator by a
coordinate transformation similar to that in the first step:{

ξ1 = v1,
ξ2 = v2 + θv1v2,
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mapping the origin into itself for all θ. The system in (ξ1, ξ2)-coordinates
takes the form

ξ̇1 = ξ2,

ξ̇2 = f00(α) + f10(α)ξ1 + 1
2f20(α)ξ21 + f11(α)ξ1ξ2 + 1

2f02(α)ξ22
+ O(‖ξ‖3),

(8.44)
where

f00(α) = h00(α), f10(α) = h10(α) + h00(α)θ(α),

and
f20(α) = h20(α) + 2h10(α)θ(α),
f11(α) = h11(α),
f02(α) = h02(α) + 2θ(α).

Now we can take

θ(α) = −h02(α)
2

to eliminate the ξ22-term, thus specifying the time reparametrization. Con-
sequently, we have{

ξ̇1 = ξ2,

ξ̇2 = µ1(α) + µ2(α)ξ1 + A(α)ξ21 + B(α)ξ1ξ2 + O(‖ξ‖3),
(8.45)

where

µ1(α) = h00(α), µ2(α) = h10(α)− 1
2
h00(α)h02(α), (8.46)

and

A(α) =
1
2

(h20(α)− h10(α)h02(α)) , B(α) = h11(α). (8.47)

Step 4 (Final scaling and setting of new parameters). Introduce a new
time (and denote it by t again)

t =
∣∣∣∣B(α)
A(α)

∣∣∣∣ τ.
Since B(0) = h11(0) = g11(0) = a20(0) + b11(0) = 0 due to (BT.1), the
time scaling above will be well defined if we further assume

(BT.2) 2A(0) = h20(0) = g20(0) = b20(0) = 0.

Simultaneously, perform a scaling by introducing the new variables

η1 =
A(α)
B2(α)

ξ1, η2 = sign
(
B(α)
A(α)

)
A2(α)
B3(α)

ξ2.
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Notice that the denominators are nonzero at α = 0 because A(0) = 0 and
B(0) = 0. In the coordinates (η1, η2), system (8.45) takes the form{

η̇1 = η2,
η̇2 = β1 + β2η1 + η2

1 + sη1η2 + O(‖η‖3), (8.48)

with

s = sign
(
B(0)
A(0)

)
= sign

(
a20(0) + b11(0)

b20(0)

)
= ±1,

and

β1(α) =
B4(α)
A3(α)

µ1(α),

β2(α) =
B2(α)
A2(α)

µ2(α).

Obviously, β1(0) = β2(0) = 0. In order to define an invertible smooth
change of parameters near the origin, we have to assume the regularity of
the map α �→ β at α = 0:

(BT.3) det
(
∂β

∂α

)∣∣∣∣
α=0

= 0.

This condition is equivalent to the regularity of the map α �→ µ at α =
0 and can be expressed more explicitly if we take into account formulas
(8.46), (8.42), and (8.40). Indeed, the following lemma can be proved by
straightforward calculations.

Lemma 8.6 Let system (8.37) be written as

ẏ = P (y, α), y ∈ R
2, α ∈ R

2,

and the nondegeneracy conditions (BT.1) and (BT.2) are satisfied. Then
the transversality condition (BT.3) is equivalent to the regularity of the map

(y, α) �→
(
P (y, α), tr

(
∂P (y, α)

∂y

)
,det

(
∂P (y, α)

∂y

))
at the point (y, α) = (0, 0). ✷

The map in the lemma is a map from R
4 to R

4, so its regularity means
the nonvanishing of the determinant of its Jacobian matrix. Since the linear
change of coordinates x �→ y defined by (8.34) is regular, we can merely
check the regularity of the map

(x, α) �→
(
f(x, α), tr

(
∂f(x, α)

∂x

)
,det

(
∂f(x, α)

∂x

))
at the point (x, α) = (0, 0).

Therefore, in this subsection we have proved the following theorem.
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Theorem 8.4 Suppose that a planar system

ẋ = f(x, α), x ∈ R
2, α ∈ R

2,

with smooth f , has at α = 0 the equilibrium x = 0 with a double zero
eigenvalue:

λ1,2(0) = 0.

Assume that the following genericity conditions are satisfied:

(BT.0) the Jacobian matrix A(0) = fx(0, 0) = 0;
(BT.1) a20(0) + b11(0) = 0;
(BT.2) b20(0) = 0;
(BT.3) the map

(x, α) �→
(
f(x, α), tr

(
∂f(x, α)

∂x

)
,det

(
∂f(x, α)

∂x

))
is regular at point (x, α) = (0, 0).

Then there exist smooth invertible variable transformations smoothly de-
pending on the parameters, a direction-preserving time reparametrization,
and smooth invertible parameter changes, which together reduce the system
to {

η̇1 = η2,
η̇2 = β1 + β2η1 + η2

1 + sη1η2 + O(‖η‖3),

where s = sign[b20(a20(0) + b11(0))] = ±1. ✷

The coefficients a20(0), b20(0), and b11(0) can be computed in terms of
f(x, 0) by the formulas given after system (8.37).

Remark:
There are several (equivalent) normal forms for the Bogdanov-Takens

bifurcation. The normal form (8.48) was introduced by Bogdanov, while
Takens derived the normal form{

η̇1 = η2 + β2η1 + η2
1 + O(‖η‖3),

η̇2 = β1 + sη2
1 + O(‖η‖3), (8.49)

where s = ±1. The proof of the equivalence of these two normal forms is
left to the reader as an exercise. ♦

8.4.2 Bifurcation diagram of the normal form
Take s = −1 and consider system (8.48) without O(‖η‖3) terms:{

η̇1 = η2,
η̇2 = β1 + β2η1 + η2

1 − η1η2.
(8.50)
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FIGURE 8.8. Bogdanov-Takens bifurcation.

This is the first case where the analysis of a truncated system is nontrivial.
More precisely, bifurcations of equilibria are easy to analyze, while the study
of limit cycles (actually, the uniqueness of the cycle) is rather involved.

The bifurcation diagram of system (8.50) is presented in Figure 8.8. Any
equilibria of the system are located on the horizontal axis, η2 = 0, and
satisfy the equation

β1 + β2η1 + η2
1 = 0. (8.51)

Equation (8.51) can have between zero and two real roots. The discriminant
parabola

T = {(β1, β2) : 4β1 − β2
2 = 0} (8.52)

corresponds to a fold bifurcation: Along this curve system (8.50) has an
equilibrium with a zero eigenvalue. If β2 = 0, then the fold bifurcation is
nondegenerate and crossing T from right to left implies the appearance of
two equilibria. Let us denote the left one by E1 and the right one by E2:

E1,2 = (η0
1,2, 0) =

(
−β2 ∓

√
β2

2 − 4β1

2
, 0

)
.

The point β = 0 separates two branches T− and T+ of the fold curve
corresponding to β2 < 0 and β2 > 0, respectively. We can check that
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passage through T− implies the coalescence of a stable node E1 and a saddle
point E2, while crossing T+ generates an unstable node E1 and a saddle E2.
There is a nonbifurcation curve (not shown in the figure) located at β1 > 0
and passing through the origin at which the equilibrium E1 undergoes a
node to focus transition.

The vertical axis β1 = 0 is a line on which the equilibrium E1 has a pair
of eigenvalues with zero sum: λ1 + λ2 = 0. The lower part,

H = {(β1, β2) : β1 = 0, β2 < 0}, (8.53)

corresponds to a nondegenerate Andronov-Hopf bifurcation (λ1,2 = ±iω),
while the upper half-axis is a nonbifurcation line corresponding to a neutral
saddle. The Hopf bifurcation gives rise to a stable limit cycle, since l1 < 0
(Exercise 10(b)). The cycle exists near H for β1 < 0. The equilibrium E2
remains a saddle for all parameter values to the left of the curve T and
does not bifurcate. There are no other local bifurcations in the dynamics
of (8.50).

Make a roundtrip near the Bogdanov-Takens point β = 0, starting from
region 1 where there are no equilibria (and thus no limit cycles are possible).
Entering from region 1 into region 2 through the component T− of the fold
curve yields two equilibria: a saddle and a stable node. Then the node turns
into a focus and loses stability as we cross the Hopf bifurcation boundary
H. A stable limit cycle is present for close parameter values to the left
of H. If we continue the journey clockwise and finally return to region 1,
no limit cycles must remain. Therefore, there must be global bifurcations
“destroying” the cycle somewhere between H and T+. We know of only
two such bifurcations of codim 1 in planar systems: a saddle homoclinic
bifurcation (Chapter 6) and a saddle-node homoclinic bifurcation (Chapter
7). Since the saddle-node equilibrium at the fold bifurcation cannot have a
homoclinic orbit, the only possible candidate for the global bifurcation is
the appearance of an orbit homoclinic to the saddle E2. Thus, there should
exist at least one bifurcation curve originating at β = 0 along which system
(8.50) has a saddle homoclinic bifurcation. As we trace the homoclinic orbit
along the curve P toward the Bogdanov-Takens point, the looplike orbit
shrinks and disappears.

Lemma 8.7 There is a unique smooth curve P corresponding to a saddle
homoclinic bifurcation in system (8.50) that originates at β = 0 and has
the following local representation:

P =
{

(β1, β2) : β1 = − 6
25
β2

2 + o(β2
2), β2 < 0

}
. (8.54)

Moreover, for ‖β‖ small, system (8.50) has a unique and hyperbolic stable
cycle for parameter values inside the region bounded by the Hopf bifurcation
curve H and the homoclinic bifurcation curve P , and no cycles outside this
region. ✷
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In Appendix 1 we outline a “standard” proof of this lemma based on a
“blowing-up” by a singular scaling and Pontryagin’s technique of pertur-
bation of Hamiltonian systems. The proof gives expression (8.54) (see also
Exercise 14(a)) and can be applied almost verbatim to the complete system
(8.48), with O(‖η‖3) terms kept.

Due to the lemma, the stable cycle born through the Hopf bifurcation
does not bifurcate in region 3. As we move clockwise, it “grows” and ap-
proaches the saddle, turning into a homoclinic orbit at P . Notice that the
hyperbolicity of the cycle near the homoclinic bifurcation follows from the
fact that the saddle quantity σ0 < 0 along P . To complete our roundtrip,
note that there are no cycles in region 4 located between the curve P and
the branch T+ of the fold curve. An unstable node and a saddle, existing
for the parameter values in this region, collide and disappear at the fold
curve T+. Let us also point out that at β = 0 the critical equilibrium with
a double zero eigenvalue has exactly two asymptotic orbits (one tending to
the equilibrium for t → +∞ and one approaching it as t → −∞). These
orbits form a peculiar “cuspoidal edge” (see Figure 8.8).

The case s = +1 can be treated similarly. Since it can be reduced to the
one studied by the substitution t �→ −t, η2 �→ −η2, the parametric portrait
remains as it was but the cycle becomes unstable near the Bogdanov-Takens
point.

8.4.3 Effect of higher-order terms
Lemma 8.8 The system{

η̇1 = η2,
η̇2 = β1 + β2η1 + η2

1 ± η1η2 + O(‖η‖3),

is locally topologically equivalent near the origin to the system{
η̇1 = η2,
η̇2 = β1 + β2η1 + η2

1 ± η1η2. ✷

We give only an outline of the proof. Take s = −1 and develop the
O(‖η‖3) term in system (8.48) into a Taylor series in η1. This results in

η̇1 = η2,
η̇2 = β1 + β2η1 + η2

1(1 + η1P (η1, β))− η1η2(1 + η1Q(η1, β))
+ η2

2(η1R(η, β) + η2S(η, β)),
(8.55)

where P,Q,R, and S are some smooth functions.
It is an easy exercise in the Implicit Function Theorem to prove the

existence of both a fold bifurcation curve and a Hopf bifurcation curve in
(8.55) that are close to the corresponding curves T and H in (8.50). The
nondegeneracy conditions for these bifurcations can also be verified rather
straightforwardly.



8.4 Bogdanov-Takens (double-zero) bifurcation 325

An analog of Lemma 8.7 can be proved for system (8.55) practically by
repeating step by step the proof outlined in Appendix 1.2 Then, a home-
omorphism (actually, diffeomorphism) mapping the parameter portrait of
(8.55) into that of (8.50) can be constructed, as well as a (parameter-
dependent) homeomorphism identifying the corresponding phase portraits.

As usual, let us formulate a general theorem.

Theorem 8.5 (Topological normal form for BT bifurcation) Any
generic planar two-parameter system

ẋ = f(x, α),

having, at α = 0, an equilibrium that exhibits the Bogdanov-Takens bifur-
cation, is locally topologically equivalent near the equilibrium to one of the
following normal forms:{

η̇1 = η2,
η̇2 = β1 + β2η1 + η2

1 ± η1η2. ✷

As for the Bautin bifurcation, the Bogdanov-Takens bifurcation gives rise
to a limit cycle bifurcation, namely, the appearance of the homoclinic orbit,
for nearby parameter values. Thus, we can prove analytically (by verifying
the bifurcation conditions and the genericity conditions (BT.1)-(BT.3)) the
existence of this global bifurcation in the system. Again, this is one of few
regular methods to detect homoclinic bifurcations analytically.

The multidimensional case of the Bogdanov-Takens bifurcation brings
nothing new, since it can be reduced by the Center Manifold Theorem to
the planar case. Notice that linear approximation of the center manifold
at the critical parameter values is sufficient to compute the coefficients
a20(0), b20(0), and b11(0) involved in the nondegeneracy conditions. Essen-
tially, they can be computed by the formulas given in this section, if one
treats the vectors v0, v1, w0, and w1 in (8.30), (8.31) as n-dimensional. Of
course, A0 and f(x, 0) should be treated similarly.

Example 8.3 (Bazykin [1985]) Consider the following system of two
differential equations:

ẋ1 = x1 − x1x2

1 + αx1
− εx2

1,

ẋ2 = −γx2 +
x1x2

1 + αx1
− δx2

2 .

The equations model the dynamics of a predator-prey ecosystem. The vari-
ables x1 and x2 are (scaled) population numbers of prey and predator,

2To proceed in exactly the same way as in Appendix 1, one has to eliminate
the P (η1, β)-term from (8.55) by proper variable and time transformations. Then,
the equilibria of (8.55) will coincide with those of (8.50).
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respectively, while α, γ, ε, and δ are nonnegative parameters describing the
behavior of isolated populations and their interaction (see Bazykin [1985]).
If δ = 0, the system reduces to a model that differs only by scaling from
the system considered in Chapter 3 (see Example 3.1). Assume that ε# 1
and γ = 1 are fixed. The bifurcation diagram of the system with respect
to the two remaining parameters (α, δ) exhibits all codim 2 bifurcations
possible in planar systems.

The system has two trivial equilibria,

O = (0, 0), E0 =
(

1
ε
, 0

)
.

The equilibrium O is always a saddle, while E0 is a stable node for α > 1−ε
and is the only attractor for these parameter values. At the line

k = {(α, δ) : α = 1− ε}
a nontrivial equilibrium bifurcates from E0 into the positive quadrant while
E0 turns into a saddle (transcritical bifurcation). Actually, the system can
have between one and three positive equilibria, E1, E2, E3, to the left of the
line k. These equilibria collide pairwise and disappear via the fold (tangent)
bifurcation at a curve t,

t =
{

(α, δ) : 4ε(α− 1)3 +
[
(α2 − 20α− 8)ε2 + 2αε(α2 − 11α + 10)

+ α2(α− 1)2
]
δ − 4(α + ε)3δ2 = 0

}
.

This curve delimits a region resembling “lips” which is sketched in Figure
8.9(a).3 Inside the region, the system has three equilibrium points (two
antisaddles E1, E3, and a saddle E2). Outside the region, at most one non-
trivial equilibrium might exist. There are two cusp singular points, C1 and
C2, on the curve t. One can check that the corresponding cusp bifurcations
are generic. While approaching any of these points from inside the “lips,”
three positive equilibria simultaneously collide, and only one of them sur-
vives outside.

Parameter values for which the system has an equilibrium with λ1+λ2 =
0 belong to the curve

h =
{

(α, δ) : 4ε[α(α− 1) + ε(α + 1)] +
[
2(ε + 1)α2 + (3ε2 − 2ε− 1)α

+ ε(ε2 − 2ε + 5)
]
δ + (α + ε− 1)2δ2 = 0

}
.

The curve h has two tangencies with the curve t at points BT1 and BT2
(see Figure 8.9(b)). For the corresponding parameter values there is an
equilibrium with a double zero eigenvalue. One can check that the system
exhibits generic Bogdanov-Takens bifurcations at these points. A part h0

3In reality, the region is much more narrow than that in Figure 8.9.
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FIGURE 8.9. Construction of the parametric portrait.

between the points BT1 and BT2 corresponds to a neutral saddle, while
the outer branches define two Hopf bifurcation curves, h1 and h2. The last
local codim 2 bifurcation appears at a point B on the Hopf curve h2. This
is a Bautin point at which the first Lyapunov coefficient l1 vanishes but the
second Lyapunov coefficient l2 < 0. We have l1 < 0 along h2 to the right
of the point B, l1 > 0 between points BT2 and B, and l1 < 0 to the left of
BT1. Negative values of l1 ensure the appearance of a stable limit cycle via
a Hopf bifurcation, while positive values lead to an unstable cycle nearby.

Based on the theory we have developed for the Bautin and the Bogdanov-
Takens bifurcations in the previous sections, we can make some conclusions
about limit cycle bifurcations in the system. There is a bifurcation curve
T originating at the Bautin point B at which the fold bifurcation of limit
cycles takes place: A stable and an unstable limit cycle collide, forming
a nonhyperbolic cycle with multiplier µ = 1, and disappear (see Figure
8.9(c)). Two other limit cycle bifurcation curves, P1 and P2, emanate from
the Bogdanov-Takens points BT1,2. These are, of course, the homoclinic
bifurcation curves, along which the “central” saddle E2 has a homoclinic
orbit around one of the “peripheral” antisaddles E1,3.

The completion of the bifurcation diagram requires numerical methods,
as described in Chapter 10. The resulting parametric portrait is sketched
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FIGURE 8.10. Parametric portrait of Bazykin’s predator-prey system.

in Figure 8.10, while relevant phase portraits are presented in Figure 8.11.4

The homoclinic curves P1,2 terminate at points D1,2 on the fold curve t.
These points are codim 2 saddle-node homoclinic points at which the homo-
clinic orbit returns to the saddle-node along a noncentral manifold (see Fig-
ure 8.12(a)). The interval of the tangent curve t between the point D1(D2)
and the intersections between t and h1(h2) correspond to a global homo-
clinic saddle-node bifurcation of codim 1 (studied in Chapter 7). Crossing
the curve t generates a unique limit cycle, stable near D1 and unstable near
D2. The homoclinic curves P1,2 are tangent to t at D1,2. A bit more surpris-
ing is the end point of the cycle fold curve T : It terminates at a point in the
branch h0 corresponding to a neutral saddle. This is another codim 2 global
bifurcation that we have not studied yet. Namely, the curve T terminates
at the point F , where h0 intersects with another saddle homoclinic curve
P0. This curve P0 corresponds to the appearance of a “big homoclinic loop”
(see Figure 8.12(b)). It terminates at points D3,4 on the fold curve t, similar
to the points D1,2. At the point F , there is a “big” homoclinic orbit to the
saddle E2 with zero saddle quantity σ0 (see Chapter 6). The stability of
the cycle generated via destruction of the big homoclinic orbit is opposite
along the two branches of P0 separated by F . This leads to the existence
of a fold curve for cycles nearby. Numerical continuation techniques show
that it is the fold curve T originating at the point B that terminates at
F . The curves T and P0 have an infinite-order tangency at the point F .

4The central projection of the plane (x1, x2) onto the lower hemisphere of the
unit sphere x2

1 + x2
2 + (x3 − 1)2 = 1 is used to draw the phase portraits.
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orbit.

The parametric portrait is completed, and we recommend that the reader
“walk” around it, tracing various metamorphoses of the phase portrait.

No theorem guarantees that the studied system cannot have more than
two limit cycles, even if ε # 1 and γ = 1. Nevertheless, numerous simula-
tions confirm that the phase portraits presented in Figure 8.11 are indeed
the only possible ones in the system for generic parameter values (α, δ).
The ecological interpretation of the described bifurcation diagram can be
found in Bazykin [1985]. Let us just point out here that the system exhibits
nontrivial coexistence of equilibrium and oscillatory behavior. ✸

8.5 Fold-Hopf (zero-pair) bifurcation

Now we have a smooth three-dimensional system depending on two param-
eters:

ẋ = f(x, α), x ∈ R
3, α ∈ R

2. (8.56)

Suppose that at α = 0 the system has the equilibrium x = 0 with one zero
eigenvalue λ1 = 0 and a pair of purely imaginary eigenvalues λ2,3 = ±iω0
with ω0 > 0.

8.5.1 Derivation of the normal form
Expand the right-hand side of (8.56) with respect to x at x = 0:

ẋ = a(α) + A(α)x + F (x, α), (8.57)

where a(0) = 0, F (x, α) = O(‖x‖2). Since the eigenvalues λ1 = 0 and
λ2,3 = ±iω0 of the matrix A(0) are simple, the matrix A(α) has simple
eigenvalues

λ1(α) = ν(α), λ2,3(α) = µ(α)± iω(α), (8.58)
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for all sufficiently small ‖α‖, where ν, µ, and ω are smooth functions of α
such that

ν(0) = µ(0) = 0, ω(0) = ω0 > 0.

Notice that these eigenvalues are the eigenvalues of the equilibrium x = 0
at α = 0 but typically a(α) = 0 for nearby parameter values and the matrix
A(α) is not the Jacobian matrix of any equilibrium point of (8.57). Never-
theless, the matrix A(α) is well defined and has two smoothly parameter-
dependent eigenvectors q0(α) ∈ R

3 and q1(α) ∈ C
3 corresponding to the

eigenvalues ν(α) and λ(α) = µ(α) + iω(α), respectively:

A(α)q0(α) = ν(α)q0(α), A(α)q1(α) = λ(α)q1(α).

Moreover, the adjoint eigenvectors p0(α) ∈ R
3 and p1(α) ∈ C

3 can be
defined by

AT (α)p0(α) = ν(α)p0(α), AT (α)p1(α) = λ̄(α)p1(α).

Normalize the eigenvectors such that

〈p0, q0〉 = 〈p1, q1〉 = 1,

for all ‖α‖ small.5 The following orthogonality properties follow from the
Fredholm Alternative Theorem:

〈p1, q0〉 = 〈p0, q1〉 = 0.

Now any real vector x can be represented as

x = uq0(α) + zq1(α) + z̄q̄1(α),

with {
u = 〈p0(α), x〉,
z = 〈p1(α), x〉.

In the coordinates u ∈ R
1 and z ∈ C

1 system (8.57) reads{
u̇ = Γ(α) + ν(α)u + g(u, z, z̄, α),
ż = Ω(α) + λ(α)z + h(u, z, z̄, α). (8.59)

Here
Γ(α) = 〈p0(α), a(α)〉, Ω(α) = 〈p1(α), a(α)〉, (8.60)

are smooth functions of α, Γ(0) = 0, Ω(0) = 0, and

g(u, z, z̄, α) = 〈p0(α), F (uq0(α) + zq1(α) + z̄q̄1(α), α)〉,
h(u, z, z̄, α) = 〈p1(α), F (uq0(α) + zq1(α) + z̄q̄1(α), α)〉, (8.61)

5As usual, 〈v, w〉 = v̄1w1 + v̄2w2 + v̄3w3 for two complex vectors v, w ∈ C
3.
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are smooth functions of u, z, z̄, α whose Taylor expansions in the first three
arguments start with quadratic terms:

g(u, z, z̄, α) =
∑

j+k+l≥2

1
j!k!l!

gjkl(α)ujzkz̄l,

and
h(u, z, z̄, α) =

∑
j+k+l≥2

1
j!k!l!

hjkl(α)ujzkz̄l.

Clearly, γ(α) is real, and since g must be real, we have gjkl(α) = ḡjlk(α).
Therefore, gjkl is real for k = l. Obviously, gjkl and hjkl can be computed
by formal differentiation of the expressions given by (8.61) with respect to
u, z, and z̄.

Using the standard technique, we can simplify the linear part and elim-
inate nonresonant terms in (8.59) by a change of variables.

Lemma 8.9 (Poincaré normal form) Assume

(ZH.1) g200(0) = 0.

Then there is a locally defined smooth, invertible variable transformation,
smoothly depending on the parameters, that for all sufficiently small ‖α‖
reduces (8.59) into the following form:

v̇ = γ(α) + 1
2G200(α)v2 + G011(α)|w|2 + 1

6G300(α)v3

+ G111(α)v|w|2 + O(‖(v, w, w̄)‖4),
ẇ = Λ(α)w + H110(α)vw + 1

2H210(α)v2w + 1
2H021(α)w|w|2

+ O(‖(v, w, w̄)‖4),
(8.62)

where v ∈ R
1, w ∈ C

1, and ‖(v, w, w̄)‖2 = v2 + |w|2. In (8.62), γ(α)
and Gjkl(α) are real-valued smooth functions, while Λ(α) and Hjkl(α) are
complex-valued smooth functions. Moreover, γ(0) = 0, Λ(0) = iω0,

G200(0) = g200(0), G011(0) = g011(0), H110(0) = h110(0), (8.63)

and
G300(0) = g300(0)− 6

ω0
Im(g110(0)h200(0)), (8.64)

G111(0) = g111(0)− 1
ω0

[2 Im(g110(0)h011(0)) + Im(g020(0)h101(0))] ,

(8.65)

H210(0) = h210(0)

+
i

ω0

[
h200(0)(h020(0)− 2g110(0))− |h101(0)|2 − h011(0)h̄200(0)

]
,

(8.66)
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H021(0) = h021(0)

+
i

ω0

(
h011(0)h020(0)− 1

2
g020(0)h101(0)− 2|h011(0)|2

− 1
3
|h002(0)|2

)
. (8.67)

Sketch of the proof:
Let us first prove the lemma for α = 0, which is that for Γ = ν = Ω = 0.

Perform a nonlinear change of variables in (8.59)
v = u + 1

2V020z
2 + 1

2V002z̄
2 + V110uz + V101uz̄,

w = z + 1
2W200u

2 + 1
2W020z

2 + 1
2W002z̄

2 + W101uz̄
+ W011zz̄,

(8.68)

where Vjlk and Wjkl are unknown coefficients to be defined later. The
transformation (8.68) is invertible near (u, z) = (0, 0) and reduces (8.59)
into the form (8.62) up to third-order terms if we take

V020 = − g020
2iω0

, V002 =
g002
2iω0

, V110 = −g110
iω0

, V101 =
g101
iω0

,

and

W200 =
h200

iω0
, W020 = −h020

iω0
, W101 =

h101

2iω0
, W002 =

h002

3iω0
, W011 =

h011

iω0
,

where all the gjkl and hjkl have to be evaluated at α = 0. These coefficients
are selected exactly in order to annihilate all the quadratic terms in the
resulting system except those present in (8.62). Then, one can eliminate all
nonresonant order-three terms without changing the coefficients in front of
the resonant ones displayed in (8.62). To verify the expressions for Gjkl(0)
and Hjkl(0), one has to invert (8.68) up to and including third-order terms.6

To prove the lemma for α = 0 with small ‖α‖, we have to perform a
parameter-dependent transformation that coincides with (8.68) at α = 0
but contains a small affine part for α = 0 to counterbalance the appearance
of “undesired” linear terms in (8.62). For example, we can take

v = u + δ0(α) + δ1(α)u + δ2(α)z + δ3(α)z̄
+ 1

2V020(α)z2 + 1
2V002(α)z̄2 + V110(α)uz + V101(α)uz̄,

w = z + ∆0(α) + ∆1(α)u + ∆2(α)z + ∆3(α)z̄
+ 1

2W200(α)u2 + 1
2W020(α)z2 + 1

2W002(α)z̄2 + W101(α)uz̄
+ W011(α)zz̄,

(8.69)

6A way to avoid explicitly inverting (8.68) is to compare the equations for v̇
and ẇ expressed in terms of (u, z) obtained by differentiating (8.68) and sub-
stituting (u̇, ż) using (8.59) with those obtained by substitution of (8.68) into
(8.62).
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with δk(0) = 0 and ∆k(0) = 0. To prove that it is possible to select the
parameter-dependent coefficients of (8.69) to eliminate all constant, linear,
and quadratic terms except those shown in (8.62), for all small ‖α‖, one
has to apply the Implicit Function Theorem using the assumptions on the
eigenvalues of A(0) and condition (ZH.1). We leave the details to the reader.
✷

Making a nonlinear time reparametrization in (8.62) and performing an
extra variable transformation allows one to simplify the system further.
As the following lemma shows, all but one resonant cubic term can be
“removed” under certain nondegeneracy conditions.

Lemma 8.10 (Gavrilov normal form) Assume that:

(ZH.1) G200(0) = 0;
(ZH.2) G011(0) = 0.

Then, system (8.62) is locally smoothly orbitally equivalent near the origin
to the system{

u̇ = δ(α) + B(α)u2 + C(α)|z|2 + O(‖(u, z, z̄)‖4),
ż = Σ(α)z + D(α)uz + E(α)u2z + O(‖(u, z, z̄)‖4), (8.70)

where δ(α), B(α), C(α), and E(α) are smooth real-valued functions, while
Σ(α) and D(α) are smooth complex-valued functions. Moreover, δ(0) =
0, Σ(0) = Λ(0) = iω0, and

B(0) =
1
2
G200(0), C(0) = G011(0), (8.71)

D(0) = H110(0)− iω0
G300(0)
3G200(0)

, (8.72)

E(0) =
1
2

Re
[
H210(0) + H110(0)

(
Re H021(0)
G011(0)

− G300(0)
G200(0)

+
G111(0)
G011(0)

)
− H021(0)G200(0)

2G011(0)

]
. (8.73)

Proof:
As in the previous lemma, start with α = 0. Make the following time

reparametrization in (8.62):

dt = (1 + e1v + e2|w|2) dτ, (8.74)

with the constants e1,2 ∈ R
1 to be determined. Simultaneously, introduce

new variables, again denoted by u and z, via{
u = v + 1

2e3v
2,

z = w + Kvw,
(8.75)
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where e3 ∈ R
1 and K ∈ C

1 are “unknown coefficients.” The reparametriza-
tion (8.74) preserves the direction of time near the origin, and the transfor-
mation (8.75) is locally invertible. In the new variables and time, system
(8.62) takes the form (8.70) if we set

e1 = − G300(0)
3G200(0)

, K = −2iω0e2 + H021(0)
2G011(0)

,

e3 = 2 Re K − e1 − G111(0)
G011(0)

,

and then tune the remaining free parameter e2 to annihilate the imaginary
part of the coefficient of the u2z-term. This is always possible, since this
coefficient has the form

Ψ + iω0
G200(0)
G011(0)

e2,

with a purely imaginary factor in front of e2. Direct calculations show that
Re Ψ = E(0), where E(0) is given by (8.73) in the lemma statement.

We leave the reader to verify that a similar construction can be carried
out for small α = 0 with the help of the Implicit Function Theorem if one
considers e1,2 in (8.74) as functions of α and replaces (8.75) by{

u = v + e4(α)v + 1
2e3(α)v2,

z = w + K(α)vw,

for smooth functions e3,4(α), e4(0) = 0, and K(α). ✷

Finally, by a linear scaling of the variables and time in (8.70),

u =
B(α)
E(α)

ξ, z =
B3(α)

C(α)E2(α)
ζ, t =

E(α)
B2(α)

τ,

we obtain{
ξ̇ = β1(α) + ξ2 + s|ζ|2 + O(‖(ξ, ζ, ζ̄)‖4),
ζ̇ = (β2(α) + iω1(α))ζ + (θ(α) + iϑ(α))ξζ + ξ2ζ + O(‖(ξ, ζ, ζ̄)‖4),

(8.76)
for s = sign[B(0)C(0)] = ±1 and

β1(α) =
E2(α)
B3(α)

δ(α),

β2(α) =
E(α)
B2(α)

Re Σ(α),

θ(α) + iϑ(α) =
D(α)
B(α)

,

ω1(α) =
E(α)
B2(α)

Im Σ(α).
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Since B(0)C(0) = 0 due to (ZH.1) and (ZH.2), we have only to assume
that

(ZH.3) E(0) = 0,

for the scaling to be valid. Notice that τ has the same direction as t only if
E(0) > 0. We should have this in mind when interpreting stability results.
We took the liberty of introducing this possible time reverse to reduce the
number of distinct cases. We can also assume that ω1(α) > 0, since the
transformation ζ �→ ζ̄ changes the sign of ω1.

If we impose an additional transversality condition, namely,

(ZH.4) the map α �→ β is regular at α = 0,

then (β1, β2) can be considered as new parameters and θ as a function of β
(to save symbols). Condition (ZH.4) is equivalent to the regularity at α = 0
of the map α �→ (γ(α), µ(α))T (see (8.58) and (8.60)).

We summarize the results obtained in this section by formulating a
lemma.

Lemma 8.11 Suppose that a three-dimensional system

ẋ = f(x, α), x ∈ R
3, α ∈ R

2, (8.77)

with smooth f , has at α = 0 the equilibrium x = 0 with eigenvalues

λ1(0) = 0, λ2,3(0) = ±iω0, ω0 > 0.

Let

(ZH.1) g200(0) = 0;
(ZH.2) g011(0) = 0;
(ZH.3) E(0) = 0, where E(0) can be computed using (8.63)–(8.67) and

(8.73);
(ZH.4) the map α �→ (γ(α), µ(α))T is regular at α = 0.

Then, by introducing a complex variable, making smooth and smoothly pa-
rameter-dependent transformations, reparametrizing time (reversing it if
E(0) < 0), and introducing new parameters, we can bring system (8.77)
into the following form:{

ξ̇ = β1 + ξ2 + s|ζ|2 + O(‖(ξ, ζ, ζ̄)‖4),
ζ̇ = (β2 + iω1)ζ + (θ + iϑ)ξζ + ξ2ζ + O(‖(ξ, ζ, ζ̄)‖4),

(8.78)

where ξ ∈ R
1 and ζ ∈ C

1 are new variables; β1 and β2 are new parameters;
θ = θ(β), ϑ = ϑ(β), ω1 = ω1(β) are smooth real-valued functions; ω1(0) =
0; and

s = sign[g200(0)g011(0)] = ±1,

θ(0) =
Re h110(0)
g200(0)

. ✷
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Only s and θ(0) are important in what follows. Assume that

(ZH.5) θ(0) = 0.

Remark:
It is a matter of taste which cubic term to keep in the normal form. An

alternative to (8.78) used by Gavrilov is the following normal form due to
Guckenheimer:{

ξ̇ = β1 + ξ2 + s|ζ|2 + O(‖(ξ, ζ, ζ̄)‖4),
ζ̇ = (β2 + iω1)ζ + (θ + iϑ)ξζ + ζ|ζ|2 + O(‖(ξ, ζ, ζ̄)‖4),

(8.79)

with the ζ|ζ|2-term kept in the second equation instead of the ξ2ζ-term
present in (8.78). Of course, the alternative choice leads to equivalent bi-
furcation diagrams. ♦

8.5.2 Bifurcation diagram of the truncated normal form
In coordinates (ξ, ρ, ϕ) with ζ = ρeiϕ, system (8.76) without O(‖·‖4)-terms
can be written as  ξ̇ = β1 + ξ2 + sρ2,

ρ̇ = ρ(β2 + θξ + ξ2),
ϕ̇ = ω1 + ϑξ,

(8.80)

the first two equations of which are independent of the third one. The
equation for ϕ describes a rotation around the ξ-axis with almost constant
angular velocity ϕ̇ ≈ ω1, for |ξ| small. Thus, to understand the bifurcations
in (8.80), we need to study only the planar system for (ξ, ρ) with ρ ≥ 0:{

ξ̇ = β1 + ξ2 + sρ2,
ρ̇ = ρ(β2 + θξ + ξ2).

(8.81)

This system is often called a (truncated) amplitude system. If considered in
the whole (ξ, ρ)-plane, system (8.81) is Z2-symmetric, since the reflection
ρ �→ −ρ leaves it invariant. The bifurcation diagrams of (8.81) correspond-
ing to different possible cases are depicted in Figures 8.13, 8.14, and 8.16,
8.17. In all these cases, system (8.81) can have between zero and three equi-
libria in a small neighborhood of the origin for ‖β‖ small. Two equilibria
with ρ = 0 exist for β1 < 0 and are given by

E1,2 = (ξ(0)1,2 , 0) =
(
∓
√
−β1, 0

)
.

These equilibria appear via a generic fold bifurcation on the line

S = {(β1, β2) : β1 = 0}.
The bifurcation line S has two branches, S+ and S−, separated by the point
β = 0 and corresponding to β2 > 0 and β2 < 0, respectively (see Figure
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8.13, for example). Crossing the branch S+ gives rise to an unstable node
and a saddle, while passing through S− implies a stable node and a saddle.

The equilibria E1,2 can bifurcate further; namely, a nontrivial equilibrium
with ρ > 0,

E3 = (ξ(0)3 , ρ
(0)
3 ) =

(
−β2

θ
+ o(β2),

√
−1
s

(
β1 +

β2
2

θ2 + o(β2
2)
))

,

can branch from either E1 or E2 (here we use the assumption (ZH.5) for
the first time). Clearly, (8.81) might have another nontrivial equilibrium
with

ξ = −θ + · · · , ρ2 = −sθ2 + · · · ,
where dots represent terms that vanish as β → 0. We do not worry about
this equilibrium since it is located outside any sufficiently small neighbor-
hood of the origin in the phase plane and does not interact with any of our
Ek, k = 1, 2, 3. The nontrivial equilibrium E3 appears at the bifurcation
curve

H =
{

(β1, β2) : β1 = −β
2
2

θ2 + o(β2
2)
}
.

If sθ > 0, the appearing equilibrium E3 is a saddle, while it is a node for
sθ < 0. The node is stable if it exists for θβ2 > 0 and unstable if the
opposite inequality holds.7

If sθ > 0, the nontrivial equilibrium E3 does not bifurcate, and the
bifurcation diagrams of (8.81) are those presented in Figure 8.13 (for s =
1, θ > 0) and Figure 8.14 (for s = −1, θ < 0).

Remark:
For s = 1, there is a subtle difference between the cases θ(0) > 1 and

0 < θ(0) ≤ 1 that appears only at the critical parameter value β = 0 (see
Figure 8.15). ♦

If sθ < 0, the equilibrium E3 has two purely imaginary eigenvalues for
parameter values belonging to the line

T = {(β1, β2) : β2 = 0, θβ1 > 0}.
We can check that the corresponding first Lyapunov coefficient is given by

l1 = − C+

θ
√
θβ1

for some constant C+ > 0. Thus, the Lyapunov coefficient l1 is nonzero
along T for sufficiently small ‖β‖ > 0. Therefore, a nondegenerate Hopf

7A careful reader will have recognized that a pitchfork bifurcation, as studied
in Chapter 7, takes place at H due to the Z2-symmetry of (8.81).
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FIGURE 8.13. Bifurcation diagram of the amplitude system (8.81) (s = 1, θ > 0).

bifurcation takes place if we cross the line T in a neighborhood of β = 0,
and a unique limit cycle exists for nearby parameter values. Its stability
depends on the sign of l1.

It can be proved that (8.81) can have at most one limit cycle in a suffi-
ciently small neighborhood of the origin in the (ξ, ρ)-plane for small ‖β‖.
The proof is difficult and is omitted here.8 The fate of this limit cycle is
rather different depending on whether s = 1 or s = −1 (see Figures 8.16
and 8.17).

If s = 1 (and θ < 0), the limit cycle is unstable and coexists with the
two trivial equilibria E1,2, which are saddles. Under parameter variation,
the cycle can approach a heteroclinic cycle formed by the separatrices of
these saddles: Its period tends to infinity and the cycle disappears. Notice
that due to the symmetry the ξ-axis is always invariant, so one orbit that
connects the saddles E1,2 is always present. The second connection appears
along a curve originating at β = 0 and having the representation

P =
{

(β1, β2) : β2 =
θ

3θ − 2
β1 + o(β1), β1 < 0

}
(see Exercise 14(b)). The resulting bifurcation diagram is presented in Fig-
ure 8.15.

If s = −1 (and θ > 0), a stable limit cycle appears through the Hopf bi-

8It is based on a singular rescaling and Pontryagin’s techniques of perturbation
of Hamiltonian systems (as in the Bogdanov-Takens case but more involved, see
Appendix 1 and Exercise 14(b)).
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FIGURE 8.14. Bifurcation diagram of the amplitude system (8.81)
(s = −1, θ < 0).
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FIGURE 8.15. Critical phase portraits for s = 1: (a) 0 < θ(0) ≤ 1; (b) θ(0) > 1.

furcation when there are no equilibria with ρ = 0. When we move clockwise
around the origin in the parameter plane, the cycle must disappear some-
how before entering region 3, where no cycle can exist since no nontrivial
equilibrium is left. A little thinking reveals that the cycle cannot “die” via
a homoclinic or heteroclinic bifurcation. To understand what happens with
the cycle born via the Hopf bifurcation, fix a small neighborhood U0 of the
origin in the phase plane. Then, as we move clockwise around β = 0 on
the parameter plane, the cycle “grows” and touches the boundary of U0.
Afterward, the cycle becomes invisible for anyone looking only at the inte-
rior of U0. We cannot get rid of this phenomenon, called cycle blow-up, by
decreasing the neighborhood U0. We also cannot make the neighborhood
very big, since all of the previous analysis is valid only in a sufficiently
small neighborhood of the origin. Thus, for s = −1, there is a “bifurca-
tion” curve J , originating at β = 0 and depending on the region in which
we consider the system (8.81), at which the cycle reaches the boundary of



8.5 Fold-Hopf (zero-pair) bifurcation 341

5

1

5 6

S +
3

4

S -P

1

2

S -

S +
3

2

4

6

H
β

β

2

10

0

P

H

+

-

FIGURE 8.16. Bifurcation diagram of the amplitude system (8.81)
(s = 1, θ < 0).

this region (see Figure 8.17). The strangest feature of this phenomenon is
that the cycle appears through the Hopf bifurcation and then approaches
the boundary of any small but fixed region if we make a roundtrip along an
arbitrary small circle on the parameter plane centered at the origin β = 0
(the curve J terminates at the origin). It means that the diameter of the
cycle increases under parameter variation arbitrarily fast when the radius
of the circle shrinks. That is why the cycle is said to exhibit a blow-up.

Now we can use the obtained bifurcation diagrams for (8.81) to recon-
struct bifurcations in the three-dimensional truncated normal form (8.80)
by “suspension” of the rotation in ϕ. The equilibria E1,2 with ρ = 0 in
(8.81) correspond to equilibrium points of (8.80). Thus, the curve S is a
fold bifurcation curve for (8.80) at which two equilibria appear, a node
and a saddle-focus. The nontrivial equilibrium E3 in (8.81) corresponds to
a limit cycle in (8.80) of the same stability as E3 (see Figure 8.18). The
pitchfork curve H, at which a small cycle bifurcates from an equilibrium,
clearly corresponds to a Hopf bifurcation in (8.80). One could naturally
expect the presence of these two local bifurcation curves near the zero-pair
bifurcation. The limit cycle in (8.81) corresponds to an invariant torus in
(8.80) (see Figure 8.19). Therefore, the Hopf bifurcation curve T describes
the Neimark-Sacker bifurcation of the cycle, at which it loses stability and
a stable torus appears “around” it. This torus then either approaches a
heteroclinic set composed of a spherelike surface and the ξ-axis (see Figure
8.20) or reaches the boundary of the considered region and “disappears”
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FIGURE 8.17. Bifurcation diagram of the amplitude system (8.81)
(s = −1, θ > 0).

by blow-up.

8.5.3 Effect of higher-order terms
Recall that the previous results concern the truncated normal form (8.80).
As we shall see, some of these results “survive” if we consider the whole
system (8.76), while others do not. In the majority of the cases, (8.80) is
not a normal form for (8.76).

Let us start with positive information. Writing system (8.76) in the same
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FIGURE 8.18. A nontrivial equilibrium corresponds to a cycle.
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FIGURE 8.20. A heteroclinic orbit corresponds to a “sphere”.

coordinates (ξ, ρ, ϕ) as (8.80), we get ξ̇ = β1 + ξ2 + sρ2 + Θβ(ξ, ρ, ϕ),
ρ̇ = ρ(β2 + θξ + ξ2) + Ψβ(ξ, ρ, ϕ),
ϕ̇ = ω1 + ϑξ + Φβ(ξ, ρ, ϕ),

(8.82)

where Θβ ,Ψβ = O((ξ2 + ρ2)2), and Φβ = O(ξ2 + ρ2) are smooth functions
that are 2π-periodic in ϕ. Using the Implicit Function Theorem, one can
show that, for sufficiently small ‖β‖, system (8.82) exhibits the same local
bifurcations in a small neighborhood of the origin in the phase space as
(8.80). More precisely, it has at most two equilibria, which appear via the
fold bifurcation on a curve that is close to S. The equilibria undergo the
Hopf bifurcation at a curve close to H, thus giving rise to a unique limit
cycle. If sθ < 0, this cycle loses stability and generates a torus via the
Neimark-Sacker bifurcation taking place at some curve close to the curve T .
The nondegeneracy conditions for these bifurcations can be verified rather
simply. Actually, leading-order terms of the Taylor expansions for functions
representing these bifurcation curves in (8.82) coincide with those for (8.80).
Therefore, we can say that, generically, “the interaction between fold and
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Hopf bifurcations leads to tori.”
If s = 1 and θ > 0, one can establish more – namely that the accounting

for higher-order terms does not qualitatively change the whole bifurcation
diagram of (8.80).

Lemma 8.12 If s = 1 and θ > 0, then system (8.82) is locally topologically
equivalent near the origin to system (8.80). ✷

In this case, we have only the fold and the Hopf bifurcation curves on
the parameter plane. One of the equilibria in the ξ-axis is always a node.
The cycle born through the Hopf bifurcation is of the saddle type. No tori
are possible.

Moreover, in this case we do not need to consider the cubic terms at all.
Taking into account only the quadratic terms is sufficient.

Lemma 8.13 If s = 1 and θ > 0, then system (8.82) is locally topologically
equivalent near the origin to the system ξ̇ = β1 + ξ2 + ρ2,

ρ̇ = β2ρ + θξρ,
ϕ̇ = ω1 + ϑξ. ✷

(8.83)

Moreover, the bifurcation diagram remains equivalent if we take ω1 = 1
and substitute the functions θ(β) and ϑ(β) by constant values θ = θ(0)
and ϑ = 0. Therefore, the following theorem can be formulated.

Theorem 8.6 (Simple fold-Hopf bifurcation) Suppose that a system

ẋ = f(x, α), x ∈ R
3, α ∈ R

2,

with smooth f, has at α = 0 the equilibrium x = 0 with eigenvalues

λ1(0) = 0, λ2,3 = ±iω0, ω0 > 0.

Let the following genericity conditions hold:

(ZH0.1) g200(0)g011(0) > 0;

(ZH0.2)

θ0 =
Re h110(0)
g200(0)

> 0;

(ZH0.3) the map α �→ (γ(α), µ(α))T is regular at α = 0.

Then, the system is locally topologically equivalent near the origin to the
system 

ρ̇ = β2ρ + θ0ζρ,
ϕ̇ = 1,
ζ̇ = β1 + ζ2 + ρ2,

where (ρ, ϕ, ζ) are cylindrical polar coordinates. ✷
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In all other cases, adding generic higher-order terms results in topologi-
cally nonequivalent bifurcation diagrams. The reason for this is that phase
portraits of system (8.80) have some degenerate features that disappear
under “perturbation” by generic higher-order terms.

Let us first explain why even another “simple” case s = −1, θ < 0, is sen-
sitive to adding higher-order terms. In system (8.81) the ξ-axis is invariant,
since ρ = 0 implies ρ̇ = 0. Then, in region 3 in Figure 8.13, system (8.81)
has two saddle-focus points with ρ = 0, one of them with two-dimensional
stable and one-dimensional unstable manifolds, while the other has one-
dimensional stable and two-dimensional unstable invariant manifolds. The
invariant axis connects these saddle-foci: We have a heteroclinic orbit for
all the parameter values in region 3.

On the contrary, the term Ψβ(ξ, ρ, ϕ) = O((ξ2 + ρ2)2) in (8.82) does not
necessarily vanish for ρ = 0. Then, the ξ-axis is no longer always invariant,
and the heteroclinic connection normally disappears.9 Thus, generically,
the bifurcation diagrams of (8.80) and (8.82) are not equivalent.

Remark:
The situation with the invariance of the ξ-axis is more delicate than

one might conclude from the above explanation. By a suitable change
of variables, one can make the terms of the Taylor expansion of Ψβ at
(ξ, ρ) = (0, 0) proportional to ρ up to an arbitrary high order, retaining the
invariance of the axis in the truncated form. The “tail,” however, is still
not proportional to ρ in the generic situation. Such properties are called
flat, because we can decompose the function Ψ by

Ψβ(ξ, ρ, ϕ) = ρ4Ψ(0)
β (ξ, ρ, ϕ) + Ψ(1)

β (ξ, ρ, ϕ),

with all the partial derivatives of Ψ(1) with respect to ρ equal to zero at
ρ = 0 (flat function of ρ). However, generically, Ψ(1)

β (ξ, 0, ϕ) = 0. ♦
If sθ < 0, a torus is present in the truncated normal form (8.80) and the

situation becomes much more complex. The torus created by the Neimark-
Sacker bifurcation exists in (8.82) only for parameter values near the cor-
responding bifurcation curve. If we move away from the curve, the torus
loses its smoothness and is destroyed. The complete sequence of events is
unknown and is likely to involve an infinite number of bifurcations, since
any weak resonance point on the Neimark-Sacker curve is the root of an
Arnold phase-locking tongue (see Chapter 7).

More detailed information is available for the case s = 1, θ < 0. Re-
call that in this case the truncated normal form (8.80) has the curve P
at which there exists a spherelike surface formed by the coincidence of the

9Since we need to tune two parameters to restore the connection, there might
be only isolated points on the (β1, β2)-plane where this connection is still present
in (8.82).
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two-dimensional invariant manifolds of the saddle-foci. This is an extremely
degenerate structure that disappears when generic higher-order terms are
added. Instead, these invariant manifolds intersect transversally, forming a
heteroclinic structure (see Figure 8.21, where a cross-section of this struc-
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FIGURE 8.21. (a) A cross-section of the intersecting stable and unstable mani-
folds; (b) a heteroclinic orbit connecting the saddle-foci.

ture is sketched together with a heteroclinic orbit Γ12). Therefore, the torus
cannot approach the “sphere,” since it simply does not exist, and thus must
disappear before. It is also clear from continuity arguments that the region
of existence of the transversal heteroclinic structure should be bounded by
some curves corresponding to a tangency of the invariant manifolds along
a heteroclinic orbit connecting the saddle-focus equilibria.

Finally, let us point out that homoclinic orbits to a saddle-focus are also
possible and have actually been proved to be present in the generic case.
Such an orbit Γ01 can begin by spiraling along an unstable two-dimensional
manifold of one of the saddle-foci, pass near the second one, and return
along the stable one-dimensional invariant manifold back to the first saddle-
focus (see Figure 8.22(a)). A homoclinic orbit to the opposite saddle-focus
is also possible. Actually, there are two curves that intersect each other
infinitely many times, emanating from the origin of the parameter plane,
which correspond to these two homoclinic bifurcations. One can check that
if a homoclinic orbit exists and

−2 < θ < 0,

then the corresponding saddle quantity σ0 (see Chapter 6) satisfies the
Shil’nikov “chaotic condition” implying the presence of Smale horseshoes.
Moreover, one of these homoclinic orbits is located inside an attracting
region (see Figure 8.22(b)) bounded by the two-dimensional stable manifold
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FIGURE 8.22. (a) An orbit homoclinic to the saddle E1; (b) boundary of attrac-
tion.

of the second saddle-focus.10 Therefore, a stable “strange” dynamics exists
near the zero-pair bifurcation in this case.

In summary, if s = 1, θ < 0, system (8.82) may have, in addition to
local bifurcation curves, a bifurcation set corresponding to global bifurca-
tions (heteroclinic tangencies, homoclinic orbits) and bifurcations of long-
periodic limit cycles (folds and period-doubling cascades), which is located
near the heteroclinic cycle curve P of the truncated normal form (8.80).

Remarks:
(1) Actually, the truncated planar normal form (8.81) has a more fun-

damental meaning if considered in the class of systems on the (ξ, ρ)-plane,
which are invariant under the two-dimensional representation of the group
Z2: (ξ, ρ) �→ (ξ,−ρ). A perturbation of (8.81) by higher-order terms that
leaves it in this class of symmetric systems can be written (cf. Chapter 7)
as {

ξ̇ = β1 + ξ2 + sρ2 + Θ̃β(ξ, ρ2),
ρ̇ = ρ(β2 + θξ + ξ2) + ρ4Ψ̃β(ξ, ρ2),

(8.84)

with Θβ , ρ
4Ψβ(ξ, ρ2) = O((ξ2 + ρ2)2). System (8.84) always has the in-

variant axis ρ = 0. It has been proved that (8.84) with sθ = 0 is locally
topologically equivalent to (8.81). Moreover, the homeomorphism identify-
ing the phase portraits can be selected to commute with the transformation
(ξ, ρ) �→ (ξ,−ρ) for all parameter values.

Therefore, system (8.81) is a topological normal form for a generic Z2-

10Recall that all the objects we speak about will actually be attracting in the
original system only if E(0) > 0.
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symmetric planar system with the invariant axis x2 = 0,{
ẋ1 = G(x1, x

2
2, α),

ẋ2 = x2H(x1, x
2
2, α),

having at α = 0 the equilibrium x = 0 with two zero eigenvalues.
(2) A careful reader might ask why the quadratic terms are not enough

for the analysis of the truncated system (8.81) if sθ < 0 and why we have
also to keep the cubic term. The reason is that in the system{

ξ̇ = β1 + ξ2 + sρ2,
ρ̇ = ρ(β2 + θξ),

with sθ < 0, the Hopf bifurcation is degenerate. Moreover, if s = 1, θ < 0,
this bifurcation occurs simultaneously with the creation of the heteroclinic
cycle formed by the separatrices of the saddles E1,2. More precisely, the sys-

(b)(a)

FIGURE 8.23. (a) s = 1, θ < 0; (b) s = −1, θ > 0.

tem is integrable along the “Hopf line” T , and for corresponding parameter
values the nontrivial equilibrium is a center surrounded by a family of closed
orbits. This family is bounded by the heteroclinic cycle for s = 1, θ < 0
(see Figure 8.23(a)), but remains unbounded for s = −1, θ > 0 (Figure
8.23(b)). Actually, the system is orbitally equivalent to a Hamiltonian sys-
tem for ρ > 0. Therefore, system (8.81) can be considered near the line T
as a “perturbation” of a Hamiltonian system by the (only relevant) cubic
term. This term “stabilizes” the bifurcation diagram by making the Hopf
bifurcation nondegenerate and splits the heteroclinic curve off the vertical
axis. These properties allow one to prove the uniqueness of the limit cycle
in the system and derive an asymptotic formula for the heteroclinic curve
P . The interested reader is directed to Appendix 1 and Exercise 14(b). ♦

The multidimensional case of the fold-Hopf bifurcation reduces to the
considered one by the Center Manifold Theorem. Notice that we need
only the linear approximation of the center manifold at α = 0 to com-
pute g200(0), g011(0), and Re h110(0) and thus to distinguish between the
“simple” and “difficult” cases. However, the second-order approximation is
required if we want to find E(0), since certain third-order derivatives must
then be evaluated (see (8.63)–(8.67) and (8.73)).
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8.6 Hopf-Hopf bifurcation

Consider a four-dimensional smooth system depending on two parameters:

ẋ = f(x, α), x ∈ R
4, α ∈ R

2. (8.85)

Let (8.85) have at α = 0 the equilibrium x = 0 with two distinct pairs of
purely imaginary eigenvalues:

λ1,4 = ±iω1, λ2,3 = ±iω2,

with ω1 > ω2 > 0. Since there is no zero eigenvalue, system (8.85) has an
equilibrium point close to x = 0 for all α with ‖α‖ small. Suppose that
a parameter-dependent shift of the coordinates that places the origin at
this equilibrium point has been performed, so that we can assume without
loss of generality that x = 0 is the equilibrium of (8.85) for all small ‖α‖ :
f(0, α) ≡ 0.

8.6.1 Derivation of the normal form
Write system (8.85) in the form

ẋ = A(α)x + F (x, α), (8.86)

where F (x, α) = O(‖x‖2) is a smooth function. The matrix A(α) has two
pairs of simple complex-conjugate eigenvalues

λ1,4(α) = µ1(α)± iω1(α), λ2,3(α) = µ2(α)± iω2(α),

for all sufficiently small ‖α‖, where µ1,2 and ω1,2 are smooth functions of
α and

µ1(0) = µ2(0) = 0, ω1(0) > ω2(0) > 0.

Since the eigenvalues are simple, there are two complex eigenvectors, q1,2(α)
∈ C

4, corresponding to the eigenvalues λ1,2(α) = µ1,2(α) + iω1,2(α):

A(α)q1(α) = λ1(α)q1(α), A(α)q2(α) = λ2(α)q2(α).

As usual, introduce the adjoint eigenvectors p1,2(α) ∈ C
4 by

AT (α)p1(α) = λ̄1(α)p1(α), AT (α)p2(α) = λ̄2(α)p2(α),

where T denotes transposition. These eigenvectors can be selected to de-
pend smoothly on α, normalized using the standard scalar product in C

4,

〈p1, q1〉 = 〈p2, q2〉 = 1,

and made to satisfy the orthogonality conditions

〈p2, q1〉 = 〈p1, q2〉 = 0,
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thus forming a biorthogonal set of vectors in C
4. Note that we always use the

scalar product 〈v, w〉 =
∑4

k=1 v̄kwk, which is linear in its second argument.
Any real vector x ∈ R

4 can be represented for each small ‖α‖ as

x = z1q1 + z̄1q̄1 + z2q2 + z̄2q̄2,

where
z1 = 〈p1, x〉, z2 = 〈p2, x〉,

are new complex coordinates, z1,2 ∈ C
1 (cf. Section 3.5 in Chapter 3). In

these coordinates, system (8.86) takes the form{
ż1 = λ1(α)z1 + g(z1, z̄1, z2, z̄2, α),
ż2 = λ2(α)z2 + h(z1, z̄1, z2, z̄2, α), (8.87)

where

g(z1, z̄1, z2, z̄2, α) = 〈p1, F (z1q1 + z̄1q̄1 + z2q2 + z̄2q̄2, α)〉,
h(z1, z̄1, z2, z̄2, α) = 〈p2, F (z1q1 + z̄1q̄1 + z2q2 + z̄2q̄2, α)〉

(for simplicity, the dependence of pk, ql on the parameters is not indicated).
The functions g and h are complex-valued smooth functions of their argu-
ments and have formal Taylor expansions with respect to the first four
arguments that start with quadratic terms:

g(z1, z̄1, z2, z̄2, α) =
∑

j+k+l+m≥2

gjklm(α)zk1 z̄
l
1z

l
2z̄

m
2 ,

and
h(z1, z̄1, z2, z̄2, α) =

∑
j+k+l+m≥2

hjklm(α)zk1 z̄
l
1z

l
2z̄

m
2 .

Lemma 8.14 (Poincaré normal form) Assume that

(HH.0) kω1(0) = lω2(0), k, l > 0, k + l ≤ 5.

Then, there exists a locally defined, smooth and smoothly parameter-depen-
dent, invertible transformation of the complex variables that reduces (8.87)
for all sufficiently small ‖α‖ into the following form:

ẇ1 = λ1(α)w1 + G2100(α)w1|w1|2 + G1011(α)w1|w2|2
+ G3200(α)w1|w1|4 + G2111(α)w1|w1|2|w2|2 + G1022(α)w1|w2|4
+ O(‖(w1, w̄1, w2, w̄2)‖6),

ẇ2 = λ2(α)w2 + H1110(α)w2|w1|2 + H0021(α)w2|w2|2
+ H2210(α)w2|w1|4 + H1121(α)w2|w1|2|w2|2 + H0032(α)w2|w2|4
+ O(‖(w1, w̄1, w2, w̄2)‖6),

(8.88)
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where w1,2 ∈ C
1 and ‖(w1, w̄1, w2, w̄2)‖2 = |w1|2 + |w2|2. The complex-

valued functions Gjklm(α) and Hjklm(α) are smooth; moreover,

G2100(0) = g2100 +
i

ω1
g1100g2000 +

i

ω2
(g1010h1100 − g1001h̄1100)

− i

2ω1 + ω2
g0101h̄0200 − i

2ω1 − ω2
g0110h2000

− i

ω1
|g1100|2 − 2i

3ω1
|g0200|2, (8.89)

G1011(0) = g1011 +
i

ω2
(g1010h0011 − g1001h̄0011)

+
i

ω1
(2g2000g0011 − g1100ḡ0011 − g0011h̄0110 − g0011h1010)

− 2i
ω1 + 2ω2

g0002h̄0101 − 2i
ω1 − 2ω2

g0020h1001

− i

2ω1 − ω2
|g0110|2 − i

2ω1 + ω2
|g0101|2, (8.90)

H1110(0) = h1110 +
i

ω1
(g1100h1010 − ḡ1100h0110)

+
i

ω2
(2h0020h1100 − h0011h̄1100 − g1010h1100 − ḡ1001h1100)

+
2i

2ω1 − ω2
g0110h2000 − 2i

2ω1 + ω2
ḡ0101h0200

− i

2ω2 − ω1
|h1001|2 − i

ω1 + 2ω2
|h0101|2, (8.91)

H0021(0) = h0021 +
i

ω1
(g0011h1010 − ḡ0011h0110) +

i

ω2
h0011h0020

− i

2ω2 − ω1
g0020h1001 − i

2ω2 + ω1
ḡ0002h0101

− i

ω2
|h0011|2 − 2i

3ω2
|h0002|2, (8.92)

where all the gjklm and hjklm have to be evaluated at α = 0. ✷

Notice that the expressions in the last line of each of the preceding for-
mulas are purely imaginary. The lemma can be proved by the standard
normalization technique. The hint to Exercise 15 in this chapter explains
how to perform the necessary calculations using one of the computer alge-
bra systems. We do not give here the explicit formulas for the coefficients
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of the fifth-order resonant terms due to their length (see references in Ap-
pendix 2). As we shall see, the given formulas are enough to distinguish
between “simple” and “difficult” Hopf-Hopf bifurcations.

By the introduction of a new time and a variable transformation in which
cubic “resonant terms” are involved, one can simplify normal form (8.88)
further.

Lemma 8.15 Assume that:

(HH.1) Re G2100(0) = 0;
(HH.2) Re G1011(0) = 0;
(HH.3) Re H1110(0) = 0;
(HH.4) Re H0021(0) = 0.

Then, the system

ẇ1 = λ1(α)w1 + G2100(α)w1|w1|2 + G1011(α)w1|w2|2
+ G3200(α)w1|w1|4 + G2111(α)w1|w1|2|w2|2 + G1022(α)w1|w2|4
+ O(‖(w1, w̄1, w2, w̄2)‖6),

ẇ2 = λ2(α)w2 + H1110(α)w2|w1|2 + H0021(α)w2|w2|2
+ H2210(α)w2|w1|4 + H1121(α)w2|w1|2|w2|2 + H0032(α)w2|w2|4
+ O(‖(w1, w̄1, w2, w̄2)‖6),

(8.93)
is locally smoothly orbitally equivalent near the origin to the system

v̇1 = λ1(α)v1 + P11(α)v1|v1|2 + P12(α)v1|v2|2
+ iR1(α)v1|v1|4 + S1(α)v1|v2|4
+ O(‖(v1, v̄1, v2, v̄2)‖6),

v̇2 = λ2(α)v2 + P21(α)v2|v1|2 + P22(α)v2|v2|2
+ S2(α)v2|v1|4 + iR2(α)v2|v2|4
+ O(‖(v1, v̄1, v2, v̄2)‖6),

(8.94)

where v1,2 ∈ C
1 are new complex variables, Pjk(α) and Sk(α) are complex-

valued smooth functions, and Rk(α) are real-valued smooth functions.

Proof:
Introduce a new time τ in (8.93) via

dt = (1 + e1|w1|2 + e2|w2|2) dτ,

where the real functions e1 = e1(α) and e2 = e2(α) will be defined later.
The resulting system has the same resonant terms as (8.93) but with mod-
ified coefficients.

Then, perform a smooth invertible transformation involving “resonant”
cubic terms: {

v1 = w1 + K1w1|w1|2,
v2 = w2 + K2w2|w2|2, (8.95)
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where Kj = Kj(α) are complex-valued functions to be determined. In the
new variables (v1, v2) the system takes the form{

v̇1 = λ1v1 +
∑

j+k+l+m≥3 Ĝjklmv
k
1 v̄

l
1v

l
2v̄

m
2 ,

v̇2 = λ2v2 +
∑

j+k+l+m≥3 Ĥjklmv
k
1 v̄

l
1v

l
2v̄

m
2 ,

(8.96)

where the dot now means a derivative with respect to τ , and

Ĝ2100 = G2100 + λ1e1 + (λ1 + λ̄1)K1, Ĝ1011 = G1011 + λ1e2,

Ĥ1110 = H1110 + λ2e1, Ĥ0021 = H0021 + λ2e2 + (λ2 + λ̄2)K2,

and

Ĝ3200 = G3200 + G2100e1 + (K1λ̄1 −K1λ1)e1
+ K1G2100 −K1G2100 − 2(λ1 + λ̄1)K2

1 − |K1|2λ̄1, (8.97)
Ĝ2111 = G2111 + G1011e1 + G2100e2 + (λ1 + λ̄1)e2K1

+ 2K1 Re G1011, (8.98)
Ĝ1022 = G1022 + G1011e2 − 2λ1e2 Re K2 − 2G1011 Re K2,

Ĥ2210 = H2210 + H1110e1 − 2λ2e1 Re K1 − 2H1110 Re K1,

Ĥ1121 = H1121 + H0021e1 + H1110e2 + (λ2 + λ̄2)e1K2

+ 2K2 Re H1110, (8.99)
Ĥ0032 = H0032 + H0021e2 + (K2λ̄2 −K2λ2)e2

+ K2H0021 −K2H0021 − 2(λ2 + λ̄2)K2
2 − |K2|2λ̄2.(8.100)

Notice that the transformation (8.95) brings in fourth-order terms, which
were absent in the Poincaré normal form. Elimination of these terms al-
ters the fifth-order terms in (8.96). However, due to the particular form
of (8.95), the annihilation of the fourth-order terms that appear in (8.96)
does not alter the coefficients of the fifth-order resonant terms given above
(check!). Then, these coefficients will not be changed by the elimination of
the nonresonant fifth-order terms. So, assume that such eliminations have
already been made from (8.96) so that it contains only the resonant terms
up to fifth order.

Taking into account (8.98) and (8.99), we can then make Ĝ2111 = 0 and
Ĥ1121 = 0 by setting

K1 = −G2111 + G1011e1 + G2100e2
(λ1 + λ̄1)e2 + 2 Re G1011

and
K2 = −H1121 + H0021e1 + H1110e2

(λ2 + λ̄2)e1 + 2 Re H1110
.

Recall that K1,2 are functions of α. This setting is valid for all sufficiently
small ‖α‖, due to assumptions (HH.2) and (HH.3).
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We still have two free coefficients, namely e1 and e2. We fix them by
requiring {

Re Ĝ3200 = 0,
Re Ĥ0032 = 0,

(8.101)

for all sufficiently small ‖α‖. We claim that there are smooth functions
e1,2(α) satisfying (8.101) for all sufficiently small ‖α‖. To see this, note
that for α = 0 we have 2 Re λ1,2 = λ1,2 + λ̄1,2 = 0, and the system (8.101)
reduces to a linear system for (e1(0), e2(0)) according to (8.97) and (8.100),
namely: {

Re G2100(0)e1(0) = −Re G3200(0),
Re H0021(0)e2(0) = −Re H0032(0), (8.102)

with a nonzero determinant∣∣∣∣ G2100(0) 0
0 H0021(0)

∣∣∣∣ = G2100(0)H0021(0) = 0,

due to (HH.1) and (HH.4). System (8.102) obviously has the unique solution

e1(0) = −Re G3200(0)
Re G2100(0)

, e2(0) = −Re H0032(0)
Re H0021(0)

.

Therefore, by the Implicit Function Theorem, (8.101) has a unique solution
(e1(α), e2(α)) for all sufficiently small ‖α‖ with e1,2(α) depending smoothly
on α.

Thus, Ĝ1022 = 0, Ĥ2210 = 0, Re Ĝ3200 = 0, and Re Ĥ0032 = 0 for all
small α, so system (8.96) has the form (8.94) with P11 = Ĝ2100, P12 =
Ĝ1011, P21 = Ĥ1110, P22 = Ĥ0021, S1 = Ĝ1022, S2 = Ĥ2210, R1 =
Im Ĝ3200, and R2 = Im Ĥ0032. We easily check that

Re P11(0) = Re G2100(0), Re P12(0) = Re G1011(0), (8.103)

Re P21(0) = Re H1110(0), Re P22(0) = Re H0021(0), (8.104)

and

Re S1(0) = Re G1022(0)

+ Re G1011(0)
[

Re H1121(0)
Re H1110(0)

− 2
Re H0032(0)
Re H0021(0)

− Re G3200(0) Re H0021(0)
Re G2100(0) Re H1110(0)

]
, (8.105)

Re S2(0) = Re H2210(0)

+ Re H1110(0)
[

Re G2111(0)
Re G1011(0)

− 2
Re G3200(0)
Re G2100(0)

− Re G2100(0) Re H0032(0)
Re G1011(0) Re H0021(0)

]
. (8.106)
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This proves the lemma. ✷

Let
v1 = r1e

iϕ1 , v2 = r2e
iϕ2 .

In polar coordinates (r1, r2, ϕ1, ϕ2), system (8.94) can be written as

ṙ1 = r1
(
µ1(α) + p11(α)r21 + p12(α)r22 + s1(α)r42

)
+ Φ1(r1, r2, ϕ1, ϕ2, α),

ṙ2 = r2
(
µ2(α) + p21(α)r21 + p22(α)r22 + s2(α)r41

)
+ Φ2(r1, r2, ϕ1, ϕ2, α),

ϕ̇1 = ω1(α) + Ψ1(r1, r2, ϕ1, ϕ2, α),
ϕ̇2 = ω2(α) + Ψ2(r1, r2, ϕ1, ϕ2, α).

Here
pjk = Re Pjk, sj = Re Sj , j, k = 1, 2,

are smooth functions of α; the real functions Φk and Ψk are smooth func-
tions of their arguments and are 2π-periodic in ϕj , Φk = O((r21 + r22)3),
Ψk(0, 0, ϕ1, ϕ2) = 0, k = 1, 2.

If the map (α1, α2) �→ (µ1(α), µ2(α)) is regular at α = 0, that is,

det
(
∂µ

∂α

)∣∣∣∣
α=0

= 0,

one can use (µ1, µ2) to parametrize a small neighborhood of the origin of
the parameter plane and consider ωk, pjk, sk,Φk, and Ψk as functions of µ.

We conclude this section by formulating the following lemma.

Lemma 8.16 Consider a smooth system

ẋ = f(x, α), x ∈ R
4, α ∈ R

2,

which has, for α = 0, the equilibrium x = 0 with eigenvalues

λk(α) = µk(α)± iωk(α), k = 1, 2,

such that
µ1(0) = µ2(0) = 0, ω1,2(0) > 0.

Let the following nondegeneracy conditions be satisfied:

(HH.0) kω1(0) = lω2(0), k, l > 0, k + l ≤ 5;
(HH.1) p11(0) = Re G2100(0) = 0;
(HH.2) p12(0) = Re G1011(0) = 0;
(HH.3) p21(0) = Re H1110(0) = 0;
(HH.4) p22(0) = Re H0021(0) = 0;

where G2100(0), G1011(0), H1110(0), and H0021(0) are given by (8.89)–(8.92),
and



356 8. Two-Parameter Bifurcations of Equilibria

(HH.5) the map α �→ µ(α) is regular at α = 0.

Then, the system is locally smoothly orbitally equivalent near the origin to
the system

ṙ1 = r1(µ1 + p11(µ)r21 + p12(µ)r22 + s1(µ)r42) + Φ1(r1, r2, ϕ1, ϕ2, µ),
ṙ2 = r2(µ2 + p21(µ)r21 + p22(µ)r22 + s2(µ)r41) + Φ2(r1, r2, ϕ1, ϕ2, µ),
ϕ̇1 = ω1(µ) + Ψ1(r1, r2, ϕ1, ϕ2, µ),
ϕ̇2 = ω2(µ) + Ψ2(r1, r2, ϕ1, ϕ2, µ),

(8.107)
where Φk = O((r21 + r22)3) and Ψk = o(1) are 2π-periodic in ϕk, and the
coefficients pjk(0), and sk(0), j, k = 1, 2, can be computed using the for-
mulas (8.103)–(8.106), provided that the resonant coefficients Gjklm(0) and
Hjklm(0) are known for j + k + l + m = 3 and 5. ✷

8.6.2 Bifurcation diagram of the truncated normal form
We now truncate higher-order terms in (8.107) and consider the system

ṙ1 = r1(µ1 + p11r
2
1 + p12r

2
2 + s1r

4
2),

ṙ2 = r2(µ2 + p21r
2
1 + p22r

2
2 + s2r

4
1),

ϕ̇1 = ω1,
ϕ̇2 = ω2,

(8.108)

where, for simplicity, the dependence of pjk, sk, and ωk on µ is not indicated.
The first pair of equations in (8.108) is independent of the second pair. The
last two equations describe rotations in the planes r2 = 0 and r1 = 0
with angular velocities ω1 and ω2, respectively. Therefore, the bifurcation
diagram of (8.108) is determined by that of the planar system{

ṙ1 = r1(µ1 + p11r
2
1 + p12r

2
2 + s1r

4
2),

ṙ2 = r2(µ2 + p21r
2
1 + p22r

2
2 + s2r

4
1). (8.109)

This system is often called a (truncated) amplitude system. It is enough to
study it only for r1 ≥ 0, r2 ≥ 0. Formally, the system is invariant under
the transformations r1 �→ −r1 and r2 �→ −r2. Notice that an equilibrium
E0 with r1 = r2 = 0 of (8.109) corresponds to the equilibrium point at
the origin of the four-dimensional system (8.108). Possible equilibria in
the invariant coordinate axes of (8.109) correspond to cycles of (8.108)
with r1 = 0 or r2 = 0, while a nontrivial equilibrium with r1,2 > 0 of
(8.109) generates a two-dimensional torus of (8.108). Finally, if a limit
cycle is present in the amplitude system (8.109), then (8.108) has a three-
dimensional torus. The stability of all these invariant sets in (8.108) is
clearly detectable from that of the corresponding objects in (8.109).

The study of the amplitude system simplifies if we use squares ρ1,2 of
the amplitudes:

ρk = r2k, k = 1, 2.
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The equations for ρ1,2 read{
ρ̇1 = 2ρ1(µ1 + p11ρ1 + p12ρ2 + s1ρ

2
2),

ρ̇2 = 2ρ2(µ2 + p21ρ1 + p22ρ2 + s2ρ
2
1), (8.110)

and are also referred to as the amplitude equations. Now the polynomials
in the right-hand sides are of order three.

There are two essentially different types of bifurcation diagrams of (8.110),
depending on whether p11 and p22 have the same or opposite signs. For each
of these cases, we also have different subcases.

“Simple” case: p11p22 > 0

Consider the case
p11 < 0, p22 < 0.

The case where p11 and p22 are positive can be reduced to this one by re-
versing time. Introducing new phase variables and rescaling time in (8.110)
according to

ξ1 = −p11ρ1, ξ2 = −p22ρ2, τ = 2t,

yield {
ξ̇1 = ξ1(µ1 − ξ1 − θξ2 + Θξ22),
ξ̇2 = ξ2(µ2 − δξ1 − ξ2 + ∆ξ21),

(8.111)

where
θ =

p12

p22
, δ =

p21

p11
, Θ =

s1
p2
22
, ∆ =

s2
p2
11
. (8.112)

The scaling is nonsingular, since p11p22 = 0 by (HH.1) and (HH.4). Only
the values θ(0), δ(0),Θ(0), and ∆(0) matter in what follows. Notice that
θ = 0 and δ = 0, due to (HH.2) and (HH.3), respectively.

System (8.111) has an equilibrium E0 = (0, 0) for all µ1,2. Two trivial
equilibria

E1 = (µ1, 0), E2 = (0, µ2),

bifurcate from the origin at the bifurcation lines

H1 = {(µ1, µ2) : µ1 = 0}

and
H2 = {(µ1, µ2) : µ2 = 0},

respectively. There may also exist a nontrivial equilibrium in a small phase-
space neighborhood of the origin for sufficiently small ‖µ‖, namely

E3 =
(
−µ1 − θµ2

θδ − 1
+ O(‖µ‖2),

δµ1 − µ2

θδ − 1
+ O(‖µ‖2)

)
.

For this expression to be valid, we need to assume that θδ − 1 = 0, which
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δ

FIGURE 8.24. Five subregions on the (θ, δ)-plane in the “simple” case.

is equivalent to the condition

(HH.6) det
(

p11(0) p12(0)
p21(0) p22(0)

)
= 0.

The nontrivial equilibrium E3 collides with a trivial one and disappears
from the positive quadrant on the bifurcation curves

T1 =
{

(µ1, µ2) : µ1 = θµ2 + O(µ2
2), µ2 > 0

}
and

T2 =
{

(µ1, µ2) : µ2 = δµ1 + O(µ2
1), µ1 > 0

}
.

These are the only bifurcations that the nontrivial equilibrium E3 can
exhibit in the “simple” case. Moreover, one can easily check that in this
case the planar system (8.111) can have no periodic orbits.

We can assume without loss of generality that

θ ≥ δ

(otherwise, reverse time and exchange the subscripts in (8.111)). Under
all these assumptions, there are five topologically different bifurcation dia-
grams of (8.111), corresponding to the following cases:

I. θ > 0, δ > 0, θδ > 1;
II. θ > 0, δ > 0, θδ < 1;

III. θ > 0, δ < 0;
IV. θ < 0, δ < 0, θδ < 1;
V. θ < 0, δ < 0, θδ > 1.

Each case specifies a region in the (θ, δ)-half-plane θ ≥ δ (see Figure
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FIGURE 8.25. Parametric portraits of (8.111) (the “simple” case).
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FIGURE 8.26. Generic phase portraits of (8.111).
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8.24). The (µ1, µ2)-parametric portraits corresponding to regions I–V are
shown in Figure 8.25, while the only possible fifteen generic phase portraits
occupy Figure 8.26. Notice that phase portraits 11, 12, 13, 14, and 15
can be obtained from those in regions 2, 3, 6, 8, and 9 by the reflection
(ξ1, ξ2) �→ (ξ2, ξ1).

Actually, in all these cases, the topology of the bifurcation diagram is
independent of the cubic terms, so we can merely set Θ = ∆ = 0 in (8.111).

Lemma 8.17 System (8.111) is locally topologically equivalent near the
origin to the system{

ξ̇1 = ξ1(µ1 − ξ1 − θξ2),
ξ̇2 = ξ2(µ2 − δξ1 − ξ2). ✷

(8.113)

“Difficult” case: p11p22 < 0

Similarly to the previous case, assume that the conditions (HH.1)–(HH.4),
and (HH.6) hold, and consider only

p11 > 0, p22 < 0.

Introducing new phase variables and rescaling time in (8.110) by setting

ξ1 = p11ρ1, ξ2 = −p22ρ2, τ = 2t,

we obtain the system{
ξ̇1 = ξ1(µ1 + ξ1 − θξ2 + Θξ22),
ξ̇2 = ξ2(µ2 + δξ1 − ξ2 + ∆ξ21),

(8.114)

where θ, δ,Θ, and ∆ are given by (8.112), as before. The trivial and the
nontrivial equilibria of (8.114) have the representations

E1 = (−µ1, 0), E2 = (0, µ2),

and

E3 =
(
µ1 − θµ2

θδ − 1
+ O(‖µ‖2),

δµ1 − µ2

θδ − 1
+ O(‖µ‖2)

)
whenever their coordinates are nonnegative. Bifurcation lines correspond-
ing to the appearance of the equilibria E1,2 are formally the same as in
the “simple” case and coincide with the coordinate axes. The nontrivial
equilibrium E3 collides with the trivial ones at the curves

T1 =
{

(µ1, µ2) : µ1 = θµ2 + O(µ2
2), µ2 > 0

}
and

T2 =
{

(µ1, µ2) : µ2 = δµ1 + O(µ2
1), µ1 < 0

}
.
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However, the nontrivial equilibrium E3 can bifurcate, and system (8.114)
may have limit cycles. The Hopf bifurcation of the equilibrium E3 happens
at a curve C with the following characterization:

C =
{

(µ1, µ2) : µ2 = −δ − 1
θ − 1

µ1 + O(µ2
1), µ1 − θµ2 > 0, δµ1 − µ2 > 0

}
.

Clearly, we have to assume in this case that δ = 1 and θ = 1 to avoid the
tangency of C with the µ1- or µ2-axes, that is,

(HH.7) p11(0) = p12(0);
(HH.8) p21(0) = p22(0).

A final nondegeneracy condition is that the first Lyapunov coefficient l1 be
nonzero along the Hopf curve C near the origin. One can check that for
sufficiently small ‖µ‖

sign l1 = sign
{
δ − 1
θ − 1

[θ(θ − 1)∆ + δ(δ − 1)Θ]
}
.

Thus, we assume that θ(θ − 1)∆ + δ(δ − 1)Θ = 0, or equivalently,

(HH.9) (p21(p21 − p11)s1 + p12(p12 − p22)s2)(0) = 0.

θ

IV

0

δ

II

I

VI

V

III

FIGURE 8.27. Six subregions on the (θ, δ)-plane in the “difficult” case. A cycle
exists in the three shaded subregions.

Suppose that l1 < 0. The opposite case can be treated similarly. There are
six essentially different bifurcation diagrams of (8.114), if we consider only
the case p11 > 0, p22 < 0, l1 < 0, and restrict attention to the half-plane
θ ≥ δ. The subcases are as follows:
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I. θ > 1, δ > 1;
II. θ > 1, δ < 1, θδ > 1;

III. θ > 0, δ > 0, θδ < 1;
IV. θ > 0, δ < 0;
V. θ < 0, δ < 0, θδ < 1;

VI. θ < 0, δ < 0, θδ > 1.

The parametric portraits corresponding to the regions I–VI shown in Fig-
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FIGURE 8.28. Parametric portraits of (8.114) (the “difficult” case).

ure 8.27 are depicted in Figure 8.28, while the twenty-one distinct generic
phase portraits that appear are shown in Figure 8.29.

The Hopf bifurcation and consequent existence of cycles are only possible
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FIGURE 8.29. Phase portraits of (8.114).
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in cases I, II, and VI. A careful analysis based on Pontryagin’s technique
and nontrivial estimates of Abelian integrals shows that system (8.114) can
have no more than one limit cycle (see the bibliographical notes). This cycle
is born via the Hopf bifurcation at the curve C. Its ultimate fate depends
on whether we fall into case I, II, or VI.

In cases I and II we have a cycle blow-up similar to that in one case
of the fold-Hopf bifurcation (see Section 8.5.2). More precisely, there is a
bifurcation curve J , depending on the considered neighborhood U0 of the
origin in the phase space, on which the cycle generated by the Hopf bifurca-
tion touches the boundary of U0 and “disappears” for the observer. In case
VI, the cycle disappears in a more “visible” way, namely via a heteroclinic
bifurcation. In this case, the cycle coexists with three saddles (E0, E1, and
E2). If they exist, the saddles, E0, E1, and E0, E2 are connected by orbits
belonging to the invariant coordinate axis. For parameter values along the
curve

Y =
{

(µ1, µ2) : µ2 = −δ − 1
θ − 1

µ1 − (θ − 1)∆ + (δ − 1)Θ
(θ − 1)3

µ2
1 + O(µ3

1)
}
,

which is tangent to the Hopf bifurcation curve C (see Exercise 14(c)),
the two separatrices of the saddles E1 and E2 that belong to the positive

0

E2

E

2

1E
ξ

ξ

1

FIGURE 8.30. A heteroclinic “triangle”.

quadrant coincide. A heteroclinic cycle is formed by these orbits (see Figure
8.30); it is stable from the inside due to (HH.9) and our assumption l1 < 0.

Remark:
There is a subtle difference in the bifurcation diagrams within the cases

III and IV, depending on whether θ < 1 or θ > 1. This difference appears
only at µ = 0, giving rise to topologically different critical phase portraits.
All critical phase portraits are given in Figure 8.31, where IIIa and IVa
correspond to θ > 1. ♦

Recalling the interpretation of equilibria and cycles of the amplitude
system (8.110) in the four-dimensional truncated normal form (8.109), we
can establish a relationship between bifurcations in these two systems. The
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VI

I II

III, IV IIIa, IVa

V

FIGURE 8.31. Critical phase portraits of (8.114) at µ1 = µ2 = 0.

curves H1,2 at which the trivial equilibria appear in (8.110) obviously cor-
respond to Hopf bifurcation curves in (8.109). These are the two “inde-
pendent” Hopf bifurcations caused by the two distinct pairs of eigenvalues
passing through the imaginary axis. Crossing a bifurcation curve T1 (or T2)
results in the branching of a two-dimensional torus from a cycle. Therefore,
the curves T1,2 correspond to Neimark-Sacker bifurcations in (8.109). On
the curve C, system (8.109) exhibits a bifurcation that we have not yet
encountered, namely, branching of a three-dimensional torus from the two-
dimensional torus. The curves J describe blow-ups of three-dimensional
tori, while the curve Y implies the presence of a heteroclinic coincidence
of the three-dimensional stable and unstable invariant manifolds of a cycle
and a three-torus.

Our next task is to discuss what will remain from the obtained bifurca-
tion picture if we “turn on” the higher-order terms in the four-dimensional
normal form (8.108).

8.6.3 Effect of higher-order terms
The effect of adding higher-order terms is even more dramatic for this bifur-
cation than for the fold-Hopf bifurcation. Actually, a generic system (8.107)
is never topologically equivalent to the truncated normal form (8.108).

However, the truncated normal form does capture some information on
the behavior of the whole system. Namely, the following lemma holds.
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Lemma 8.18 If conditions (HH.1)–(HH.4),

pjk(0) = 0, j, k = 1, 2,

and (HH.6),
(p11p22 − p12p21)(0) = 0,

hold for system (8.107), then it has, for sufficiently small ‖µ‖, bifurcation
curves H̃k and T̃k, k = 1, 2, at which nondegenerate Hopf bifurcations of the
equilibrium and nondegenerate Neimark-Sacker bifurcations of limit cycles
take place, which are tangent to the corresponding bifurcation lines Hk and
Tk of the truncated system (8.108). ✷

From Lemmas 8.17 and 8.18 it follows that a generic four-dimensional
system exhibiting a Hopf-Hopf bifurcation also has the corresponding bifur-
cation curves in its parametric portrait near this codim 2 point. Crossing
these curves results in the appearance of limit cycles and invariant two-
dimensional tori nearby. Thus, we may say that “Hopf-Hopf interaction
leads to tori.”

However, the orbit structure on a torus in the full system (8.107) is gener-
ically different from that in the truncated system (8.108) due to phase lock-
ing. Indeed, any two-torus of (8.108) is either filled in by a dense quasiperi-
odic orbit (if the ratio between ω1(µ) and ω2(µ) is irrational) or filled with
periodic orbits (if this ratio is rational), while in (8.107) the higher-order
terms “select” only a finite (even) number of hyperbolic limit cycles on
the two-torus for generic parameter values (see Chapter 7). Moreover, the
tori exist and remain smooth only near the bifurcation curves T1,2. Away
from these curves the tori lose smoothness and are destroyed. Notice that
Lemma 8.18 does not guarantee the presence of a bifurcation curve corre-
sponding to the curve C in the truncated system at which a three-torus
bifurcates from a two-torus.

The truncated system demonstrates other degeneracies that do not sur-
vive the addition of generic higher-order terms. There are regions in the
parameter plane in which the equilibrium at the origin is a saddle with
two-dimensional stable and unstable manifolds, while simultaneously there
is a saddle limit cycle within one of the coordinate planes rk = 0 with
a two-dimensional stable and a three-dimensional unstable invariant man-
ifold. The situation is degenerate since the stable manifold of the cycle
coincides with the unstable manifold of the equilibrium for all parameter
values in such a region. Such a coincidence is nontransversal and will dis-
appear under the addition of higher-order terms. Such terms only slightly
displace the saddle and the cycle but destroy the invariance of the coordi-
nate plane. The phase portrait of system (8.108) at the bifurcation curve Y
is also degenerate and does not persist under higher-order perturbations.
Along this curve the truncated system has two saddle cycles within the
coordinate planes r1,2 = 0 that have a common three-dimensional invari-
ant manifold corresponding to the orbit connecting the trivial saddles in
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system (8.110). This intersection is also nontransversal and disappears if
generic higher-order terms are added, forming instead a more complex het-
eroclinic structure. Thus, “strange” dynamics involving Smale horseshoes
exist near a generic Hopf-Hopf bifurcation. The corresponding parametric
portrait has, in addition to local bifurcation curves Hk and Tk, a bifur-
cation set corresponding to global bifurcations (heteroclinic tangencies of
equilibrium and cycle invariant manifolds, homoclinic orbits) and associ-
ated bifurcations of long-periodic limit cycles.

Remarks:
(1) Similar to the fold-Hopf case, the planar system (8.109) is a topo-

logical normal form for two-dimensional systems that are invariant un-
der the representation of the group Z2 by the transformation (x1, x2) �→
(−x1,−x2), have invariant coordinate axis x1,2 = 0, and at α1 = α2 = 0
possess an equilibrium x = 0 with a double zero eigenvalue. Indeed, any
such system has the form{

ẋ1 = x1G(x2
1, x

2
2, α),

ẋ2 = x2H(x2
1, x

2
2, α),

and can be transformed under the nondegeneracy conditions (HH.1)–(HH.4)
and the transversality condition (HH.5) into a system that is orbitally
equivalent near the origin to{

ṙ1 = r1(µ1 + p11r
2
1 + p12r

2
2 + s1r

4
2 + Φ(r21, r

2
2, µ)),

ṙ2 = r2(µ2 + p21r
2
1 + p22r

2
2 + s2r

4
1 + Ψ(r21, r

2
2, µ)), (8.115)

where Φ,Ψ = O((r21 + r22)3). Then, one can prove that system (8.115) is lo-
cally topologically equivalent to (8.109), provided that conditions (HH.1)–
(HH.6) (and, if necessary, (HH.7)–(HH.9)) hold. The homeomorphism iden-
tifying the phase portraits, as well as the transformation into (8.115), can
be selected to commute with the symmetry.

(2) Keeping only quadratic terms in (8.109) is not enough for studying
the bifurcations in the “difficult” case p11p22 < 0. Indeed, the system{

ξ̇1 = ξ1(µ1 + ξ1 − θξ2),
ξ̇2 = ξ2(µ2 + δξ1 − ξ2),

(8.116)

which is obtained from (8.114) by setting Θ = ∆ = 0, thus violating (HH.9),
is degenerate along the “Hopf curve”

C0 =
{

(µ1, µ2) : µ2 = −δ − 1
θ − 1

µ1, µ1 − θµ2 > 0, δµ1 − µ2 > 0
}
.

Actually, it is orbitally equivalent to a Hamiltonian system for ξ1,2 > 0,
and the nontrivial equilibrium E3 is surrounded by a family of periodic
orbits. Three possible phase portraits corresponding to the cases I, II, and
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IVI II

FIGURE 8.32. Phase portraits of (8.116) on the curve C0.

VI are depicted in Figure 8.32. The cubic terms in (8.114) make the Hopf
bifurcation nondegenerate whenever it exists and split a heteroclinic curve
Y in the case VI. The reader can obtain more details while solving this
chapter’s Exercise 14(c). See also the bibliographical notes. ♦

Finally, let us mention that the multidimensional case of the Hopf-Hopf
bifurcation reduces as usual to the considered four-dimensional one by
means of the Center Manifold Theorem. However, we need a second-order
approximation of the critical center manifold to compute the cubic co-
efficients pjk(0) and a fourth-order approximation to find the fifth-order
coefficients sk.

8.7 Exercises

(1) (Cusp points in Bazykin system) Compute the (α, δ)-coordinates
of the cusp bifurcation points C1,2 in the system

ẋ1 = x1 − x1x2

1 + αx1
− εx2

1,

ẋ2 = −γx2 +
x1x2

1 + αx1
− δx2

2,

for γ = 1. (Hint: The cusp points are triple roots of the polynomial

P (x1) = δ(1 + αx1)2(1− εx1)− (1− α)x1 + 1,

with x1 as the first coordinate of nontrivial equilibrium points.)

(2) (Lemma 8.2) Prove that the system

ẋ = α1 + α2x− x3 + F (x, α), (E.1)

where x ∈ R
1, α ∈ R

2, and F (x, α) = O(x4), is locally topologically
equivalent near (x, α) = (0, 0) to the system

ẋ = α1 + α2x− x3. (E.2)
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(Hints:
(a) Derive a system of two equations for a curve Γ̃ in the (x, α)-space

corresponding to the fold bifurcation in (E.1). Show that this curve is well-
defined near the origin and can be locally parametrized by η. (Hint to hint:
See Example 8.1.)

(b) Compute the leading terms of the Taylor expansions of the functions
α1 = A1(x), α2 = A2(x), representing the curve Γ̃ near x = 0. Show that
the projection T̃ of Γ̃ onto the (α1, α2)-plane has two branches near the
origin, T̃1,2, located in opposite (with respect to the axis α1 = 0) half-planes
of the parameter plane and terminating at the point α = 0, being tangent
to this axis.

(c) Explain why there are no other bifurcation curves near the origin in
(E.1). Construct a local homeomorphism of the parameter plane that maps
the curves T̃1,2 into the corresponding curves T1,2 of the truncated system
(E.2) (see Section 8.2.2). Show that the resulting map is differentiable, and
compute several of its Taylor coefficients at α = 0.

(d) Show that in a region containing the upper half-axis {α : α1 = 0, α2 >
0} system (E.1) has three equilibria near the origin, while in the parameter
region containing the lower half-axis {α : α1 = 0, α2 < 0} there is only one
equilibrium. Compare the number and stability of the equilibria of (E.1)
and (E.2) in the corresponding regions, along the fold branches, and at the
origin of the parameter plane.

(e) Construct a parameter-dependent local homeomorphism mapping
equilibria of (E.1) into those of (E.2) for all sufficiently small ‖α‖. Show
that this map provides local topological equivalence of the studied systems.)

(3) (Bautin bifurcation in a predator-prey system) The following
system is a generalization of Volterra equations by Bazykin & Khibnik
[1981]:

ẋ =
x2(1− x)
n + x

− xy,

ẏ = −γy(m− x),

(see also Bazykin [1985]). Here n,m, and γ are positive parameters.
(a) Derive the equation for the Hopf bifurcation curve in the system and

show that it is independent of γ.
(b) Using the algorithm from Chapter 3 (Section 3.5), compute the ex-

pression for the first Lyapunov coefficient along the Hopf curve and show
that it vanishes at a Bautin point when

(m,n) =
(

1
4
,

1
8

)
.

(c) Compute the second Lyapunov coefficient using (8.23) and prove that
the Bautin bifurcation is nondegenerate for all γ > 0.
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(d) Sketch the bifurcation diagram (the parametric portrait on the (m,n)-
plane and all possible phase portraits) of the system. (Hint: See Bazykin
[1985, p. 42].)

(4) (Bautin bifurcation in a laser model) Show that the following
model of a laser with controllable resonator [Roschin 1973]

ṁ = Gm

(
n− β

ρm + 1
− 1

)
,

ṅ = α− (m + 1)n,

where m ≥ 0, ρ > 0, G > 1, and α, β > 0, has a Bautin bifurcation point
on the Hopf curve on the (α, β)-plane if

ρ < 1

and
ρ− 1 + Gρ > 0.

(Hint: Parametrize the Hopf bifurcation curve by the m-coordinate of the
nontrivial equilibrium. See Bautin & Leontovich [1976, pp. 320 – 329].)

(5) (Regularity of Hopf bifurcation curve) Show that the Jacobian
matrix of (8.5) has maximal rank (equal to 3) at (x0, α0) if the equilibrium
x0 exhibits a generic Hopf bifurcation in the sense of Chapter 3 at α0.

(6) (Bialternate product 2A + I for n = 3) Given a 3 × 3 matrix A,
construct another 3× 3 matrix B ≡ 2A+ I, whose determinant equals the
product of all formally distinct sums of the eigenvalues of A:

detB = (λ1 + λ2)(λ2 + λ3)(λ1 + λ3).

(Hint: The elements of B are certain linear combinations of those of A (see
Example 10.1 in Chapter 10 for the answer).)

(7) (Bogdanov-Takens points)
(a) By calculation of the normal form coefficients, prove that the averaged

forced Van der Pol oscillator [Holmes & Rand 1978]{
ẋ1 = α1x2 + x1(1− x2

1 − x2
2),

ẋ2 = α1x1 + x2(1− x2
1 − x2

2)− α2,

exhibits a nondegenerate Bogdanov-Takens bifurcation at (α1, α2) =
( 1

2 ,
1
2

)
.

(Hint: The critical equilibrium with a double zero eigenvalue has coordi-
nates (x1, x2) =

( 1
2 ,

1
2

)
.)

(b) Show that a prototype reference adaptive control system with the
so-called σ-modification adaptation law (see Salam & Bai [1988]),{

ẋ1 = x1 − x1x2 + 1,
ẋ2 = α1x2 + α2x

2
1,
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has a nondegenerate Bogdanov-Takens bifurcation at α =
(− 2

3 ,
8
81

)
. Sketch

the phase portraits of the system near the BT-point.

(8) (Bogdanov-Takens bifurcations in predator-prey systems)
(a) Show that the following predator-prey model by Bazykin [1974] (cf.

Example 8.3),

ẋ1 = x1 − x1x2

1 + αx1
,

ẋ2 = −γx2 +
x1x2

1 + αx1
− δx2

2,

has Hopf and fold bifurcation curves in the (α, δ)-plane that touch at a
Bogdanov-Takens point. Prove, at least for γ = 1, that this codim 2 bifur-
cation is nondegenerate.

(b) Show that a predator-prey system analyzed by Bazykin, Berezovskaya,
Denisov & Kuznetsov [1981],

ẋ1 = x1 − x1x2

(1 + α1x1)(1 + α2x2)
,

ẋ2 = −γx2 +
x1x2

(1 + α1x1)(1 + α2x2)
,

exhibits different types of nondegenerate Bogdanov-Takens bifurcations at
a point on the α-plane, depending on whether γ > 1 or γ < 0. (Hint:
Introduce new variables

yk =
xk

1 + αkxk
, k = 1, 2,

or multiply the equations by (1 + α1x1)(1 + α2x2) to get an equivalent
polynomial system.)

Could you also analyze the case γ = 1? (Hint: For γ = 1 the system is
invariant under the transformation (x1, x2) �→ (x2, x1), t �→ −t, along its
Hopf curve α = β. Therefore, the Hopf bifurcation is degenerate and the
system has a family of closed orbits around a center.)

(9) (Normal form for a codim 3 bifurcation) The system{
ẋ1 = x2,
ẋ2 = α1 + α2x1 + α3x2 + bx3

1 + dx1x2 + ex2
1x2,

where the coefficients satisfy b = 0, d = 0, and d2+8b = 0, is a normal form
for a degenerate Bogdanov-Takens bifurcation when condition (BT.2) is
violated (see Bazykin, Kuznetsov & Khibnik [1989], Dumortier, Roussarie,
Sotomayor & Żola̧dek [1991]). Consider the “focus case,”

d > 0, e < 0, b < −d
2

8
.
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(a) Obtain the phase portrait of the normal form at α = 0. How many
equilibria can the system have for α = 0, and what are their possible types?

(b) Derive the equations for the fold and Hopf bifurcation surfaces in
the parameter space (α1, α2, α3) and sketch them in a graph. Verify that
the fold bifurcation surface has a cusp singularity line. Indicate the number
and stability of equilibria in the different parameter regions.

(c) Compute the curve corresponding to the Bogdanov-Takens bifurca-
tion in the system. Check that the fold and the Hopf surfaces are tangent
along the Bogdanov-Takens curve. Guess how the homoclinic bifurcation
surface bounded by the BT-curve is shaped.

(d) Find a line on the Hopf surface along which the first Lyapunov coef-
ficient vanishes. Compute the second Lyapunov coefficient at this line and
check that it is nonzero near the codim 3 point at the origin. Guess the
location of the cycle fold bifurcation surface.

(e) Draw the intersections of the obtained surfaces with a small sphere
centered at the origin in α-space by projecting the two hemispheres onto the
plane (α1, α3). Show that there must be a “big” homoclinic loop bifurcation
in the parameter portrait.

(f) Explain why the resulting parameter portrait is very similar to that
of Bazykin’s predator-prey system from Example 8.3, and find this codim
3 bifurcation (λ1 = λ2 = b20 = 0) in the parameter space of that system.

(10) (Bogdanov-Takens bifurcation revisited)
(a) Takens-Bogdanov equivalence. Check that the change of coordinates

y1 =
4a2

b

(
x1 +

α2

2a

)
,

y2 =
8a3

b2
(
x2 + α2x1 + ax2

1
)
,

transforms a Takens normal form for the double-zero bifurcation{
ẋ1 = x2 + α2x1 + ax2

1,
ẋ2 = α1 + bx2

1,

where ab = 0, into a system that is orbitally equivalent (after a possible
reverse of time) to one of the Bogdanov forms:{

ẏ1 = y2,
ẏ2 = β1 + β2y1 + y2

1 ± y1y2 + O(‖y‖3),

for

β1 =
16a4

b3

(
α1 +

bα2
2

4a2

)
, β2 = −4a

b
α2

[Dumortier 1978].
(b) Lyapunov coefficient near BT-point. Compute the Lyapunov coeffi-

cient l1 along the Hopf line H in the Bogdanov normal form (8.50), and
show that it is negative near the origin.
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(c) Saddle quantity near BT-point. Compute the saddle quantity σ0 =
λ1 +λ2 of the saddle point in (8.50), and show that it is negative along the
homoclinic bifurcation curve P .

(11) (Fold-Hopf bifurcation in Rössler’s prototype chaotic sys-
tem) Consider the system due to Rössler [1979]:

ẋ = −y − z,
ẏ = x + ay,
ż = bx− cz + xz,

with parameters (a, b, c) ∈ R
3.

(a) Show that the system possesses at most two equilibria, O and P , and
find their coordinates.

(b) Check that the equilibria O and P “collide” at the surface

T = {(a, b, c) : c = ab}
and that the coinciding equilibria have eigenvalues λ1 = 0, λ2,2 = ±iω0
with ω0 =

√
2− a2 > 0, if (a, b, c) ∈ T and

b = 1, a2 < 2.

(c) Compute the Poincaré (8.62) and Gavrilov (8.70) normal forms of
the system along the locus of fold-Hopf points, and find the corresponding
s and θ using formulas from Section 8.5.1. Verify that s = 1, θ < 0, and
decide which of the possible “canonical” bifurcation diagrams appears in
the Rössler system. (Warning: Since the system always has an equilibrium
at the origin, the fold-Hopf bifurcation is degenerate with respect to the pa-
rameters in the system. Therefore, its bifurcation curves are only “induced”
by those of the normal form.)

(d) Check that −2 < θ < 0, so that if a saddle-focus homoclinic orbit
exists, it satisfies the Shil’nikov condition and therefore “strange” dynamics
exists near the codim 2 bifurcation. (Hint: See Gaspard [1993] for detailed
treatment.)

(12) (“New” Lorenz model) Consider the following system appearing
in atmospheric studies (Lorenz [1984], Shil’nikov, Nicolis & Nicolis [1995])

ẋ = −y2 − z2 − ax + aF,
ẏ = xy − bxz − y + G,
ż = bxy + xz − z,

where (a, b, F,G) are parameters. Show that the system undergoes a fold-
Hopf bifurcation at

F ∗ =
3a2 + 3a2b2 + 12ab2 + 12b2 + 4a

4(a + ab2 + 2b2)
,

G∗ =
√
a(a2 + a2b2 + 4ab2 + 4b2)

4
√
a + ab2 + 2b2

.
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(Hint: Use the fact that at the fold-Hopf point of a three-dimensional sys-
tem both the trace and the determinant of the Jacobian matrix vanish.)

(13) (Fold-Hopf bifurcation revisited)
(a) Compute the first Lyapunov coefficient along the Hopf bifurcation

curve in the truncated amplitude system (8.81) for sθ < 0, and verify the
expression given in Section 8.5.2.

(b) Consider the case s = 1, θ < 0, when a heteroclinic cycle is possible.
Let λ1 < 0 < λ2 and µ1 < 0 < µ2 be the eigenvalues of the saddles E1 and
E2 at the ξ-axis, respectively. Prove that, if it exists, the heteroclinic cycle
is unstable from the inside whenever

λ2µ2

λ1µ1
> 1,

and verify this inequality for the truncated system (8.81).
(c) Obtain the critical phase portraits of system (8.81) at β1 = β2 = 0.

(Hint: See Wiggins [1990, pp. 331–337].)
(d) Explain why the truncated system (8.81) cannot have periodic orbits

if sθ > 0 and prove that in this case it is locally topologically equivalent
near the origin to the quadratic system{

ξ̇ = β1 + ξ2 + sρ2,
ρ̇ = ρ(β2 + θξ).

(14) (Codim 2 normal forms as perturbations of Hamiltonian sys-
tems; read Appendix 1 first)

(a) Prove that Q( 1
6 ) = 1

7 , where

Q(h) =
I2(h)
I1(h)

is defined in Appendix 1, which deals with the Bogdanov-Takens bifurca-
tion. (Hint: There are two equivalent approaches to the problem:

(i) Check that the homoclinic orbit to the saddle in (A.6), which is given
by H(ζ) = 1

6 , intersects the ζ1-axis at ζ1 = − 1
2 . Express ζ2 along the upper

part of the orbit as a function of ζ1, and evaluate the resulting integrals
over the range − 1

2 ≤ ζ1 ≤ 1.
(ii) The solution of (A.6) starting at the horizontal axis and correspond-

ing to the homoclinic orbit can be written explicitly as

ζ1(t) = 1− 6
(e

t
2 + e− t

2 )2
, ζ2(t) = 6

(e
t
2 − e− t

2 )
(e

t
2 + e− t

2 )3
.

Therefore, the integrals I1
( 1

6

)
and I2

( 1
6

)
reduce to certain standard inte-

grals over −∞ < t < +∞.)
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(b) Consider the amplitude system (8.81) for the fold-Hopf bifurcation:{
ξ̇ = β1 + ξ2 + sρ2,
ρ̇ = ρ(β2 + θξ + ξ2),

with sθ < 0 (“difficult case”).
(i) Show that the following singular rescaling and nonlinear time

reparametrization:

ξ = δx, ρ = δy, dt =
yq

δ2
dτ,

where q is some real number, bring the system into the form:{
ẋ = yq(−s + x2 + sy2),
ẏ = yq(θxy + δ(αy + x2y)),

where α and δ should be considered as new parameters related to the
original ones by the formulas

β1 = −sδ2, β2 = αδ2.

(ii) Prove that for

q + 1 = −2
θ

the rescaled system with δ = 0,{
ẋ = yq(−s + x2 + sy2),
ẏ = yqθxy,

is Hamiltonian with the Hamilton function

H(x, y) =
θ

2
yq+1

(
s− x2 +

sy2

θ − 1

)
if θ = 1,

or

H(x, y) =
s− x2

2y2 + s ln y if θ = 1.

(Since sθ < 0, θ = 1 implies s = −1.) Draw the level curves of the Hamilton
function H for different combinations of s and θ with sθ < 0.

(iii) Take s = 1 and θ < 0. Following the ideas presented in Appendix
1, show that in this case the heteroclinic connection in the perturbed (x, y)-
system happens if

α = −1
3
K(0),

where the function K(h) is defined for h ∈
[

θ2

2(θ−1) , 0
]

by the ratio

K(h) =
I3(h)
I1(h)

,
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where
Ik(h) =

∫
H(x,y)=h

yqxk dy, k = 1, 3.

Compute K(0) as a function of θ. Derive from this information the approx-
imation of the heteroclinic curve P in the original amplitude system on the
(β1, β2)-plane.

(iv) Prove monotonicity of K(h) with respect to h, thus establishing
the uniqueness of the limit cycle in the truncated normal form. (Hint: See
Chow, Li & Wang [1989b, 1989a].)

(c) Consider the truncated amplitude system (8.114) for the “difficult”
case of the Hopf-Hopf bifurcation{

ξ̇1 = ξ1(µ1 + ξ1 − θξ2 + Θξ22),
ξ̇2 = ξ2(µ2 + δξ1 − ξ2 + ∆ξ21),

with (θ, δ) belonging to one of the cases I, II, or VI (when the Hopf bifur-
cation is possible, see Section 8.6.2).

(i) Show that by introduction of new parameters α > 0 and β, which
parametrize the neighborhood of the Hopf curve,

µ1 = −α, µ2 =
δ − 1
θ − 1

α + αβ,

and by a singular rescaling,

ξ1 = αx, ξ2 = αy, t =
1
α
τ,

we transform the normal form into the system

ẋ = x(−1 + x− θy + αΘy2),

ẏ = y

(
δ − 1
θ − 1

+ β + δx− y + α∆x2
)
.

(ii) Check that the system corresponding to α = β = 0,

ẋ = x(−1 + x− θy),

ẏ = y

(
δ − 1
θ − 1

+ δx− y

)
,

is orbitally equivalent for x, y > 0 to a Hamiltonian system with the Hamil-
ton function

H =
1
q
xpyq

(
−1 + x +

θ − 1
δ − 1

y

)
,

where
p =

1− δ

θδ − 1
, q =

1− θ

θδ − 1
.
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(Hint: The time reparametrization factor is γ(x, y) = xp−1yq−1.)
(iii) Sketch phase portraits of the Hamiltonian system

ẋ =
∂H

∂y
,

ẏ = −∂H
∂x

,

for cases I, II, and VI. Verify that in case VI (p, q > 0) closed level curves
H = const fill a triangle bounded by a heteroclinic cycle H = 0.

(iv) Consider case VI. Following the method of Appendix 1, show
that the rescaled system with α, β = 0 and the reparametrized time has a
heteroclinic cycle if

β = −R(0)α + O(α2),

where

R(h) =
I1(h)
I0(h)

,

and

I1(h) =
∫
H≤h

(
pΘxp−1yq+1 + q∆xp+1yq−1) dx dy,

I0(h) =
∫
H≤h

qxp−1yq−1dx dy.

(Hint: Use Stokes’s formula and take into account that the divergence of a
Hamiltonian vector field is equal to zero.)

(v) Compute R(0) in terms of θ, δ,Θ, and ∆, and derive the quadratic
approximation of the heteroclinic curve Y . Verify the representation for Y
given in Section 8.6.2.

(vi) Show that the Hopf bifurcation curve H and the heteroclinic
curve Y in the truncated amplitude system (8.114) have at least quadratic
tangency at µ1 = µ2 = 0.

(15) (Poincaré normal form for Hopf-Hopf bifurcation)
(a) Derive formulas (8.89)–(8.92) for the critical resonant coefficients

of the Hopf-Hopf bifurcation using one of the available computer algebra
systems.

(Hint: The following sequence of MAPLE commands solves the problem:

> readlib(mtaylor);
> readlib(coeftayl);

These commands load the procedures mtaylor and coeftayl, which
compute the truncated multivariate Taylor series expansion and its indi-
vidual coefficients, respectively, from the MAPLE library.
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> P:=mtaylor(sum(sum(sum(sum(
> g[j,k,l,m]*zˆj*z1ˆk*uˆl*u1ˆm,
> j=0..3),k=0..3),l=0..3),m=0..3),
> [z,z1,u,u1],4);
> Q:=mtaylor(sum(sum(sum(sum(
> h[j,k,l,m]*zˆj*z1ˆk*uˆl*u1ˆm,
> j=0..3),k=0..3),l=0..3),m=0..3),
> [z,z1,u,u1],4);
> P1:=mtaylor(sum(sum(sum(sum(
> g1[j,k,l,m]*z1ˆj*zˆk*u1ˆl*uˆm,
> j=0..3),k=0..3),l=0..3),m=0..3),
> [z,z1,u,u1],4);
> Q1:=mtaylor(sum(sum(sum(sum(
> h1[j,k,l,m]*z1ˆj*zˆk*u1ˆl*uˆm,
> j=0..3),k=0..3),l=0..3),m=0..3),
> [z,z1,u,u1],4);
> for jj from 0 to 1 do
> for kk from 0 to 1 do
> for ll from 0 to 1 do
> for mm from 0 to 1 do
> if jj+kk+ll+mm < 2 then
> g[jj,kk,ll,mm]:=0; h[jj,kk,ll,mm]:=0;
> g1[jj,kk,ll,mm]:=0; h1[jj,kk,ll,mm]:=0;
> fi;
> od;
> od;
> od;
> od;
> g[1,0,0,0]:=I*omega; g1[1,0,0,0]:=-I*omega;
> h[0,0,1,0]:=I*Omega; h1[0,0,1,0]:=-I*Omega;

By this we have specified the right-hand sides of (8.87) and their con-
jugate expressions at the critical parameter value; z,z1,u,u1 stand for
z1, z̄1, z2, z̄2, respectively, while omega and Omega correspond to ω1 and ω2,
respectively.

> R:=I*omega*v+G[2,1,0,0]*vˆ2*v1 + G[1,0,1,1]*v*w*w1;
> S:=I*Omega*w+H[1,1,1,0]*v*v1*w + H[0,0,2,1]*wˆ2*w1;

These are the specifications of the right-hand sides of the normalized
system (8.88) (up to and including order 3), where v,v1,w,w1 represent
w1, w̄1, w2, w̄2, respectively.

> VV:=mtaylor(sum(sum(sum(sum(
> V[j,k,l,m]*zˆj*z1ˆk*uˆl*u1ˆm,
> j=0..3),k=0..3),l=0..3),m=0..3),
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> [z,z1,u,u1],4);
> WW:=mtaylor(sum(sum(sum(sum(
> W[j,k,l,m]*zˆj*z1ˆk*uˆl*u1ˆm,
> j=0..3),k=0..3),l=0..3),m=0..3),
> [z,z1,u,u1],4);
> VV1:=mtaylor(sum(sum(sum(sum(
> V1[j,k,l,m]*z1ˆj*zˆk*u1ˆl*uˆm,
> j=0..3),k=0..3),l=0..3),m=0..3),
> WW1:=mtaylor(sum(sum(sum(sum(
> W1[j,k,l,m]*z1ˆj*zˆk*u1ˆl*uˆm,
> j=0..3),k=0..3),l=0..3),m=0..3),
> [z,z1,u,u1],4);
> for j from 0 to 1 do
> for k from 0 to 1 do
> for l from 0 to 1 do
> for m from 0 to 1 do
> if j+k+l+m < 2 then
> V[j,k,l,m]:=0; V1[j,k,l,m]:=0;
> W[j,k,l,m]:=0; W1[j,k,l,m]:=0;
> fi;
> od;
> od;
> od;
> od;
> V[1,0,0,0]:=1; V[2,1,0,0]:=0; V[1,0,1,1]:=0;
> W[0,0,1,0]:=1; W[1,1,1,0]:=0; W[0,0,2,1]:=0;
> V1[1,0,0,0]:=1; V1[2,1,0,0]:=0; V1[1,0,1,1]:=0;
> W1[0,0,1,0]:=1; W1[1,1,1,0]:=0; W1[0,0,2,1]:=0;

By these commands the transformation (and its conjugate) that bring
the system into the normal form is defined. Its coefficients have to be found.

> V_z:=diff(VV,z); V_z1:=diff(VV,z1);
> V_u:=diff(VV,u); V_u1:=diff(VV,u1);
> W_z:=diff(WW,z); W_z1:=diff(WW,z1);
> W_u:=diff(VV,u); W_u1:=diff(WW,u1);

The partial derivatives of the normalizing transformation are computed.

> D_1:=R-(V_z*P+V_z1*P1+V_u*Q+V_u1*Q1);
> D_2:=S-(W_z*P+W_z1*P1+W_u*Q+W_u1*Q1);

Conditions D 1 = 0 and D 2 = 0 are equivalent to the requirement that
the specified transformation does the normalization. Now we should express
D_1 and D_2 in terms of z,z1,u, and u1. This is achieved by

> v:=VV; v1:=VV1;
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> w:=WW; w1:=WW1;

Now we can expand D_1 and D_2 as Taylor series with respect to z,z1,u,u1:

> DD_1:=mtaylor(D_1,[z,z1,u,u1],4);
> DD_2:=mtaylor(D_2,[z,z1,u,u1],4);

Everything is prepared to find the quadratic coefficients of the transfor-
mation. This can be done by equating the corresponding Taylor coefficients
in DD_1 and DD_2 to zero, and solving the resulting equation for V[j,k,l,m]
and W[j,k,l,m] with j+k+l+m=2:

> for j from 0 to 2 do
> for k from 0 to 2 do
> for l from 0 to 2 do
> for m from 0 to 2 do
> if j+k+l+m=2 then
> V[j,k,l,m]:=solve(
> coeftayl(DD_1,[z,z1,u,u1]=[0,0,0,0],[j,k,l,m])=0,
> V[j,k,l,m]);
> W[j,k,l,m]:=solve(
> coeftayl(DD_2,[z,z1,u,u1]=[0,0,0,0],[j,k,l,m])=0,
> W[j,k,l,m]);
> fi;
> od;
> od;
> od;
> od;

Finally, we are able to find the coefficients of the resonant terms:

> G[2,1,0,0]:=solve(
> coeftayl(DD_1,[z,z1,u,u1]=[0,0,0,0],[2,1,0,0])=0,G[2,1,0,0]);
> G[1,0,1,1]:=solve(
> coeftayl(DD_1,[z,z1,u,u1]=[0,0,0,0],[1,0,1,1])=0,G[1,0,1,1]);
> H[0,0,2,1]:=solve(
> coeftayl(DD_2,[z,z1,u,u1]=[0,0,0,0],[0,0,2,1])=0,H[0,0,2,1]);
> H[1,1,1,0]:=solve(
> coeftayl(DD_2,[z,z1,u,u1]=[0,0,0,0],[1,1,1,0])=0,H[1,1,1,0]);

The problem is solved.)

(b) Extend the described program to obtain the coefficients of the fifth-
order resonant terms.
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8.8 Appendix 1: Limit cycles and homoclinic
orbits of Bogdanov normal form

Consider the normal form for the Bogdanov-Takens bifurcation with s =
−1: {

ξ̇1 = ξ2,

ξ̇2 = β1 + β2ξ1 + ξ21 − ξ1ξ2.
(A.1)

Lemma 8.19 There is a unique, smooth curve P corresponding to a saddle
homoclinic bifurcation in the system (A.1) that originates at β = 0 and has
the following local representation:

P =
{

(β1, β2) : β1 = − 6
25
β2

2 + o(β2
2), β2 < 0

}
.

Moreover, for ‖β‖ small, system (A.1) has a unique and hyperbolic stable
cycle for parameter values inside the region bounded by the Hopf bifurcation
curve H and the homoclinic bifurcation curve P , and no cycles outside this
region.

Outline of the proof:
Step 1 (Shift of coordinates). The cycles and homoclinic orbits can exist

only if there are two equilibria in (A.1). Thus, restrict attention to a pa-
rameter region to the left of the fold curve T (see Section 8.4.2). Translate
the origin of the coordinate system to the left (antisaddle) equilibrium E1
of (A.1): {

ξ1 = η1 + η0
1 ,

ξ2 = η2,

where

η0
1 = −β2 +

√
β2

2 − 4β1

2
is the η1-coordinate of E1. This obviously gives{

η̇1 = η2,
η̇2 = η1(η1 − ν)− (η0

1η2 + η1η2), (A.2)

where
ν =

√
β2

2 − 4β1

is the distance between the left equilibrium E1 and the right equilibrium
E2.

Step 2 (Blowing-up). Perform a singular rescaling that makes the dis-
tance between the equilibria equal to 1, independent of the parameters,
and introduce a new time:

η1 =
ζ1
ν
, η2 =

ζ2
ν3/2 , t =

τ

ν1/2 . (A.3)



8.8 Appendix 1: Cycles of Bogdanov normal form 383

This rescaling reduces (8.55) to{
ζ̇1 = ζ2,

ζ̇2 = ζ1(ζ1 − 1)− (γ1ζ2 + γ2ζ1ζ2),
(A.4)

where the dots mean derivatives with respect to the new time τ and{
γ1 = η0

1ν
−1/2,

γ2 = ν1/2.
(A.5)

Only nonnegative values of γ2 should be considered. Clearly, γ → 0 as
β → 0 inside the two-equilibrum region. The rescaling (A.3) acts as a
“microscope” that blows up a neighborhood of the origin η = 0 (notice the
difference in the expanding strength in the η1- and η2-directions). System
(A.4) is orbitally equivalent to a system induced by (A.2) with the help
of (A.5) (see Chapter 2 for the definitions). Studing the limit cycles and
homoclinic orbits of (A.4) for γ = 0 provides the complete information on
these objects in (A.2).

Step 3 (Hamiltonian properties). For ‖γ‖ small, system (A.4) can be
viewed as a perturbation of the system{

ζ̇1 = ζ2,

ζ̇2 = ζ1(ζ1 − 1).
(A.6)

This system is a Hamiltonian system,

ζ̇1 =
∂H(ζ)
∂ζ2

,

ζ̇2 = −∂H(ζ)
∂ζ1

,

with the Hamilton (energy) function

H(ζ) =
ζ2
1

2
+
ζ2
2

2
− ζ3

1

3
. (A.7)

The Hamiltonian H is constant along orbits of (A.6), that is, Ḣ = 0,
and these orbits therefore are (oriented) level curves H(ζ) = const of the
Hamiltonian of (A.7) (see Figure 8.33). System (A.6) has two equilibria,

S0 = (0, 0), S1 = (0, 1),

corresponding to the equilibria E1 and E2 of (A.1). The equilibrium S0 is a
center surrounded by closed orbits, while the equilibrium S1 is a (neutral)
saddle. The values of the Hamiltonian at these equilibria are

H(S0) = 0, H(S1) =
1
6
.
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1S 1S ζ

ζ

0

2

FIGURE 8.33. Phase portrait of the Hamiltonian system (A.6).

The saddle separatrices are described by the level curve H(ζ) = 1
6 . Two of

them, located to the left of the saddle, form a homoclinic orbit bounding
the family of closed orbits around S0. The segment 0 ≤ ζ1 ≤ 1 of the
horizontal axis between S0 and S1 can be parametrized by h ∈ [

0, 1
6

]
if we

take as h the value of the Hamiltonian function H(ζ1, 0), which is monotone
for ζ1 ∈ [0, 1].

Step 4 (Definition of the split function). Consider now system (A.4) for
small but nonzero ‖γ‖ when it is no longer Hamiltonian. Notice that S0
and S1 are the equilibria for (A.4) for all γ. Since system (A.6) is highly
structurally unstable, the topology of the phase portrait of (A.4) for γ = 0
is totally different from that for (A.6): The family of the closed orbits
disappears and the saddle separatrices usually split.

Z+
Z-

Z

2

+
Z-

Γ

Γ

0

ζ

ζ

1

s

u

1

FIGURE 8.34. Definition of the split function.

Using the introduced parametrization of the segment of the ξ1-axis be-
tween S0 and S1, take a point within this segment with h ∈ (

0, 1
6

)
and

consider an orbit Γ of (A.4) passing through this point (see Figure 8.34).
Any such orbit will intersect the horizontal axis (at least) once more, in
both forward and backward times. Denote these intersection points by Z+
and Z−, respectively. Now define an orbit split function ∆(h, γ) by taking
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the difference between the Hamiltonian values at the points Z− and Z+:

∆(h, γ) = H(Z−)−H(Z+). (A.8)

Extend this function to the end points of the segment by taking ∆(0, γ) = 0
and using the same formula (A.8) for h = 1

6 , only now considering Z+ and
Z− as points of the intersection of the unstable and stable separatrices Γu

and Γs of the saddle S1 with the horizontal axis (see Figure 8.33). Thus,
∆( 1

6 , γ) is a separatrix split function as defined in Chapter 6. The function
∆ is smooth in its domain of definition. In the Hamiltonian case, γ = 0,
∆(h, 0) = 0 for all h ∈ [

0, 1
6

]
since the Hamiltonian is constant of motion.

The equation

∆
(

1
6
, γ

)
= 0,

with the constraint γ2 ≥ 0, defines a curve P on the (γ1, γ2)-plane starting
at the origin along which the system (A.4) has a homoclinic orbit. Similarly,
the equation

∆(h, γ) = 0,

with h ∈ (0, 1
6 ), specifies a curve Lh in the upper parameter half-plane

γ2 > 0 at which (A.4) has a cycle passing through a point between S0 and
S1 corresponding to h.

Step 5 (Approximation of the split function). For γ = 0, the Hamiltonian
H(ζ) varies along orbits of (A.4):

Ḣ =
∂H

∂ζ1
ζ̇1 +

∂H

∂ζ2
ζ̇2 = −(γ1ζ

2
2 + γ2ζ1ζ

2
2 ).

Therefore,

∆(h, γ) =
∫ tZ−

tZ+

Ḣ dt = γ1

∫
Γ
ζ2 dζ1 + γ2

∫
Γ
ζ1ζ2 dζ1, (A.9)

where the orientation of Γ is given by the direction of increasing time.
Clearly, for h = 1

6 , the integrals should be interpreted as sums of the
corresponding integrals along the separatrices Γu,s. Formula (A.9) is exact
but involves the orbit(s) Γ(Γu,s) of (A.4), which we do not know explicitly.
However, for small ‖γ‖, the orbits of (A.4) deviate only slightly from the
closed orbit (or the separatrix) of (A.6), and the integrals can be uniformly
approximated by those taken along H(ζ) = h:

∆(h, γ) = γ1

∫
H(ζ)=h

ζ2 dζ1 + γ2

∫
H(ζ)=h

ζ1ζ2 dζ1 + o(‖γ‖).

Denote the integrals involved in the last equation by

I1(h) =
∫
H(ζ)=h

ζ2 dζ1 =
∫
H(ζ)≤h

dζ2 dζ1 ≥ 0 (A.10)
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and
I2(h) =

∫
H(ζ)=h

ζ1ζ2 dζ1. (A.11)

These integrals are certain elliptic integrals.

Step 6 (Uniqueness of the limit cycle in (A.4)). By the Implicit Function
Theorem, the curves Lh and P (introduced in Step 4) exist and have the
representation

γ1 = −I2(h)
I1(h)

γ2 + o(|γ2|), γ2 ≥ 0,

for h ∈ (
0, 1

6

)
and h = 1

6 , respectively. While h varies from h = 0 to
h = 1

6 , the curve Lh moves in the (γ1, γ2)-plane from the vertical half-
axis {γ : γ1 = 0, γ2 ≥ 0} (since I2(0) = 0) to the homoclinic curve P. If
this motion is monotonous with h, it will guarantee the uniqueness of the
cycle of (A.4) for parameter values between the vertical half-axis and P.
The absence of cycles for all other parameter values γ is obvious since any
closed orbit of (A.4) must cross the segment between S0 and S1. Thus, the
monotonicity of the function

Q(h) =
I2(h)
I1(h)

(A.12)

for h ∈ [
0, 1

6

]
is sufficient to prove the uniqueness of cycles. The function

Q(h) is a smooth function, Q(0) = 0, and

Q

(
1
6

)
=

1
7

(see Exercise 14(a)). Meanwhile, the last equation leads to the following
characterization for the homoclinic curve P in (A.4):

P =
{

(γ1, γ2) : γ1 = −1
7
γ2 + o(|γ2|), γ2 ≥ 0

}
. (A.13)

The graph of the function Q(h) computed numerically is presented in Fig-
ure 8.35. It is clearly monotonous. This fact can be proved without com-
puters. Namely, the following lemma holds.

Lemma 8.20 Q′(h) > 0 for h ∈ [
0, 1

6

]
. ✷

Proof of Lemma 8.20:

Proposition 8.1 (Picard-Fuchs equations) The integrals I1(h) and I2(h)
satisfy the following system of differential equations:{

h
(
h− 1

6

)
İ1 =

( 5
6h− 1

6

)
I1 + 7

36I2,

h
(
h− 1

6

)
İ2 = − 1

6hI1 + 7
6hI2.

(A.14)
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h

Q

FIGURE 8.35. Graph of the function Q(h).

Proof:
Take the equation H(ζ) = h for the closed orbit of (A.6) corresponding

to a value of h ∈ (0, 1
6 ) (see (A.7)):

ζ2
1

2
+
ζ2
2

2
− ζ3

1

3
= h. (A.15)

Considering ζ2 as a function of ζ1 and h, by differentiating (A.12) with
respect to h we obtain

ζ2
∂ζ2
∂h

= 1.

Thus,
dI1
dh

=
∫
H(ζ)=h

dζ1
ζ2

, (A.16)

and
dI2
dh

=
∫
H(ζ)=h

ζ1dζ1
ζ2

. (A.17)

On the other hand, differentiating (A.15) with respect to ζ1 yields

ζ1 + ζ2
∂ζ2
∂ζ1

− ζ2
1 = 0.

Multiplying the last equation by ζm1 ζ−1
2 and integrating by parts, we get

the following identity, which will actually be used only for m = 0, 1, and 2:∫
H(ζ)=h

ζm+2
1 dζ1
ζ2

=
∫
H(ζ)=h

ζm+1
1 dζ1
ζ2

−m

∫
H(ζ)=h

ζm−1
1 ζ2 dζ1. (A.18)
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Using the definitions (A.10) and (A.11) of the integrals, and the identities
(A.16), (A.17), and (A.18) for m = 1 and 0, we get

h
dI1
dh

= h

∫
H(ζ)=h

dζ1
ζ2

=
1
2

∫
H(ζ)=h

ζ2
1 dζ1
ζ2

+
1
2

∫
H(ζ)=h

ζ2 dζ1 − 1
3

∫
H(ζ)=h

ζ3
1 dζ1
ζ2

=
1
2
I1 +

1
2

∫
H(ζ)=h

ζ2
1 dζ1
ζ2

− 1
3

∫
H(ζ)=h

ζ3
1 dζ1
ζ2

=
1
2
I1 +

1
6

∫
H(ζ)=h

ζ2
1 dζ1
ζ2

+
1
3
I1

=
5
6
I1 +

1
6

∫
H(ζ)=h

ζ1 dζ1
ζ2

=
5
6
I1 +

1
6
dI2
dh

.

Similarly, but with m = 2, 1, 0 in (A.18), we have the following chain:

h
dI2
dh

= h

∫
H(ζ)=h

ζ1 dζ1
ζ2

=
1
2

∫
H(ζ)=h

ζ3
1 dζ1
ζ2

+
1
2

∫
H(ζ)=h

ζ1ζ2 dζ1 − 1
3

∫
H(ζ)=h

ζ4
1 dζ1
ζ2

=
1
2
I2 +

1
6

∫
H(ζ)=h

ζ3
1 dζ1
ζ2

+
2
3

∫
H(ζ)=h

ζ1 dζ1
ζ2

=
7
6
I2 +

1
6

∫
H(ζ)=h

ζ2
1 dζ1
ζ2

− 1
6

∫
H(ζ)=h

ζ2 dζ1

=
7
6
I2 − 1

6
I1 +

1
6
dI2
dh

.

Taking into account the final results, we arrive at (A.14). ✷

Proposition 8.2 (Riccati equation) The function Q(h) defined by (A.12)
satisfies the Riccati equation

h

(
h− 1

6

)
Q̇ = − 7

36
Q2 +

(
h

3
+

1
6

)
Q− h

6
. (A.19)

Proof:
Indeed, using (A.14),

h

(
h− 1

6

)
Q̇ = h

(
h− 1

6

)(
İ2
I1
− I2İ1

I2
1

)

= −h
6
I1
I1

+
7h
6
I2
I1
− I2
I1

((
5h
6
− 1

6

)
I1
I1

+
7
36

I2
I1

)
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= −h
6

+
7h
6
Q−Q

(
5h
6
− 1

6
+

7
36
Q

)
= − 7

36
Q2 +

(
h

3
+

1
6

)
Q− h

6
. ✷

Substituting Q(h) = αh+O(h2) into the Riccati equation (A.19) imme-
diately gives α = 1

2 , or

Q̇(0) =
1
2
> 0.

The following proposition is also a direct consequence of (A.19).

Proposition 8.3 For all h ∈ (0, 1
6 ), one has 0 ≤ Q(h) ≤ 1

7 .

Proof:
The function Q(h) is positive for small h > 0. Suppose that h̄ ∈ (0, 1

6 ) is
the first intersection of the graph of Q(h) with the h-axis, that is, Q(h̄) = 0
and Q(h) > 0 for all h ∈ (0, h̄). Then

h̄

(
h̄− 1

6

)
Q̇(h̄) = − h̄

6
< 0.

Therefore, Q̇(h̄) > 0, which is a contradiction.
Now suppose that h̄ ∈ (0, 1

6 ) is the first intersection of the graph of Q(h)
with the line Q = 1

7 , which means Q(h̄) = 1
7 . Then

h̄

(
h̄− 1

6

)
Q̇(h̄) =

5
42

(
1
6
− h̄

)
> 0,

which implies Q̇(h̄) < 0, a contradiction. The proposition is proved. ✷

Compute, finally, the second derivative of Q(h) at a point 0 < h̄ < 1
6 ,

where Q̇ is supposed to vanish, Q̇(h̄) = 0. We have

h̄

(
h̄− 1

6

)
Q̈(h̄)

∣∣∣∣
Q̇(h̄)=0

=
1
3

(
Q− 1

2

)
< 0.

Thus, Q̈(h̄) > 0 at any point where Q̇(h̄) = 0 (i.e., all extrema are maximum
points). This implies that such points do not exist, since Q(0) = 0 and
Q(1

6 ) = 1
7 = max0≤h≤ 1

6
Q(h). Therefore, Q̇(h) > 0 for h ∈ [0, 1

6 ]. Lemma
8.20 is thus proved.

Lemma 8.20 provides the uniqueness of the cycle in (A.4).

Remark:
Actually, the lemma also gives the hyperbolicity of the cycle, because one

can show that Q′(h) > 0 implies that the logarithm of the multiplier

lnµ = −γ2I1(h)Q′(h) + o(γ2) < 0,
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for small γ2 > 0, and, therefore, the multiplier µ of the limit cycle satisfies
0 < µ < 1. ♦
Step 7 (Return to the original parameters). To apply the obtained results

to the original system (A.2) (and, thus to (A.1)), we have to study in more
detail the map γ = γ(β) given by (A.5). This map is defined in the region

{β : 4β1 ≤ β2
2} ∈ R

2,

bounded by the fold curve T and located to the left of this curve. It maps
this region homeomorphically onto the upper half-plane

{γ : γ1 ≥ 0} ∈ R
2.

The inverse map is somewhat easy to study since it is smooth. From (A.5)
we have

−β2

2
− γ2

2

2
= γ1γ2,

β2
2 − 4β1 = γ4

2 .

By the Inverse Function Theorem, these equations define a smooth function
γ(β). One can check that this function has the expansion{

β1 = γ1γ
2
2(γ1 + γ2) + o(‖γ‖4),

β2 = −γ2(2γ1 + γ2) + o(‖γ‖2). (A.20)

The map (A.20) maps the vertical half-axis of the (γ1, γ2)-plane correspond-
ing to h = 0 into the Hopf bifurcation line H in the (β1, β2)-plane (as one
could expect a priori since, as h→ 0, the cycle in (A.4) shrinks to S0). The
homoclinic curve P given by (A.20) is mapped by (A.11) into the curve

P =
{

(β1, β2) : β1 = − 6
25
β2

2 + o(β2
2), β2 < 0

}
from the statement of Lemma 8.19. The cycle in (A.2) is unique and hyper-
bolic within the region bounded by H and P . This completes the outline
of the proof of Lemma 8.19. ✷

8.9 Appendix 2: Bibliographical notes

The equilibrium structure of a two-parameter system near a triple equi-
librium point (cusp bifurcation) has been known for a long time (see the
survey by Arnold [1984]). Since any scalar system can be written as a
gradient system ẋ = −ψx(x, α), the topological normal form for the cusp
bifurcation naturally appeared in the list of seven elementary catastrophes
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by Thom [1972], along with the fold (codim 1) and swallow-tail (codim
3) singularities and their universal unfoldings. One can derive (see Arrow-
smith & Place [1990]) the normal form for the cusp bifurcation by using
the Malgrange Preparation Theorem. We adopted an elementary approach
that is more suited for the present book.

Generic two-parameter bifurcation diagrams near a point where the first
Lyapunov coefficient l1(0) vanishes were first obtained by Bautin [1949].
Therefore, we call this bifurcation the Bautin bifurcation. Serebryakova
[1959] computed the second Laypunov coefficient l2(0) in terms of real
Taylor coefficients of a general system and derived asymptotic formulas for
the cycle-fold bifurcation curve near the Bautin point. Hassard, Kazarinoff
& Wan [1981] present an expression for c2(0) in terms for the complex
Taylor coefficients gkl(0) and some intermediate expressions. A compact
formula expressing l2(0) directly in terms of gkl(0), which is equivalent to
our (8.23), can be found in Bautin & Shil’nikov [1980] with a reference to
Schuko [1973]. The modern treatments of the Bautin bifurcation based on
ideas from singularity theory and Poincaré normal forms are due to Arnold
[1972] and Takens [1973]. Takens has also studied higher degeneracies at
the Hopf bifurcation with codim > 2 (e.g., the case l2(0) = 0).

The main features of the bifurcation diagram near an equilibrium with
a double zero eigenvalue were known to mathematicians of the Andronov
school in the late 1960s and were routinely used in the analysis of concrete
models (see, e.g. Bautin & Leontovich [1976, pp. 183 – 186]). However,
the complete picture, including the uniqueness of the limit cycle, is due
to Bogdanov [1976b] (his results were announced by Arnold in 1972) and
Takens [1974b]. Their analysis is based on the Pontryagin [1934] technique
for locating limit cycles in dissipatively perturbated Hamiltonian systems
and on nontrivial estimates of certain resulting elliptic integrals. Dumortier
& Rousseau [1990] found that one can establish the uniquness of the cycle in
the Bogdanov-Takens normal form avoiding elliptic integrals by applying
a theorem due to Coppel concerning Liénard planar systems. Although
rather simple, this approach does not provide the local approximation of
the homoclinic bifurcation curve. In our presentation of the double-zero
bifurcation (Section 8.4 and Appendix 1), we closely follow the original
Bogdanov papers. The proof of Lemma 8.20 in Appendix 1, provided to
the author by S. van Gils, is much simpler than Bogdanov’s original proof.
Let us also point out that in the otherwise perfect book by Arrowsmith &
Place [1990], the Bogdanov-Takens bifurcation is called a “cusp” bifurcation
because of the peculiar shape of the critical phase portrait, while the cusp
bifurcation itself is lost.

The analysis of the last two codim 2 bifurcations, namely, the fold-Hopf
and Hopf-Hopf cases, is more recent. Their study was initialized in the late
1970s, and early 1980s by Gavrilov [1978, 1980], and by Langford [1979],
Keener [1981], and Guckenheimer [1981]. However, even the analysis of
the truncated amplitude equations appears to be difficult, and some hypo-
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thethes formulated in early papers and in the first edition of Guckenheimer
& Holmes [1983] were proved wrong by subsequent analysis. The least triv-
ial part of the analysis, namely proving the limit cycle uniqueness, was
performed by Żola̧dek [1984, 1987]. His proofs were later considerably sim-
plified by Carr, Chow & Hale [1985], van Gils [1985], Cushman & Sanders
[1985], Chow, Li & Wang [1989b, 1989a], among others. Detailed unique-
ness proofs for all the codim 2 cases are presented by Chow, Li & Wang
[1994]. The study of nonsymmetric general perturbations of the truncated
normal forms is far from complete. Let us refer only to Broer & Vegter
[1984] and Gaspard [1993], where the problem of Shil’nikov type saddle
homoclinic orbits is analyzed.

Our presentation of the fold-Hopf bifurcation is based on the paper by
Gavrilov [1978]. Lemma 8.10 was formulated by Gavrilov without stating
the nondegeneracy conditions, as well as without explicit formulas for the
normal form coefficients. The Poincaré normal form coefficients for the
fold-Hopf case are also derived by Gamero, Freire & Rodŕıguez-Luis [1993]
and by Wang [1993]. Our exposition of the Hopf-Hopf bifurcation also fol-
lows the general approach by Gavrilov [1980]; however, we both derive a
different normal form and formulate explicitly the relevant nondegeneracy
conditions. Notice that the normal form for the Hopf-Hopf case we use is
different but equivalent to that studied by Żola̧dek [1987].

Explicit computational formulas for the normal form coefficients for all
codim 2 equilibrium bifurcations in n-dimensional systems have been de-
rived by Kuznetsov [1997]. They include the fifth-order coefficients in the
Bautin and double Hopf cases. These formulas involve only critical eigen-
vectors of the Jacobian matrix and its transpose, as well as the Taylor
expansion of the system at the critical equilibrium in the original basis.

All codim 3 local bifurcations possible in generic three-parameter planar
systems have been identified and studied. The relevant normal forms are
presented and discussed in Bazykin, Kuznetsov & Khibnik [1985, 1989],
while the proofs can be found in Takens [1974b], Berezovskaya & Khibnik
[1985], Dumortier, Roussarie & Sotomayor [1987], Dumortier et al. [1991].
These codim 3 bifurcations are the following: (i) swallow-tail; (ii) degener-
ate Bautin (Takens-Hopf) bifurcation; (iii) degenerate Bogdanov-Takens bi-
furcation with a double equilibrium; and (iv) degenerate Bogdanov-Takens
bifurcation with a triple equilibrium (see Exercise 9).



9
Two-Parameter Bifurcations of
Fixed Points in Discrete-Time
Dynamical Systems

This chapter is devoted to the study of generic bifurcations of fixed points
of two-parameter maps. First we derive a list of such bifurcations. As for
the final two bifurcations in the previous chapter, the description of the ma-
jority of these bifurcations is incomplete in principle. For all but two cases,
only approximate normal forms can be constructed. Some of these normal
forms will be presented in terms of associated planar continuous-time sys-
tems whose evolution operator ϕ1 approximates the map in question (or
an appropriate iterate of the map). We present bifurcation diagrams of the
approximate normal forms and discuss their relationships with the original
maps.

9.1 List of codim 2 bifurcations of fixed points

Consider a two-parameter discrete-time dynamical system

x �→ f(x, α), (9.1)

where x = (x1, x2, . . . , xn)T ∈ R
n, α = (α1, α2)T ∈ R

2, and f is sufficiently
smooth in (x, α). Suppose that at α = α0 system (9.1) has a fixed point
x = x0 for which the fold, flip, or Neimark-Sacker bifurcation condition
is satisfied. Then, as in the continuous-time case, generically, there is a
bifurcation curve B on the (α1, α2)-plane along which the system has a
fixed point exhibiting the relevant bifurcation. More precisely, the fixed-
point equation

f(x, α)− x = 0
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and a bifurcation condition

ψ(x, α) = 0,

which is imposed on the eigenvalues (multipliers) of the Jacobian matrix1

fx evaluated at (x, α), define a curve Γ in the (n + 2)-dimensional space
R
n+2 endowed with the coordinates (x, α) (see Figure 9.1). Each point

α

α

x

Γ

0 α 0(   ,      )

α 0

π

1

2

B

x

FIGURE 9.1. A bifurcation curve Γ and its projection B.

(x0, α0) ∈ Γ corresponds to a fixed point x0 of system (9.1) satisfying the
relevant bifurcation condition for the parameter value α0. The standard
projection,

π : (x, α) �→ α,

maps Γ onto the bifurcation curve B = πΓ in the parameter plane.

Example 9.1 (Fold and flip bifurcation curves) Assume that at α =
α0 = (α0

1, α
0
2)T system (9.1) has an equilibrium x = x0 with a multiplier

µ = 1. Consider the following system of nonlinear equations:{
f(x, α)− x = 0,

det(fx(x, α)− I) = 0. (9.2)

This is a system of n + 1 equations for the n + 2 variables (x, α1, α2).
Generically, it defines a smooth one-dimensional manifold (curve) Γ ⊂ R

n+2

passing through the point (x0, α0
1, α

0
2). As in Chapter 8, “generically” means

1Actually, the function ψ can be expressed directly in terms of the Jacobian
matrix itself for all three codim 1 bifurcations.
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that the rank of the Jacobian matrix of (9.2) is maximal (i.e., equal to
n+ 1). For example, if the genericity conditions for the fold bifurcation are
satisfied at α0 with respect to α1 or α2 (see Chapter 4), this condition is
fulfilled.

Each point (x, α) ∈ Γ defines a fixed point x of system (9.1) with a
multiplier µ = 1 for the parameter value α. The standard projection maps
Γ onto a curve B = πΓ in the parameter plane. On this curve the fold
bifurcation takes place.

A similar construction can be carried out for the flip bifurcation. In this
case, system (9.2) should be substituted by the system{

f(x, α)− x = 0,
det(fx(x, α) + I) = 0. (9.3)

System (9.3) is again a system of n+1 equations in the (n+2)-dimensional
space, defining a curve Γ ∈ R

n+2, under the maximal rank condition. Each
point (x, α) ∈ Γ corresponds to a fixed point x of system (9.1) with a
multiplier µ = −1 for the parameter value α. The standard projection
yields the flip bifurcation curve in the parameter plane (α1, α2). ✸

Example 9.2 (Neimark-Sacker bifurcation curve for planar maps)
Consider a planar system

x �→ f(x, α), x = (x1, x2)T ∈ R
2, α = (α1, α2)T ∈ R

2, (9.4)

having at α = α0 = (α0
1, α

0
2)T a fixed point x0 = (x0

1, x
0
2)T with a pair of

(nonreal) multipliers on the unit circle: µ1,2 = e±iθ0 , 0 < θ0 < π. Now con-
sider the following system of three scalar equations in R

4 with coordinates
(x1, x2, α1, α2): {

f(x, α)− x = 0,
det fx(x, α)− 1 = 0 (9.5)

(notice the difference from (9.2)). Clearly, (x0, α0) satisfies (9.5), since the
determinant equals the product of the multipliers: det fx = µ1µ2 = 1. It
can be shown that the Jacobian matrix of (9.5) has maximal rank (equal
to 3) at (x0, α0) if the equilibrium x0 exhibits a generic Neimark-Sacker
bifurcation in the sense of Chapter 4 at α0. Therefore, system (9.5) defines
a curve Γ in R

4 passing through (x0, α0). Each point on the curve specifies
a fixed point of (9.4) with µ1,2 = e±iθ0 , as long as the multipliers remain
nonreal. The standard projection of Γ onto the (α1, α2)-plane gives the
Neimark-Sacker bifurcation boundary B = πΓ.

Notice that the second equation in (9.5) can be satisfied by a fixed point
with real multipliers

µ1 = τ, µ2 =
1
τ
,

for which, obviously, µ1µ2 = 1. If τ > 1, the fixed point is called a neu-
tral saddle. The above construction allows for a generalization to higher
dimensions (see Chapter 10). ✸
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Let the parameters (α1, α2) be varied simultaneously to track a bifur-
cation curve Γ (or B). Then, the following events might happen at some
parameter value:

(i) extra multipliers can approach the unit circle, thus changing the di-
mension of the center manifold W c;

(ii) some of the nondegeneracy conditions for the codim 1 bifurcation
can be violated.

At nearby parameter values we can expect the appearance of new phase
portraits of the system, which means a codim 2 bifurcation must occur.
Let us recall the nondegeneracy conditions for the codim 1 bifurcations
(see Chapter 4 for the details).

First, let us take a fold bifurcation curve BT . A typical point on this
curve corresponds to a fixed point with a simple multiplier µ1 = 1 and
no other multipliers on the unit circle. The restriction of (9.1) to a center
manifold W c, which is one-dimensional in this case, has the form

ξ �→ ξ + aξ2 + O(ξ3). (9.6)

By definition, the coefficient a is nonzero at a nondegenerate fold bifurca-
tion point.

If we follow a flip bifurcation curve BF , then a typical point corresponds
to a fixed point with a simple multiplier µ1 = −1 and no other multi-
pliers on the unit circle. The restriction of (9.1) to the one-dimensional
center manifold W c at a nondegenerate flip point has (in an appropriate
coordinate) the form

ξ �→ −ξ + bξ3 + O(ξ4), (9.7)

with b = 0 (see Chapters 4 and 5).
Finally, while tracing a Neimark-Sacker bifurcation curve BNS , we typ-

ically have a fixed point with a simple pair of nonreal complex-conjugate
multipliers µ1,2 = e±iθ0 , which are the only multipliers on the unit circle.
In this case, the center manifold W c is two-dimensional, and the system on
this manifold can be written in complex notations as

z �→ zeiθ0(1 + d1|z|2) + O(|z|4), (9.8)

where d1 ∈ C
1. The nondegeneracy conditions involved are of two types:

(i) absence of “strong resonances”:

eiqθ0 = 1, q = 1, 2, 3, 4;

(ii) “cubic nondegeneracy”:

c = Re d1 = 0.

Degenerate points of the following eleven types can be met in generic
two-parameter discrete-time systems, while moving along codim 1 curves
(see equations (9.6)–(9.8)):
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(1) µ1 = 1, a = 0 (cusp);
(2) µ1 = −1, b = 0 (generalized flip);
(3) µ1,2 = e±iθ0 , c = 0 (Chenciner bifurcation);
(4) µ1 = µ2 = 1 (1:1 resonance);
(5) µ1 = µ2 = −1 (1:2 resonance);
(6) µ1,2 = e±iθ0 , θ0 = 2π

3 (1:3 resonance);
(7) µ1,2 = e±iθ0 , θ0 = π

2 (1:4 resonance);
(8) µ1 = 1, µ2 = −1;
(9) µ1 = 1, µ2,3 = e±iθ0 ;

(10) µ1 = −1, µ2,3 = e±iθ0 ;
(11) µ1,2 = e±iθ0 , µ3,4 = e±iθ1 .

We leave the reader to explain which of the cases we could meet while
following each of the codim 1 bifurcation curves. The bifurcations listed are
characterized by two independent conditions (i.e., have codim 2). There are
no other codim 2 bifurcations in generic discrete-time systems. The rest of
this chapter contains results concerning cases (1)–(7) in the least possible
phase dimension (n = 1 for (1) and (2), and n = 2 for (3)–(7)). Notice that
these are exactly the only cases possible if the map (9.1) is a Poincaré map
associated with a limit cycle in a three-dimensional autonomous system of
ODEs or a period return map of a time-periodic planar system of ODEs. In
these cases, there are only two multipliers µ1,2, and their product is always
positive: µ1µ2 > 0. Cases (8)–(11) remain interesting problems for future
study.

The treatment of the bifurcations here will be organized similar to that
of the codim 2 bifurcations in the continuous-time case and will proceed
through studying approximate normal forms and discussing their relation-
ship with the original maps. In cases (4)–(7), it is convenient to present
the approximate map for an appropriate iterate of f as the unit-time shift
ϕ1 under the flow ϕt of a certain planar system of autonomous differential
equations. Although this approximate map contains important information
on the behavior of any generic system near the corresponding bifurcation,
it does not provide a topological normal form, since taking into account
terms of arbitrary high-order results in topologically nonequivalent bifur-
cation diagrams.

9.2 Cusp bifurcation

Suppose a smooth scalar map

x �→ f(x, α), x ∈ R
1, α ∈ R

2, (9.9)

has at α = 0 a fixed point for which the cusp bifurcation conditions are sat-
isfied. The following lemma can be proved by performing both a parameter-
dependent shift of the coordinate and a scaling, and by introducing new
parameters, as in Section 8.2.1 of Chapter 8.
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Lemma 9.1 Suppose that a one-dimensional system

x �→ f(x, α), x ∈ R
1, α ∈ R

2,

with f smooth, has at α = 0 the fixed point x = 0 for which the cusp
bifurcation conditions hold:

µ = fx(0, 0) = 1, a =
1
2
fxx(0, 0) = 0.

Assume that the following genericity conditions are satisfied:

(C.1) fxxx(0, 0) = 0;
(C.2) (fα1fxα2 − fα2fxα1)(0, 0) = 0.

Then there are smooth invertible coordinate and parameter changes trans-
forming the system into

η �→ η + β1 + β2η + sη3 + O(η4), (9.10)

where s = signfxxx(0, 0) = ±1. ✷

We leave the proof to the reader.
Consider the truncated normal form corresponding to s = −1:

η �→ η + β1 + β2η − η3. (9.11)

The equation for its fixed points,

β1 + β2η − η3 = 0, (9.12)

coincides with that for the equilibria of the normal form for the cusp
bifurcation in the continuous-time case. A fold bifurcation (fixed point
“collision” and disappearance) happens on a semicubic parabola T in the
(β1, β2)-plane:

T =
{

(β1, β2) : 4β3
2 − 27β2

1 = 0
}

(see Figure 9.2). The curve T has two branches, T1 and T2, which meet
tangentially at the cusp point (0, 0). As in the continuous-time case, the
resulting wedge divides the parameter plane into two regions. In region
1, inside the wedge, there are three fixed points of (9.11), two stable and
one unstable; while in region 2, outside the wedge, there is a single fixed
point, which is stable. A nondegenerate fold bifurcation (with respect to
the parameter β1) takes place if we cross either T1 or T2 away from the
origin. If we approach the cusp point from inside region 1, all three fixed
points merge together into a triple root of (9.12).

The case s = 1 can be treated similarly. In this case, the truncated
map typically has either one unstable fixed point or one stable and two
unstable fixed points which can pairwise collide and disappear through
fold bifurcations.

System (9.10) with the O(η4) terms truncated provides a topological nor-
mal form for the cusp bifurcation.
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FIGURE 9.2. Bifurcation diagram of the normal form (9.11).

Lemma 9.2 The map

η �→ Gβ(η) = η + β1 + β2η ± η3 + O(η4)

is locally topologically equivalent near the origin to the map

η �→ gβ(η) = η + β1 + β2η ± η3. ✷

The lemma means (see Chapter 2) that there exists a local homeomor-
phism of the parameter plane ϕ, and a parameter-dependent homeomor-
phism hβ of the one-dimensional phase space,2 such that

Gϕ(β)(η) = (h−1
β ◦ gβ ◦ hβ)(η),

in some neighborhood of (η, β) = (0, 0). Proving that Gβ and gβ have the
same number of fixed points in corresponding (diffeomorphic) parameter
regions is easy using the Implicit Function Theorem. The complete proof of
the topological equivalence (i.e., the construction of ϕ and hβ) is difficult
and is omitted here. Summarizing, we can formulate the following theorem.

Theorem 9.1 (Topological normal form for the cusp bifurcation)
Any generic scalar two-parameter map

x �→ f(x, α),

2Recall, the homeomorphism hβ is not assumed to depend continuously on
the parameter β.
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having at α = 0 a fixed point x = 0 exhibiting the cusp bifurcation, is locally
topologically equivalent near the origin to one of the normal forms

η �→ η + β1 + β2η ± η3. ✷

Of course, “generic” here means “satisfying conditions (C.1) and (C.2).”
If an n-dimensional system has a cusp bifurcation, Theorem 9.1 should

be applied to the map restricted to the center manifold (see Chapter 5).
Notice that we have to know the quadratic approximation of the center
manifold at α = 0 to compute fxxx(0).

9.3 Generalized flip bifurcation

Consider a smooth scalar map

x �→ f(x, α), x ∈ R
1, α ∈ R

2, (9.13)

that has at α = 0 a fixed point x = 0 with multiplier µ = fx(0, 0) = −1.
As in Section 4.5 of Chapter 4, we can assume that x = 0 is a fixed point
for all sufficiently small ‖α‖ and write

f(x, α) = µ(α)x + a(α)x2 + b(α)x3 + c(α)x4 + d(α)x5 + O(x6),

where µ(0) = −1 and all the functions involved are smooth in α. By per-
forming a smooth change of coordinate:

x = y + δ(α)y2 + θ(α)y4, (9.14)

where δ and θ are properly chosen smooth functions, we can transform
(9.13) into

y �→ µ(α)y + B(α)y3 + D(α)y5 + O(y6),

for some smooth B and D. The functions δ(α) and θ(α) are selected exactly
in order to annihilate the quadratic and fourth-order terms of the map. As
seen in Chapter 4, setting

δ(α) =
a(α)

µ2(α)− µ(α)

eliminates the quadratic term and results in the following expression for B:

B(α) = b(α) +
2a2(α)

µ2(α)− µ(α)
. (9.15)

If
B(0) = b(0) + a2(0) =

1
4

[fxx(0, 0)]2 +
1
6
fxxx(0, 0) = 0,
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then, by definition, we have a nondegenerate flip bifurcation. At a general-
ized flip bifurcation point, we simultaneously have

µ(0) = −1, B(0) = 0;

thus the fifth-order coefficient D enters the game. One can check that

D(0) = d(0) + 3a(0)c(0)− 2a4(0) =
(

1
120

fx5 +
1
16
fxfx4 − 1

8
[fx]4

)
(0, 0),

provided B(0) = 0. At this point it is useful to introduce new parameters.
If the map

(α1, α2) �→ (µ(α) + 1, B(α)),

where B is given by (9.15), is regular at α = 0, we can use{
γ1 = −(µ(α) + 1),
γ2 = B(α),

as new parameters and consider α as a smooth function of γ. If D(0) = 0,
then a nonsingular scaling of the coordinate and the new parameters brings
the studied map into the form

η �→ −(1 + β1)η + β2η
3 + sη5 + O(η6),

for s = sign D(0) = ±1. Thus, the following lemma is proved.

Lemma 9.3 Suppose that a one-dimensional system

x �→ f(x, α), x ∈ R
1, α ∈ R

2,

with f smooth, has at α = 0 the fixed point x = 0, and let the generalized
flip bifurcation conditions hold:

µ = fx(0, 0) = −1, B =
1
4

[fxx(0, 0)]2 +
1
6
fxxx(0, 0) = 0.

Assume that the following genericity conditions are satisfied:

(GF.1) D1(0) =
( 1

15fx5 + 1
2fxfx4 − [fx]4

)
(0, 0) = 0;

(GF.2) the map α �→ (µ(α) + 1, B(α))T is regular at α = 0, where B(α)
is given by (9.15).

Then there are smooth invertible coordinate and parameter changes trans-
forming the system into

η �→ −(1 + β1)η + β2η
3 + sη5 + O(η6), (9.16)

where s = signD1(0) = ±1. ✷
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System (9.16) without O(η6) terms is called the truncated normal form
for the generalized flip bifurcation. Actually, it provides a topological nor-
mal form for the bifurcation.

Consider the normal form corresponding to s = 1:

η �→ gβ(η) = −(1 + β1)η1 + β2η
3 + η5. (9.17)

Analyzing its second iterate,

g2
β(η) = (1 + 2β1 + · · ·)η − (2β2 + · · ·)η3 − (2 + · · ·)η5 + · · · ,

we obtain the bifurcation diagram presented in Figure 9.3. In region 1 the
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FIGURE 9.3. Bifurcation diagram of the normal form (9.17).

map (9.17) has a single stable fixed point η = 0 in a sufficiently small neigh-
borhood of the origin. The iterates approach this point, “leap-frogging”
around it. Crossing the upper half F (1)

+ of the line

F (1) = {(β1, β2) : β1 = 0}
(corresponding to β2 > 0) implies the flip bifurcation, leading to the cre-
ation of a stable period-two cycle (two distinct fixed points of g2

β), while the
fixed point at the origin becomes unstable (region 2). Crossing the lower flip
half-line F (1)

− generates an unstable period-two cycle, while the trivial fixed
point regains stability. In region 3 two different period-two cycles coexist,
a “big” stable one and a “small” unstable one. These two period-two cycles
collide and disappear via the fold bifurcation of g2

β at a curve resembling a
half-parabola:

T (2) =
{

(β1, β2) : β1 =
1
4
β2

2 + o(β2), β2 < 0
}
,
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thus leaving a unique stable fixed point at the origin. In summary, the
codim 2 point on the flip curve F (1) is the origin of an extra codim 1
bifurcation locus, namely, the fold bifurcation curve of period-two cycles
T (2). The curve T (2) meets F (1) at β = 0, with a quadratic tangency.

The next lemma, which we give without proof, states that higher-order
terms do not alter the picture obtained for (9.17).

Lemma 9.4 The map

η �→ −(1 + β1)η + β2η
3 ± η5 + O(η6)

is locally topologically equivalent near the origin to the map

η �→ −(1 + β1)η + β2η
3 ± η5. ✷

Now we can formulate the final theorem.

Theorem 9.2 (Topological normal form for the generalized flip)
Any generic scalar two-parameter map

x �→ f(x, α),

having at α = 0 a fixed point x = 0 exhibiting the generalized flip bifurca-
tion, is locally topologically equivalent near the origin to one of the normal
forms

η �→ −(1 + β1)η + β2η
3 ± η5. ✷

To apply this theorem in the n-dimensional situation with n > 1, we
have to compute a fourth-order approximation to the center manifold at
the bifurcation parameter values.

Remark:
One might have noticed that there is a close similarity between the bi-

furcation diagrams of generalized flip and Bautin (generalized Hopf) bifur-
cations. This is not a coincidence, since there is a deep analogy between

η

FIGURE 9.4. A cycle corresponds to a period-two orbit of the Poincaré map.

flip and Hopf bifurcations. For a Poincaré map defined on a cross-section
passing through a focus, a limit cycle is a period-two orbit, thus, a Hopf
bifurcation for a flow implies a flip bifurcation of the map so defined (see
Figure 9.4). ♦
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9.4 Chenciner (generalized Neimark-Sacker)
bifurcation

Consider a discrete-time system

x �→ f(x, α), x ∈ R
2, α ∈ R

2, (9.18)

with a smooth right-hand side f , having at α = 0 a fixed point x = 0 for
which the Neimark-Sacker bifurcation condition holds. That is, the mul-
tipliers of the fixed point are simple and are located on the unit circle
|µ| = 1:

µ1,2 = e±iθ0 .

As seen in Chapter 4, system (9.18) can be written, for small ‖α‖, using a
complex variable as

z �→ µ(α)z + g(z, z̄, α),

where µ, ω, and g are smooth functions of their arguments,

µ(α) = r(α)eiθ(α),

r(0) = 1, θ(0) = θ0, and formally

g(z, z̄, α) =
∑

k+l≥2

1
k!l!

gkl(α)zkz̄l

for certain smooth complex-valued functions gkl(α).

Lemma 9.5 (Poincaré normal form) The map

z �→ µ(α)z +
∑

2≤k+l≤5

1
k!l!

gkl(α)zkz̄l + O(|z|6), (9.19)

where µ(α) = r(α)eiθ(α), r(0) = 1, and θ0 = θ(0) is such that

(CH.0) eiqθ0 = 1, q = 1, 2, . . . , 6,

can be transformed by an invertible smoothly parameter-dependent change
of the complex coordinate:

z = w +
∑

2≤k+l≤5

1
k!l!

hkl(α)wkw̄l, h21(α) = h32(α) = 0,

for all sufficiently small ‖α‖, into the map

w �→ µ(α)w + c1(α)w|w|2 + c2(α)w|w|4 + O(|w|6)
= eiθ(α)(r(α) + d1(α))|w|2 + d2(α)|w|4)w + O(|w|6). ✷ (9.20)
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The lemma can be proved using the same method as for Theorem 4.5
in Chapter 4. By that theorem, we can assume that all the quadratic and
nonresonant cubic terms in (9.19) have already been eliminated: g20 =
g11 = g02 = g30 = g12 = g21 = 0 and 1

2g21 = c1. Then, by a proper
selection of hij with i + j = 4, we can “kill” all the terms of order four in
(9.19), keeping the coefficient of the resonant cubic term c1(α) untouched
but modifying the coefficients of the fifth- and higher-order terms. Finally,
we can remove all the fifth-order terms except the resonant one shown in
(9.20).

The coefficients c1(α) and c2(α) (as well as d1(α) and d2(α)) are smooth
complex-valued functions. Recall that c1(α) can be computed by formula
(4.20) from Chapter 4. We do not provide a formula for c2(0) due to its
length. At a nondegenerate Neimark-Sacker bifurcation point, Re d1(0) =
Re(e−iθ0c1(0)) = 0.

Suppose that at α = 0 we have simultaneously

µ1,2 = e±iθ0 , c = Re d1(0) = 0,

indicating that a Chenciner (generalized Neimark-Sacker) bifurcation takes
place. In this case, a neighborhood of the point α = 0 can be parametrized
by new parameters, namely,{

β1 = r(α)− 1,
β2 = Re d1(α),

provided that

(CH.1) the map (α1, α2) �→ (r(α)− 1,Re d1(α)) is regular at α = 0.

A zero value of β1 corresponds to the Neimark-Sacker bifurcation condition,
while the simultaneous vanishing of β2 specifies a Chenciner point. Given
(CH.1), one can express α in terms of β, thus obtaining the map

w �→ eiθ(β)(1 + β1 + (β2 + iD1(β))|w|2 + (D2(α) + iE2(β))|w|4)w
+ Ψβ(w, w̄), (9.21)

where Ψβ = O(|w|6); and D1(β) = Im d1(α(β)), D2(β) = Re d2(α(β)),
and E2(β) = Im d2(α(β)) are smooth real-valued functions of β. Here θ(β)
is used instead of θ(α(β)) to save symbols. The map (9.21) is a “normal
form” for the Chenciner bifurcation. Truncating O(|w|6) terms gives the
map

w �→ eiθ(β)(1 + β1 + (β2 + iD1(β))|w|2 + (D2(α) + iE2(β))|w|4)w. (9.22)

Using polar coordinates (ρ, ϕ), z = ρeiϕ, we obtain the following repre-
sentation of the truncated map (9.22):{

ρ �→ ρ(1 + β1 + β2ρ
2 + L2(β)ρ4) + ρ6R(ρ, β),

ϕ �→ ϕ + θ(β) + ρ2Q(ρ, β). (9.23)
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Clearly, the first mapping in (9.23) is independent of ϕ and can be studied
separately.3 The ϕ-map describes a rotation by a ρ-dependent angle that
is approximately equal to θ(β). Any fixed point of the ρ-map corresponds
to an invariant circle of the truncated normal form (9.22).

To say something definite about the ρ-map in (9.23), we have to assume
that

(CH.2) L2(0) = Re d1(0) = 0.

This is an extra nondegeneracy condition for the Chenciner bifurcation.
Suppose, to begin with, that

L2(0) < 0.

Then, there is a neighborhood of the origin in which the ρ-map has at most
two positive fixed points of opposite stability (and the “outer” one of them
is stable). These points branch from the trivial fixed point ρ = 0 at the
curve

N = {(β1, β2) : β1 = 0},
corresponding to a nondegenerate Neimark-Sacker bifurcation if β2 = 0.
The part N− of N corresponding to β2 < 0 gives rise to the creation of a
stable fixed point when crossed from left to right. This is a supercritical
Neimark-Sacker bifurcation producing a stable invariant circle. Crossing
the upper part N+ of N at some β2 > 0 in the opposite direction generates
an unstable fixed point (invariant circle) via the subcritical Neimark-Sacker
bifurcation. These two fixed points collide and disappear at the bifurcation
curve

Tc =
{

(β1, β2) : β2 =
1

4L2(0)
β2

1 + o(β2
1), β2 > 0

}
,

resembling a half-parabola. For parameter values corresponding to the
curve Tc, the truncated normal form (9.22) exhibits a collision and dis-
appearance of two invariant circles. The resulting bifurcation picture illus-
trating the behavior of the truncated map is shown in Figure 9.5. Notice
that even for the truncated normal form, this picture captures only the ex-
istence of the invariant circles but not the orbit structure on them, which,
generically, varies with the parameters and exhibits rational and irrational
rotation numbers (see Chapter 7).

The case L2(0) > 0 can be treated similarly. The only difference is that
now the “outer” circle is unstable, while the “inner” one is stable.

A natural question is how much of the above picture remains if we con-
sider the whole map (9.21) with generic higher-order terms. A short answer
is that adding such terms results in topologically nonequivalent bifurcation

3Actually, we have studied the similar map g2
β in Section 9.3 devoted to the

generalized flip bifurcation.
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FIGURE 9.5. Chenciner bifurcation in the truncated map (9.22).

diagrams. The Neimark-Sacker bifurcation curve is clearly independent of
these terms. The nondegeneracy conditions for this bifurcation are also in-
dependent of these terms, provided that β2 = 0, and thus remain valid for
the map (9.21). Therefore, small closed invariant curves of corresponding
stability do exist near the line N for this map due to Theorem 4.6 (see
Chapter 4). Moreover, these curves are smooth near N and exist outside a
narrow neighborhood of the collision curve Tc as for the truncated map.

The situation is more complicated near the curve Tc. Generically, there
is no single parameter curve corresponding to the collision of the closed in-
variant curves. Moreover, such invariant curves are not always present and
might destruct, thus avoiding collision. It can be shown that there exists
a parameter set in an exponentially narrow region containing Tc for which
the map (9.21) has a unique closed invariant curve, stable from the outside
and unstable from the inside. Points of this set are limit points of an infi-
nite number of parameter regions inside which there is a single (stable or
unstable) invariant closed curve, and a sufficiently high iterate of the map
(9.21) has saddle and stable (or unstable) fixed points (see Figure 9.6). The
stable and unstable invariant manifolds of the saddle points intersect and
form a homoclinic structure, while the “inner” or “outer” closed invariant
curve loses its smoothness and disappears without collision with its coun-
terpart. Thus, there is an infinite number of appearing and disappearing
high-periodic orbits of the map for parameter values near Tc. More details
can be found in the literature cited in Appendix 1, but the complete picture
seems to be unknown.
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FIGURE 9.6. Heteroclinic structure near a Chenciner bifurcation.

9.5 Strong resonances

9.5.1 Approximation by a flow
When dealing with strong resonances, we will repeatedly use the approxi-
mation of maps near their fixed points by shifts along the orbits of certain
systems of autonomous ordinary differential equations. This allows us to
predict global bifurcations of closed invariant curves happening in the maps
near homo- and heteroclinic bifurcations of the approximating ODEs. Al-
though the exact bifurcation structure is different for maps and approxi-
mating ODEs, their usage provides information that is hardly available by
analysis of the maps alone. The planar case (n = 2) is sufficient for our
purposes, but we shall give a general construction here.

Consider a map having a fixed point x = 0:

x �→ f(x) = Ax + f (2)(x) + f (3)(x) + · · · , x ∈ R
n, (9.24)

where A is the Jacobian matrix, while each f (k) is a smooth polynomial
vector-valued function of order k, f (k)(x) = O(‖x‖k):

f
(k)
i (x) =

∑
j1+j2+···+jn=k

b
(k)
i,j1j2···jn

xj11 x
j2
2 · · ·xjn

n .

Together with the map (9.24), consider a system of differential equations
of the same dimension having an equilibrium at the point x = 0:

ẋ = f(x) = Λx + F (2)(x) + F (3)(x) + · · · , x ∈ R
n, (9.25)

where Λ is a matrix and the terms F (k) have the same properties as the
corresponding f (k) above. Denote by ϕt(x) the flow associated with (9.25).
An interesting question is whether it is possible to construct a system
(9.25) whose unit-time shift ϕ1 along orbits coincides with (or, at least,
approximates) the map f given by (9.24).
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Definition 9.1 The map (9.24) is said to be approximated up to order k
by system (9.25) if its Taylor expansion coincides with that of the unit-time
shift along the orbits of (9.25) up to and including terms of order k:

f(x) = ϕ1(x) + O(‖x‖k+1).

System (9.25) is called an approximating system.
Let us attack the approximation problem by constructing the Taylor

expansion of ϕt(x) with respect to x at x = 0. This expansion can be
obtained by Picard iterations. Namely, set

x(1)(t) = eΛtx,

the solution of the linear equation ẋ = Λx with the initial data x, and
define

x(k+1)(t) = eΛtx +
∫ t

0
eΛ(t−τ)

(
F (2)(x(k)(τ)) + · · ·+ F (k+1)(x(k)(τ))

)
dτ.

(9.26)
A little thought shows that the (k+ 1)st iteration does not change O(‖x‖l)
terms for any l ≤ k. Substituting t = 1 into x(k)(t) provides the correct
Taylor expansion of ϕ1(x) up to and including terms of order k:

ϕ1(x) = eΛx + g(2)(x) + g(3)(x) + g(k)(x) + O(‖x‖k+1). (9.27)

Now we can require the coincidence of the corresponding terms in (9.27)
and (9.24):

eΛ = A, (9.28)

and
g(k)(x) = f (k)(x), k = 2, 3, . . . ,

and then try to find Λ and the coefficients of g(k) (and, eventually, the
coefficients of F (k)) in terms of those of f (k) (i.e., b(k)

i,j1j2···jn
). This is not

always possible. It is easy to see that even the linear problem might cause
difficulties. Take, for example, the planar linear map

f(x) = Ax, A =
( −1 0

0 1

)
.

There is no real matrix Λ satisfying (9.28). Indeed, such a matrix must be
diagonal, having the same eigenvectors as A,(

λ1 0
0 λ2

)
,

and one should thus have

eλ1 = −1, eλ2 = 1.
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The second equation gives λ2 = 0, while the first one is unsolvable within
real numbers. Therefore, the map f cannot be approximated by a flow.
Notice, however, that its second iterate,

f2(x) = A2x, A2 =
(

1 0
0 1

)
,

allows for the approximation. Actually, f2(x) = x is the identity map,
that is, a shift along orbits of the trivial equation ẋ = 0, with Λ = 0.
One can prove that any map sufficiently close to the identity map can be
approximated up to any order by a flow shift.

As we shall see later, it is possible that terms of order k < l, for some
l fixed, can be approximated by a system of differential equations, while
those of order l can not. An example is provided by a planar map

f(x) = R3x + f (2)(x) + · · · , x ∈ R
2,

where R3 is a matrix describing a planar rotation through the angle 2π
3 .

The linear part of this map can be represented by the unit shift along the
orbits of a linear system, while the quadratic terms f (2)(x) do not allow an
approximation by a flow (see below). In this case, l = 2. Notice, however,
that the third iteration f3 can be approximated by a planar system of ODEs
up to any order, since it is close to the identity map near the origin.

It is worthwhile noticing that, even if a map allows for approximation
by a flow up to any order, it may not be a unit-time shift of an ODE-
system itself. This flat property is strongly related to the divergence of
the approximating series and the appearance of homo- and heteroclinic
structures for small perturbations of the maps. Examples will follow.

9.5.2 1:1 resonance
Consider a smooth planar map

x �→ f(x, α), x ∈ R
2, α ∈ R

2. (9.29)

Suppose that (9.29) has at α = 0 a fixed point x = 0 with a double unit
multiplier (1:1 resonance), µ1,2 = 1. Write (9.29) at α = 0 in the form

x �→ A0x + g(x), (9.30)

where A0 = fx(0, 0), and g(x) = f(x, 0) − A0x = O(‖x‖2) is smooth.
Assume that there exist two real linearly independent vectors, v0,1 ∈ R

2,
such that

A0v0 = v0, A0v1 = v1 + v0. (9.31)

The vector v0 is the eigenvector of A0 corresponding to the eigenvalue 1,
while v1 is the generalized eigenvector of A0 corresponding to the same
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eigenvalue.4 Moreover, there exist similar adjoint eigenvectors w1,2 ∈ R
2 of

the transposed matrix AT
0 :

AT
0 w1 = w1, AT

0 w0 = w0 + w1. (9.32)

We can always select four vectors satisfying (9.31) and (9.32) such that

〈v0, w0〉 = 〈v1, w1〉 = 1,

where 〈·, ·〉 stands for the standard scalar product in R
2 : 〈x, y〉 = x1y1 +

x2y2. The Fredholm Alternative Theorem implies

〈v1, w0〉 = 〈v0, w1〉 = 0.

If v0 and v1 are selected, then any vector x ∈ R
2 can be uniquely repre-

sented as
x = y1v0 + y2v1,

where new coordinates (y1, y2) are given by{
y1 = 〈x,w0〉,
y2 = 〈x,w1〉. (9.33)

In the coordinates (y1, y2), the map (9.30) takes the form:(
y1
y2

)
�→

(
1 1
0 1

)(
y1
y2

)
+

( 〈g(y1v0 + y2v1), w0〉
〈g(y1v0 + y2v1), w1〉

)
. (9.34)

Using the same coordinates (y1, y2) for all α with ‖α‖ small, we can write
the original map (9.29) as(

y1
y2

)
�→

( 〈f(y1v0 + y2v1, α), w0〉
〈f(y1v0 + y2v1, α), w1〉

)
= Gα(y), (9.35)

which reduces to system (9.30) for α = 0.

Lemma 9.6 The map (9.35) can be represented for all sufficiently small
‖α‖ in the form

Gα(y) = ϕ1
α(y) + O(‖y‖3),

where ϕt
α is the flow of a planar system

ẏ = γ(α) + Λαy + F (y, α), (9.36)

where

γ(0) = 0, Λ0 =
(

0 1
0 0

)
,

and F (y, α) is a homogeneous quadratic vector-valued polynomial.

4Note that this situation is more generic than the case where A is semisimple,
that is, has two independent eigenvectors Av0 = v0, Av1 = v1.
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Proof:
Let us prove the lemma in detail for α = 0, by constructing the quadratic

part F (y, 0) of the right-hand side of (9.36).
Clearly, the linear part of (9.34)(

y1
y2

)
�→

(
1 1
0 1

)(
y1
y2

)
,

is the unit-time shift along the orbits of the linear system(
ẏ1
ẏ2

)
=

(
0 1
0 0

)(
y1
y2

)
,

which is the linear part of the Bogdanov-Takens critical normal form. Thus,

Λ0 =
(

0 1
0 0

)
.

Suppose that, for α = 0, system (9.36) can be written as{
ẏ1 = y2 + 1

2A20y
2
1 + A11y1y2 + 1

2A02y
2
2 ,

ẏ2 = 1
2B20y

2
1 + B11y1y2 + 1

2B02y
2
2 ,

(9.37)

where Akl, Bkl, k + l = 2, are unknown coefficients to be defined. Let us
perform two Picard iterations as described in Section 9.5.1. We have

y(1)(τ) = eΛ0τy =
(

y1 + τy2
y2

)
,

and using (9.26) we obtain

y(2)(1) =
(

y1 + y2 + 1
2a20y

2
1 + a11y1y2 + 1

2a02y
2
2

y2 + 1
2b20y

2
1 + b11y1y2 + 1

2b02y
2
2

)
,

where

a20 = A20 +
1
2
B20,

a11 = A11 +
1
2
A20 +

1
6
B20 +

1
2
B11,

a02 = A02 +
1
3
A20 + A11 +

1
12
B20 +

1
3
B11 +

1
2
B02,

b20 = B20,

b11 = B11 +
1
2
B20,

b02 = B02 +
1
3
B20 + B11.



9.5 Strong resonances 413

These quantities should be interpreted as quadratic Taylor coefficients of
(9.35). Solving the equations for A20, A11, A02, B20, B11, and B02, we get

A20 = a20 − 1
2
b20, (9.38)

A11 = a11 − 1
2
a20 +

1
3
b20 − 1

2
b11, (9.39)

A02 = a02 +
1
6
a20 − a11 − 1

6
b20 +

2
3
b11 − 1

2
b02, (9.40)

B20 = b20, (9.41)

B11 = b11 − 1
2
b20, (9.42)

B02 = b02 +
1
6
b20 − b11. (9.43)

Formulas (9.38)–(9.43) explicitly specify the quadratic Taylor coefficients
of system (9.37) whose time-one flow approximates (up to order 2) the map
(9.35) at α = 0.

We leave the reader to complete the proof of the lemma by considering
small α = 0. ✷

The behavior of the approximate map ϕ1
α is described by the Bogdanov-

Takens theory (see Chapter 8). As we know from Chapter 8, any generic
system (9.36) is locally topologically equivalent to one of the normal forms:{

η̇1 = η2,
η̇2 = β1 + β2η1 + η2

1 + sη1η2,
(9.44)

where s = ±1. The genericity conditions include transversality with respect
to the parameters and the nondegeneracy conditions

A20 + B11 = 0, B20 = 0

(see Theorem 8.4). Under these conditions,

s = sign[B20(A20 + B11)].

Using formulas (9.41), (9.38), and (9.42), we can express the relevant non-
degeneracy conditions for the studied 1:1 resonance in terms of the map
(9.35) (its Taylor coefficients):

(R1.1) a20(0) + b11(0)− b20 = 0;
(R1.2) b20(0) = 0.

Thus, the expression for s reads

s = sign[b20(a20 + b11 − b20)](0) = ±1.

The bifurcation diagram of system (9.44) with s = −1 was presented in
Figure 8.8. That bifurcation diagram, therefore, describes the bifurcations
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of the approximate map. Equilibria correspond to fixed points, while limit
cycles should be interpreted as closed invariant curves. Moving around the
origin of the parameter space clockwise, we encounter the following bifur-
cations of the map ϕ1

α. A pair of fixed points, a saddle and a stable one,
appear when crossing the curve T− from region 1 to region 2. The stable
fixed point becomes unstable, producing a stable closed invariant curve
along curve H, which now corresponds to a Neimark-Sacker bifurcation.
The closed curve exists in region 3 and is destroyed via a homoclinic bifur-
cation at P . Finally, the saddle and unstable points collide and disappear
via a fold bifurcation at T+. Recall, once more, that all this happens in the
approximate map.

What can be said about bifurcations of a nondegenerate map (9.35)?
Certain features of the bifurcation diagram do survive, namely, those re-
lated to local bifurcations. More precisely, there are bifurcation curves T̃
and H̃, corresponding to the curves T and H, on which the map has a fold
and a Neimark-Saker bifurcation, respectively. These curves meet tangen-
tially at the codim 2 point. A closed invariant curve bifurcating from the
stable fixed point exists for parameter values close to H̃.

However, even if a closed invariant curve exists for the map Gα, the orbit
structure on it is generically different from that for ϕ1

α. For the approxi-
mate map all orbits in the curve are either periodic or dense, while for
the original map, phase-locking phenomena occur that create and destroy
stable and unstable long-periodic orbits as parameters vary inside region
3. Actually, an infinite number of narrow phase-locking Arnold tongues
are rooted at the Neimark-Sacker curve H̃. These tongues are delimited
by fold bifurcation curves corresponding to a collision between stable and
saddle periodic orbits. Some other bifurcations of the original map are not
present in the approximating flow. These bifurcations take place near the
homoclinic curve P for the approximate map. The coincidence of the stable
and unstable manifolds of the saddle at P occurring for ϕ1

α is generically
replaced by their transversal intersection, giving rise to a homoclinic struc-
ture (see Chapter 2). The transversal homoclinic structure exists in an
exponentially narrow parameter region around P bounded by two smooth
bifurcation curves, P̃1 and P̃2, corresponding to homoclinic tangencies (see
Figure 9.7). The fold curves delimiting the phase-locking tongues accumu-
late on P̃1,2 (see Figure 9.8, where only one tongue is shown schematically).
The complete picture includes other bifurcations and seems to be unknown
(see the bibliographical notes in Appendix 1).

Remark:
Actually, the map Gα can be approximated by the shift map ϕ1

α of a
flow up to any finite order:

Gα(y) = ϕ1
α(y) + O(‖y‖k),

with arbitrary large k. However, the map Gα is not, generically, a shift along
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FIGURE 9.7. Homoclinic tangencies along the curves P̃1 and P̃2.

any flow, since there are transversal intersections of the saddle manifolds,
which are impossible for flows. ♦

9.5.3 1:2 resonance
In this case we have a smooth planar map

x �→ f(x, α), x ∈ R
2, α ∈ R

2,

having at α = 0 the fixed point x = 0 with multipliers µ1,2 = −1 (1:2
resonance). Since µ = 1 is not an eigenvalue of its Jacobian matrix, we can
assume that x = 0 is a fixed point for all sufficiently small ‖α‖ and write
our map as

x �→ A(α)x + F (x, α), (9.45)

for some smooth A(α), F (x, α) = O(‖x‖2). Let A0 = A(0), and assume
that there exist two real linearly independent vectors, v0,1 ∈ R

2:

A0v0 = −v0, A0v1 = −v1 + v0. (9.46)

The vector v0 is the eigenvector of A0 corresponding to the eigenvalue −1,
while v1 is the generalized eigenvector of A0 corresponding to the same
eigenvalue. Moreover, there exist similar adjoint eigenvectors w1,2 ∈ R

2 of
the transposed matrix AT

0 :

AT
0 w1 = −w1, AT

0 w0 = −w0 + w1. (9.47)

We can always select four vectors satisfying (9.46) and (9.47) such that

〈v0, w0〉 = 〈v1, w1〉 = 1,
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FIGURE 9.8. An Arnold tongue rooted at a resonant Neimark-Sacker bifurcation
point.

where 〈·, ·〉 stands for the standard scalar product in R
2 : 〈x, y〉 = x1y1 +

x2y2. The Fredholm Alternative Theorem implies

〈v1, w0〉 = 〈v0, w1〉 = 0.

If v0 and v1 are selected, then any vector x ∈ R
2 can be uniquely repre-

sented as
x = y1v0 + y2v1,

where new coordinates (y1, y2) can be computed explicitly by{
y1 = 〈x,w0〉,
y2 = 〈x,w1〉. (9.48)

In the coordinates (y1, y2), the map (9.45) takes the form:(
y1
y2

)
�→

( −1 + a(α) 1 + b(α)
c(α) −1 + d(α)

)(
y1
y2

)
+

(
g(y, α)
h(y, α)

)
, (9.49)

where

g(y, α) = 〈F (y1v0 + y2v1, α), w0〉, h(y, α) = 〈F (y1v0 + y2v1, α), w1〉,

and
a(α) = 〈[A(α)−A0]v0, w0〉, b(α) = 〈[A(α)−A0]v1, w0〉,
c(α) = 〈[A(α)−A0]v0, w1〉, d(α) = 〈[A(α)−A0]v1, w1〉.

Clearly,
a(0) = b(0) = c(0) = d(0) = 0.

The following lemma allows us to simplify the linear part of (9.49) and
introduce new parameters.
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Lemma 9.7 For any matrix

M(α) =
( −1 + a(α) 1 + b(α)

c(α) −1 + d(α)

)
with a(0) = b(0) = c(0) = d(0) = 0, there is a matrix B(α), B(0) = I,
such that

B−1(α)M(α)B(α) =
( −1 1

ε(α) −1 + δ(α)

)
,

where ε(0) = δ(0) = 0.

Proof:
The matrix

B(α) =
(

1 + b(α) 0
−a(α) 1

)
does the job, with

ε(α) = c(α) + b(α)c(α)− a(α)d(α), δ(α) = a(α) + d(α).

The matrix B(α) is as smooth in α as A(α). ✷

The nonsingular linear coordinate transformation

y = B(α)u,

with B given by the lemma, reduces the map (9.49) for sufficiently small
‖α‖ into(

u1
u2

)
�→

( −1 1
ε(α) −1 + δ(α)

)(
u1
u2

)
+ B−1(α)

(
g(B(α)u, α)
h(B(α)u, α)

)
.

(9.50)
Assume that

(R2.0) the map (α1, α2) �→ (ε(α), δ(α)) is regular at α = 0, that is,

det
(

εα1(0) εα2(0)
δα1(0) δα2(0)

)
= det

(
cα1(0) cα2(0)

aα1(0) + dα1(0) aα2(0) + dα2(0)

)
= 0.

Under this assumption, we can use (ε, δ) to parametrize a neighborhood of
α = 0: {

β1 = ε(α),
β2 = δ(α).

We can express α as a function of β and write the map (9.50) as(
u1
u2

)
�→

( −1 1
β1 −1 + β2

)(
u1
u2

)
+

(
G(u, β)
H(u, β)

)
, (9.51)

where G,H = O(‖u‖2). Notice that G(u, 0) = g(u, 0), H(u, 0) = h(u, 0).
Having performed these preliminary linear transformations, we can now

make a nonlinear change of coordinates to simplify the map (9.51).
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Lemma 9.8 (Normal form map for 1:2 resonance) There is a smo-
oth invertible change of coordinates, smoothly depending on the parameters,
that transforms (9.51) into the map(

ξ1
ξ2

)
�→

( −1 1
β1 −1 + β2

)(
ξ1
ξ2

)
+
(

0
C(β)ξ31 + D(β)ξ21ξ2

)
+O(‖ξ‖4),

(9.52)
for smooth functions C(β) and D(β).

Proof:
Expand G and H into Taylor series with respect to u:

G(u, β) =
∑

2≤j+k≤3

gjk(β)uj1u
k
2 + O(‖u‖4),

H(u, β) =
∑

2≤j+k≤3

hjk(β)uj1u
k
2 + O(‖u‖4).

Let us try to find a transformation

u1 = ξ1 +
∑

2≤j+k≤3

φjk(β)ξj1ξ
k
2 ,

u2 = ξ2 +
∑

2≤j+k≤3

ψjk(β)ξj1ξ
k
2 ,

with
φ03(β) = ψ03(β) = 0,

that annihilates all terms of order two and three except those displayed in
(9.52).

First, fix α = 0 and find the corresponding φjk(0), ψjk(0). This is suffi-
cient to compute C(0) and D(0). To simplify notation, drop the argument
of φjk and ψjk. In the coordinates (ξ1, ξ2), the map (9.51) for β = 0 will
have a form

ξ̃1 = −ξ1 + ξ2 +
∑

2≤j+k≤3

γjkξ
j
1ξ

k
2 + O(‖ξ‖4),

ξ̃2 = ξ2 +
∑

2≤j+k≤3

σjkξ
j
1ξ

k
2 + O(‖ξ‖4),

where γjk and σjk are certain functions of gjk, hjk and φjk, ψjk.
By a proper selection of φjk, ψjk with j + k = 2, we can eliminate all

quadratic terms in the map (ξ1, ξ2) �→ (ξ̃1, ξ̃2). Indeed, the vanishing of all
the quadratic terms,

γ20 = γ11 = γ02 = σ20 = σ11 = σ02 = 0,
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is equivalent to the linear algebraic system
2 0 0 −1 0 0

−2 2 0 0 −1 0
1 −1 2 0 0 −1
0 0 0 2 0 0
0 0 0 −2 2 0
0 0 0 1 −1 2




φ20
φ11
φ02
ψ20
ψ11
ψ02

 =


g20
g11
g02
h20
h11
h02

 .

This system has a unique solution, since its determinant obviously differs
from zero. Then, we can use its solution

φ20 =
1
2
g20 +

1
4
h20, (9.53)

φ11 =
1
2
g20 +

1
2
g11 +

1
2
h20 +

1
4
h11, (9.54)

φ02 =
1
4
g11 +

1
2
g02 +

1
8
h20 +

1
4
h11 +

1
4
h02, (9.55)

ψ02 =
1
2
h20, (9.56)

ψ11 =
1
2
h20 +

1
2
h11, (9.57)

ψ02 =
1
4
h11 +

1
2
h02, (9.58)

to eliminate all the quadratic ξ-terms at β = 0.
The next step is to “kill” cubic terms. Actually, it is possible to annihilate

all but those terms displayed in (9.52). Namely, the vanishing conditions

γ21 = γ12 = γ03 = γ30 = σ12 = σ03 = 0

yield the linear system for φjk, ψjk of the form:
3 0 0 −1 0 0

−3 2 0 0 −1 0
1 −1 1 0 0 −1
0 0 0 3 0 0
0 0 0 −3 2 0
0 0 0 1 −1 1




φ30
φ21
φ12
ψ30
ψ21
ψ12

 = R[g, h],

where R[g, h] is a certain vector-valued function of gjk, hjk, j + k = 2, 3.
This system is also solvable, thus specifying the cubic coefficients of the
transformation. Explicit solution of this system (using (9.53)–(9.58)) leads
to the following formulas for the coefficients in (9.52):

C(0) = h30(0) + g20(0)h20(0) +
1
2
h2

20(0) +
1
2
h20(0)h11(0) (9.59)
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and

D(0) = h21(0) + 3g30(0) +
1
2
g20(0)h11(0) +

5
4
h20(0)h11(0)

+ h20(0)h02(0) + 3g2
20(0) +

5
2
g20(0)h20(0) +

5
2
g11(0)h20(0)

+ h2
20(0) +

1
2
h2

11(0). (9.60)

Small ‖β‖ = 0 causes no difficulties, since the above linear systems will
be substituted by nearby linear systems. Because the original systems at
β = 0 are regular, these new systems are uniquely solvable. We leave the
details to the reader. ✷

Remark:
It is insufficient to make only the quadratic transformation with coeffi-

cients given by (9.53)–(9.58) to compute D(0), since this quantity depends
on ψ30(0). ♦

Denote the normal form map (9.52) by ξ �→ Γβ(ξ). Our next task would
be to approximate this map by a flow. Clearly enough, this is not possible,
since its linear part for β = 0,(

ξ1
ξ2

)
�→

( −1 1
0 −1

)(
ξ1
ξ2

)
has negative eigenvalues. However, the second iterate,

ξ �→ Γ2
β(ξ),

can be approximated by the unit-time shift of a flow. The map Γ2
β has the

form(
ξ1
ξ2

)
�→

(
1 + β1 −2 + β2

−2β1 + β1β2 1 + β1 − 2β2 + β2
2

)(
ξ1
ξ2

)
+
(

V (ξ, β)
W (ξ, β)

)
,

(9.61)
where

V (ξ, β) = C(β)ξ31 + D(β)ξ21ξ2

and

W (ξ, β) = (−2C(β) + β1D(β) + β2C(β))ξ31
+ (3C(β)− 2D(β)− 2β1D(β) + β2D(β))ξ21ξ2
+ (−3C(β) + 2D(β) + β1D(β)− 2β2D(β))ξ1ξ22
+ (C(β)−D(β) + β2D(β))ξ32 + O(‖ξ‖4).

Lemma 9.9 The map (9.61) can be represented for all sufficiently small
‖β‖ in the form

Γ2
β(ξ) = ϕ1

β(ξ) + O(‖ξ‖4),
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where ϕt
β is the flow of a planar system

ξ̇ = Λβξ + U(ξ, β), (9.62)

where

Λβ =
( −β1 −2− 2

3β1 − β2
−2β1 −β1 − 2β2

)
+ O(‖β‖2),

and U(ξ, β) is a homogeneous cubic vector polynomial.

Proof:
Start with β = 0. The linear part of (9.61) at β = 0,(

ξ1
ξ2

)
�→

(
1 −2
0 1

)(
ξ1
ξ2

)
,

is the unit-time shift along orbits of the planar linear system

ξ̇ = Λ0ξ,

where

Λ0 =
(

0 −2
0 0

)
.

Suppose that the approximating cubic system ξ̇ = Λ0ξ + U(ξ, 0) has the
representation{

ξ̇1 = −2ξ2 + A30ξ
3
1 + A21ξ

2
1ξ2 + A12ξ1ξ

2
2 + A03ξ

3
2 ,

ξ̇2 = B30ξ
3
1 + B21ξ

2
1ξ2 + B12ξ1ξ

2
2 + B03ξ

3
2 .

(9.63)

Let us perform three Picard iterations (9.26) for (9.63). Since the system
(9.63) has no quadratic terms, we have

ξ(1)(τ) = ξ(2)(τ) = eΛ0τξ =
(

ξ1 − 2τξ2
ξ2

)
.

The third iteration yields

ξ(3)(1) =
(

ξ1 − 2ξ2 + a30ξ
3
1 + a21ξ

2
1ξ2 + a12ξ1ξ

2
2 + a03ξ

3
2

ξ2 + b30ξ
3
1 + b21ξ

2
1ξ2 + b12ξ1ξ

2
2 + b03ξ

3
2

)
,

where ajk, bjk are expressed in terms of Ajk, Bjk by the following formulas:

a30 = A30 −B30,

a21 = −3A30 + A21 + 2B30 −B21,

a12 = 4A30 − 2A21 + A12 − 2B30 +
4
3
B21 −B12,

a03 = −2A30 +
4
3
A21 −A12 + A03 +

4
5
B30 − 2

3
B21 +

2
3
B12 −B03,

b30 = B30,

b21 = −3B30 + B21,

b12 = 4B30 − 2B21 + B12,

b03 = −2B30 +
4
3
B21 −B12 + B03.
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Solving the above equations for Ajk, Bjk and using (9.61), we obtain

A30 = a30 + b30 = −C(0),
A21 = 3a30 + a21 + 4b30 + b21 = −2C(0)−D(0),

A12 = 2a30 + 2a21 + a12 + 4b30 +
8
3
b21 + b12 = −C(0)− 4

3
D(0),

A03 =
2
3
a21 + a12 + a03 +

8
15
b30 +

4
3
b21 +

4
3
b12 + b03

= − 1
15
C(0)− 1

3
D(0),

B30 = b30 = −2C(0),
B21 = 3b30 + b21 = −3C(0)− 2D(0),
B12 = 2b30 + 2b21 + b12 = −C(0)− 2D(0),

B03 =
2
3
b21 + b12 + b03 = −1

3
D(0).

This proves the lemma and gives explicit formulas for the coefficients of
the approximating system (9.62) at β = 0.

For small ‖β‖ = 0, we can verify the formula for the linear part of Λ = Λβ

given in the lemma statement by first taking three terms in the expansion

eΛ = I +
∑
k=1

1
k!

Λk.

Then, Picard iterations produce expressions for ajk(β), bjk(β) that, if we
set β = 0, coincide with those obtained above. ✷

The map (9.62) can be simplified further.

Lemma 9.10 If we perform an invertible smoothly parameter-dependent
transformation of variables, system (9.62) can be reduced to the form(

η̇1
η̇2

)
=

(
0 1
γ1 γ2

)(
η1
η2

)
+
(

0
C1η

3
1 + D1η

2
1η2

)
+O(‖η‖4), (9.64)

for smooth functions γ1,2 = γ1,2(β),{
γ1(β) = 4β1 + O(‖β‖2),
γ2(β) = −2β1 − 2β2 + O(‖β‖2),

and smooth C1 = C1(β), D1 = D1(β),

C1(0) = 4C(0), D1(0) = −2D(0)− 6C(0).

Proof:
For β = 0, the desired transformation of (9.63) is given by{

η1 = ξ1 + χ30ξ
3
1 + χ21ξ

2
1ξ2 + χ12ξ1ξ

2
2 ,

η2 = −2ξ2 + φ30ξ
3
1 + φ21ξ

2
1ξ2 + φ12ξ1ξ

2
2 ,
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where

χ30 =
1
6
A21 +

1
12
B12, χ21 =

1
4
A12 +

1
4
B03, χ12 =

1
2
A03,

and
φ30 = A30, φ21 = −1

2
B12, φ12 = −B03.

Making this transformation and using the above formulas for B30, B21, and
A30, one ends up with the coefficients C1(0) and D1(0) as in the lemma
statement.

The case β = 0 is left to the reader. Notice that the map β �→ γ is regular
at β = 0, therefore (γ1, γ2) can be used as new parameters near the origin
of the parameter plane. ✷

By combining the two previous lemmas, we can formulate the following
theorem.

Theorem 9.3 (Normal form flow for 1:2 resonance) The second it-
erate of the smooth map,(

ξ1
ξ2

)
�→

( −1 1
β1 −1 + β2

)(
ξ1
ξ2

)
+

(
0

C(β)ξ31 + D(β)ξ21ξ2

)
+ O(‖ξ‖4),

can be represented for all sufficiently small ‖β‖ in the form

ξ �→ ϕ1
β(ξ) + O(‖ξ‖4),

where ϕt
β is the flow of a planar system, that is smoothly equivalent to the

system(
η̇1
η̇2

)
=

(
0 1

γ1(β) γ2(β)

)(
η1
η2

)
+

(
0

C1(β)η3
1 + D1(β)η2

1η2

)
,

(9.65)
where {

γ1(β) = 4β1 + O(‖β‖2),
γ2(β) = −2β1 − 2β2 + O(‖β‖2),

and
C1(0) = 4C(0), D1(0) = −2D(0)− 6C(0). ✷

Now consider the bifurcations of the approximating system (9.65), as-
suming the following nondegeneracy conditions:

C1(0) = 0, D1(0) = 0.

These conditions can be expressed in terms of the normal map coefficients:

(R2.1) C(0) = 0;
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(R2.2) D(0) + 3C(0) = 0;

and effectively verified for a given map using (9.59) and (9.60). We can also
assume that

D1(0) < 0;

otherwise, reverse time. Under these assumptions, we can scale the vari-
ables, parameters, and time in (9.65), thus obtaining the system{

ζ̇1 = ζ2,

ζ̇2 = ε1ζ1 + ε2ζ2 + sζ3
1 − ζ2

1ζ2,
(9.66)

where s = sign C(0) = ±1.
The bifurcation diagrams of (9.66) for s = 1 and s = −1 are presented

in Figures 9.9 and 9.10, respectively. The important feature of the approx-
imating system is that it is invariant under the rotation through the angle
π

ζ �→ −ζ.
Using the terminology of Chapter 7, we say that it is Z2-symmetric. The
system always has the equilibrium

E0 = (0, 0).

Two other possible equilibria are located on the horizontal axis ζ2 = 0,

E1,2 =
(∓√−sε1, 0) ,

and bifurcate simultaneously from the trivial one via a pitchfork bifurcation
along the line

F (1) = {(ε1, ε2) : ε1 = 0}.
The nontrivial equilibria exist for ε1 < 0 if s = 1, and for ε1 > 0 if s = −1.

Consider the case s = 1 (Figure 9.9). In region 1 there is a single trivial
equilibrium E0, which is a saddle. Crossing the lower branch of F (1) implies
a pitchfork bifurcation generating a pair of symmetry-coupled saddles E1,2,
while the trivial equilibrium becomes a stable node. This node turns into a
focus somewhere in region 2 and then loses its stability upon crossing the
half-line

H(1) = {(ε1, ε2) : ε2 = 0, ε1 < 0},
via a nondegenerate Hopf bifurcation. In region 3 a unique and stable limit
cycle exists.5 Crossing the curve

C =
{

(ε1, ε2) : ε2 = −1
5
ε1 + o(ε1), ε1 < 0

}
5In the terminology of Chapter 7, this cycle is an S-cycle.
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FIGURE 9.9. Bifurcation diagram of the approximating system (9.66) for s = 1.

leads to the disappearance of the cycle through a heteroclinic bifurcation
(see Exercise 5). Due to the Z2-symmetry, the heteroclinic orbits connecting
the saddles E1 and E2 appear simultaneously, forming a heteroclinic cycle
upon crossing C. In region 4 the totally unstable trivial equilibrium E0
coexists with the saddles E1,2. All three of these equilibria merge at the
upper branch of the pitchfork bifurcation line F (1) as we return to region 1.
The most difficult fact to prove is the uniqueness of the limit cycle in region
3. This can be done using singular rescaling, the Pontryagin method of
Hamiltonian perturbations, and estimation of elliptic integrals in a similar
way to that described in Appendix 1 to Chapter 8 for the Bogdanov-Takens
bifurcation (see Exercise 5 for some of the details).

The bifurcation diagram in the case s = −1 is slightly more complicated
(Figure 9.10). In region 1 there is a single trivial equilibrium E0 that is now
a stable point (either a node or a focus). It undergoes a nondegenerate Hopf
bifurcation on the half-line H(1) given above, giving rise to a stable limit
cycle. Two unstable nodes (later becoming foci) branch from the trivial
equilibrium when we cross the upper half-axis of F (1) from region 2 to
region 3. In region 3, all three equilibria, E0, E1, and E2, are located inside
the surrounding “big” limit cycle that is still present. At the half-line,

H(2) = {(ε1, ε2) : ε2 = ε1, ε1 > 0},
the nontrivial foci E1,2 simultaneously undergo Hopf bifurcations. These
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FIGURE 9.10. Bifurcation diagram of the approximating system (9.66) for
s = −1.

bifurcations lead to the appearance of two “small” unstable (symmetry-
coupled) limit cycles around the nontrivial equilibria. The equilibria them-
selves become stable. Therefore, in region 4 we have three limit cycles: a
“big” one and two “small” ones. Along the curve

P =
{

(ε1, ε2) : ε2 =
4
5
ε1 + o(ε1) ε1 > 0

}
,

the “small” cycles disappear via a symmetric figure-eight homoclinic bifur-
cation (see Exercise 5). Along this curve, the saddle E0 has two homoclinic
orbits simultaneously. These orbits are transformed one into another by
the rotation through π. The figure-eight is unstable from both inside and
outside. Crossing the curve P from region 4 to region 5 implies not only
the destruction of the “small” cycles, but also the appearance of an extra
unstable “big” limit cycle. Thus, in region 5, we have two “big” cycles: The
outer one is stable, while the inner one is unstable. These two “big” cycles
collide and disappear along the curve

K = {(ε1, ε2) : ε2 = κ0ε1 + o(ε1), ε1 > 0},
where κ0 = 0.752 . . .. This is a fold bifurcation of cycles. After the fold
bifurcation, no limit cycles are left in the system. In region 6 we have
three equilibria, the trivial saddle and two stable nontrivial foci/nodes.
The nontrivial equilibria collide with the trivial one at the lower branch of
the line F (2), as we return back to region 1. We conclude the description of
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the bifurcation diagram in this case by pointing out that the most difficult
part of the analysis is proving that there are no extra limit cycles in the
system (see the bibliographical notes and Exercise 5).

We can now interpret the obtained results, first in terms of the approx-
imating map ϕ1

ε, and second in terms of the original map near the 1:2
resonance. Let ϕ1

ε be the unit-shift along orbits of the normal form (9.66).
For this map, the equilibria become fixed points, the pitchfork bifurcation
retains its sense, while the Hopf bifurcations turn into the Neimark-Sacker
bifurcations, since the limit cycles become closed invariant curves of cor-
responding stability. Recall now that the map ϕ1

ε approximates the second
iterate Γ2

β of the original map Γβ near the 1:2 resonance. For the map Γβ ,
the trivial fixed point of ϕ1

ε is a fixed point placed at the origin, while the
nontrivial fixed points correspond to a single period-two orbit. Therefore,
the pitchfork turns into a period-doubling bifurcation, which is natural to
expect near a double multiplier µ1,2 = −1. One can prove that bifurcation
curves similar to the curves F (1), H(1), and H(2) exist for the corresponding
s in Γβ .

On the contrary, curves analogous to the heteroclinic curve C, as well as
to the homoclinic and cycle fold curves P and K, do not exist for the orig-
inal map with generic higher-order terms. As for the Chenciner bifurcation
and the 1:1 resonance, complex bifurcation sets exist nearby. The “instant
collisions” of the saddle invariant manifolds and closed invariant curves are
substituted by infinite series of bifurcations in which homoclinic structures
are involved (see Figure 9.11(a,b)). Such structures imply the existence of

(a) (b)

FIGURE 9.11. Homoclinic structures near 1:2 resonance: (a) s = 1; (b) s = −1.

long-period cycles appearing and disappearing via fold bifurcations as one
crosses the corresponding bifurcation set. The complete bifurcation picture
is unknown.

Remark:
System (9.65) has a fundamental meaning if we consider it in the class

of smooth planar Z2-symmetric systems, invariant under the rotation x �→
Ix = −x. Any such system has the form{

ẋ1 = x1G1(x2
1, x

2
2, α) + x2G2(x2

1, x
2
2, α),

ẋ2 = x1H1(x2
1, x

2
2, α) + x2H2(x2

1, x
2
2, α). (9.67)

Assume that the origin x = 0 is an equilibrium with a double zero eigen-
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value λ1,2 = 0 and that the Jacobian matrix has at least one nonzero
element. Similar to Lemma 9.10, one can show that any system (9.67) is
smoothly orbitally equivalent to the system

η̇1 = η2 + η1Ψ1(η2
1 , η

2
2 , β) + η2Ψ2(η2

1 , η
2
2 , β),

η̇2 = β1η1 + β2η2 + C1(β)η3
1 + D1(β)η2

1η2
+ η1Φ1(η2

1 , η
2
2 , β) + η2Φ2(η2

1 , η
2
2 , β),

(9.68)

where Ψk,Φk = O(‖η‖3), k = 1, 2. It has been proved that, under con-
ditions (R2.0)–(R2.2), system (9.68) is locally topologically equivalent to
system (9.65). Moreover, the homeomorphism hβ identifying the phase por-
traits can be selected to commute with I:

hβ ◦ I = I ◦ hβ . ♦

9.5.4 1:3 resonance
Consider now the case when a planar smooth map

x �→ f(x, α), x ∈ R
2, α ∈ R

2,

has at α = 0 the fixed point x = 0 with simple multipliers µ1,2 = e±iθ0 for
θ0 = 2π

3 . As with the 1:2 resonance, we can assume that x = 0 is the fixed
point of the map for all sufficiently small ‖α‖ and write the map as

x �→ A(α)x + F (x, α),

where F (x, α) = O(‖x‖2). Since the multipliers are simple, there is a unique
eigenvector q(α) ∈ C

2:

A(α)q(α) = µ(α)q(α),

for each ‖α‖ small, such that µ(0) = eiθ0 . As usual, introduce the adjoint
eigenvector p(α) ∈ C

2, satisfying

AT (α)p(α) = µ̄(α)p(α),

which is normalized according to

〈p, q〉 = 1.

Now any vector x ∈ R
2 can be represented in the form

x = zq + z̄q̄,

and the studied map can be written in the complex form

z �→ µ(α)z + g(z, z̄, α), (9.69)
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where

g(z, z̄, α) = 〈p, f(zq(α) + z̄q̄(α), α)〉 =
∑

k+l≥2

1
k!l!

gkl(α)zkz̄l.

We can proceed in the same manner as when studying the Neimark-Sacker
bifurcation in Chapter 4 (see Section 4.7).

Lemma 9.11 (Normal form map for 1:3 resonance) The map (9.69)
can be transformed by an invertible smooth and smoothly parameter-depen-
dent change of variable, for all sufficiently small ‖α‖, into the form

ζ �→ Γα(ζ) = µ(α)ζ + B(α)ζ̄2 + C(α)ζ|ζ|2 + O(|ζ|4), (9.70)

where

B(α) =
g02(α)

2
, (9.71)

and

C(α) =
g20(α)g11(α)(2µ(α) + µ̄(α)− 3)

2(µ̄(α)− 1)(µ2(α)− µ(α))
+
|g11(α)|2
1− µ̄(α)

+
g21(α)

2
. (9.72)

Proof:
The proof is essentially contained in the proofs of Lemmas 4.5 and 4.6

in Chapter 4. As in Lemma 4.5, we can try to eliminate quadratic terms in
(9.69) by the transformation

z = w +
h20

2
w2 + h11ww̄ +

h02

2
w̄2,

where hkl = hkl(α) are certain unknown functions. Exactly as in Lemma
4.5, we can annihilate the coefficients in front of the w2- and ww̄-terms by
setting

h20 =
g20

µ2 − µ
, h11 =

g11
|µ|2 − µ

,

since the denominators are nonzero for all sufficiently small ‖α‖. However,
an attempt to “kill” the w̄2-term of the resulting map by formally setting

h02 =
g02

µ̄2 − µ

(as in Lemma 4.5) fails spectacularly because

µ̄2(0)− µ(0) = e−2iθ0(1− e3iθ0) = 0.

Thus, the w̄2-term cannot be removed by a transformation that depends
smoothly on α. Therefore, set h02(α) = 0, which gives

B(0) =
g02(0)

2
. (9.73)
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The next step is to annihilate cubic terms. This can be done exactly as
in Lemma 4.6 by performing an invertible smooth transformation

w = ζ +
h30

6
ζ3 +

h12

2
ζζ̄2 +

h03

6
ζ̄3,

with smooth hkl = hkl(α). Since µ2(0) = 1 and µ4(0) = 1, the transforma-
tion removes all cubic terms in the resulting map, except the ζ|ζ|2-term.
To compute the coefficient C(α), we need only make the transformation

z = ζ +
1
2
h20(α)ζ2 + h11(α)ζζ̄,

with h20 and h11 given above, and find the resulting coefficient in front of
the ζ2ζ̄-term. This gives the expression (9.72). The critical value C(0) is
then provided by

C(0) =
g20(0)g11(0)(1− 2µ0)

2(µ2
0 − µ0)

+
|g11(0)|2
1− µ̄0

+
g21(0)

2
, (9.74)

where µ0 = µ(0) = eiθ0 . Formula (9.74) can be obtained by merely substi-
tuting g02 = 0 into (4.20) from Chapter 4. The lemma is proved. ✷

We would like to approximate the map (9.70) by a flow. Its linear part

ζ �→ µ(α)ζ, (9.75)

which describes a rotation by the angle 2π
3 at α = 0, provides no difficulties.

Writing µ(α) in the exponential form

µ(α) = eε(α)+iθ(α),

where ε(0) = 0 and θ(0) = θ0 = 2π
3 , we can see immediately that (9.75) is

the unit-time shift along orbits of the linear equation

ζ̇ = λ(α)ζ,

for λ(α) = ε(α)+iθ(α). However, an attempt to approximate the quadratic
term in Γα by a flow fails. Clearly, an approximating equation should have
the form

ζ̇ = λζ + G02ζ̄
2 + O(|ζ|3)

for some unknown function G02 = G02(α). Perform two Picard iterations
(9.26):

ζ(1)(τ) = eλτζ,

ζ(2)(1) = eλζ +
e2λ̄(eλ−2λ̄ − 1)

λ− 2λ̄
G02ζ̄

2.

The coefficient in front of ζ̄2 vanishes at α = 0, since

eλ(0)−2λ̄(0) = e3iθ0 = 1
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at the 1:3 resonance. Therefore, we cannot approximate Γ0 with B(0) = 0
by the unit-time shift of a flow. The same is true for its second iterate Γ2

α

(check!). Fortunately, the third iterate Γ3
α allows for approximation by a

flow.

Lemma 9.12 The third iterate of the map (9.70) can be represented for
all sufficiently small ‖α‖ in the form

Γ3
α(ζ) = ϕ1

αζ + O(|ζ|4),

where ϕt
α is the flow of a planar system

ζ̇ = ω(α)ζ + B1(α)ζ̄2 + C1(α)ζ|ζ|2, (9.76)

where ω, B1, and C1 are smooth complex-valued functions of α, ω(0) = 0,
and

B1(0) = 3µ̄0B(0), (9.77)
C1(0) = −3|B(0)|2 + 3µ2

0C(0), (9.78)

with µ0 = eiθ0 , and B(0) and C(0) are given by (9.73) and (9.74), respec-
tively.

Proof:
The third iterate of Γα has the form

Γ3
α(ζ) = µ3ζ + (µ2 + µ̄|µ|2 + µ̄4)Bζ̄2

+
[
2(|µ|2 + µ̄3 + |µ|4)|B|2 + µ2(1 + |µ|2 + |µ|4)C

]
ζ|ζ|2 + O(|ζ|4).

Since µ3(0) = 1, we can represent µ3 near α = 0 in the form

µ3(α) = eω(α),

for some complex function ω(α) such that ω(0) = 0. This gives the linear
term in (9.76).

For small ‖α‖ the map Γ3
α is close to the identity map id(ζ) = ζ. As

we have mentioned, such maps can always be approximated by flow shifts.
To verify (9.77) and (9.79), let us first perform three Picard iterations for
(9.76) at α = 0:

ζ(1)(τ) = ζ,

ζ(2)(τ) = ζ + B1(0)ζ̄2τ,

ζ(3)(1) = ζ + B1(0)ζ̄2 + (|B1(0)|2 + C1(0))ζ|ζ|2 + O(|ζ|4).

Comparing the coefficients in ζ(3)(1) with those in Γ3 for α = 0, one gets the
expressions (9.77) and (9.78) by taking into account µ3

0 = µ̄3
0 = |µ0| = 1. ✷
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Let us consider the real and imaginary parts of ω as new unfolding pa-
rameters (β1, β2):

ω(α) = β1(α) + iβ2(α).

We have {
β1(α) = 3ε(α),
β2(α) = 3θ(α) (mod 2π).

Assuming

(R3.0) det
(
∂β

∂α

)
= 0,

at α = 0, we can use β to parametrize a neighborhood of the origin on the
parameter plane and write (9.76) as

ζ̇ = (β1 + iβ2)ζ + b1(β)ζ̄2 + c1(β)ζ|ζ|2, (9.79)

for b1(β) = B1(α(β)), c1(β) = C1(α(β)). If the complex number

(R3.1) b1(0) = B1(0) = 0,

where B1(0) is given by (9.77), then we can scale (9.79) by taking

ζ = γ(β)η, γ(β) ∈ C
1,

with

γ(β) =
1

|b1(β)| exp
(
i
arg b1(β)

3

)
.

The scaling results in

η̇ = (β1 + iβ2)η + η̄2 + c(β)η|η|2, (9.80)

where

c(β) =
c1(β)
|b1(β)|2 .

Writing (9.80) in polar coordinates η = ρeiϕ, we obtain{
ρ̇ = β1ρ + ρ2 cos 3ϕ + a(β)ρ3,
ϕ̇ = β2 − ρ sin 3ϕ + b(β)ρ2,

(9.81)

with smooth real-valued functions a(β) = Re c(β), b(β) = Im c(β). We
now introduce the final assumption concerning the approximating planar
system, namely, we suppose

a(0) = 0,

which is equivalent to the nondegeneracy condition

(R3.2) Re C1(0) = 0,
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FIGURE 9.12. Bifurcation diagram of the approximating system (9.80) for
a(0) = Re c(0) < 0.

where C1(0) is given by (9.78).
Under the nondegeneracy conditions assumed, the bifurcation diagram

of the approximating system (9.81) for a(0) < 0 is presented in Figure 9.12.
Notice that the system is invariant under a rotation R3 through the angle
ϕ = θ0 = 2π

3 . Such systems are called Z3-symmetric.
The system always has a trivial equilibrium E0 with ρ0 = 0. For all suffi-

ciently small ‖β‖ = 0, there are also three nontrivial symmetric equilibria,

Ek = (ρs, ϕs,k), k = 1, 2, 3,

all located on a circle of radius rs,

r2s = β2
1 + β2

2 + O(‖β‖3),

and separated by the angle θ0 = 2π
3 in ϕ-coordinate.

The nontrivial equilibria are always saddles and do not bifurcate for small
‖β‖ = 0. The trivial equilibrium is obviously stable for β1 < 0 but becomes
unstable for β1 > 0 undergoing a supercritical Hopf bifurcation at β1 = 0
due to the assumption a(0) < 0. Therefore, a unique and stable limit cycle
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appears in (9.81) if we cross the Hopf bifurcation line

N = {(β1, β2) : β1 = 0}

from left to right at a point with β2 = 0.
What happens with this limit cycle later? It can be proved that the

system (9.81) can have no more than one limit cycle for all sufficiently
small ‖β‖, if the nondegeneracy conditions (R3.1) and (R3.2) are satisfied
(see the bibliographical notes). One can show that there is a bifurcation
curve

H =
{

(β1, β2) : β1 = −a
2
β2

2 + o(β2
2)
}

at which the limit cycle disappears via a heteroclinic bifurcation (see Exer-
cise 6). For parameter values on the curve H, the system has a heteroclinic
cycle formed by coinciding stable and unstable separatrices of the nontriv-
ial saddles. All three saddle connections happen simultaneously due to the
symmetry. The heteroclinic cycle resembles a triangle and is stable from the
inside. Thus, the limit cycle exists in two disjoint regions adjacent to the
Hopf line N . We leave the reader to make a trip around the origin for the
bifurcation diagram in Figure 9.12, as well as consider the case a(0) > 0.

Let us briefly discuss the implications that result from the preceding
analysis for the original map Γα near the 1:3 resonance. The map always
has a trivial fixed point undergoing a nondegenerate Neimark-Sacker bi-
furcation on a bifurcation curve corresponding to the Hopf curve N in the
approximating system (9.81). The Neimark-Sacker bifurcation produces a
closed invariant curve surrounding the trivial fixed point. For all param-
eter values close to the codim 2 point, the map Γα has a saddle cycle
of period three corresponding to the three nontrivial saddle fixed points
of Γ3

α, which, in turn, correspond to the saddles Ek, k = 1, 2, 3 of (9.81).
Instead of the single heteroclinic bifurcation curve H, the map Γα with
generic higher-order terms possesses a more complex bifurcation set. The
stable and unstable invariant manifolds of the period-three cycle intersect
transversally in an exponentially narrow parameter region forming a ho-
moclinic structure (see Figure 9.13). This region is bounded by two smooth

1 E 2

E

E

3

FIGURE 9.13. Homoclinic structure near a 1:3 resonance.
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bifurcation curves T1,2 at which the manifolds are tangent, obtaining a
nontransversal homoclinic orbit. The intersection of these manifolds im-
plies the existence of Smale horseshoes and, therefore, an infinite number
of long-period orbits (see Chapter 1). These orbits appear and disappear
via “collisions” near the curves T1,2. The closed invariant curve born at
the Neimark-Sacker bifurcation loses its smoothness and is destroyed as it
approaches the homoclinic structure. The complete picture is unknown.

Remark:
Adding any Z3-invariant higher-order terms to system (9.81) does not

qualitatively change its bifurcation diagram. ♦

9.5.5 1:4 resonance
Consider a planar smooth map

x �→ f(x, α), x ∈ R
2, α ∈ R

2,

having at α = 0 the fixed point x = 0 with the simple multipliers µ1,2(0) =
exp

(± iπ
2

)
= ±i (1:4 resonance). Write the map, for sufficiently small ‖α‖,

as
x �→ Λ(α)x + F (x, α),

where F (x, α) = O(‖x‖2). Since the eigenvalue µ1(0) = i of Λ(0) is sim-
ple, there is a nearby smooth eigenvalue µ(α), µ(0) = i, of Λ(α) for all
sufficiently small ‖α‖. As usual, introduce the corresponding ordinary and
adjoint eigenvectors: q(α), p(α) ∈ C

2,

Λq = µq, ΛT p = µ̄p,

and normalize them according to

〈p, q〉 = 1.

Now, any vector x ∈ R
2 can be represented in the form

x = zq + z̄q̄,

and the map can be written in the complex form

z �→ µ(α)z + g(z, z̄, α), (9.82)

where

g(z, z̄, α) = 〈p, f(zq(α) + z̄q̄(α), α)〉 =
∑

k+l≥2

1
k!l!

gkl(α)zkz̄l.

By Lemma 4.5 from Chapter 4, we can make a smooth transformation,
eliminating all quadratic terms in (9.82) for small ‖α‖, since µ0 = 1 and



436 9. Two-Parameter Bifurcations of Fixed Points

µ3
0 = 1, for µ0 = i. The transformation will change the cubic terms. Then,

as in Lemma 4.6, we can try to annihilate as many cubic terms as possible.
Denote the new complex coordinate by ζ. Then, from the proof of Lemma
4.6, we immediately see that only two of the four cubic terms can be “killed”
in the present case. Namely, attempts to remove ζ|ζ|2- and ζ̄3-terms fail
because |µ0|2 = µ4

0 = 1. Simple extra calculations prove the following
lemma.

Lemma 9.13 (Normal form map for 1:4 resonance) The map (9.82)
can be transformed by an invertible smooth change of variable, smoothly de-
pending on the parameters, for all sufficiently small ‖α‖, into the form

ζ �→ Γα(ζ) = µ(α)ζ + C(α)ζ|ζ|2 + D(α)ζ̄3 + O(|ζ|4), (9.83)

where C and D are smooth functions of α :

C(0) =
1 + 3i

4
g20(0)g11(0) +

1− i

2
|g11(0)|2 − 1 + i

4
|g02(0)|2 +

1
2
g21(0),

(9.84)

D(0) =
i− 1

4
g11(0)g02(0)− 1 + i

4
g02(0)ḡ20(0) +

1
6
g03(0). ✷ (9.85)

The next aim is to approximate Γα by a flow. The linear part of (9.83),

ζ �→ µ(α)ζ, (9.86)

is a rotation through the angle π
2 at α = 0 and is easy to handle. Writing

µ(α) in the exponential form

µ(α) = eε(α)+iθ(α),

where ε(0) = 0 and θ(0) = π
2 , we can immediately verify that (9.86) is the

unit-time shift along orbits of the linear equation

ζ̇ = λ(α)ζ,

for λ(α) = ε(α) + iθ(α). However, if we are interested in nonlinear terms,
only the fourth iterate of Γα allows for approximation by a flow.

Lemma 9.14 The fourth iterate of the map (9.83) can be represented, for
all sufficiently small ‖α‖, in the form

Γ4
α(ζ) = ϕ1

αζ + O(|ζ|4),

where ϕt
α is the flow of a planar system

ζ̇ = ω(α)ζ + C1(α)ζ|ζ|2 + D1(α)ζ̄3, (9.87)

where ω, C1, and D1 are smooth complex-valued functions of α, ω(0) = 0,
and

C1(0) = −4iC(0), D1(0) = −4iD(0), (9.88)

with C(0) and D(0) given by (9.84) and (9.85), respectively.
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Proof:
The fourth iterate of Γα has the form

Γ4
α(ζ) = µ4ζ + µ3(|µ|2 + 1)(|µ|4 + 1)Cζ|ζ|2 + (µ + µ̄3)(µ2 + µ̄6)Dζ̄3

+ O(|ζ|4).

Since µ4(0) = 1, we can represent µ4 near α = 0 in the form

µ4(α) = eω(α),

for some smooth complex-valued function ω(α) such that ω(0) = 0. This
gives the linear term in (9.87).

For small ‖α‖ the map Γ4
α is close to the identity map id(ζ) = ζ, and

can therefore be approximated by the unit-time shift of a flow. To verify
(9.88), let us first perform three Picard iterations for (9.87) at α = 0:

ζ(1)(τ) = ζ(2)(τ) = ζ,

ζ(3)(1) = ζ + C1(0)ζ|ζ|2 + D1(0)ζ̄3 + O(|ζ|4).

Comparing the coefficients in ζ(3)(1) with those in Γ4
α for α = 0, we get

the expressions (9.88), after taking into account µ(0) = i. ✷

As for the 1:3 resonance, consider the real and imaginary parts of ω as
new unfolding parameters (β1, β2):

ω(α) = β1(α) + iβ2(α).

We have {
β1(α) = 4ε(α),
β2(α) = 4θ(α) (mod 2π).

Assuming

(R4.0) det
(
∂β

∂α

)
= 0

at α = 0, we can use β to parametrize a neighborhood of the origin on the
parameter plane and write (9.87) as

ζ̇ = (β1 + iβ2)ζ + c1(β)ζ|ζ|2 + d1(β)ζ̄3, (9.89)

for c1(β) = C1(α(β)) and d1(β) = D1(α(β)). If the complex number

(R4.1) d1(0) = D1(0) = 0,

where D1(0) is given by (9.88), then we can scale (9.89) by taking

ζ = γ(β)η, γ(β) ∈ C
1,
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with

γ(β) =
1√|d1(β)| exp

(
i
arg d1(β)

4

)
.

The scaling results in

η̇ = (β1 + iβ2)η + A(β)η|η|2 + η̄3, (9.90)

where

A(β) =
c1(β)
|d1(β)| .

Notice that the system is invariant under the rotation R4 through the
angle θ0 = π

2 , (i.e., the transformation η �→ eiθ0η). Such systems are called
Z4-symmetric. Perhaps, the symmetry of the system is more visible if we
present it in polar coordinates η = ρeϕ:{

ρ̇ = β1ρ + a(β)ρ3 + ρ3 cos 4ϕ,
ϕ̇ = β2 + b(β)ρ2 − ρ2 sin 4ϕ, (9.91)

where a(β) = Re A(β), b(β) = Im A(β).
The bifurcation analysis of system (9.90) is more complicated than that of

the approximating systems in the previous sections and requires numerical
techniques. The bifurcation diagram depends on A = A(0) = (a(0), b(0)),
so the (Re A, Im A)-plane is divided into several regions with different bi-
furcation diagrams in the (β1, β2)-plane.6 Fortunately, all the bifurcation
diagrams are formed by straight lines originating at β = 0, thus we can
completely describe them by making a roundtrip along the unit circle on
the β-plane and detecting bifurcation points on it. This is equivalent to
setting

β1 + iβ2 = eiα, α ∈ [0, 2π),

and considering sequences of one-parameter bifurcations in (9.90) as α
makes the complete circle. Crossing a boundary on the A-plane implies
the appearance of new codim 1 bifurcations in the bifurcation sequence
or the changing of their order. Therefore, these boundaries are the pro-
jections of codim 2 bifurcation curves in (α,A)-space onto the A-plane.
Unfortunately, only three of them correspond to bifurcations of equilibria
and can be derived analytically. The others involve degenerate heteroclinic
bifurcations and can be computed only numerically. As one can see, the
boundaries on the A-plane are symmetric under reflections with respect to
the coordinate axes. Thus, it is sufficient to study them in one quadrant of
the A-plane. Assume

(R4.2) Re A = 0

6This resembles the situation with the Hopf-Hopf bifurcation in Chapter 8,
where the bifurcation diagrams were different in different regions in the (θ, δ)-
plane.
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and

(R4.3) Im A = 0,

and take the quadrant corresponding to

a = Re A < 0, b = Im A < 0.

The partitioning of the A-plane into regions with different bifurcation di-
agrams is given in Figure 9.14. Some curves are known analytically, while
others have been computed numerically (see the discussion ahead).

c1

Re A

Im A
2c

I

III

V

V(b)

II

VIII

VII

d
e

BT

IV(a)

III(a)

V(a)  

VI

IV

FIGURE 9.14. Division of the A-plane into regions with different bifurcation
diagrams of (9.90).

The system always has a trivial equilibrium η = 0, that is stable for
β1 < 0 and repelling for β1 > 0 (see the first equation in (9.91)). At β1 = 0
a Hopf bifurcation takes place; thus, a limit cycle appears/disappears when
α passes through α = ±π

2 , which is stable because we assumed a < 0. Notice
that for β2 = 0 the orbits spiral into or out of the origin depending on the
sign of β2 (see the second equation in (9.91)). For β2 = 0 (i.e., α = 0 and
α = π) the direction of rotation near the origin reverses.
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Possible nontrivial equilibria η = ρeiϕ satisfy the complex equation

−e
iα

ρ2 = A(α) + e−4iϕ,

which can be approximated for small ‖β‖ by

− eiα

ρ2 = A + e−4iϕ, (9.92)

where A = A(0). The left-hand side of (9.92) specifies (by fixing α) a ray
on the complex plane parametrized by ρ > 0, while the right-hand side
defines a circle of unit radius centered at the point A, which is covered four
times while ϕ makes one full turn (see Figure 9.15(a,b)). Any intersection

α

(b)

0

(a)

A

α

0

A

S

kE

kS
k

FIGURE 9.15. Construction of the equilibria of (9.90): (a) |A| < 1; (b) |A| > 1.

(ρ, ϕ) of the ray with the circle gives four symmetric equilibria of (9.91).
Based on this geometrical construction, we can conclude that the system
can have either none, four, or eight nontrivial equilibria.

Indeed, if |A| < 1, then the origin of the complex plane is located inside
the circle; thus, any ray out of the origin has exactly one intersection with
the circle (see Figure 9.15(a)). This gives four symmetric equilibria Sk, k =
1, 2, 3, 4, in (9.91). As one can show in this case, the equilibria Sk are
saddles (see Figure 9.16(a)). On the contrary, if |A| > 1, the origin of the
complex plane is outside the circle. Therefore, a typical ray out of the origin
has either none or two intersections with this circle (see Figure 9.15(b)),
giving in the latter case eight equilibria Sk, Ek, k = 1, 2, 3, 4, in (9.91). The
equilibria Sk closer to the origin are saddles, while the remote ones Ek are
attractors (see Figure 9.16(b)) or repellers. As the ray rotates with α and
becomes tangent to the circle, the equilibria Sk and Ek collide pairwise
and disappear via fold bifurcations. Thus, for |A| > 1, there is an interval
of α-values within which the system has eight nontrivial equilibria. The
interval of their existence is contained between the fold bifurcation values
of the parameter α.

Clearly, the case |A| = 1 is exceptional and should be avoided:

(R4.4) |A(0)| = 1.
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FIGURE 9.16. Equilibria of (9.90): (a) |A| < 1; (b) |A| > 1.

Another exceptional case is when the circle is tangent to the imaginary
axis of the complex plane, namely Re A = −1 within the considered quad-
rant (see Figure 9.17). In this case, two different bifurcations happen si-

A

0-1

FIGURE 9.17. Exceptional case Re A = −1.

multaneously at α = −π
2 : the Hopf bifurcation of the trivial equilibrium

E0 and the collision of the nontrivial ones Sk, Ek. Thus, suppose

(R4.5) |Re A(0)| = 1.

Depending on the value of A, the equilibria Ek remain stable for all α or
they change stability at a Hopf bifurcation. The curve in the A-plane sepa-
rating these two cases is the projection of the Bogdanov-Takens bifurcation
curve BT in (α,A)-space:

|b| =
1 + a2
√

1− a2
,

where a = Re A, b = Im A. The curve BT emanates from −i and asymp-
totes to the line a = −1 within the selected quadrant of the A-plane (see
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Figure 9.14). Above this curve the equilibria Ek remain stable, while be-
low the curve they exhibit a nondegenerate Hopf bifurcation. Therefore,
assume the following nondegeneracy condition:

(R4.6) |Im A(0)| = 1 + (Re A(0))2√
1− (Re A(0))2

.

Other possible codim 1 bifurcations involve limit cycles of (9.91). “Small”
limit cycles born via Hopf bifurcations from the nontrivial equilibria Ek

die at homoclinic bifurcations when the separatrices of the saddles Sk form
“small” homoclinic loops (see Figure 9.18(a)). The separatrices of the sad-

4S

1S
2

S 3

S 1
S 2

S 4 S 3

S 2

(a) (b) (c)

S 4
S 3

S 1 S

FIGURE 9.18. (a) “Small” homoclinic loops; (b) “square” heteroclinic cycle; and
(c) “clover” heteroclinic cycle.

dles Sk can also compose heteroclinic cycles. There are two possible types
of these cycles, namely, a “square” heteroclinic cycle around the equilib-
rium E0 (Figure 9.18(b)) and a “clover” cycle surrounding all the equilibria
Ek, k = 0, 1, 2, 3, 4 (Figure 9.18(c)). All four connections appear simultane-
ously due to the Z4-symmetry. The bifurcation is similar to the standard
homoclinic bifurcation studied in Chapter 6, where a single saddle was in-
volved. Denote by σ0 the saddle quantity of the saddle: σ0 = tr Λ(Sk).
The “square” cycle is always stable from the inside (σ0 < 0), while the
“clover” one is stable or unstable from the outside depending on whether
σ0 < 0 or σ0 > 0. When the parameter α passes a value corresponding
to a “square” heteroclinic cycle with σ0 = 0, a limit cycle of the relevant
stability appears for nearby parameter values. This cycle surrounds the
trivial equilibrium E0 and has any existing nontrivial ones outside. Passing
a value corresponding to a “clover” heteroclinic cycle with σ0 = 0 brings in
a limit cycle of the corresponding stability that surrounds all the equilibria
of the system. If there is a limit cycle with no equilibrium outside, it is
stable since Re A < 0. There is strong computer evidence that the sys-
tem can have at most two “big” limit cycles surrounding all the nontrivial
equilibria, and no more than one “small” limit cycle around each of the
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nontrivial equilibria. Another codim 1 bifurcation in which a “big” limit
cycle can be involved is a heteroclinic cycle formed by the center manifolds
of the saddle-node equilibria at the fold bifurcation (see Figure 9.19). All

FIGURE 9.19. Saddle-node heteroclinic connections.

four connections exist simultaneously due to the Z4-symmetry. This bifur-
cation is similar to the homoclinic orbit to a single saddle-node studied in
Chapter 7. When we cross a corresponding parameter value, a “big” limit
cycle appears while the nontrivial equilibria disappear.

The remaining boundaries shown on the A-plane correspond to degener-
ate heteroclinic bifurcations. More precisely, in the (α,A)-space there are
curves corresponding to the presence of one of the heteroclinic cycles de-
scribed above, having an extra degeneracy. There are three types of such
codim 2 cases, defining three curves in Figure 9.14. The “clover” hete-
roclinic cycle can involve saddles that all have σ0 = 0 (neutral saddles).
This implies that there can exist both stable and unstable “big” limit cy-
cles, which can “collide.” The corresponding boundary on the A-plane is
marked by e. It looks like an ellipse passing through A = −i if considered
in the whole A-plane.7 The other two boundaries correspond to degener-
ate saddle-node connections when the center manifold of a saddle-node (its
“unstable separatrix”) tends to another saddle-node along a noncenter di-
rection (along the boundary of the “node sector”). There are two possible
such degeneracies: a “square” (see Figure 9.20(a)) or a “clover” (see Figure
9.20(b)). The corresponding boundaries on the A-plane are marked by c1,2
and d.

Analytically and numerically found boundaries divide the A-quadrant
under consideration into twelve regions, denoted for historical reasons by
I, II, III, III(a), IV, IV(a), V, V(a), V(b), VI, VII, and VIII. Each region
is characterized by its own bifurcation sequence when α varies from, say,
α = −π

2 to α = 3π
2 increasing (counterclockwise). We have, therefore, three

7There is a symmetric one passing through A = i.
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(b)(a)

FIGURE 9.20. Degenerate saddle-node heteroclinic orbits: (a) “square”; (b)
“clover”.

nondegeneracy conditions:

(R4.7) A ∈ e,

(R4.8) A ∈ c1,2,

and

(R4.9) A ∈ d,

that have no analytical expression. Summarizing the previous discussion,
we can encounter a number of the following codim 1 bifurcations, if A is
fixed inside one of the regions of the negative quadrant:

H0 - Hopf bifurcation of the trivial equilibrium E0. The first (at α = −π
2 )

generates a stable limit cycle, while the second one (at α = π
2 ) implies its

disappearance.
T - tangent (fold) bifurcation of nontrivial equilibria. At the correspond-

ing parameter values eight nontrivial equilibrium pointsEk, Sk, k = 1, 2, 3, 4
appear/disappear. Actually, there are three possibilities for them to appear:
either inside, on, or outside a “big” cycle if it exists when this bifurcation
takes place. We will distinguish these possibilities by writing Tin, Ton, or
Tout.
H1 - Hopf bifurcation of the nontrivial equilibria Ek, k = 1, 2, 3, 4. Four

“small” limit cycles bifurcate from the nontrivial antisaddles Ek.
L - “small” homoclinic loop bifurcation. The “small” cycles born via the

Hopf bifurcation disappear via orbits homoclinic to the nontrivial saddles
Sk.
CS - “square” heteroclinic cycle. A stable limit cycle bifurcates from the

orbit.
CC - “clover” heteroclinic cycle. Depending on the sign of the saddle

quantity σ0, it generates either a stable or an unstable “big” limit cycle.
We denote these cases by C−

C and C+
C , respectively.
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F - fold (tangent) bifurcation of “big” limit cycles. Two “big” cycles, the
outer of which is stable, collide and disappear.

The following symbolic sequences allow one to reconstruct completely the
bifurcation diagrams of system (9.91) that are believed to exist in the cor-
responding regions on the A-plane. The numbers correspond to the phase
portraits presented in Figures 9.21 and 9.22, while the symbols over the
arrows mean the bifurcations. In region I we start just before α = −π

2 with
only a stable trivial equilibrium E0 and four symmetric nontrivial saddles
Sk, k = 1, 2, 3, 4. In all the other regions, we start with a single globally
stable trivial point E0. The first bifurcation is always the supercritical Hopf
bifurcation.

I : 1 H0−→ 2 CS−→ 3(3′) CS−→ 2′ H0−→ 1′.

II : 4 H0−→ 5 Ton−→ 10 Ton−→ 5 H0−→ 4′.

III : 4 H0−→ 5 Ton−→ 10 CS−→ 11
Tout−→ 5 H0−→ 4′.

III(a) : 4 H0−→ 5 Ton−→ 10 CS−→ 11 H0−→ 12 T−→ 4′.

IV : 4 H0−→ 5
Tout−→ 11 CS−→ 10 CS−→ 11

Tout−→ 5 H0−→ 4′.

IV(a) : 4 H0−→ 5
Tout−→ 11 CS−→ 10 CS−→ 11 H0−→ 12 T−→ 4′.

V : 4 H0−→ 5
Tin−→ 8

C−
C−→ 10 CS−→ 11

Tout−→ 5 H0−→ 4′.

V(a,b) : 4 H0−→ 5
Tin−→ 8

C−
C−→ 10 CS−→ 11 H0−→ 12 T−→ 4′.

VI : 4 H0−→ 5
Tin−→ 8

C+
C−→ 9 F−→ 10 CS−→ 11 H0−→ 12 T−→ 4′.

VII : 4 H0−→ 5
Tin−→ 6 H1−→ 7 L−→ 8

C−
C−→ 10 CS−→ 11 H0−→ 12 T−→ 4′.

VIII : 4 H0−→ 5
Tin−→ 6 H1−→ 7 L−→ 8

C+
C−→ 9 F−→ 10 CS−→ 11 H0−→ 12 T−→ 4′.

A sequence of typical phase portraits in the simplest region I is given in
Figure 9.21. Notice that we have presented three pairs of topologically
equivalent phase portraits (1(1′), 2(2′), and 3(3′), which differ only in the
direction of rotation around the origin) to facilitate the understanding of
the sequence. A label between two phase portraits corresponds to the bi-
furcation transforming one into the other. The most complicated sequence
of phase portraits corresponding to region VIII is depicted in Figure 9.22.
We recommend the reader to reconstruct all the other possible bifurcation
sequences.

What do the obtained results imply for a generic map Γα exhibiting
1:4 resonance? Clearly, the trivial equilibrium of the approximating system
corresponds to the trivial fixed point of the map, while four nontrivial Z4-
coupled equilibria of the system correspond to a single period-four cycle of
the original map. One can prove that tangent and Hopf bifurcations of the
nontrivial equilibria give rise to tangent and Neimark-Sacker bifurcations
of the nontrivial fixed points of the map. As usual, homo- and heteroclinic
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FIGURE 9.21. Bifurcation sequence in region I.

connections in the approximating system become heteroclinic structures of
the map (see Figure 9.23). They are formed by intersections of the stable
and the unstable invariant manifolds of the nontrivial saddle period-four
cycle. These structures imply the existence of an infinite number of peri-
odic orbits. Closed invariant curves corresponding to limit cycles lose their
smoothness, and are destroyed almost “colliding” with the saddle period-
four cycle. Individual bifurcation sequences become dependent on ‖β‖ and
involve an infinite number of bifurcations. The complete details are likely
to remain unknown forever!

9.6 Codim 2 bifurcations of limit cycles

Consider a system of (n + 1) differential equations

ẏ = F (y, α), y ∈ R
n+1, α ∈ R

2, (9.93)

where F is smooth. Suppose system (9.93) has a limit cycle Lα with period
T , and let

x �→ f(x, α), x ∈ R
n, α ∈ R

2, (9.94)

be the Poincaré map defined on an n-dimensional cross-section Σ to the
limit cycle. For simplicity assume that the cross-section is independent of
the parameters. The cycle corresponds to a fixed point of the map f (see
Chapter 1). Therefore, any codim 2 bifurcation of the fixed point of the map
will specify a certain codim 2 bifurcation of the limit cycle. We can use the
bifurcation diagrams obtained in this chapter to deduce bifurcation pictures
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FIGURE 9.22. Bifurcation sequence in region VIII.

(c)(a) (b)

FIGURE 9.23. Homoclinic structures near 1:4 resonance: (a) “small”; (b)
“square”; and (c) “clover”.
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for the cycle bifurcations when the dimension of the center manifold of the
Poincaré map is less than or equal to two.8

Similar constructions allow us to apply the theory of codim 2 fixed-point
bifurcations to codim 2 bifurcations of periodic solutions in nonautonomous
time-periodic differential equations:

ẋ = f(x, t, α), x ∈ R
n, α ∈ R

2, (9.95)

where f is periodic in t with (minimal) period, say, T0 = 2π. System (9.95)
defines an autonomous system{

ẋ = f(x, xn+1, α),
ẋn+1 = 1, (9.96)

on the cylinder endowed with the coordinates (x, xn+1 mod 2π). Isolated
periodic solutions of (9.95) can be interpreted as limit cycles of (9.96) for
which the hyperplane Σ = {xn+1 = 0} is a cross-section. The Poincaré
map (9.94) defined on this cross-section is simply the period return map
for (9.95) (see Chapter 1).

In the cusp case (Section 9.2), the center manifold is one-dimensional.
Each fixed point on this manifold corresponds to a limit cycle, while a col-
lision of two points means a fold (tangent) bifurcation of limit cycles of
different stability. Thus, there is generically a parameter region where sys-
tem (9.93) has three nearby limit cycles that collide pairwise and disappear
at the boundaries of this region (see Figure 9.2).

For the generalized flip bifurcation (Section 9.3), the dimension of the
center manifold still equals one. A cycle of period two on the manifold cor-
responds to a limit cycle that makes two turns around the “principal” cycle
Lα before closure, thus having approximately double the period. Therefore,
there is a region attached to the period-doubling bifurcation curve of the
principal cycle where we have two cycles of different stability with approx-
imately double the original period (see Figure 9.3). At the boundary of the
region, the cycles disappear via a fold bifurcation.

The Chenciner bifurcation (Section 9.4) implies that the center mani-
fold for the Poincaré map is two-dimensional. A closed invariant curve on
the manifold turns into an invariant two-dimensional torus of the relevant
stability. There would be a region where two such tori coexist. However,
they lose smoothness and destruct in a complex manner, almost colliding.
Under parameter variation, an infinite number of long-period limit cycles
appear and disappear via fold bifurcations both on and off the tori.

In all the strong resonance cases, the center manifold is two-dimensional.
The central equilibrium in the phase portraits (see Figures 9.9, 9.10, 9.12,
and so forth) corresponds to the “principal” limit cycle, while nontrivial

8One two-dimensional case is left undescribed, the one with the multipliers
µ1 = 1, µ2 = −1.



9.6 Codim 2 bifurcations of limit cycles 449

0

1

L

L

E

1

3E

2E
0

E

FIGURE 9.24. A cycle of approximately triple period near 1:3 resonance.

equilibria describe, actually, a single limit cycle making two, three, or four
turns before closure (see Figure 9.24, where a cycle with approximately
triple period is shown). The closed invariant curves around the nontrivial
equilibria correspond to a single invariant torus around the cycle with dou-
ble, triple, and so on, period. Stable and unstable invariant manifolds of
saddle fixed points are the cross-sections of the corresponding manifolds
of saddle limit cycles. Generically, they intersect transversally along orbits
that are homo- or heteroclinic to the limit cycles. Near such structures,
an infinite number of saddle limit cycles is present. This implies the pres-
ence of complex, “chaotic” dynamics near strong resonances. Consider, for
example, the case 1:2 with s = −1 (see Figure 9.10). A one-parameter sys-
tem near this resonance can exhibit the following scenario. A stable limit
cycle loses stability via a Neimark-Sacker bifurcation generating a smooth
invariant torus. The remaining unstable cycle inside the torus undergoes
a period-doubling bifurcation, giving rise to a repelling cycle of approxi-
mately double the period. After the period doubling, the “primary” cycle is
a saddle cycle. The torus becomes pinched along a parallel while its merid-
ian approaches the figure-eight shape. Then, the torus destructs near a
homoclinic structure formed by the stable and the unstable invariant man-
ifolds of the “primary” cycle. As a result, the orbits loop around one half
and then the other half of then destroyed torus, jumping randomly from
one side to the other. A “chaotic attractor” appears in which long-period
stable cycles are embedded.

Example 9.3 (Strong resonances in a periodically forced preda-
tor-prey system, Kuznetsov, Muratori & Rinaldi [1992]) Consider
the following time-periodic system of two differential equations:

ẋ1 = rx1(1− x1)− cx1x2

α(t) + x1
,

ẋ2 = −dx2 +
cx1x2

α(t) + x1
,
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where
α(t) = b(1 + ε sin(t)).

Here r, b, c, d, and ε are parameters, while x1 and x2 are scaled population
numbers. For ε = 0, the system reduces to an autonomous predator-prey
system studied in Chapter 3 (Example 3.1). As we have seen in that chapter,
the system can have a stable limit cycle appearing via a Hopf bifurcation.
The time-periodic function α(t) describes the influence of seasonal variabil-
ity of the environment on the population dynamics. The time is scaled to
make a year 2π in length. The parameter 0 ≤ ε ≤ 1 measures the seasonal
variation in the predator functional response. As we have already pointed
out, the study of the model is equivalent to the study of the planar first
return map:

f : x(0) �→ x(2π). (9.97)

Fixed points of (9.97) correspond to 2π-periodic solutions of the model,
while period-k points define subharmonics of period 2kπ (k years). Closed
invariant curves correspond to quasiperiodic or long-periodic (locked) solu-
tions, while irregular invariant sets describe chaotic oscillations. The map
f(x) depends on the parameters and exhibits several of the codim 2 bifur-
cations studied earlier. The following results were obtained with the help of
a numerical continuation technique described in Chapter 10 and are based
on the theory presented in this chapter. Let us fix

c = 2, d = 1,

and analyze the bifurcation diagram in (ε, b, r)-space. The phenomena we
shall see also persist for other parameter combinations.

To begin with, set
r = 1,

leaving only two parameters (ε and b) active. Curves related to bifurcations
of fixed points and period-two orbits are presented in Figure 9.25. Let us
trace step by step how this diagram was constructed.

For ε = 0 (no seasonal variation), the map f is a 2π-shift along the
orbits of the autonomous system studied in Example 3.1 of Chapter 3. Its
fixed points are trivial 2π-solutions corresponding to the equilibria of the
autonomous system. That system has a Hopf bifurcation at

bH =
c− d

c + d

(bH = 1
3 for the selected parameter values). A stable limit cycle bifurcates

for b < bH . For the 2π-shift map this means a Neimark-Sacker bifurcation
generating a stable closed invariant curve. Therefore, the point

H = (0, bH)
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FIGURE 9.25. Bifurcation curves on the (ε, b)-plane for r = 1.

in the (ε, b)-plane can serve as an initial point for the continuation of a
Neimark-Sacker bifurcation curve h(1) in these two parameters. Indeed, this
curve is rooted at a point H on the b-axis (see Figure 9.25) and is transverse
to this axis. Crossing h(1) at a typical point implies the generation of a
small closed invariant curve, namely the appearance of small-amplitude
oscillations around the “basic” 2π-periodic solution corresponding to the
nontrivial equilibrium of the constant-parameter model.9

While continue the curve h(1), from left to right on the (ε, b)-plane, both
multipliers µ(1)

1,2 of the fixed point vary smoothly and become equal to −1

as the terminal point A(1)
1 is reached. This is a codim 2 bifurcation – 1:2

resonance. As one can check numerically, the normal form coefficients sat-
isfy

D1(0) > 0, C1(0) < 0,

therefore s = 1, and the bifurcation diagram of the system near A(1)
1 is

approximated by that depicted in Figure 9.10. Thus, there is a single bifur-
cation curve related to fixed points or period-two orbits passing through the
point A(1)

1 , specifically, the bifurcation curve f (1) along which the “basic”

9If the unforced system has a hyperbolic equilibrium, then the map f has a
nearby hyperbolic fixed point for small ε. This point corresponds to a 2π-periodic
solution of the forced system.
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fixed point exhibits a flip (period-doubling) bifurcation. The fixed point
has a simple multiplier µ(1)

1 = −1 along this curve away from A
(1)
1 . The

two branches of f (1) have been obtained by numerical continuation start-
ing from A

(1)
1 in the two possible directions. Crossing f (1) from the right

to the left just above point A(1)
1 results in the disappearance of a saddle

period-two orbit while the stable period-one fixed point becomes unstable
(cf. Figure 9.10). On the contrary, crossing the curve f (1) in the same direc-
tion just below point A(1)

1 means the disappearance of a saddle period-two
cycle while the repelling fixed point bifurcates into a saddle.

The analysis of the flip bifurcation on the upper branch of f (1) shows that
there is another codim 2 bifurcation point D1 at which the cubic normal
form coefficient vanishes and a nondegenerate generalized flip bifurcation
occurs (see Section 9.3). Thus, crossing the part of f (1) located above the
point D1 leads to a standard supercritical flip bifurcation generating a
stable period-two cycle. Moreover, there is a tangent bifurcation curve t(2)1 ,
at which two period-two cycles collide and disappear, that originates at
point D1 (see Figure 9.25). A cycle of period two with a multiplier µ(2)

1 = 1
exists along this curve. The curve t

(2)
1 terminates at a point K2 on the

b-axis where the limit cycle of the constant-parameter system has period
2 · 2π. The point K2 is the end point of another branch t

(2)
2 of the tangent

bifurcation curve for period-two cycles. As on the branch t
(2)
1 , two period-

two cycles appear as we cross t(2)2 near K2, one of which is stable and the
other of which is a saddle.

Following the lower branch t
(2)
2 of the tangent bifurcation curve, we en-

counter a point B where the period-two cycle has two multipliers µ(2)
1,2 = 1.

This is a 1:1 resonance for the period-two cycle (see Section 9.5.2). A
Neimark-Sacker bifurcation curve h(2) originates at this point. Along this
curve the period-two cycle has a pair of the multipliers µ(2)

1,2 on the unit

circle. The curve h(2) terminates at a point A(2) where the multipliers µ(2)
1,2

are both equal to −1 (1:2 resonance). A curve f (2) corresponding to a flip
bifurcation of the period-two cycle goes through point A(2), which is also
the root of a Neimark-Sacker bifurcation curve h(4) (not shown in Figure
9.25), since for this 1:2 resonance we have s = −1. We will return to the
discussion of the bifurcations near A(2) later.

For the current values of the parameters (c, d, r), the Hopf bifurcation in
the unperturbed system with ε = 0 generates a limit cycle with a period
that is smaller than the seasonal period (2π). As b was decreased, the cycle
period grew and reached 2 · 2π at the point K2. Notice that the period
of the cycle born via the Hopf bifurcation depends on the parameters, in
particular on the value of r. Thus, now take a generic value or r, say

r = 0.73,

for which the period of the stable limit cycle appearing in the autonomous
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system through the Hopf bifurcation is greater than 2π (the forcing period).
The resulting bifurcation curves on the (ε, b)-plane are presented in Figure
9.26.

D2

A 2
(1)h(1)

h(2)

f (1)

t (2)
2

ε

Hb

FIGURE 9.26. Bifurcation curves on the (ε, b)-plane for r = 0.73.

There is still a Neimark-Sacker bifurcation curve h(1) rooted at the Hopf
point H on the b-axis. As in the previous case, this curve terminates at a
point A(1)

2 corresponding to a 1:2 resonance, and a flip bifurcation curve
f (1) passes through this point. However,

D1(0) < 0, C1(0) < 0,

in this case (s = −1). The theory of the 1:2 resonance suggests that there
must be a curve h(2) originating at A(1)

2 along which the period-two cy-
cle has a pair of the multipliers µ

(2)
1,2 on the unit circle (Neimark-Sacker

bifurcation). Such a curve indeed exists and can be computed using the
methods of Chapter 10 (see Figure 9.13). In accordance with the theory
of 1:2 resonance, a subcritical Neimark-Sacker bifurcation occurs along this
curve. There is now only one branch t

(2)
2 of the tangent bifurcation curve

terminating at a generalized flip point D2 on the curve f (1).
How can we reconcile Figures 9.25 and 9.26? Recall that there is a value

r = r2 (r2 = 0.75) separating the two cases at which the asymptotic period
of the limit cycle at the Hopf bifurcation for ε = 0 is twice as much as
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the forcing period. This is the 1:2 resonant Hopf bifurcation that has been
analyzed theoretically by Gambaudo [1985] in the limit of small forcing,
ε # 1 (see also the bibliographical notes). In a space of three parameters
unfolding the bifurcation, with the forcing amplitude as the vertical axis,
we have the remarkable bifurcation structure sketched in Figure 9.27. There

h
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B
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K

D

2

2

1(2)

(1)

(2)

(1)

D

(1)

A2

1

FIGURE 9.27. Bifurcation structure near 1:2 resonant Hopf bifurcation.

is a conical surface f (1) rooted at the resonant Hopf point at which a flip
takes place. It is “cut” by a surface corresponding to the condition

µ
(1)
1 µ

(1)
2 = 1.

The part of this surface located outside the cone, h(1), corresponds to
the Neimark-Sacker bifurcation. The intersection curves A(1)

1 and A
(1)
2 ap-

proaching the resonant Hopf point correspond to the 1:2 resonance (a dou-
ble multiplier at −1) with opposite s = ±1. One of these curves (A(1)

2 ) is
a boundary of another codim 1 surface, namely h(2), on which a Neimark-
Sacker bifurcation for the period-two cycle occurs. The surface h(2) is also
bounded by a 1:1 resonance curve B located on a surface of tangent bi-
furcation of period-two cycles t(2). This latter surface is bounded by two
curves of generalized flip bifurcations D1,2. Figure 9.28 gives a cross-section
of the parameter space (r, b, ε) by the plane ε = 0.4. It agrees perfectly with
the theory. The bifurcation diagrams shown in Figures 9.25, 9.26, and 9.28
are obviously not complete, because bifurcations of periodic orbits of pe-
riod greater than or equal to three, as well as bifurcation sets related to
homoclinic structures, are not presented. However, even those incomplete
diagrams provide interesting information on the predator-prey model dy-
namics under periodic forcing, in particular, predicting the coexistence of
various types of attractors.

Bifurcations far from the resonant Hopf point (e.g., the flip bifurcation of
the period-two cycle on f (2)) are not predicted by local analysis. Actually,
there are accumulating sequences of flip bifurcation curves f (2k) leading to
a Feigenbaum cascade of period doublings. Such cascades result in chaotic
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FIGURE 9.28. Bifurcation curves on the (r, b)-plane for ε = 0.4.

attractors in some regions of the parameter space, such as that presented in
the left part of Figure 9.29. Another scenario leading to chaos in the model
is the destruction of a closed invariant curve. The closed curve can lose
its smoothness and turn into an irregular invariant set near a homoclinic
structure formed by the intersection of the stable and unstable manifolds
of the period-two saddle cycle (the right part of Figure 9.29).

Finally, let us look closer at the bifurcation diagram near the pointA(2) in
Figure 9.25 (when r = 1). This reveals an interesting phenomenon, namely
the accumulation of 1:2 resonances (see Figure 9.30). As we have already
mentioned, there is an accumulating sequence of flip bifurcation curves on
the (ε, b)-plane:

f (2), f (4), f (8), . . . .

Only the first three of them are shown in the figure, since they get closer
and closer according to Feigenbaum’s universality. Crossing a curve f (2k)

implies the appearance of stable period-2k cycles while the previously stable
cycle of period-k becomes unstable (a supercritical flip). On each computed
flip curve f (2k) there is a codim 2 point A(2k) of the 1:2 resonance. For corre-
sponding parameter values we have a cycle of period 2k, such that the 2kth
iterate f2k of the first return map (9.97) has a fixed point (cycle of period
2k for f) with multipliers µ(2k)

1,2 = −1. Apparently, all the points A(2k) have
the same topological type corresponding to the normal form flow (9.66)
with s = −1. This means that there are Neimark-Sacker bifurcation curves
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x 1
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x1

FIGURE 9.29. Strange attractors of the Poincaré map.

h(2k) and h(4k) emanating from each A(2k). The computations and some
theoretical arguments show that, in fact, the points A(2k) are connected by
a sequence of Neimark-Sacker bifurcation curves.

A (4)

A (8)

h(2)

h
(4)

f (2)

f (8)

f (4)

A (2)

h
(8)

b

ε

FIGURE 9.30. Accumulation of 1:2 resonances.

Therefore, this example illustrates how theoretical knowledge of the bi-
furcation structures associated with higher-codimension bifurcations guides
numerical analysis and helps us to understand the behavior of a model. ✸
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9.7 Exercises

(1) (Strong resonances in adaptive control) Consider the map x
y
z

 �→

 y
bx + k + yz

z − ky
c + y2 (bx + k + zy − 1)

 ,

which describes an adaptively controlled system [Frouzakis, Adomaitis &
Kevrekidis 1991].

(a) Show that the fixed point (x0, y0, z0) = (1, 1, 1−b−k) exhibits the 1:2
resonance at a point on the (k, b)-plane if the parameter c is fixed. (Hint:
Find a common point of the flip and the Neimark-Sacker bifurcation lines
computed in Exercise 9 in Chapter 5.)

(b) Prove that we would encounter 1:3 and 1:4 resonances while mov-
ing along the Neimark-Sacker bifurcation line if k decreases from the 1:2
resonant value to zero.

(2) (Strong 1:4 resonance) Verify that the map(
x1
x2

)
�→

(
x2

3
4 − x2

1

)
[Hale & Koçak 1991] has a fixed point with multipliers µ1,2 = ±i, and
compute the coefficients C(0) and D(0) of the normal form (9.83). (Hint:
Do not forget to shift the fixed point to the origin!)

Which bifurcations do you expect in a generic two-parameter perturba-
tion of this map?

(3) (Degenerate 1:2 resonance in Henon map) Find parameter values
at which the Henon map(

x
y

)
�→

(
y

−εx + µ− y2

)
has a fixed point with a double multiplier −1. Compute the normal form
coefficients C(0) and D(0) and check that the nondegeneracy condition
(R2.2) does not hold. (Hint: For µ = −1 the map is area-preserving, since
det J(x, y) = 1, where J(x, y) is its Jacobian evaluated at point (x, y).
Therefore, it cannot have any attracting or repelling fixed points and closed
curves.)

(4) (Map versus flow at a 1:2 resonance) Consider the truncated
normal form map (9.52) for the 1:2 resonance,(

ξ1
ξ2

)
�→

( −1 1
β1 −1 + β2

)(
ξ1
ξ2

)
+

(
0

Cξ31 + Dξ21ξ2

)
, (E.1)
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and the approximating ODE system (9.97),(
ξ̇1
ξ̇2

)
=

(
0 1
β1 β2

)(
ξ1
ξ2

)
+

(
0

Cξ31 + Dξ21ξ2

)
. (E.2)

Assume, for simplicity, that C and D are parameter-independent.
(a) Compare the equations for the Neimark-Sacker bifurcation of the

trivial fixed point in (E.1) with the Hopf bifurcation of the trivial equilib-
rium in (E.2). Check that the transformation (β1, β2) �→ (4β1,−2β1− 2β2)
(cf. Lemma 9.10) maps the former bifurcation line into the latter.

(b) Compute the cubic normal form coefficient c1 for the Neimark-Sacker
bifurcation (see formula (4.20) in Chapter 4) in (E.1), and evaluate a =
Re(e−iθ0c1) = 0 near the origin. Verify that the nondegeneracy condition
a = 0 is equivalent to condition (R2.2):

D + 3C = 0.

(c) Compute the Lyapunov coefficient l1 along the Hopf bifurcation line
in (E.2) near the origin. Then check that the nondegeneracy condition
l1 = 0 is equivalent to the condition

D = 0.

(d) Explain the difference in the results of (b) and (c) but their agreement
with Lemma 9.10.

(5) (Hetero- and homoclinic bifurcations in the approximating
system at a 1:2 resonance) Consider system (9.66):{

ζ̇1 = ζ2,

ζ̇2 = ε1ζ1 + ε2ζ2 + sζ3
1 − ζ2

1ζ2,

where s = ±1.
(a) Find a singular rescaling of the variables, time, and parameters that

place the nontrivial equilibria (if they exist) at the points

E1,2 = (∓1, 0),

and write the rescaled system in the form{
η̇1 = η2,
η̇2 = sη1(−1 + η2

1) + γ2η2 − γ1η
2
1η2,

where (γ1, γ2) are new parameters. Derive the relationships between the
new and old parameters:

γ1 =
√−sε1, γ2 =

ε2√−sε1 .
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(b) Consider the system that results after substituting γ1 = γ2 = 0
into the previous equations, and verify that it is Hamiltonian with the
Hamiltonian function

Hs(η) =
sη2

1

2
+
η2
2

2
− sη4

1

4
.

Draw the constant-level curves Hs(η) = h for the cases s = ±1.
(c) Take the Hamiltonian system with γ = 0. Verify that, for s = 1,

η1(t) =
e
√

2t − 1
e
√

2t + 1
, η2(t) =

2
√

2e
√

2t

(e
√

2t + 1)2
,

correspond to the upper heteroclinic orbit H1(η) = 1
4 connecting the sad-

dles E1,2. Check that, for s = −1,

η1(t) =
2
√

2et

1 + e2t
, η2(t) =

2
√

2et(1− e2t)
(1 + e2t)2

,

give an explicit solution corresponding to the right orbit H−1(η) = 0 ho-
moclinic to the saddle E0 at the origin.

(d) Following the strategy presented in Appendix 1 to Chapter 8, com-
pute the derivative of the Hamiltonian Hs along orbits of the system with
γ = 0, and show that:

(i) for s = 1, the heteroclinic connection curve C has the representation
γ2 = k1γ1 + O(γ2

1), with

k1 =
I2( 1

4 )
I1( 1

4 )
=

1
5
,

where I1,2(h) are defined by

I1(h) =
∫
Hs(η)=h

η2 dη1, I2(h) =
∫
Hs(η)=h

η2
1η2 dη1.

(ii) for s = −1, the “figure-eight” homoclinic curve P has the repre-
sentation γ2 = k2γ1 + O(γ2

1), where

k2 =
I2(0)
I1(0)

=
4
5

with the above-defined integrals.
(Hint: To compute the integrals along the hetero- and homoclinic orbits,
convert them into integrals over time and use the explicit solutions obtained
in step (c).)

(e) Map the bifurcation curves obtained in step (d) onto the plane of the
original parameters (ε1, ε2), and verify the expressions for the bifurcation
curves C and P given in Section 9.5.3.
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(f) Prove that the integral ratio is a monotone function of h in the case
s = 1 but has a unique minimum for s = −1. (Hint: See Carr [1980], for
example). What do these facts mean in terms of limit cycles of (9.66)?

(6) (Heteroclinic bifurcations in the approximating system at a
1:3 resonance) Consider the approximating system for the 1:3 resonance,

η̇ = (β1 + iβ2)η + η̄2 + cη|η|2.
(a) Analyze the system with the cubic term truncated, that is,

η̇ = (β1 + iβ2)η + η̄2.

(i) Show that it has three nontrivial saddle equilibria placed at the
vertices of an equilateral triangle.

(ii) Prove that for β1 = 0 the system is Hamiltonian, and find the
Hamilton function in polar coordinates. Draw its constant-level curves and
verify that the orbits connecting the saddles at β1 = 0 are straight lines.

(b) Perform a singular scaling of the system with the cubic term for small
β1 transforming it into a small perturbation of the quadratic Hamiltonian
system studied in step (a). Compute the derivative of the Hamiltonian
along orbits of the perturbed system, introduce a separatrix split function,
and verify the asymptotic expression for the heteroclinic cycle curve H
given in Section 9.5.4. (Hint: See Horozov [1979] or Chow et al. [1994].)

(7) (Equilibria of the approximating system at the 1:4 resonance)
(a) Consider a linear planar system written in the complex form:

ż = Pz + Qz̄,

where P,Q ∈ C
1. Prove that the type of equilibrium at the origin is inde-

pendent of the argument of Q. Show that the point is a saddle for |P | < |Q|,
a focus for |Im P | > |Q|, and a node for |Im P | < |Q| < |P |. Verify also
that the focus is stable for Re P < 0 and unstable for Re P > 0. (Hint:
See Arnold [1983, p. 305].)

(b) Using step (a), prove that the nontrivial equilibria of the approximat-
ing system for the 1:4 resonance (9.90) are saddles if |A| < 1. Check that,
for |A| > 1, the nontrivial equilibria of (9.90) with the smaller modulus are
saddles, while those with the larger modulus are antisaddles.

(c) Find the condition on A corresponding to the Bogdanov-Takens bi-
furcation of the nontrivial equilibria (i.e., when there are four nontrivial
equilibria with a double zero eigenvalue), and verify that it coincides with
that given in Section 9.5.5.

9.8 Appendix 1: Bibliographical notes

The results presented in this chapter have been known to specialists since
the early 1960s although exact formulations and proofs appeared much
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later.
The cusp bifurcation of fixed points is parallel to that for equilibria.

Theorem 9.1 is explicitly formulated in Arnol’d, Afraimovich, Il’yashenko
& Shil’nikov [1994] (Russian original of 1986) together with the theorem
describing the generalized flip bifurcation.

The generalized flip bifurcation is briefly described by Holmes & Whitley
[1984] and treated in detail together with higher-order flip degeneracies by
Peckham & Kevrekidis [1991]. In particular, they derived the nondegen-
eracy condition equivalent to (GF.1) in Section 9.3 (notice, however, that
their equation for the tangent bifurcation curve T (2) is only approximate).

The analysis of the generalized Neimark-Sacker bifurcation is due to
Chenciner [1981, 1982, 1983a, 1983b, 1985a, 1985b, 1988]. A readable in-
troduction to this bifurcation is given by Arrowsmith & Place [1990].

The study of strong resonances goes back to Melnikov [1962] and Sacker
[1964]. The modern theory of strong resonances is due to Arnold [1977,
1983] and Takens [1974a]. It is presented in the textbooks by Arnold [1983]
and Arrowsmith & Place [1990] (see also Arnol’d, Afraimovich, Il’yashenko
& Shil’nikov [1994] and Chow, Li & Wang [1994]). A complete analysis of
bifurcations in the approximating systems is performed for 1:1 resonance
by Bogdanov [1975, 1976b, 1976a]; for 1:2 resonance by Takens [1974a],
Holmes & Rand [1978], Carr [1981] and Horozov [1979]. The proof in the
case 1:3 is also due to Horozov [1979]. Notice that the asymptotic expression
for the heteroclinic bifurcation curve H for this resonance in Arrowsmith
& Place [1990] lacks the factor 1

2 .
The 1:4 resonance is the most complicated since even the analysis of the

approximating system requires numerical computations. Most results on
this resonance were obtained or predicted by Arnold [1977, 1983]. Analyt-
ical consideration of a neighborhood of the axis Re A = 0 (except A = ±i)
based on Hamiltonian perturbations is performed by Neishtadt [1978]. An-
alytical treatment of limit cycles in other regions on the A-plane (including
the whole region Re A < −1) is made by Wan [1978a], Cheng [1990], Cheng
& Sun [1992], and Zegeling [1993]. All known boundaries on the A-plane
corresponding to degenerate heteroclinic bifurcations have been computed
by Berezovskaya & Khibnik [1979, 1981], who also give possible bifurcation
sequences of the phase portraits. Krauskopf [1994a] has generated computer
pictures of these phase portraits. He studied the bifuircation diagram of the
approximating system using the different scaling: ż = eiαz + eiϕz|z|2 + bz̄3

and computed its three-dimensional parametric portrait in the (b, ϕ, α)-
space [Krauskopf 1994b, Krauskopf 1997].

The standard approach (due to Arnold [1977]) to the study of the strong
resonances starts with an autonomous system of differential equations10

having a limit cycle whose multipliers satisfy µq = 1, with q = 1, 2, 3,

10It is sufficient to study three-dimensional systems.
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or 4. In proper coordinates, the system near the cycle is equivalent to a
2π-periodic, nonautonomous system of the dimension subtracted by 1. By
nonlinear transformations with 2πq-periodic coefficients, this system can be
reduced to an autonomous “principal part” plus higher-order terms with
2πq-periodic coefficients. This principal part approximates the qth iterate of
the Poincaré map associated with the cycle. The construction is presented
by Arnold [1983], Arrowsmith & Place [1990], and, in particular detail, by
Iooss & Adelmeyer [1992]. It results in a Zq-symmetric autonomous system
depending on parameters. We adopt a more elementary approach due to
Neimark [1972] based on Picard iterations (see also Moser [1968] for the
Hamiltonian case). It allows us to derive the approximating systems and the
nondegeneracy conditions involved directly in terms of Taylor coefficients
of the original maps. Notice that in some books it is wrongly assumed that
the coefficients of the approximating systems coincide with those of the
normalized maps.

The relationships between approximating systems and original maps
are discussed in the books by Arnold [1983], Arrowsmith & Place [1990],
Arnol’d, Afraimovich, Il’yashenko & Shil’nikov [1994], among others. Im-
portant analytical and numerical results on homoclinic structures arising
near codim 2 bifurcations of fixed points can be found in the cited pa-
pers by Chenciner and in those by Broer, Roussarie & Simó [1993], and
Arrowsmith, Cartwright, Lansbury & Place [1993].

Codim 2 bifurcations of fixed points (periodic orbits) have been found
numerically in periodically driven models arising from economy [Ghezzi &
Kuznetsov 1994], ecology [Kuznetsov, Muratori & Rinaldi 1992], biotech-
nology [Pavlou & Kevrekidis 1992], engineering [Taylor & Kevrekidis 1991,
1993], [Kuznetsov & Piccardi 1994b], and epidemiology [Kuznetsov & Pic-
cardi 1994a]. The normal form theory of the resonantly forced Hopf bifurca-
tion has been developed by Gambaudo [1985], Bajaj [1986], Namachchivaya
& Ariaratnam [1987], and Vance & Ross [1991].



10
Numerical Analysis of Bifurcations

In this chapter we shall describe some of the basic techniques used in the
numerical analysis of dynamical systems. We assume that low-level numer-
ical routines like those for solving linear systems, finding eigenvectors and
eigenvalues, and performing numerical integration of ODEs are known to
the reader. Instead we focus on algorithms that are more specific to bifur-
cation analysis, specifically those for the location of equilibria (fixed points)
and their continuation with respect to parameters, and for the detection,
analysis, and continuation of bifurcations. Special attention is given to lo-
cation and continuation of limit cycles and their associated bifurcations,
as well as to continuation of homoclinic orbits. We deal mainly with the
continuous-time case and give only brief remarks on discrete-time systems.
Appendix 1 summarizes estimates of convergence of Newton-like meth-
ods. Appendix 2 presents numerical methods for detection of higher-order
homoclinic bifurcations. The bibliographical notes in Appendix 3 include
references to standard noninteractive software packages and interactive pro-
grams available for continuation and bifurcation analysis of dynamical sys-
tems. Actually, the main goal of this chapter is to provide the reader with
an understanding of the methods implemented in widely used software for
dynamical systems analysis.

Given a system of autonomous ODEs depending on parameters, our ulti-
mate goal is to obtain its bifurcation diagram (i.e., to divide the parameter
space into regions within which the system has topologically equivalent
phase portraits and to describe how these portraits are transformed at
the bifurcation boundaries). As we have seen in previous chapters, this
task might be impossible since the bifurcation diagram can have an infi-
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nite number of complex-shaped regions. But even in the simplest cases, we
have to rely on a computer to obtain information on the structure of the
bifurcation boundaries of a dynamical system. This is particularly true for
bifurcations of limit cycles and homoclinic orbits, since there are only a few
artificial examples of nonlinear systems allowing for closed-form analytical
solutions. Even the analysis of equilibria (fixed points) in multidimensional
systems is practically impossible without numerical calculations.

10.1 Numerical analysis at fixed parameter values

Consider a continuous-time system without parameters or with all param-
eters fixed at some values:

ẋ = f(x), x ∈ R
n, (10.1)

where f is sufficiently smooth. The analysis of system (10.1) means the
construction of its phase portrait, that is, location of equilibria and limit
cycles, studying the orbit structure near these phase objects and determin-
ing the global behavior of the system. We will discuss mainly local aspects
of the problem, giving only a few remarks on global issues.

10.1.1 Equilibrium location
The analysis of system (10.1) starts with determining its equilibria, or the
solutions of the system

f(x) = 0, x ∈ R
n. (10.2)

Note that fixed points of a map x �→ g(x) satisfy a system of the same
type, namely: f(x) = g(x) − x = 0. A solution of (10.2) might be known
analytically. This is especially likely if the system is algebraic with low-
order polynomial components fi(x), i = 1, . . . , n. In this case, we can apply
algebraic results (see the bibliographical notes in Appendix 3) to determine
the number of solutions and (sometimes) find them explicitly. However,
even polynomial systems of relatively low order do not have simple explicit
solutions. Thus, numerical methods become unavoidable.

If the system has a stable equilibrium x = x0, then we can find it to
within a desired accuracy by numerical integration of (10.1) starting at a
point x within the basin of attraction of x0, since

lim
t→∞ ‖ϕt(x)− x0‖ = 0.

Here and throughout this chapter we use the norm ‖x‖2 = 〈x, x〉 = xTx,
where T means transpose. If the equilibrium x0 is totally unstable (re-
pelling), we can reverse time and repeat the procedure, thus converging
backward to x0 in the original time.
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In general, for an equilibrium that is neither stable nor repelling, the
location problem can only be solved provided the position of x0 is known
approximately. This is not unreasonable to assume, because one typically
starts with an equilibrium found analytically or by integration at fixed
parameter values and then “continues” it by small stepwise variations of
parameters. The standard procedure that generates a sequence of points
{x(i)}∞

i=0 that converges, under very general conditions, to the equilibrium,
is Newton’s method.

Newton’s method

Denote by A(x) the Jacobian matrix fx of (10.2) evaluated at a point x.
Suppose x(j) is already close to x0. Replace the left-hand side of (10.2) near
x(j) by its linear part:

f(x(j)) + A(x(j))(x− x(j)) ≈ 0.

If the matrix A(x(j)) is invertible, this linear system will have the solution

x = x(j) −A−1(x(j))f(x(j)),

which we could expect to be closer to x0 than x(j) (see Figure 10.1 for the
scalar case n = 1). Let x(0) be a given initial point near the equilibrium
x0. Inspired by the heuristic arguments above, define Newton iterations by
the recurrence relation

x(j+1) = x(j) + η(j), j = 0, 1, 2, . . . , (10.3)

where the displacement η(j) ∈ R
n is the solution of the linear system

A(x(j))η(j) = −f(x(j)). (10.4)

Notice that we need not invert the matrix A(x(j)) to compute x(j+1); in-
stead, only a solution to (10.4) is required. If the Jacobian has a certain
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FIGURE 10.1. Newton iterations.
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special structure, it is useful to take it into account when solving (10.4).
Clearly, if iterations (10.3), (10.4) converge to some x0, then x0 is a solution
of (10.2), or an equilibrium point of (10.1).

Theorem 10.1 Suppose system (10.1) is smooth and has an equilibrium
x = x0 with no zero eigenvalue of the Jacobian matrix fx(x0). Then there
is a neighborhood U of x0 such that the Newton iterations (10.3), (10.4)
converge to x0 from any initial point x(0) ∈ U . Moreover,

‖x(j+1) − x0‖ ≤ κ0‖x(j) − x0‖2, j = 0, 1, 2, . . . ,

for some κ0 > 0, uniformly for x(0) ∈ U . ✷

This theorem follows from the Kantorovich theorem, which also provides
more accurate error estimates (see Appendix 1).

Remarks:
(1) Notice that the convergence is independent of the stability of the

equilibrium. The absence of zero eigenvalues is equivalent to the invertibil-
ity of the Jacobian matrix A(x) at the equilibrium point x0. This can also
be formulated as the condition for the map f to be regular at x0, or the
matrix A(x0) to have maximal rank (equal to n).

(2) The convergence of the iterations is very rapid. The estimate in the
theorem means that the error is roughly squared from iteration to iteration.
Such a convergence is called quadratic. ♦

10.1.2 Modified Newton’s methods
If we have no explicit formula for the Jacobian, then the most expen-
sive part of each Newton iteration is the numerical differentiation of f(x),
by finite differences, for example. Thus, several modifications of Newton’s
method have been proposed, all of which are aimed at reducing the number
of the function calculations per iteration.

Newton-chord

Since x(0) is supposed to be close to x0, we might not recompute the Jaco-
bian matrix A at each obtained point x(j) but use the initial matrix A(x(0))
for all iterations. This simple idea leads to the following Newton-chord it-
eration formula:

x(j+1) = x(j) + η(j), j = 0, 1, 2, . . . , (10.5)

where the displacement η(j) is now defined by

A(x(0))η(j) = −f(x(j)). (10.6)

This method also converges to x0, though less rapidly.
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Theorem 10.2 Under the conditions of Theorem 10.1, there is a neigh-
borhood U of x0 such that Newton-chord iterations (10.5),(10.6) converge
to x0 from any initial point x(0) ∈ U . However,

‖x(j+1) − x0‖ ≤ κ1‖x(j) − x0‖, j = 0, 1, 2, . . . ,

for some 0 < κ1 < 1, uniformly for x(0) ∈ U . ✷

Remarks:
(1) The convergence of the Newton-chord method is linear.
(2) The idea of the proof is to write (10.5), (10.6) as a discrete-time

dynamical system in R
n,

x(j+1) = g(x(j)),

and then verify that the map g : R
n → R

n is a contraction in a sufficiently
small ball around x0. The Contraction Mapping Principle then guarantees
convergence to the equilibrium and gives the error estimate. ♦

Broyden update

A useful method called the Broyden update is a compromise between “true”
Newton iterations and the Newton-chord method.

The idea is that we can use two successive iteration points and function
values at these points to update the matrix involved in the computation of
the displacement (i.e., make it closer to the Jacobian at the next step). To
understand the method, consider the jth iteration step of a Newton-like
method. We have

x(j+1) = x(j) + η.

Suppose that a nonzero displacement η is parallel to the x1-axis:

η =


δ
0
...
0

 .

Let us try to use the coordinates of x(j), x(j+1) and the respective function
values f(x(j)), f(x(j+1)) to approximate the Jacobian matrix at x(j+1), tak-
ing into account that |δ| is small. Clearly, we do not have enough data to
approximate all the entries of the Jacobian. However, one column can be
updated. Indeed, for the first column,

Ak1(x(j+1)) ≈ fk(x(j+1))− fk(x(j))
δ

=
fk(x(j+1))
‖η‖2 η1 − fk(x(j))

η1
,
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where k = 1, 2, . . . , n, and Akl stands for the klth element of A, while η1 is
the first component of η. Recalling that η has to be found from

A(x(j))η = −f(x(j)),

and using the particular form of η, we obtain

Ak1(x(j)) = −fk(x(j))
η1

, k = 1, 2, . . . , n.

Therefore, the following approximate relation holds between the “old” and
“new” first-column elements:

Ak1(x(j+1)) ≈ Ak1(x(j)) +
fk(x(j+1))
‖η‖2 η1, k = 1, 2, . . . , n.

We can formally write

Akl(x(j+1)) ≈ Akl(x(j)) +
fk(x(j+1))
‖η‖2 ηl

for k, l = 1, 2, . . . , n, assuming that all columns except the first are left
unmodified (ηl = 0 for l = 2, 3, . . . , n). The last expression suggests the
formula

A(j+1) = A(j) +
f(x(j+1))
‖η(j)‖2 [η(j)]T (10.7)

to update the matrix, where T means transpose. It gives a reasonable up-
date of the corresponding column of the Jacobian matrix if η is parallel to
one of the coordinate axis. For this reason, it is called a rank-one update.

Having in mind the above heuristics, define (Newton-)Broyden iterations
as follows. Let A(0) = A(x(0)) be the Jacobian matrix at the initial point
x(0). The Broyden iterates are defined by

x(j+1) = x(j) + η(j), j = 0, 1, 2, . . . , (10.8)

where the displacement η(j) is the solution of the linear system

A(j)η(j) = −f(x(j)), (10.9)

and where the matrix A(j+1) to be used in the next iteration is given by
(10.7).

The resulting method has better convergence than the Newton-chord
modification. Under certain conditions (see the literature cited in Appendix
3), Broyden iterations (10.7)–(10.9) converge to the equilibrium x0 of sys-
tem (10.2) superlinearly; namely, the following property holds:

‖x(j+1) − x0‖
‖x(j) − x0‖ → 0, as j →∞.
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Remarks:
(1) There is no reason to expect that A(j) converges to the Jacobian

A(x0) at the equilibrium x0, even if the Broyden iterations converge to x0

as j → ∞. Thus we normally cannot use the finally obtained matrix A(j)

as the Jacobian, for example, to compute the eigenvalues of x0.
(2) As we have pointed out, if the Jacobian matrix A(x) has a certain

special (i.e., band) structure, we usually try to use it in solving the linear
system for η(j). Notice, however, that the Broyden update (10.7) may not
preserve this special structure. ♦

Convergence criteria

To terminate any of the described iterations when the required accuracy
is achieved (or no convergence at all happens), some convergence criteria
must be specified. We have two measures of convergence: the norm of the
displacement ‖η(j)‖ and the norm of the function ‖f(x(j))‖ at the jth
iteration. If the iterations converge, then both norms must tend to zero.
However, one could easily construct examples for which small ‖η(j)‖ at
finite j does not imply that the corresponding x(j) satisfies (10.2) with
reasonable accuracy. Therefore, the following combined criteria,

‖η(j)‖ < εx and ‖f(x(j))‖ < εf ,

prove to be most reliable. Here εx and εf are user-defined tolerances.

10.1.3 Equilibrium analysis
Stability

After an equilibrium x0 has been found with the desired accuracy, the next
task is to analyze the phase portrait nearby, in particular, to determine
whether x0 is stable or unstable.

In the generic case, the stability of x0 is determined by its eigenvalues,
that is, the roots of the characteristic polynomial

p(λ) = det(A− λIn).

In most existing eigenvalue solvers this polynomial is never constructed
explicitly. Instead, certain transformations are used to bring A into (block)
diagonal form. From such a form the eigenvalues are easily extractable.
Then, the number of the eigenvalues in the left (right) half-plane gives the
dimension of the stable (unstable) manifold of x0. The absence of eigenval-
ues with Re λ ≥ 0 means (exponential) stability (see Chapter 2). Actually,
to determine stability, we do not need to compute the eigenvalues at all.
There are methods to check stability by computing the determinants of
certain matrices whose elements are constructed from those of matrix A or
in terms of the coefficients of p(λ) by simple rules (see below).
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Local approximation of invariant manifolds

Let x0 = 0 be a saddle equilibrium of (10.1) with n− eigenvalues in the left
half-plane and n+ eigenvalues in the right half-plane, n− + n+ = n. In the
eigenbasis of the matrix A = fx(x0), (10.1) can be written as{

u̇ = Bu + g(u, v),
v̇ = Cv + h(u, v), (10.10)

where u ∈ R
n+ , v ∈ R

n− , and the n+ × n+ matrix B has only eigenvalues
with Re λ > 0, while the n−×n− matrix C has only eigenvalues satisfying
Re λ < 0. The functions g, h = O(‖(u, v)‖2) are smooth. Locally, the stable
and the unstable invariant manifolds of x0 can be represented as the graphs
of smooth functions,

W s(0) = {(u, v) : u = U(v)}, Wu(0) = {(u, v) : v = V (u)},
where U : R

n− → R
n+ , U(0) = 0, Uv(0) = 0, V : R

n+ → R
n− , V (0) = 0,

and Vu(0) = 0. Coefficients of the Taylor expansions of the functions U and
V can be found by the method of unknown coefficients, similar to those of
the center manifold in Chapter 5. Using the projection technique, we can
avoid the transformation of (10.1) into the eigenform (10.10) and instead
work in the original basis. Let us illustrate this technique by computing
quadratic approximation of the manifolds in the case when dimWu(0) =
codim W s(0) = 1 (i.e., n+ = 1, n− = n− 1).

Consider the system
ẋ = Ax + F (x), (10.11)

where A has one positive eigenvalue λ > 0 and (n − 1) eigenvalues with
negative real part. Let q ∈ R

n be the eigenvector corresponding to λ,

Aq = λq,

and let p ∈ R
n denote the adjoint eigenvector corresponding to the same

eigenvalue:
AT p = λp.

Normalize these vectors by setting

〈q, q〉 = 〈p, q〉 = 1,

where 〈p, q〉 = pT q is the standard scalar product in R
n. Now any vector

x ∈ R
n can be uniquely represented in the form

x = ξq + y,

where ξ ∈ R and y ∈ R
n are given by{

ξ = 〈p, x〉,
y = x− 〈p, x〉q.
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The vector y ∈ R
n belongs to the eigenspace T s corresponding to all non-

positive eigenvalues, i.e., 〈p, y〉 = 0. System (10.11) takes the form{
ξ̇ = λξ + G(ξ, y),
ẏ = Ay + H(ξ, y),

(10.12)

where
G(ξ, y) = 〈p, F (ξq + y)〉 = 〈y,Qy〉+ · · · ,

with some symmetric n× n matrix Q = QT , while

H(ξ, y) = F (ξq + y)− 〈p, F (ξq + y)〉q = rξ2 + · · · ,
with r ∈ T s, 〈p, r〉 = 0. The dots in the last two formulas stand for all
un-displayed terms of order two and higher, which are irrelevant in the
following.

The unstable manifold Wu(0) is locally represented by the function

y = Y (ξ) = sξ2 + O(ξ3),

where s ∈ T s ⊂ R
n is an unknown vector. Clearly, Y (ξ) satisfies the equa-

tion (invariance condition)

AY + H(ξ, Y )− (λξ + G(ξ, Y ))Yξ = 0.

Substituting the expression for Y (ξ) and collecting ξ2-terms, we get the
equation from which s can be found:

(2λIn −A)s = r.

The stable manifold W s(0) is given by

ξ = X(y) = 〈y,Ry〉+ O(‖y‖3),

where y ∈ T s, and R = RT is a symmetric matrix to be defined. The
function X(y) satisfies the equation

λX + G(X, y)− 〈Xy, Ay + H(X, y)〉 = 0.

Quadratic terms provide the equation to be solved for R:

〈y, (λR + Q− 2ATR)y〉 = 0,

where Q = QT is defined above. Therefore, the symmetric matrix R can
be found by solving the matrix equation

(AT − λIn)R + RA = Q.

We leave the reader to check that both this equation has a unique symmet-
ric solution, as well as to express r and Q in terms of the second partial
derivatives of F (x).
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Remarks:
(1) Tangent or quadratic approximations of the invariant manifolds W s,u

near the saddle point can be used in an attempt to compute them globally
by integration forward or backward in time. This method works if the
manifold is one-dimensional and system (10.1) is not stiff. It is particularly
well suited for planar systems.

(2) Approximations of the stable and unstable manifolds near a saddle
fixed point of a map can be obtained in a similar way. ♦

10.1.4 Location of limit cycles
Finding limit cycles of (10.1) is obviously a more complicated problem
than locating its equilibria. There is no regular way to solve this problem
in general. If the system possesses a stable cycle L0, we can try to find it by
numerical integration (simulation). If the initial point for the integration
belongs to the basin of attraction of L0, the computed orbit will converge
to L0 in forward time. Such a trick will fail to locate a saddle cycle, even
if we reverse time.

For a general cycle, we might state the problem locally, by assuming that
the position of the cycle is known approximately and then seeking to locate
it more accurately. Such a setting arises naturally if the system depends
on parameters. Then, we might know a cycle at certain parameter values
and wish to “continue” it with respect to some parameter by making small
steps. In this continuation process, a hyperbolic cycle will vary continu-
ously, and its position at the “previous” parameter value provides a good
approximation of the cycle at the “next” parameter value.

The cycle period T0 is usually unknown. It is convenient to formulate
the problem of cycle location as a periodic boundary-value problem (BVP)
on a fixed interval. Specifically, consider T0 as a parameter and introduce
the system

du

dτ
= T0f(u), (10.13)

which differs from (10.1) by the time-scaling factor T0, and where the new
time is called τ . Clearly, a solution u(τ) of (10.13) with some T0 fixed
satisfying the periodic boundary conditions

u(0) = u(1) (10.14)

corresponds to a T0-periodic solution of (10.1). However, condition (10.14)
does not define the periodic solution uniquely. Indeed, any time shift of a
solution to the periodic BVP (10.13), (10.14) is another solution. Thus, an
extra phase condition has to be appended to the problem (10.13), (10.14)
in order to “select” a solution among all those corresponding to the cycle:

Ψ[u] = 0, (10.15)
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where Ψ[u] is a scalar functional defined on periodic solutions. There are
several ways to set up a phase condition (10.15).

The condition
Ψ[u] = g(u(0)) = 0, (10.16)

where g(x) is some smooth scalar function, selects a solution passing at
τ = 0 through a point on the surface

Σ0 = {u ∈ R
n : g(u) = 0}.

If v(τ) is a smooth vector-valued function with period one, then

Ψ[u] = 〈u(0)− v(0), v̇(0)〉 = 0 (10.17)

specifies a solution u(τ) passing at τ = 0 through the hyperplane orthogonal
to the closed curve {u : u = v(τ), τ ∈ [0, 1]} at τ = 0. The “reference”
solution v is assumed to be known. If we continue a limit cycle with respect
to some parameter, v(τ) can be viewed as a solution corresponding to the
limit cycle at the “previous” parameter values.

However, the most reliable phase condition is provided by

Ψ[u] =
∫ 1

0
〈u(τ), v̇(τ)〉 dτ = 0, (10.18)

where v(τ) is the reference period-one solution. Condition (10.18) is called
the integral phase condition. It is a necessary condition for a local minimum
of the distance

ρ(σ) =
∫ 1

0
‖u(τ + σ)− v(τ)‖2 dτ

between u and v with respect to possible time shifts σ (Exercise 3).
To solve the periodic BVP (10.13)–(10.15), no matter which phase condi-

tion is chosen, we have to reduce it to a finite-dimensional problem. There
are several methods for such a discretization. Let us briefly describe the
most frequently used of them.

Shooting and multiple shooting

Let ψτ
T0

(u) be the solution of (10.13) at time τ , with initial point u, which
we should be able to compute numerically by some ODE-solver. Then, the
problem (10.13), (10.14), (10.16) is equivalent to solving the system{

ψ1
T0

(u0)− u0 = 0,
g(u0) = 0, (10.19)

where u0 = u(0). This system is a system of n + 1 scalar equations1 for
n + 1 unknowns, the components of u0 and T0, that we might try to solve

1The first n of them are defined numerically.
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by a Newton-like method. The Jacobian matrix of system (10.19) can be
obtained by numerical differencing or via the variational equations. If the
cycle has no unit multiplier µ = 1 and the surface Σ0 is a transversal
cross-section to the cycle, then the Newton iterations converge to the cy-
cle solution, starting from any sufficiently close approximation. Obviously,

0

Σ0

T

u 0

FIGURE 10.2. Locating a cycle by shooting.

solving (10.19) means finding a point u0 on the cross-section Σ0 that is a
fixed point of the associated Poincaré map, as well as the return time T0
(see Figure 10.2). The accuracy of the method is determined by the global
integration error.

Remark:
Notice that the multipliers µ1, µ2, . . . , µn−1 of the cycle L0 can be found

as the eigenvalues of the matrix

∂ψ1
T0

(u)
∂u

∣∣∣∣
u=u0

if we discount its eigenvalue λn = 1, which is always present. If the Newton
iterations converge, this matrix can be easily extracted from the Jacobian
matrix of (10.19) at the last Newton iteration. ♦

The above simple shooting fails in many cases, particularly if the cycle
under consideration is of saddle type. Then, a numerically obtained solu-
tion of (10.13) can be very different from the exact one ψτ

T0
(u) due to the

strong error growth in the unstable directions. One might attempt to reduce
the influence of this divergence by dividing the unit interval [0, 1] into N
(nonequal) subintervals, hoping that the error would not grow much while
integrating within each of them. To be more precise, introduce a mesh

0 = τ0 < τ1 < · · · < τN = 1,

and denote ∆j = τj+1 − τj , j = 0, 1, . . . , N − 1. Let uj = u(τj) be the
(unknown) solution values at the mesh points. Then, uj , j = 0, 1, . . . , N−1,
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and T0 can be found from the system
ψ∆0
T0

(u0)− u1 = 0,
ψ∆1
T0

(u1)− u2 = 0,
· · ·

ψ
∆N−1
T0

(uN−1)− u0 = 0,
g(u0) = 0.

(10.20)

This is a system of nN + 1 scalar equations for the n components of each
uj , j = 0, 1, . . . , N − 1, and the scaling factor (period) T0. Essentially, this

0

1N -

1N -

T 0

2

0
T 0

T 01N -

Σ

0

1

T

u

Σ

Σ

Σ

1

22

∆
∆

∆∆

u 0

u 1

u

FIGURE 10.3. Locating a cycle by multiple shooting.

method is equivalent to the representation of the Poincaré map P : Σ0 →
Σ0 by a superposition of N − 1 maps

P = PN−1 ◦ · · · ◦ P1 ◦ P0,

where
Pj : Σj → Σj+1, j = 0, 1, . . . , N − 1,

are correspondence maps along orbits of (10.13) between each pair of suc-
cessive cross-sections from

Σ0,Σ1, . . . ,ΣN−1,ΣN = Σ0

(see Figure 10.3). Such a method is called multiple shooting and has better
numerical stability than simple shooting, although it may fail due to the
same reasons. Usually, when applying multiple shooting, one takes rela-
tively few mesh points (small N) to avoid numerical difficulties in solving
the multidimensional linear problems arising in the Newton-like method.
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Finite differences

Now take the partitioning of [0, 1] by a sufficiently large number of mesh
points. Then ∆j will be small and the derivative u̇ at point τj can be
approximated by finite differences, for example,

u̇(τj) ≈ uj+1 − uj−1

τj+1 − τj−1
, j = 1, 2, . . . , N − 1.

Then, BVP (10.13)–(10.15) can be approximated by the following system
of equations:

uj+1 − uj−1 − (τj+1 − τj−1)T0f
( 1

2 (uj+1 + uj)
)

= 0,
uN − u0 = 0,

ψ[u0, u1, . . . , uN ] = 0,
(10.21)

where j = 1, 2, . . . , N − 1, and ψ[·] is a proper discretization of the phase
condition (10.15). For example, the phase condition (10.16) will read ψ =
g(u0) = 0. System (10.21) can be written (by eliminating uN ) as an equiv-
alent system of nN + 1 scalar equations for nN components of uj , j =
0, 1, . . . , N −1, and T0, and then solved by Newton’s method provided that
the usual regularity and sufficiently close initial data are given. It should
be pointed out that Jacobian matrices arising in the Newton iterations
for (10.21) have a special (band) structure that can be used to solve the
corresponding linear problems efficiently.

The accuracy of the approximation of a smooth solution u(τ) of (10.13)–
(10.15) by that of (10.21) can be estimated by

‖u(τj)− uj‖ = O(h2),

as h = max0≤j≤N−1 ∆j → 0. Thus, to achieve reasonable accuracy of the
solution, we have to take a sufficiently large N .

Orthogonal collocation

Consider the BVP (10.13), (10.14) with the integral phase condition (10.18),
and introduce once more the partitioning of the interval [0, 1] by N−1 mesh
points,

0 = τ0 < τ1 < · · · < τN = 1,

but now let us seek to approximate the solution by a piecewise-differentiable
continuous function that is a vector-polynomial u(j)(τ) of maximal degree m
within each subinterval [τj , τj+1], j = 0, 1, . . . , N−1. “Collocation” consists
of requiring the approximate solution to satisfy exactly system (10.13) at
m collocation points within each subinterval:

τj < ζj,1 < ζj,2 < · · · < ζj,m < τj+1.
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Namely, we require

du(j)

dτ

∣∣∣∣
τ=ζj,i

= T0f(u(j)(ζj,i)), (10.22)

for i = 1, . . . ,m, j = 0, 1, . . . , N − 1.
It is convenient to characterize each polynomial u(j)(τ), j = 0, 1, . . . , N−

1, by vectors
uj,k = u(j)(τj,k) ∈ R

n, k = 0, 1, . . . ,m,

which represent the (unknown) solution at the equidistant points

τj = τj,0 < τj,1 < τj,2 < · · · < τj,m = τj+1,

given by

τj,k = τj +
k

m
(τj+1 − τj), j = 0, 1, . . . , N − 1, k = 0, 1, . . . ,m.

Then, the polynomial u(j)(τ) can be represented via the interpolation for-
mula

u(j)(τ) =
m∑
i=0

uj,ilj,i(τ), (10.23)

where lj,i(τ) are the Lagrange basis polynomials:

lj,i(τ) =
m∏

k=0,k �=i

τ − τj,k
τj,i − τj,k

.

These polynomials satisfy

lj,i(τj,k) =
{

1 if i = k,
0 if i = k

(check this!), which justifies (10.23).
Equations (10.22) now can be treated as equations for uj,i. The periodic-

ity condition (10.14) and the phase condition (10.18) can also be substituted
by their discrete counterparts,

u0,0 = uN−1,m (10.24)

and
N−1∑
j=0

m∑
i=0

ωj,i〈uj,i, v̇j,i〉 = 0, (10.25)

where v̇j,i are the values of the derivative of the reference periodic solu-
tion at the points τj,i, and ωj,i are the Lagrange quadrature coefficients.
Equations (10.22), (10.24), and (10.25) compose a system of nmN + n+ 1
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scalar equations for the unknown components of uj,i and the period T0.
The number of equations is equal to that of the unknowns. The resulting
finite-dimensional system can be efficiently solved by a Newton-like method
if we take into account the block structure of the Jacobian.2

The most delicate problem in the described method, which we have not
touched yet, is how to select the collocation points {ζj,i}. We can try to tune
their position to minimize the approximation error. As it can be proved,
the optimal choice is to place them at the Gauss points, which are the roots
ζj,i, i = 1, 2, . . . ,m, of the mth degree Legendre polynomial relative to the
subinterval [τj , τj+1]. These roots are well known numerically (see Exercise
4) on the standard interval [−1, 1] and can be easily translated to each
[τj , τj+1]. The Legendre polynomials compose the orthogonal system on
the interval, giving the name to the method. Collocation at Gauss points
leads to an extremely high accuracy of the approximation of a smooth
solution of (10.13), (10.14), (10.18) by that of (10.22), (10.24), (10.25) at
the mesh points, namely

‖u(τj)− uj,0‖ = O(h2m),

as h = max0≤j≤N−1 ∆j → 0. The orthogonal collocation method has
proved to be the most reliable among those implemented for limit cycle
location.

As we shall see, the presented discretization methods are easily adapt-
able for automatic numerical continuation of limit cycles under parameter
variation.

Remark:
Location of period-k orbits of a discrete-time system x �→ f(x) can be

carried out by applying a Newton-like method to the system

fk(x)− x = 0,

where fk is the kth iterate of the map f. ♦

10.2 One-parameter bifurcation analysis

Now consider a continuous-time system depending upon one parameter:3

ẋ = f(x, α), x ∈ R
n, α ∈ R

1, (10.26)

where f is a smooth function of (x, α). The bifurcation analysis of the
system means the construction of its one-parameter bifurcation diagram,
in particular, studying the dependence of equilibria and limit cycles on the
parameter, as well as locating and analyzing their bifurcations.

2One can also extract the cycle multipliers from this matrix.
3The other parameters, if present, are assumed to be fixed.
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10.2.1 Continuation of equilibria and cycles
Equilibrium points of (10.26) satisfy

f(x, α) = 0, (10.27)

that is, a system of n scalar equations in R
n+1 endowed with the coordi-

nates (x, α). As we have mentioned earlier, generically, (10.27) defines a
smooth one-dimensional manifold (curve) M in R

n+1. Computation of this
equilibrium curve gives the dependence of an equilibrium of (10.26) on the
parameter α (see Figure 10.4).

α(  ,    ) = 0f  x  

x

α

FIGURE 10.4. Equilibrium curve.

The problem of computing the curve M is a specific case of the general
(finite-dimensional) continuation problem – that means finding a curve in
R
n+1 defined by n equations:

F (y) = 0, F : R
n+1 → R

n. (10.28)

By the Implicit Function Theorem, system (10.28) locally defines a smooth
curve M passing through a point y0 satisfying (10.28), provided that rank J
= n, where J = Fy(y0) is the Jacobian matrix of (10.28) at y0 (regularity).
In (10.27), y = (x, α), and the regularity condition is definitely satisfied at
hyperbolic equilibria, as well as at generic fold points.

The numerical solution of the continuation problem (10.28) means com-
puting a sequence of points,

y1, y2, y3, . . . ,

approximating the curve M with desired accuracy. An initial point y0,
which is sufficiently close to M (or belongs to it), from which the sequence
can be generated in one of the two possible directions, is assumed to be
known. In the equilibrium case, this point y0 = (x0, α0) usually corresponds
to an equilibrium x0 of (10.26) found at some fixed parameter value α0 by
one of the methods described in the previous section.
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Most of the continuation algorithms used in bifurcation analysis imple-
ment predictor-corrector methods and include three basic steps performing
repeatedly:

(i) prediction of the next point;
(ii) correction;
(iii) step-size control.

Prediction

Suppose that a regular point yj in the sequence has been found. Then, the
next point in the sequence can be guessed using the tangent prediction

ỹj+1 = yj + hjv
j , (10.29)

where hj is the current step size, and vj ∈ R
n+1 is the normalized tangent

vector to the curve M at the point yj , ‖vj‖ = 1 (see Figure 10.5(a)). If

y y

yM M

j

(a) (b)

v

1

v

j

j

j - 

j

FIGURE 10.5. (a) Tangent and (b) secant predictions.

y(s) is a parametrization of the curve near yj , say, by the arclength with
y(0) = yj , then substituting y = y(s) into (10.28) and computing the
derivative with respect to s give

J(yj)vj = 0, (10.30)

since vj = ẏ(0) (a dot now denotes differentiation with respect to s). Here
J(yj) is the Jacobian of (10.28) evaluated at yj ,

J(yj) =
∂F

∂y

∣∣∣∣
y=yj

.

System (10.30) has a unique solution (to within a scalar multiple) since
rank J(yj) = n by the assumption of regularity.4 To compute the tangent

4Essentially, the regularity of M is equivalent to the existence of a unique
tangent direction at each point y ∈ M .
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vector from (10.30), we have to fix its norm. The simplest way to do this is
to preset some vi0 = 1, solve the system for the other components, and then
normalize the resulting vector, taking care to preserve the proper direction
along the curve. An index i0 that guarantees the solvability of the linear
system for the other components is granted to exist. Equivalently, we could
solve the (n + 1)-dimensional appended system(

J
(vj−1)T

)
vj =

(
0
1

)
,

where vj−1 ∈ R
n+1 is the tangent vector at the previous point yj−1 on

the curve. This system is nonsingular for a regular curve M if the points
yj and yj−1 are sufficiently close. The solution vector vj is tangent to the
curve at yj and satisfies the normalization

〈vj−1, vj〉 = 1,

thus preserving the direction along the curve.
Another popular prediction method is the secant prediction. It requires

two previous (distinct) points on the curve, yj−1 and yj . Then the predic-
tion is given by (10.29), where now

vj =
yj−1 − yj

‖yj−1 − yj‖ (10.31)

(see Figure 10.5(b)). The method cannot be applied at the first point y1

on the curve.

Correction

Having predicted a point ỹj+1 presumably close to the curve, we need to
locate the next point yj+1 on the curve to within a specified accuracy. This
correction is usually performed by some Newton-like iterations. However,
the standard Newton iterations can only be applied to a system in which
the number of equations is equal to that of the unknowns. Thus, an extra
scalar condition

gj(y) = 0

has to be appended to (10.28) in order to apply Newton’s method to the
system {

F (y) = 0,
gj(y) = 0. (10.32)

Geometrically this means that we look for an intersection of the curve M
with some surface near ỹj+1. It is natural to assume that the prediction
point ỹj+1 belongs to this surface (i.e., gj(ỹj+1) = 0). There are several
different ways to specify the function gj(y).
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FIGURE 10.6. (a) Natural and (b) pseudo-arclength continuation.

(Natural continuation) The simplest way is to take a hyperplane passing
through the point ỹj+1 that is orthogonal to one of the coordinate axes,
namely, set

gj(y) = yi0 − ỹj+1
i0

. (10.33)

Clearly, the best choice of i0 is provided by the index of the component of
vj with the maximum absolute value (see Figure 10.6(a)). In this case, the
coordinate yi0 is locally the most rapidly changing along M . Obviously, the
index i0 may differ from point to point.

(Pseudo-arclength continuation) Another possibility is to select a hyper-
plane passing through the point ỹj+1 that is orthogonal to the vector vj

(see Figure 10.6(b)):

gj(y) = 〈y − ỹj+1, vj〉 = 〈y − yj , vj〉 − hj . (10.34)

If the curve is regular (rank J(y) = n) and the step size hj is sufficiently
small, one can prove that the Newton iterations for (10.32) will converge
to a point yj+1 on the curve M from the predicted point ỹj+1 for both
methods. Notice that we can extract the matrix J(yj+1) needed in (10.30)
from the computed Jacobian of (10.32) at the last Newton iteration. More-
over, the index i0 used at the current step of natural continuation can be
employed to determine the next tangent vector vj+1 from (10.30) upon
setting vj+1

i0
= 1.

(Moore-Penrose continuation) The function gj(y) in (10.32) may be adap-
ted in the course of the Newton iterations. For example, the plane in which
the current iteration happens can be made orthogonal to a normalized vec-
tor V k satisfying J(Y k−1)V k = 0, where Y k−1 is the point obtained at the
previous Newton iteration, so that

gjk(y) = 〈y − Y k−1, V k〉

(see Figure 10.7). For the first iteration, Y 0 = yj+hvj , V 1 = vj . Notice that
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FIGURE 10.7. Moore-Penrose continuation.

vector V k with k ≥ 2 is tangent to the “perturbed curve” F (Y ) = F (Y k−1)
at the point Y k−1 on it. One can prove local convergence of such modified
iterations under the regularity condition. Exercise 13 explains the relation
of this continuation method with the Moore-Penrose matrix inverse.

Step-size control

There are many sophisticated algorithms to control the step size hj ; how-
ever, the simplest convergence-dependent control has proved to be reliable
and easily implementable. That is, we decrease the step size and repeat
the corrections if no convergence occurs after a prescribed number of iter-
ations; we increase the step size hj+1 with respect to hj if the convergence
requires only a few iterations; and we keep the current step hj+1 = hj if
the convergence happens after a “moderate” number of iterations.

Remarks:
(1) The continuation methods described above are obviously applicable

to compute fixed-point curves of a discrete-time system

x �→ f(x, α), x ∈ R
n, α ∈ R

1.

Indeed, the corresponding equation

f(x, α)− x = 0

has the form (10.28).
(2) The continuation of limit cycles in one-parameter systems also re-

duces to a continuation problem (10.28) by performing a discretization of
the periodic boundary-value problem for the cycle continuation:

u̇(τ)− Tf(u(τ), α) = 0,
u(1)− u(0) = 0,∫ 1

0 〈u(τ), u̇0(τ)〉 dτ = 0,
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where the last equation is the integral phase condition with a reference
solution u0(τ). The resulting finite-dimensional system will have the form

F(ξ, α) = 0, F : R
N+1 → R

N ,

where ξ ∈ R
N contains the discretization data corresponding to u(·) and

the cycle period T , while α ∈ R
1 is a free system parameter. For example,

ξ ∈ R
N can be composed of the interpolation coefficients {uj,i} appearing

in the orthogonal collocation and T . This continuation problem defines a
curve in the direct product of the ξ-space and the parameter axis. The
reference periodic solution u0 involved in the phase condition is usually
taken to be a solution corresponding to the cycle obtained at a previous
step along the curve. ♦

10.2.2 Detection and location of codim 1 bifurcations
In continuous-time systems, there are two generic codim 1 bifurcations
that can be detected along the equilibrium curve: the fold and the Hopf
bifurcations.

The main idea of the following is to define some scalar smooth func-
tions that have regular zeros at the bifurcation points. Such functions are
called test or bifurcation functions. A bifurcation point is said to be detected
between two successive points yk and yk+1 on the curve

F (y) = 0, F : R
n+1 → R

n,

if a test function ψ = ψ(y) has the opposite signs at these points

ψ(yk)ψ(yk+1) < 0. (10.35)

Then one may try to locate a point where ψ vanishes more accurately in
the same manner as a regular point, namely, by applying a Newton-like
method to the system {

F (y) = 0,
ψ(y) = 0, (10.36)

with the initial point y(0) = yk, for example. Clearly, to apply Newton’s
method, the test function ψ has to be defined and differentiable in a neigh-
borhood of the equilibrium curve. It might happen that the test function is
such that the Jacobian of (10.36) is singular at the point on the curve where
ψ = 0. In this case, standard Newton’s method is inappropriate; instead we
can implement the one-dimensional secant method to locate ψ = 0 along
the curve.

Let us describe two simple test functions to detect and locate fold and
Hopf bifurcation points in continuous-time systems. Consider the equilib-
rium curve

f(x, α) = 0, x ∈ R
n, α ∈ R

1, (10.37)

corresponding to system (10.26).
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Fold detection and location

Clearly, the function

ψt(x, α) = λ1(x, α)λ2(x, α) · · ·λn(x, α), (10.38)

where λj(x, α) are the eigenvalues of the Jacobian matrix A(x, α) = fx(x, α),
is a test function for the fold bifurcation. It is smooth and has a regular
zero at a generic fold bifurcation point (check!). Moreover, the Jacobian of
(10.36) with y = (x, α) is nonsingular at such a point, so Newton’s method
can be applied to locate it. The Newton iterations, if converged, provide
the coordinates of the equilibrium with zero eigenvalue and the critical
parameter value at which it exists.

The test function (10.38) formally requires us to know all the eigenvalues
of A for its computation. These eigenvalues can be found numerically at
each point on the curve by one of the standard routines. However, there is
an obvious way to avoid eigenvalue computation. Notice that the product
in the right-hand side of (10.38) is merely the determinant of A(x, α),
which can be efficiently computed without dealing with its eigenvalues (by
Gaussian elimination, for example). Thus, a popular test function for the
fold is

ψt(x, α) = det
(
∂f(x, α)

∂x

)
. (10.39)

Another way to detect a fold point is to monitor for extremum points with
respect to the parameter on the equilibrium curve. Clearly, at a generic fold
point the α-component of the tangent vector v changes sign.

Hopf detection and location

Consider the function

ψH(x, α) =
∏
i>j

(λi(x, α) + λj(x, α)), (10.40)

where the previous notation is used. This function vanishes at a Hopf bi-
furcation point, where there is a pair of multipliers λ1,2 = ±iω0. Clearly,
ψH = 0 also if there is a pair of real eigenvalues

λ1 = κ, λ2 = −κ.
Thus we have to be careful to ignore such points when looking for Hopf
bifurcations. The function ψH is real and smooth and has a regular zero
at a generic Hopf bifurcation point. Moreover, the Jacobian of (10.36) is
nonsingular at such a point, and Newton’s method can be applied.

As in the previous case, there is a way to avoid explicit computation of
all the eigenvalues of A, although it is slightly more difficult. As noted in
Chapter 8, the bialternate product can be used to compute ψH .

Let A and B be n×n matrices with elements {aij} and {bij}, respectively,
1 ≤ i, j ≤ n. Set m = 1

2n(n− 1).
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FIGURE 10.8. Labeling of the elements of the bialternate product matrix for
n = 4.

Definition 10.1 The bialternate product of A and B is an m × m ma-
trix, denoted A + B, whose rows are labeled by the multi-index (p, q) (p =
2, 3, . . . , n; q = 1, 2, . . . , p− 1), and whose columns are labeled by the multi-
index (r, s) (r = 2, 3, . . . , n; s = 1, 2, . . . , r − 1), and the elements are given
by

(A+B)(p,q),(r,s) =
1
2

{∣∣∣∣ apr aps
bqr bqs

∣∣∣∣ +
∣∣∣∣ bpr bps
aqr aqs

∣∣∣∣} .

Figure 10.8 illustrates the labeling of the elements of the 6×6 matrix A⊗B,
when A and B are two 4×4 matrices. The following classical theorem, which
we give without proof, explains the importance of the bialternate product.

Theorem 10.3 (Stéphanos [1900]) Let A be an n×n matrix with eigen-
values λ1, λ2, . . . , λn. Then

(i) A+A has eigenvalues λiλj ;
(ii) 2A+ In has eigenvalues λi + λj ;

where i = 2, 3, . . . , n; j = 1, 2, . . . , i−1, and In is the n×n identity matrix.
✷

Therefore, the test function (10.40) can be expressed as

ψH(x, α) = det
(

2
∂f(x, α)

∂x
+ In

)
. (10.41)

The definition of the bialternate product leads to the following formula for
2A+ In:

(2A+ In)(p,q),(r,s) =
∣∣∣∣ apr aps
δqr δqs

∣∣∣∣ +
∣∣∣∣ δpr δps
aqr aqs

∣∣∣∣ ,
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where δij is the Kronecker delta.5 Computing the determinants, we get

(2A+ In)(p,q),(r,s) =



−aps if r = q,
apr if r = p and s = q,

app + aqq if r = p and s = q,
aqs if r = p and s = q,
−aqr if s = p,

0 otherwise.

Thus, the computation of the elements of 2A + In can be efficiently pro-
grammed given the matrix A.

Example 10.1 If n = 3, the matrix B = 2A+ I3 is the 3× 3 matrix

B =

 a22 + a11 a23 −a13
a32 a33 + a11 a12
−a31 a21 a33 + a22

 . ✸

Let us construct test functions to locate codim 1 bifurcations in discrete-
time systems. Suppose that we have a map

x �→ f(x, α), x ∈ R
n, α ∈ R

1,

and that we continue its fixed-point curve

f(x, α)− x = 0.

Let µ1, µ2, . . . , µn be multipliers of the Jacobian matrix A = fx evaluated
at (x, α). The following test functions will obviously locate fold, flip, and
Neimark-Sacker bifurcations, respectively:

ϕt =
n∏

i=1

(µi − 1), (10.42)

ϕf =
n∏

i=1

(µi + 1), (10.43)

ϕNS =
∏
i>j

(µiµj − 1). (10.44)

To detect a true Neimark-Sacker bifurcation, we must check that ϕNS = 0
is caused by the presence of nonreal multipliers with the unit product:
µiµj = 1. Similarly to the continuous-time cases, we can express the test
functions (10.42)–(10.44) in terms of the Jacobian matrix itself. Namely,

ϕt = det(A− In), (10.45)
ϕf = det(A + In), (10.46)

5δii = 1, δij = 0 for i �= j.
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and
ϕNS = det(A+A− Im), (10.47)

where Ik is the k × k identity matrix, m = 1
2n(n − 1). The last formula

follows from statement (i) of Theorem 10.3. Using the definition of the
bialternate product, we get

(A+A)(p,q),(r,s) =
∣∣∣∣ apr aps
aqr aqs

∣∣∣∣ .
10.2.3 Analysis of codim 1 bifurcations
To apply the theory developed in Chapters 3, 4, and 5 to detected bifur-
cation points, we have to verify that the appropriate genericity conditions
are satisfied. The verification of the transversality with respect to the pa-
rameter is rather straightforward and will not be considered. Instead, we
focus on the computation of relevant normal form coefficients at the critical
parameter value, i.e., checking the nondegeneracy conditions.

Assume that a bifurcation point (x0, α0) has been detected on the equi-
librium curve.

Fold bifurcation

As we showed in Chapter 5 (see Section 5.4.3), the restriction of system
(10.26) to its one-dimensional center manifold at a fold bifurcation point
can be written as

u̇ =
1
2
σu2 + O(u3),

where
σ = 〈p,B(q, q)〉

(see formula (5.55)). Here q, p ∈ R
n are eigenvectors satisfying

Aq = 0, AT p = 0,

which are normalized with respect to each other according to

〈p, q〉 = 1.

To specify the vectors completely, assume that

〈q, q〉 = 1.

The bilinear function B : R
n × R

n → R
n is defined by

Bi(x, y) =
n∑

j,k=1

∂2fi(ξ, α0)
∂ξj∂ξk

∣∣∣∣
ξ=x0

xjyk, i = 1, 2, . . . , n. (10.48)
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We can find σ by computing only one second-order derivative of a scalar
function. Indeed, we can easily check that

B(q, q) =
d2

dτ2 f(x0 + τq, α0)
∣∣∣∣
τ=0

,

and, therefore,

〈p,B(q, q)〉 =
d2

dτ2 〈p, f(x0 + τq, α0)〉
∣∣∣∣
τ=0

. (10.49)

The second derivative in (10.49) can be approximated numerically using
finite differences, for example:

〈p,B(q, q)〉 =
1
h2

[〈p, f(x0 + hq, α0)〉+ 〈p, f(x0 − hq, α0)〉] + O(h3),

where h is an increment and the equilibrium condition f(x0, α0) = 0 is
taken into account. Notice that all the objects involved in (10.49) are ex-
pressed in the original coordinates. Thus, computation of σ is reduced to
finding the eigenvectors q and p, their normalization, and applying formula
(10.49) or its finite-difference analogue. If σ = 0, a generic fold bifurcation
happens, given the transversality with respect to the parameter.

Hopf bifurcation

According to formula (5.59) from Section 5.4.3 of Chapter 5, the first Lya-
punov coefficient determining whether the Hopf bifurcation is sub- or su-
percritical is given by

l1(0) =
1

2ω0
Re

[〈p, C(q, q, q̄)〉 − 2〈p,B(q, A−1B(q, q̄))〉
+ 〈p,B(q̄, (2iω0In −A)−1B(q, q))〉] , (10.50)

where q and p satisfy

Aq = iω0q, A
T p = −iω0p,

and are normalized by setting

〈p, q〉 = 1.

To specify the vectors completely, assume also that

〈q, q〉 = 1, 〈Re q, Im q〉 = 0.

The bilinear function B(x, y) is given by (10.48), while the function C :
R
n × R

n × R
n → R

n is defined by

Ci(x, y, z) =
n∑

j,k,l=1

∂3fi(ξ, α0)
∂ξj∂ξk∂ξl

∣∣∣∣
ξ=x0

xjykzl, i = 1, 2, . . . , n. (10.51)
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If the programming language you use supports complex arithmetic, formula
(10.50) can be implemented directly with the partial derivatives in (10.48)
and (10.51) evaluated numerically. However, there is a way to make com-
putations real and to avoid computing all second- and third-order partial
derivatives of f at (x0, α0) involved in (10.48) and (10.51).

First, note that we can easily evaluate the multilinear functions B(x, y)
and C(x, y, z) on any set of coinciding real vector arguments by computing
certain directional derivatives. Indeed, the vector B(v, v) for v ∈ R

n can be
computed by the formula

B(v, v) =
d2

dτ2 f(x0 + τv, α0)
∣∣∣∣
τ=0

, (10.52)

which we have already used. The vector C(v, v, v) for v ∈ R
n can be calcu-

lated by a similar formula:

C(v, v, v) =
d3

dτ3 f(x0 + τv, α0)
∣∣∣∣
τ=0

. (10.53)

We can approximate these derivatives with respect to the scalar variable τ
via finite differences, for example,

B(v, v) =
1
h2

[
f(x0 + hv, α0) + f(x0 − hv, α0)

]
+ O(h3)

for (10.52), and

C(v, v, v) =
1

8h3

[
f(x0 + 3hv, α0)− 3f(x0 + hv, α0)

+ 3f(x0 − hv, α0)− f(x0 − 3hv, α0)
]

+ O(h3)

for (10.53), where h # 1 is a small increment. Therefore, let us rewrite
(10.50) in terms of expressions computable via (10.52) and (10.53).

Denote the real and imaginary parts of the eigenvector q by qR and qI ,
respectively,

q = qR + iqI , q ∈ C
n, qR, qI ∈ R

n.

Then we have

B(q, q) = B(qR, qR)−B(qI , qI) + 2iB(qR, qI),
B(q, q̄) = B(qR, qR) + B(qI , qI),

C(q, q, q̄) = C(qR, qR, qR) + C(qR, qI , qI) + iC(qR, qR, qI) + iC(qI , qI , qI).

Notice that the vectors B(qR, qR), B(qI , qI), C(qR, qR, qR), and C(qI , qI , qI)
can be directly computed by (10.52) and (10.53), while B(qR, qI), C(qR, qI , qI),
and C(qR, qR, qI) require more treatment. Essentially, it is enough to be
able to compute the multilinear functions B(v, w) and C(v, v, w) for real
vectors v, w ∈ R

n using (10.52) and (10.53).
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The identities

B(v + w, v + w) = B(v, v) + 2B(v, w) + B(w,w),
B(v − w, v − w) = B(v, v)− 2B(v, w) + B(w,w)

allow us to express the vector B(v, w) as

B(v, w) =
1
4

[B(v + w, v + w)−B(v − w, v − w)]

(“polarization identity”). The right-hand side can be computed using (10.52).
Similarly, the identities

C(v+w, v+w, v+w) = C(v, v, v) + 3C(v, v, w) + 3C(v, w,w) +C(w,w,w)

and

C(v−w, v−w, v−w) = C(v, v, v)−3C(v, v, w) + 3C(v, w,w)−C(w,w,w)

lead to the following expression for C(v, v, w):

C(v, v, w) =
1
6

(C(v+w, v+w, v+w)−C(v−w, v−w, v−w))− 1
3
C(w,w,w),

with the right-hand side computable by (10.53).
The linear system

Ar = B(q, q̄)

involves only real quantities and can be rewritten as

Ar = B(qR, qR) + B(qI , qI).

Its solution r is a real vector. The scalar product 〈p,B(q, r)〉 from (10.50)
can be transformed as

〈p,B(q, r)〉 = 〈pR, B(qR, r)〉+i〈pR, B(qI , r)〉−i〈pI , B(qR, r)〉+〈pI , B(qI , r)〉,
so that

Re〈p,B(q, r)〉 = 〈pR, B(qR, r)〉+ 〈pI , B(qI , r)〉.
All the bilinear functions inside the scalar products to the right are of
the form B(v, w) and are thus reducible via the polarization identity to
quantities computable by (10.52).

The linear complex system

(2iω0I −A)s = B(q, q)

is equivalent to the real system of double the dimension,{ −AsR − 2ω0sI = B(qR, qR)−B(qI , qI),
2ω0sR −AsI = 2B(qR, qI),
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where sR and sI are real and imaginary parts of s. Then the scalar product
〈p,B(q̄, s)〉 from (10.50) can be written as

〈p,B(q̄, s)〉 = 〈pR, B(qR, sR)〉+ i〈pR, B(qR, sI)〉
− i〈pR, B(qI , sR)〉+ 〈pR, B(qI , sI)〉
− i〈pI , B(qR, sR)〉+ 〈pI , B(qR, sI)〉
− 〈pI , B(qI , sR)〉 − i〈pI , B(qI , sI)〉,

so that

Re〈p,B(q̄, s)〉 = 〈pR, B(qR, sR)〉 + 〈pR, B(qI , sI)〉
+ 〈pI , B(qR, sI)〉 − 〈pI , B(qI , sR)〉,

where all the bilinear functions are of the form B(v, w) and are thus re-
ducible to (10.52).

The scalar product 〈p, C(q, q, q̄)〉 from (10.48) can be expressed as

〈p, C(q, q, q̄)〉 = 〈pR, C(qR, qR, qR)〉+ 〈pR, C(qR, qI , qI)〉
+ i〈pR, C(qR, qR, qI)〉+ i〈pR, C(qI , qI , qI)〉
− i〈pI , C(qR, qR, qR)〉 − i〈pI , C(qR, qI , qI)〉
+ 〈pI , C(qR, qR, qI)〉+ 〈pI , C(qI , qI , qI)〉,

which gives

Re〈p, C(q, q, q̄)〉 = 〈pR, C(qR, qR, qR)〉 + 〈pR, C(qR, qI , qI)〉
+ 〈pI , C(qR, qR, qI)〉 + 〈pI , C(qI , qI , qI)〉.

This expression can be transformed into the formula

Re〈p, C(q, q, q̄)〉 =
2
3
〈pR, C(qR, qR, qR)〉 +

2
3
〈pI , C(qI , qI , qI)〉

+
1
6
〈pR + pI , C(qR + qI , qR + qI , qR + qI)〉

+
1
6
〈pR − pI , C(qR − qI , qR − qI , qR − qI)〉

involving only directional derivatives of the form (10.53).

Let us summarize the steps needed to compute l1(0).

Step 0. Evaluate the Jacobian matrix A = fx(x0, α0) of (10.26) at the
equilibrium x0 exhibiting the Hopf bifurcation at the critical parameter
value α0.
Step 1. Find four vectors qR, qI , pR, pI ∈ R

n satisfying the systems{
AqR + ω0qI = 0,

−ω0qR + AqI = 0,
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and {
AT pR − ω0pI = 0,
ω0pR + AT pI = 0,

and normalize them according to

〈qR, qR〉+ 〈qI , qI〉 = 1, 〈qR, qI〉 = 0,

〈pR, qR〉+ 〈pI , qI〉 = 1, 〈pR, qI〉 − 〈pI , qR〉 = 0.

Step 2. Compute the following vectors by the directional differentiation:

a =
d2

dτ2 f(x0 + τqR, α
0)
∣∣∣∣
τ=0

,

b =
d2

dτ2 f(x0 + τqI , α
0)
∣∣∣∣
τ=0

and

c =
1
4

d2

dτ2

[
f(x0 + τ(qR + qI), α0)− f(x0 + τ(qR − qI), α0)

]∣∣∣∣
τ=0

.

Step 3. Solve the linear systems for r and (sR, sI):

Ar = a + b,

and { −AsR − 2ω0sI = a− b,
2ω0sR −AsI = 2c.

Step 4. Compute the following numbers:

σ1 =
1
4
d2

dτ2

〈
pR, f(x0 + τ(qR + r), α0)− f(x0 + τ(qR − r), α0)

〉∣∣∣∣
τ=0

,

σ2 =
1
4
d2

dτ2

〈
pI , f(x0 + τ(qI + r), α0)− f(x0 + τ(qI − r), α0)

〉∣∣∣∣
τ=0

,

and evaluate their sum
Σ0 = σ1 + σ2.

Step 5. Compute the numbers

δ1 =
1
4
d2

dτ2

〈
pR, f(x0 + τ(qR + sR), α0)− f(x0 + τ(qR − sR), α0)

〉∣∣∣∣
τ=0

,

δ2 =
1
4
d2

dτ2

〈
pR, f(x0 + τ(qI + sI), α0)− f(x0 + τ(qI − sI), α0)

〉∣∣∣∣
τ=0

,
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δ3 =
1
4
d2

dτ2

〈
pI , f(x0 + τ(qR + sI), α0)− f(x0 + τ(qR − sI), α0)

〉∣∣∣∣
τ=0

,

δ4 =
1
4
d2

dτ2

〈
pI , f(x0 + τ(qI + sR), α0)− f(x0 + τ(qI − sR), α0)

〉∣∣∣∣
τ=0

,

and evaluate
∆0 = δ1 + δ2 + δ3 − δ4.

Step 6. Compute the numbers

γ1 =
d3

dτ3 〈pR, f(x0 + τqR, α
0)〉

∣∣∣∣
τ=0

,

γ2 =
d3

dτ3 〈pI , f(x0 + τqI , α
0)〉

∣∣∣∣
τ=0

,

γ3 =
d3

dτ3 〈pR + pI , f(x0 + τ(qR + qI), α0)〉
∣∣∣∣
τ=0

,

γ4 =
d3

dτ3 〈pR − pI , f(x0 + τ(qR − qI), α0)〉
∣∣∣∣
τ=0

,

and take
Γ0 =

2
3

(γ1 + γ2) +
1
6

(γ3 + γ4).

Step 7. Finally, compute

l1(0) =
1

2ω0
(Γ0 − 2Σ0 + ∆0).

If l1(0) = 0 and the eigenvalues cross the imaginary axis with nonzero
velocity, a unique limit cycle appears under variation of α. To complete
the Hopf bifurcation analysis, derive an algorithm allowing us to start the
continuation of the bifurcating limit cycle away from the Hopf point by one
of the methods described above. Therefore, we have to obtain a periodic
solution from which we can initialize the cycle continuation. Recall that
the cycles near a generic Hopf point form a paraboloid-like surface in the
phase-parameter space that is tangent to the plane

x = zq + z̄q̄,

where z ∈ C
1, and q is the properly normalized critical eigenvector. The

linear part of the system restricted to the center manifold is simply

ż = iω0z,

having the solution z(t) = z0e
iω0t. Therefore, the linear approximation of

the bifurcating limit cycle with the “amplitude” z0 = ε is given by

xε(t) = (eiω0tq + e−iω0tq̄)ε = 2ε Re[eiω0tq],
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where ε ∈ R
1 is a user-defined small number. The resulting starting solution

can be presented in real form as

xε(t) = 2ε(qR cosω0t− qI sinω0t), (10.54)

where qR, qI ∈ R
n are the real and imaginary parts of the complex eigen-

vector q. One can derive a quadratic approximation to the cycle near the
Hopf bifurcation; however, formula (10.54) is accurate enough to start the
cycle continuation in most cases.

10.2.4 Branching points
In general, the equilibrium curve (10.27) can have branching points.

Definition 10.2 A point y∗ is called a branching point for the continua-
tion problem

F (y) = 0, F : R
n+1 → R

n, (10.55)

if F (y∗) = 0 and there are at least two different smooth curves satisfying
(10.55) and passing through y∗.

Two examples of branching are presented in Figure 10.9 for n = 1. We

FIGURE 10.9. Branching points.

can consider the curves in the figure as equilibrium curves of certain scalar
systems depending on one parameter; y = (x, α).

Remarks:
(1) A branching point may appear if the curve makes a loop and intersects

itself at a point y∗. That is why branching points are often called self-
crossing points.

(2) Sometimes, branching points are merely called bifurcation points. The
latter term is appropriate if we study equilibria only but is misleading in
general. Indeed, neither nondegenerate fold nor Hopf bifurcation points are
branching points of an equilibrium curve. ♦

The reader should understand that the appearance of branching points
is a nongeneric phenomenon: A generic curve (10.55) (with rank Fy = n
along the curve) has no branching points by the Implicit Function Theorem.
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FIGURE 10.10. Branching points disappear under generic perturbations.

Moreover, if the continuation problem (10.55) has a branching point, C1-
close problems will, generically, have no branching points at all (see Figure
10.10).

However, branching points appear easily if a certain symmetry is present.
Indeed, as we have seen in Chapter 7, the pitchfork bifurcation, which is a
branching point, happens generically in Z2-invariant systems. Another im-
portant example is provided by the flip bifurcation in discrete-time systems.
Suppose that the fixed point x(1)(α) of the map

x �→ f(x, α) = fα(x), x ∈ R
n, α ∈ R

1,

exhibits a generic flip bifurcation at α = 0. Denote by x
(2)
1,2(α) the points

forming the period-two cycle bifurcating from x(1)(α) at α = 0. Since
x(1)(α) is a fixed point of the second iterate f2

α of the map fα, the flip
point (x(1)(0), 0) is a branching point for the continuation problem for cy-
cles of period two:

f2
α(x)− x = 0, x ∈ R

n, α ∈ R
1.

Therefore, we need to be able to detect and locate branching points, while
continuing a curve defined by (10.55), and to start the continuation of other
branches emanating from each located point. Let us treat these problems.
The following discussion involves quadratic terms of F . Let y∗ = 0 be a
branching point for (10.55). Write the Taylor expansion of F (y) at y = 0
as

F (y) = J(0)y +
1
2
B(y, y) + O(‖y‖3),

where J(y) = Fy(y) is the n × (n + 1) Jacobian matrix of (10.55), and
B : R

n+1×R
n+1 → R

n is the bilinear part of F (y) at the branching point:

Bi(x, y) =
n+1∑
j,k=1

∂2Fi(ξ)
∂ξj∂ξk

∣∣∣∣
ξ=x0

xjyk, i = 1, 2, . . . , n. (10.56)

Let y(s) be a smooth branch passing through the point y = 0 and
parametrized by the arclength s such that y(0) = 0. Denote by v the
vector tangent to this branch at y = 0 : v = ẏ(0) ∈ R

n+1. As we have
already pointed out, the vector v satisfies the equation

J(0)v = 0 (10.57)
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(which results from F (y(s)) = 0 by differentiating with respect to s and
evaluating the result at s = 0). Denote by K the null-space of J(0) com-
posed of all vectors satisfying (10.57):

K = {v ∈ R
n+1 : J(0)v = 0}.

All vectors tangent to branches passing through the point y = 0 belong to
K. If y = 0 were a regular point where rank J(0) = n, then dimK = 1.
If two branches of (10.55) intersect transversally at y = 0, dimK = 2,
because their respective tangent vectors at the branching point, v1 and v2,
both satisfy (10.57) (see Figure 10.11).

v

0

2

v
1K

M 2

M 1

FIGURE 10.11. Two intersecting curves passing through a branching point.

Consider only the case when K is spanned by two linear independent
vectors q1 and q2, and derive another equation which the tangent vectors
satisfy. Differentiating F (y(s)) = 0 twice with respect to s at s = 0, we
obtain

J(0)ÿ(0) + B(ẏ(0), ẏ(0)) = 0,

or, equivalently,
J(0)ÿ(0) + B(v, v) = 0. (10.58)

Consider now the transposed (n + 1) × n matrix JT (0). Since dimK = 2,
there is a unique vector (up to scalar multiple) ϕ ∈ R

n satisfying

JT (0)ϕ = 0. (10.59)

Computing the scalar product of the left-hand side of (10.58) with ϕ in R
n

and taking into account that

〈ϕ, J(0)ÿ(0)〉 = 〈JT (0)ϕ, ÿ(0)〉 = 0,

we obtain
〈ϕ,B(v, v)〉 = 0. (10.60)

The left-hand side is a quadratic form defined on vectors v ∈ K ⊂ R
n given

explicitly by

〈ϕ,B(v, v)〉 =
n∑

i=1

n+1∑
j,k=1

ϕi
∂2Fi(ξ)
∂ξj∂ξk

∣∣∣∣
ξ=0

vjvk.
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Recall that any vector v ∈ K can be represented as

q = β1q1 + β2q2, β = (β1, β2) ∈ R
2.

Thus, the quadratic form 〈ϕ,B(v, v)〉 can be considered as a quadratic form
on the (β1, β2)-plane:

b(β) = 〈ϕ,B(β1q1 + β2q2, β1q1 + β2q2)〉 = b11β
2
1 + 2b12β1β2 + b22β

2
2 ,

with
bij = 〈ϕ,B(qi, qj)〉, i, j = 1, 2.

Definition 10.3 (Simple branching points) A branching point is called
simple if the following two conditions hold:

(i) dimK = 2;
(ii) the symmetric matrix (

b11 b12
b12 b22

)
has one positive and one negative eigenvalue.

The following lemma completely characterizes simple branching points.

Lemma 10.1 Let y∗ = 0 be a simple branching point of (10.55). Then
there exist exactly two smooth curves satisfying (10.55) that pass through
y∗. Moreover, their tangent vectors vk at y∗ are linearly independent and
both satisfy (10.60). ✷

Equation (10.60) allows us to compute the direction v2 of the second
branch, provided that the vector v1 that is tangent to the first solution
curve at the branching point of (10.55) is known. Indeed, set q1 = v1 and
let q2 ∈ K be a vector that is orthogonal to q1 : 〈q2, q1〉 = 0. Then

vk = β
(k)
1 q1 + β

(k)
2 q2, k = 1, 2,

for β(1)
1 = 1, β(1)

2 = 0. Therefore, a solution6 to the “algebraic branching
equation”

b11β
2
1 + 2b12β1β2 + b22β

2
2 = 0

is known. This implies b11 = 0. Thus, the direction (β(2)
1 , β

(2)
2 ) of the second

branch satisfies the equation

2b12β
(2)
1 + b22β

(2)
2 = 0,

6Actually, a line (γ, 0) of solutions.
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where necessarily b12 = 0 due to the simplicity of the branching point.
Thus,

β
(2)
1 = − b22

2b12
β

(2)
2 .

The preceding results solve the problem of branch switching at a branch-
ing point. However, we should be able to detect such points and locate
them accurately. The following lemma provides a test function to locate a
branching point while continuing a curve defined by (10.55).

Lemma 10.2 Let y(1)(s) correspond to a curve defined by (10.55). Con-
sider the (n + 1)× (n + 1) matrix

D(s) =
(

J(y(1)(s))
ẏT(1)(s)

)
, (10.61)

where J(y) is the Jacobian of (10.55). Then the scalar function

ψ(s) = detD(s) (10.62)

has a regular zero at s = 0.

Remark:
The matrix D differs slightly from the Jacobian matrix involved in the

Newton corrections in the pseudo-arclength continuation method (10.34)
for solving (10.55). If the iterations converge to a point on the curve, the
function ψ can be easily approximated at this point by the determinant
of the Newton matrix and compared with that computed at the previous
point. ♦
Proof:

The matrix D(0) has a simple zero eigenvalue. Indeed,

D(0)q2 = 0, (10.63)

where q2 is defined above as being orthogonal to q1 = v1 within the plane
K at the branching point. Therefore, zero is an eigenvalue of D(0). More-
over, D(0)q1 = 0, so the zero eigenvalue is simple. Thus, there is a simple,
parameter-dependent eigenvalue λ(s) of D(s),

D(s)u(s) = λ(s)u(s),

for all |s| sufficiently small, such that λ(0) = 0, u(0) = q2. Differentiating
the above equation with respect to s at s = 0 gives(

B(q1, q2)
ÿT(1)(0)

)
+

(
J(0)
qT1

)
u̇(0) = λ̇(0)q2. (10.64)

Notice now that a zero eigenvector p of the transposed matrix DT (0),

DT (0)p = 0,
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has the form

p =
(

ϕ
0

)
,

where ϕ was defined above by JT (0)ϕ = 0 (see (10.59)). Moreover, 〈p, q2〉 =
0 due to the simplicity of λ = 0. Taking the scalar product of both sides of
(10.64) with p, we get

λ̇(0) =
〈ϕ,B(q1, q2)〉

〈p, q2〉 =
b12
〈p, q2〉 = 0,

since b12 must be nonzero at the simple branching point. Therefore, while
s passes the value s = 0, the simple real eigenvalue λ(s) of D(s) changes
sign regularly, as does the determinant of D(s). ✷

Therefore, ψ(s) given by (10.62) can be monitored along the curve (10.55)
to detect branching points. If such a point is detected, we can locate it, for
example, by the secant method:

sj+1 = sj − sj − sj−1

ψ(sj)− ψ(sj−1)
ψ(sj), j = 1, 2, . . . .

To perform branch switching at a located simple branch point, we need
to find the vectors q1, q2, and ϕ and evaluate b22 and b12 numerically.
The vector q1 can be interpolated from the tangent vectors at two points
between which the branching point was detected; the vectors q2 and ϕ
can be computed by solving the homogeneous linear systems (10.59) and
(10.63). Finally, the scalar product of ϕ with the function B evaluated at
q1,2 can be computed by the directional derivative technique presented in
the previous subsection. We leave the details to the reader.

Remark:
There is another effective technique to switch branches, called the ho-

motopy method. It is based on the observation that generic perturbations
of the continuation problem

F (y) = 0

destroy the intersection of the branches, making them all smooth (see Fig-
ure 10.10). Thus, one can introduce an artificial small perturbation ε ∈ R

n

and consider the continuation problem

F (y)− ε = 0.

Taking different ε with ‖ε‖ small, we can try to switch branches by comput-
ing a branch of the perturbed problem, starting at a point on the original
branch of the unperturbed problem. Upon switching, we can turn off the
perturbation by setting ε back to zero, and then use the obtained point as
the initial point for continuation of the new branch. This method works
well in relatively low dimensions. ♦
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10.3 Two-parameter bifurcation analysis

Here we start with a smooth system depending on two parameters:

ẋ = f(x, α), x ∈ R
n, α ∈ R

2. (10.65)

The aim of the system analysis now is to construct its two-parameter bi-
furcation diagram. The diagram generically includes curves corresponding
to codim 1 bifurcations of equilibria, limit cycles, and homoclinic orbits.
At isolated points on these curves, codim 2 bifurcations occur. As we saw
in Chapters 8 and 9, such points are common points for several different
codim 1 boundaries. Thus, the problem is to continue codim 1 bifurcation
curves; to detect, locate, and analyze codim 2 singularities on them; and
then to switch bifurcation branches at these points. We will mainly treat
the continuation of codim 1 bifurcations, giving only a few remarks on the
location and analysis of codim 2 bifurcations.

10.3.1 Continuation of codim 1 bifurcations of equilibria and
fixed points

As discussed in Chapter 8, if system (10.65) has, at α = α0, an equilib-
rium exhibiting a codim 1 bifurcation, then, generically, there is a bifur-
cation curve B in the α-plane along which the system has an equilibrium
demonstrating the relevant bifurcation. The curve B can be computed as a
projection to the α-plane of a certain curve Γ, defined in a space of larger
dimension. Thus, we have to specify a continuation problem for Γ, that is,
define functions determining the curve in this space.

Minimally augmented systems

This type of continuation problems for codim 1 bifurcations of equilibria
has been introduced in Chapter 8 (see Section 8.1.1). In this approach we
merely append the relevant test function to the equilibrium equation, thus
obtaining a system of n+ 1 equations in an (n+ 2)-dimensional space with
coordinates (x, α). More precisely, if A(x, α) is the Jacobian of f in (10.65)
evaluated at (x, α), then we get the continuation problem{

f(x, α) = 0,
detA(x, α) = 0, (10.66)

for the fold bifurcation, and the continuation problem{
f(x, α) = 0,

det(2A(x, α)+ In) = 0, (10.67)

for the Hopf bifurcation, where + stands for the bialternate product. Each
system is a system of n+1 scalar equations with n+2 scalar variables and is
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called the minimally augmented system, since the dimension of the resulting
continuation problem is enlarged by one with respect to the equilibrium
continuation. Clearly, if a bifurcation point was detected while continuing
an equilibrium and located as a zero of the corresponding test function ψt

or ψH , then we have all the necessary initial data to start the continuation
of the bifurcation curve defined by (10.66) or (10.67) immediately.

Lemma 10.3 If (x, α) is a point corresponding to any generic codim 1
or 2 equilibrium bifurcation of (10.65), except the Hopf-Hopf singularity,
then rank J = n + 1, where J is the Jacobian matrix of the corresponding
minimally augmented system (10.66) or (10.67). A generic Hopf-Hopf point
is a simple branching point for (10.67). ✷

This lemma allows us to apply the standard predictor-corrector continu-
ation technique to continue the bifurcation curves Γ defined by (10.66) or
(10.67). The standard projection of the computed curves onto the (α1, α2)-
plane provides the parametric boundaries corresponding to the relevant
bifurcations.

However, the defining system (10.66) (or (10.67)) has the following dis-
advantage: In general, it is impossible to express explicitly its Jacobian ma-
trix J in terms of the partial derivatives of f(x, α), since the determinant is
involved in the test function. Thus, we have to rely on numerical differenti-
ation while continuing the curve Γ, even if the derivatives of f with respect
to (x, α) are known analytically. To overcome this difficulty, we substitute
the test function in (10.66) (or (10.67)) by a function g(x, α) that vanishes
together with the corresponding test function but whose derivatives can be
expressed analytically.

In the fold case, instead of (10.66), we introduce a modified minimally
augmented system {

f(x, α) = 0,
g(x, α) = 0, (10.68)

where g = g(x, α) is computed as the last component of the solution vector
to the (n + 1)-dimensional bordered system:(

A(x, α) p0
qT0 0

)(
w
g

)
=

(
0
1

)
, (10.69)

where q0, p0 ∈ R
n are some vectors. We have used a similar system in

Chapter 5 to compute the quadratic approximation to the center manifold
at the fold bifurcation (see equation (5.51)). If the vector q0 is close to
the null-vector of A(x, α) and the vector p0 is close to the null-vector of
AT (x, α), the matrix

M =
(

A(x, α) p0
qT0 0

)
is nonsingular at (x, α) and (10.69) has the unique solution. In practical
computations, q0 and p0 are the eigenvectors of A and AT , respectively, at
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the previous point on the curve. For g = 0, system (10.69) implies

Aw = 0, 〈q0, w〉 = 1,

meaning that w is a scaled null-vector of A(x, α) and detA(x, α) = 0 as in
(10.66). In fact, g is proportional to detA(x, α). Indeed, by Cramer’s rule

g(x, α) =
detA(x, α)
detM(x, α)

.

The derivatives of g with respect to (x, α) can be computed by differenti-
ating (10.69). Let z denote a component of x or α. Then,(

A(x, α) p0
qT0 0

)(
wz

gz

)
+

(
Az(x, α) 0

0 0

)(
w
g

)
=

(
0
0

)
and (wz, gz)T can be found by solving the system(

A(x, α) p0
qT0 0

)(
wz

gz

)
= −

(
Az(x, α)w

0

)
. (10.70)

This system has the same matrix M as (10.69), while the right-hand side
involves the known vector w and the derivative Az of the Jacobian matrix
A. The derivative gz can be expressed explicitly, if we introduce the solution
(v, h)T to the transposed system

MT

(
v
h

)
=

(
0
1

)
.

Multiplying (10.70) from the left by (vT , h) and taking into account that
(vT , h)M = (0, 1), gives

gz = −〈v,Az(x, α)w〉.
In the Hopf case, the modified minimally augmented system looks exactly

as (10.68), where now the function g = g(x, α) is computed by solving the
bordered system(

2A(x, α)+ In P0
QT

0 0

)(
W
g

)
=

(
0
1

)
. (10.71)

This system is (m+1)-dimensional, where 2m = n(n−1), and is nonsingular
if the vectors Q0, P0 ∈ R

m are the null-vectors of 2A+ In and (2A+ In)T ,
respectively, at a nearby generic point on the Hopf curve.7 The partial
derivatives gz can be expressed in terms of Az as in the fold case.

7Note that (10.71) is singular at a Hopf-Hopf point regardless of the choice of
Q0 and P0.
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Similar treatment can be given to codim 1 bifurcations of discrete-time
systems. Consider a smooth two-parameter map

x �→ f(x, α), x ∈ R
n, α ∈ R

2. (10.72)

The system {
f(x, α)− x = 0,

det(A(x, α)− In) = 0, (10.73)

can be used to continue the fold bifurcation. The system{
f(x, α)− x = 0,

det(A(x, α) + In) = 0, (10.74)

is applicable to continue the flip bifurcation. Finally, the system{
f(x, α)− x = 0,

det (A(x, α)+A(x, α)− Im) = 0, (10.75)

allows for the continuation of the Neimark-Sacker bifurcation. A lemma
similar to Lemma 10.3 can be formulated in the discrete-time case as well.
We can also replace the systems (10.73)–(10.75) by modified minimally aug-
mented systems whose last equation is defined by solving certain bordered
systems.

Remark:
While continuing a Hopf curve defined by (10.67) (or (10.68) and (10.71)),

we can pass a point where this curve loses its interpretation as a curve of
Hopf bifurcations, turning instead into a curve corresponding to an equi-
librium with real eigenvalues λ1 + λ2 = 0 (“neutral saddle”). This clearly
happens at a Bogdanov-Takens point. A similar phenomenon takes place
on a Neimark-Sacker curve at points of 1:1 and 1:2 resonances. At such
points the Neimark-Sacker bifurcation curve turns into a nonbifurcation
curve corresponding to a fixed point with real multipliers µ1µ2 = 1. ♦

Standard augmented systems

If allowed to enlarge the dimension of the continuation problem by more
than one, various defining systems can be proposed to compute codim 1
bifurcation curves.

The system of 2n + 1 scalar equations for the 2n + 2 components of
(x, q, α), 

f(x, α) = 0,
A(x, α)q = 0,
〈q, q0〉 − 1 = 0,

(10.76)

can be used to compute the fold bifurcation curve. Here, q0 ∈ R
n is a

reference vector that is not orthogonal to the null-space of A. In practical
computations, q0 is usually the null-vector of A at the previously found
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point on the curve. If Γ is a curve defined by (10.76), then its standard
projection onto the parameter plane gives the fold bifurcation boundary B.
Indeed, if (x0, q0, α0) ∈ R

2n+2 is a solution to (10.76) for a fixed q0, then
system (10.65) has at the parameter value α0 an equilibrium x0 having
a zero eigenvalue with the eigenvector q0 normalized by 〈q0, q0〉 = 1. To
start the continuation of Γ, we obviously need not only an approximation
to the critical equilibrium and the critical parameter values, but also the
null-vector q0.

Remark:
The last equation in (10.76) can be substituted by the standard normal-

ization condition 〈q, q〉 − 1 = 0. ♦
Next, consider the following system of 3n + 2 scalar equations for the

3n + 2 components of (x, v, w, α) and ω:
f(x, α) = 0,

A(x, α)v + ωw = 0,
A(x, α)w − ωv = 0,

〈v, v0〉+ 〈w,w0〉 − 1 = 0,
〈v, w0〉 − 〈v0, w〉 = 0,

(10.77)

which is the real form of the complex system defining the Hopf bifurcation:
f(x, α) = 0,

A(x, α)q − iωq = 0,
〈q, q0〉Cn − 1 = 0.

Here q = v+iw ∈ C
n is the critical complex eigenvector and q0 = v0+iw0 ∈

C
n is a vector that is not orthogonal to the critical complex eigenspace

corresponding to ±iω; 〈q, q0〉Cn = q̄T q0. As in the fold case, q0 is usually
the eigenvector q = v+ iw at the previously found point on the curve. The
system (10.77) specifies a curve Γ whose projection onto the (α1, α2)-plane
gives the Hopf bifurcation boundary. If (x0, v0, w0, α0, ω0) is a point on Γ,
then (10.65) has, at α0, the equilibrium x0; the Jacobian matrix A evaluated
at this equilibrium has a pair of purely imaginary eigenvalues ±iω0, while
q = v0 + iw0 is the corresponding normalized complex eigenvector. To start
the continuation of a curve Γ, defined by the problem (10.77), from a Hopf
point detected on an equilibrium curve, we have to compute additionally
the Hopf frequency ω0 and two real vectors v0 and w0.

Lemma 10.4 The Jacobian matrix of the augmented system (10.76) has
rank 2n + 1 at generic fold, Bogdanov-Takens, or cusp bifurcation points
of (10.65), while the Jacobian matrix of the augmented system (10.77) has
rank 3n + 2 at generic Hopf, Bautin, fold-Hopf, or Hopf-Hopf bifurcation
points of (10.65). ✷

The lemma allows us to use the standard continuation method to com-
pute fold and Hopf bifurcation curves via (10.76) and (10.77), given a suf-
ficiently good initial guess. Notice that the Jacobian matrices of (10.76)
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and (10.77) can easily be constructed in terms of the partial derivatives of
f(x, α).

Remark:
The dimension of the augmented system (10.77) for the Hopf continua-

tion can be reduced by the elimination of w, i.e., replacing the second and
third equations in (10.77) with their implication

A2v + ω2v = 0,

and considering the following augmented system of 2n+ 2 scalar equations
for the 2n + 3 variables (x, v, α, κ):

f(x, α) = 0,[
A2(x, α) + κIn

]
v = 0,

〈v, v〉 − 1 = 0,
〈v, l0〉 = 0,

(10.78)

where the reference vector l0 ∈ R
n is not orthogonal to the real two-

dimensional eigenspace of A corresponding to the eigenvalues λ1 + λ2 =
0, λ1λ2 = κ. A solution to (10.78) with κ > 0 corresponds to the Hopf
bifurcation point with ω2 = κ, while that with κ < 0 specifies a neutral
saddle with two real eigenvalues λ1,2 = ±√−κ. Contrary to (10.77), the
system (10.78) is also regular at the Bogdanov-Takens point that separates
these two cases and where ω2 = κ = 0. ♦

We leave the reader to explain why the following augmented systems,
f(x, α)− x = 0,
A(x, α)q − q = 0,
〈q, q0〉 − 1 = 0,

(10.79)


f(x, α)− x = 0,
A(x, α)q + q = 0,
〈q, q0〉 − 1 = 0,

(10.80)

and 
f(x, α)− x = 0,

A(x, α)v − v cos θ + w sin θ = 0,
A(x, α)w − v sin θ − w cos θ = 0,

〈v, v0〉+ 〈w,w0〉 − 1 = 0,
〈v, w0〉 − 〈v0, w〉 = 0,

(10.81)

where q0, v0, w0 ∈ R
n are proper reference vectors, are suitable for contin-

uation of the fold, flip, and Neimark-Sacker bifurcations, respectively, in
discrete-time dynamical systems. Note that (10.81) can be substituted by
a smaller system similar to (10.78):

f(x, α) = 0,[
A2(x, α)− 2 cos θ A(x, α) + In

]
v = 0,

〈v, v〉 − 1 = 0,
〈v, l0〉 = 0,
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where l0 ∈ R
n is not orthogonal to the real two-dimensional eigenspace of

A corresponding to the critical eigenvalues µ1,2 = e±iθ.

10.3.2 Continuation of codim 1 limit cycle bifurcations
Continuation of codim 1 bifurcations of limit cycles of (10.65) is a more
delicate problem than that for equilibria. If the studied system is not very
stiff, we can compute the Poincaré map associated with the cycle and its
Jacobian by numerical integration and then apply the above-mentioned
continuation methods for the fixed-point bifurcations. This method works
satisfactorily in many cases; however, it fails if the cycle has multipliers with
|µ| 3 1 or |µ| # 1. In such situations, the BVP approach has proved to be
more reliable. Namely, we can construct a boundary-value problem whose
solutions will define the relevant bifurcation curve. Then, we can discretize
the resulting BVP and apply the standard continuation technique, given
the usual regularity conditions and good initial data.

The treatment of the fold case is relatively easy, since the bifurcation
implies a fold singularity of the corresponding boundary-value problem for
the cycle continuation:


u̇(τ)− Tf(u(τ), α) = 0,

u(1)− u(0) = 0,∫ 1
0 〈u(τ), u̇0(τ)〉 dτ = 0,

(10.82)

where the last equation is the integral phase condition (10.18) with a ref-
erence periodic solution u0(τ). Generically, near the fold point the BVP
(10.82) has two solutions that collide and disappear at the critical pa-
rameter values. As in the finite-dimensional case, this happens when the
linearized BVP has a nontrivial solution (null-function). The linearization
of (10.82) with respect to (u(·), T ) around the periodic solution has the
form 

v̇(τ)− Tfx(u(τ), α)v(τ)− σf(u(τ), α) = 0,
v(1)− v(0) = 0,∫ 1

0 〈v(τ), u̇0(τ)〉 dτ = 0,

and its nontrivial solution (v(·), σ) can be scaled to satisfy

∫ 1

0
〈v(τ), v(τ)〉 dτ + σ2 = 1.

Thus the following periodic BVP for the functions u(τ), v(τ) defined on
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[0, 1] and scalar variables T and σ:

u̇(τ)− Tf(u(τ), α) = 0,
u(1)− u(0) = 0,∫ 1

0 〈u(τ), u̇0(τ)〉 dτ = 0,
v̇(τ)− Tfx(u(τ), α)v(τ)− σf(u(τ), α) = 0,

v(1)− v(0) = 0,∫ 1
0 〈v(τ), u̇0(τ)〉 dτ = 0,∫ 1

0 〈v(τ), v(τ)〉 dτ + σ2 − 1 = 0,

(10.83)

can be used for the continuation of the generic fold bifurcation of cycles. An
appropriate discretization of this problem will have the form (cf. (10.76))

F(ξ, α) = 0,
Fξ(ξ, α)η = 0,
〈η, η〉 − 1 = 0,

(10.84)

where ξ ∈ R
N is a finite-dimensional approximation to (u(·), T ), while η is a

finite-dimensional approximation to (v(·), σ). Here 〈·, ·〉 is a scalar product
in R

N . Notice that (10.84) can be derived directly from the discretization
F(ξ, α) = 0 of (10.82).

The flip (period-doubling) case is simpler. Introduce a vector-valued func-
tion v(τ) and consider the following nonperiodic BVP on the interval [0, 1]:

u̇(τ)− Tf(u(τ), α) = 0,
u(1)− u(0) = 0,∫ 1

0 〈u(τ), u̇0(τ)〉 dτ = 0,
v̇(τ)− Tfx(u(τ), α)v(τ) = 0,

v(1) + v(0) = 0,∫ 1
0 〈v(τ), v(τ)〉 dτ − 1 = 0.

(10.85)

As in the fold case, the first three equations specify the standard peri-
odic BVP (10.82) for a limit cycle of (10.65). The fourth equation is the
linearization of (10.65) (variational equation) around the periodic solution
u(τ). The last equation provides a normalization to v(τ), while the bound-
ary condition

v(1) = −v(0)

corresponds to the flip bifurcation. Indeed, if (u0(τ), v0(τ), T0) is a solution
to (10.85) at α0, then the scaled system u̇ = T0f(u, α) has a limit cycle
with period one satisfying the phase condition; moreover, the Jacobian
matrix Λ of the associated Poincaré map has a multiplier µ = −1, since
Λv(0) = v(1) = −v(0). A discretization of (10.85) can be used to compute
generic flip bifurcation curves of (10.65).

Finally, consider the continuation of the Neimark-Sacker bifurcation.
Here we introduce a complex eigenfunction w(τ) and a scalar variable
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θ parametrizing the critical multipliers µ1,2 = e±iθ. The boundary-value
problem to continue the Neimark-Sacker bifurcation will read as follows:

u̇(τ)− Tf(u(τ), α) = 0,
u(1)− u(0) = 0,∫ 1

0 〈u(τ), u̇0(τ)〉 dτ = 0,
ẇ(τ)− Tfx(u(τ), α)w(τ) = 0,

w(1)− eiθw(0) = 0,∫ 1
0 〈w(τ), w0(τ)〉Cn dτ − 1 = 0,

(10.86)

where u0 : [0, 1] → R
n and w0 : [0, 1] → C

n are the reference functions (cf.
(10.81)). The system (10.86) can be written in the real form, discretized,
and used to continue generic Neimark-Sacker bifurcations.

Remark:
The presented BVP problems to continue fold, flip, and Neimark-Sacker

bifurcations of cycles involve double or triple the number of the differen-
tial equations involved in the cycle continuation: They are called extended
augmented BVPs. It is possible to derive minimally augmented BVPs to
continue these bifurcations, using a bordering technique similar to that in
the finite-dimensional case. Let us illustrate this approach for the flip bi-
furcation. The continuation of the flip bifurcation curve in two parameters
can be reduced to the continuation of a solution of the following periodic
boundary-value problem on the interval [0, 1]:

u̇(τ)− Tf(u(τ), α) = 0,
u(1)− u(0) = 0,∫ 1

0 〈u(τ), u̇0(τ)〉 dτ = 0,
G[u, T, α] = 0,

(10.87)

where the value of the functional G is computed from the linear BVP for
(v(·), G) with given bordering functions ϕ0, ψ0 and factor T :

v̇(τ)− Tfx(u(τ), α)v(τ) + Gϕ0(τ) = 0,
v(1) + v(0) = 0,∫ 1

0 〈ψ0(τ), v(τ)〉 dτ = 1.
(10.88)

The functions ϕ0 and ψ0 are selected to make (10.88) uniquely solvable. The
first three equations in (10.87) specify the standard periodic BVP (10.82)
defining a limit cycle of (10.65). The fourth equation is equivalent to the flip
bifurcation condition. Indeed, if G = 0, the first equation in (10.82) reduces
to the variation equation around the periodic solution u(τ). The last equa-
tion in (10.88) provides a normalization to the variational solution v(τ),
while the boundary condition v(1) = −v(0) corresponds to the multiplier
µ = −1 at the flip bifurcation. To apply the standard continuation tech-
nique, we have to replace (10.87) and (10.88) by their finite-dimensional
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approximations. It is also possible to compute efficiently the derivatives
of G with respect to u, T , and α. A similar approach is applicable to the
continuation of the fold and Neimark-Sacker bifurcations. ♦

10.3.3 Continuation of codim 1 homoclinic orbits
In this section we deal with the continuation of orbits homoclinic to a
hyperbolic equilibrium or a nonhyperbolic equilibrium with a simple zero
eigenvalue. As we saw in Chapters 6 and 7, the presence of such an orbit
Γ0 is a codim 1 phenomenon: In a generic two-parameter system (10.65) it
exists along a curve in the (α1, α2)-plane. The problem then is to continue
this curve, provided that an initial point on it is known together with the
corresponding homoclinic solution.

Suppose that at α0, system (10.65) has a hyperbolic equilibrium x0.
Denote the Jacobian matrix fx(x, α) by A(x, α). Assume, therefore, that
A(x0, α0) has n+ unstable eigenvalues λi, i = 1, 2, . . . , n+ and n− stable
eigenvalues µi, i = 1, 2, . . . , n−, such that n− + n+ = n and

Re µn− ≤ · · · ≤ Re µ2 ≤ Re µ1 < 0 < Re λ1 ≤ Re λ2 ≤ · · · ≤ Re λn+ .

A homoclinic solution x(t) of (10.65) satisfies the condition

x(t) → x0 as t→ ±∞, (10.89)

where x0 is an equilibrium point,

f(x0, α) = 0. (10.90)

Notice that conditions (10.89) and (10.90) do not specify the homoclinic
solution completely. Indeed, any time shift of a solution to (10.65), (10.89),
and (10.90) is still a homoclinic solution. Thus, a condition is required to
fix the phase, similar to the situation for limit cycles. As for cycles, the
following integral phase condition can be used∫ +∞

−∞
〈x(t)− x0(t), ẋ0(t)〉 dt = 0, (10.91)

where x0(t) is a reference solution that is assumed to be known. Equation
(10.91) is a necessary condition for a local minimum of the L2-distance
between x and x0 over time shifts. As usual, in the continuation setting,
x0 is the homoclinic solution obtained at the previously found point on the
curve.

The problem (10.65), (10.89)–(10.91) defined on an infinite time interval
has to be approximated by truncation to a finite interval, say [−T, T ], and
specification of suitable boundary conditions. For example, we can place
the solution at the two end points in the stable and unstable eigenspaces
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FIGURE 10.12. Projection boundary conditions when x0 is hyperbolic:
x(−T ) − x0 ∈ Tu, x(T ) − x0 ∈ T s.

of A(x0, α) which provide linear approximations to W s,u(x0) (see Figure
10.12).8 This can be achieved via replacing (10.89) by the projection bound-
ary conditions:

Ls(x0, α)(x(−T )− x0) = 0, Lu(x0, α)(x(T )− x0) = 0. (10.92)

Here Ls(x0, α) is a (n− × n) matrix whose rows form a basis for the stable
eigenspace of AT (x0, α). Accordingly, Lu(x0, α) is a (n+ × n) matrix, such
that its rows form a basis for the unstable eigenspace of AT (x0, α). For
example, if n = 3 and the matrix A has real eigenvalues µ2 < µ1 < 0 < λ1
(the saddle case), then Lu = (pu1 )T , where pu1 is the eigenvector of AT

corresponding to λ1 : AT pu1 = λ1p
u
1 , while

Ls =
(

(ps1)T

(ps2)T

)
,

where AT psk = µkp
s
k, k = 1, 2. There is a method to construct Ls and Lu

so that they will depend smoothly on α (see the bibliographical notes).
Finally, truncate the phase condition (10.91) to the interval [−T, T ],

∫ +T

−T

〈x(t)− x0(t), ẋ0(t)〉 dt = 0. (10.93)

8Notice that generically (10.65) has an orbit satisfying these boundary condi-
tions for parameter values that are close but not equal to the parameter values
at which the homoclinic orbit is present.
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Collecting the above equations gives the BVP for homoclinic continuation:
f(x0, α) = 0,

ẋ(t)− f(x(t), α) = 0,
Ls(x0, α)(x(−T )− x0) = 0,
Lu(x0, α)(x(T )− x0) = 0,∫ T

−T
〈x(t)− x0(t), ẋ0(t)〉 dt− 1 = 0,

(10.94)

It has been proved (see the bibliographical notes) that the existence of
a regular homoclinic orbit in (10.65) implies the existence of a solution
to the truncated BVP (10.94). Furthermore, as T → ∞, the solution to
(10.94) converges to the homoclinic solution restricted to an appropriate
finite interval. The rate of convergence is exponential for both parameter
values and solutions.

One can attempt to solve (10.94) by shooting (i.e., computing orbits on
W s(x0) and Wu(x0) and estimating the distance between these manifolds
in order to make it zero by varying a parameter), however, better results can
be achieved by approximating it with the help of the orthogonal collocation
method (see Section 10.1.4). The resulting system defines a curve in a finite-
dimensional space that can be continued by the standard technique; the
projection of the curve onto the (α1, α2)-plane gives an approximation to
the homoclinic bifurcation curve.

To start the procedure, we have to know an initial homoclinic solution.
This solution might be obtained by shooting or by following a periodic orbit
to a large period (since, according to the Shil’nikov theorems formulated
in Chapter 6, such long-period cycles exist near homoclinic orbits). There
are other possibilities for starting the continuation, including switching to
the homoclinic curve at a Bogdanov-Takens bifurcation.

It is convenient to scale the time interval in (10.94) to [0, 1] and consider
instead the BVP

f(x0, α) = 0,
u̇(τ)− 2Tf(u(τ), α) = 0,
Ls(x0, α)(u(0)− x0) = 0,
Lu(x0, α)(u(1)− x0) = 0,∫ 1

0 〈u(τ)− u0(τ), u̇0(τ)〉 dτ − 1 = 0,

where u0 is the reference solution on the unit interval.

Remark:
If the unstable manifold of x0 is one-dimensional, the boundary-value

problem can be slightly simplified. Namely, suppose that there is always
only one eigenvalue with positive real part: λ1 > 0. Then, the left-hand
boundary condition can be written explicitly as

x(−T ) = x0 + εqu1 , (10.95)
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where q1 is the eigenvector of the Jacobian matrix: A(x0, α)qu1 = λ1q
u
1 , and

ε > 0 is a small user-defined constant. Thus, no integral phase condition is
required. At the right-hand end point we have a single scalar equation

〈pu1 , x(T )− x0〉 = 0,

where pu1 is the adjoint eigenvector: AT (x0, α)pu1 = λ1p
u
1 . Notice that the

eigenvectors qu1 and pu1 can be computed via continuation by appending
their defining equations and normalization conditions to the continuation
problem. The point x(−T ) given by (10.95) can also be used as a starting
point to integrate Wu(x0) numerically in order to find a starting homoclinic
orbit by shooting.9 ♦

If x0 has a simple zero eigenvalue (i.e., x0 is a saddle-node or saddle-
saddle), the projections (10.92) give only n− +n+ = n−1 boundary condi-
tions. In other words, the boundary conditions (10.92) place the solution at
the two end points in the center-unstable and center-stable eigenspaces of
A(x0, α), if present (see Figure 10.13). Thus, an extra equation is required,
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FIGURE 10.13. Projection boundary condition when x0 is a saddle-node:
x(−T ) − x0 ∈ T c; no conditions are imposed on x(T ).

namely the one defining the fold bifurcation, e.g.,

detA(x0, α) = 0. (10.96)

It can be proved (see the bibliographical notes) that a solution to (10.94),
(10.96) exists and converges to the homoclinic solution as T →∞, provided

9Higher-order approximations of Wu, such as the second-order one derived in
Section 10.1.3, can also be used.
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a generic saddle-node homoclinic bifurcation (see Chapter 7) happens in
(10.65). The convergence rate remains exponential for the parameters but
is only O(T−2) for the homoclinic solutions. Clearly, the projection of the
curve defined by (10.94), (10.96) into the (α1, α2)-plane coincides with the
fold bifurcation boundary

{
f(x0, α) = 0,

detA(x0, α) = 0,

that can be computed as described in Section 10.3.1, but solving (10.94),
(10.96) also gives the homoclinic solution.

10.3.4 Detection and location of codim 2 bifurcations
While following a bifurcation curve corresponding to a codim 1 bifurca-
tion, we should be able to detect and locate possible codim 2 bifurcations.
Thus, special test functions have to be derived. Here we will focus on de-
tecting codim 2 equilibrium bifurcations. Test functions to detect codim 2
homoclinic bifurcations are discussed in Appendix 2.

Notice that according to Lemmas 10.3 and 10.4, the continuation pro-
cedures for codim 1 curves will allow us to compute through higher-order
singularities. If a singularity is caused by an extra linear degeneracy (i.e.,
dimW c changes), the problem is most easily solved within the minimally
augmented approach. Suppose we continue a fold bifurcation curve us-
ing the augmented system (10.66). Then, monitoring the test function ψH

for the Hopf bifurcation (10.41) along this curve allows us to detect both
Bogdanov-Takens and fold-Hopf bifurcations. Similarly, evaluation of the
fold test function ψt given by (10.39) along a Hopf curve (10.67) provides
an alternative way to detect the same bifurcations. As pointed out, the
Hopf-Hopf bifurcation point can be detected as a branching point for the
Hopf continuation problem (10.67). We can also detect this singularity by
monitoring the Hopf test function ψH restricted to the complementary
eigenspace.

To detect singularities due to nonlinear terms, we have to compute the
corresponding normal form coefficients. Since certain adjoint eigenvectors
are required for these computations, we can extend the standard augmented
system by appending equations for properly normalized adjoint eigenvec-
tors. For example, to detect a cusp bifurcation on an equilibrium fold curve,
we have to monitor the scalar product σ = 〈p,B(q, q)〉, where p is a zero
eigenvector of the transposed Jacobian matrix. We can obtain the normal-
ized adjoint eigenvector p as a part of the continuation of the fold curve in
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the (x, α, q, p, ε)-space using the defining system
f(x, α) = 0,

A(x, α)q = 0,
AT (x, α)p− εp = 0,

〈q, q〉 − 1 = 0,
〈p, p〉 − 1 = 0,

(10.97)

where ε is an artificial parameter that is equal to zero along the fold curve.
Note that a Bogdanov-Takens singularity can be detected while following
the curve (10.97) as a regular zero of the test function ψBT = 〈p, q〉 (prove!).
A similar system can be derived for the continuation of the Hopf bifurca-
tion with simultaneous computation of the normalized adjoint eigenvector
(its real and imaginary parts), that is required for the evaluation of the
first Lyapunov coefficient l1 and the detection of its zero (a Bautin point).
To detect a Bogdanov-Takens point along the Hopf curve defined by the
augmented system (10.78) we can monitor the function ψ̃BT = κ.

Appending the test function to be monitored to the appropriate contin-
uation problem, we can locate the corresponding codim 2 bifurcation point
via some iterative method. By freeing a third parameter, we could continue
codim 2 points in three parameters. All the constructions presented can be
carried out for discrete-time systems as well. We leave this as an exercise
to the reader.

We finish this section by discussing the problem of branch switching at
codim 2 points. We consider only equilibrium bifurcations of continuous-
time systems. There is no branch-switching problem at a generic cusp point,
since there is only a single fold curve passing through without any geometric
singularity. In contrast, a Hopf-Hopf point provides a branching point for
the minimally augmented system. Thus, we might use the branching tech-
nique developed in the previous section to initialize the other Hopf branch.
Switching to the Hopf curve from the fold curve at a generic Bogdanov-
Takens or fold-Hopf point causes no difficulties, because these points are
regular points on the respective curves: A codim 2 point can itself be used
as the initial points. As we saw in Chapter 8, certain bifurcation curves
at which limit cycle and homoclinic bifurcations take place emanate from
some codim 2 points. Switching to such branches needs special techniques
(see the bibliographical notes).

10.4 Continuation strategy

The analysis of a given dynamical system requires a clear strategy. Such a
strategy is provided by bifurcation theory. Formally, while performing the
analysis, we always continue certain curves in some spaces and monitor
several test functions to detect and locate special points on these curves.
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Theoretical analysis of bifurcations suggests which higher-codimension bi-
furcations can be expected along the traced curve and therefore which test
functions have to be monitored to detect and locate these points. It also
predicts which bifurcation curves of the same codimension originate at a
detected point. Having located a special point, we can either switch to one
of these emanating curves or “activate” one more parameter to continue,
if possible, the located point in more parameters. Of course, we can also
merely continue the original branch further beyond the special point.

The analysis of any system usually starts with locating at least one equi-
librium at some fixed parameter values. Then, we “activate” one of the
system parameters and continue the obtained equilibrium with respect to
this parameter. During continuation, some fold or Hopf points may be de-
tected. Generically, these points are nondegenerate. Thus, a limit cycle
bifurcates from the Hopf point in the direction determined by the sign of
the first Lyapunov coefficient. Cycle continuation can be initialized from
the Hopf point, and its possible codim 1 bifurcations detected and located
as a parameter is varied. Switching to a cycle of double period can be done
at flip points, for instance.

By freeing the second parameter and using one of the augmented systems,
we can compute bifurcation curves in the plane defined by these two ac-
tive parameters. Often, detected codim 2 points connect originally disjoint
codim 1 points. For example, two fold points found in the one-parameter
analysis can belong to the same fold bifurcation curve passing through a
cusp point as two parameters vary. Thus, higher-order bifurcations play
the role of “organizing centers” for nearby bifurcation diagrams. This role
is even more prominent since certain codim 1 limit cycle bifurcation curves
can originate at codim 2 points. The simplest examples are the fold curve
for cycles originating at a generic Bautin point and the saddle homoclinic
bifurcation curve emanating from a generic Bogdanov-Takens point. Their
continuation can be started from these points. A more difficult problem is
to start global bifurcation curves from fold-Hopf and Hopf-Hopf bifurcation
points.

The continuation of codim 1 bifurcations of limit cycles usually reveals
their own codim 2 bifurcation points (strong resonances, and so forth).
Overlapping the obtained bifurcation boundaries for equilibria, cycles, and
homoclinic orbits provides certain knowledge about the bifurcation diagram
of the system and might give some insights on other bifurcations in which
more complex invariant sets – for example, tori – are involved. Though well
formalized, the analysis of a specific dynamical system will always be an
art in which interactive computer tools (see the bibliographical notes) are
a necessity.
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10.5 Exercises

Most of the following exercises require the use of a computer and, desirably,
some of the software tools mentioned in the bibliographical notes.

(1) (Feigenbaum’s universal map via Newton’s method) (Read Ap-
pendix 1 to Chapter 4 before attempting.)

(a) Assume that the fixed point ϕ(x) of the doubling operator

(Tf)(x) = −1
a
f(f(−ax)), a = −f(1),

has the polynomial form

ϕ0(x) = 1 + a1x
2 + a2x

4

with some unknown coefficients a1,2. Substitute ϕ0 into the fixed-point
equation ϕ − Tϕ = 0 and truncate it by neglecting all o(x4) terms. The
coefficients of the x2- and x4-terms define a polynomial system of two
equations for (a1, a2). Solve this system numerically by Newton’s iterations
starting from (a(0)

1 , a
(0)
2 ) = (−1.5, 0.0). Verify that the iterations converge

to
(a1, a2) ≈ (−1.5222, 0.1276),

which is a good approximation to the true coefficient values.
(b) Now take

ϕ0(x) = 1 + a1x
2 + a2x

4 + a3x
6,

which gives the next approximation to ϕ, and repeat the procedure, now
dropping o(x6) terms. (Hint: A symbolic manipulation program may be
useful.) Explain why introducing the term a3x

6 changes the resulting values
of the coefficients a1,2.

(c) Describe an algorithm allowing us to compute the approximation of ϕ
to within a given accuracy. Could we use a basis other than {1, x2, x4, . . .},
and would this give any advantages?

(d) How would we approximate the Feigenbaum constant?

(2) (Broyden versus Newton) (Dennis & Schnabel [1983].) The follow-
ing system of two equations{

x2
1 + x2

2 − 2 = 0,
ex1−1 + x3

2 − 2 = 0,

has the solution x0
1 = x0

2 = 1.
(a) Program Newton’s method to solve the system using an analytically

derived expression for the Jacobian matrix A(x). Implement also the Broy-
den method for this system with A(0) = A(x(0)), where x(0) is the initial
point for both methods.
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(b) Compare experimentally the number of iterations required by each
method to locate the specified solution with the accuracy 10−13, starting
from the same initial point x(0)

1 = 1.5, x(0)
2 = 2.

(c) Make the same comparison between the Broyden method and the
Newton-chord method with the matrix A(x(0)) used in all iterations.

(d) Modify the program to compute approximately the Jacobian in New-
ton’s method by finite differences with increment 10−6. Compare the num-
ber of iterations and the number of right-hand side computations needed
by the resulting algorithms to converge to the solution from the same initial
point, with the same accuracy as in step (b).

(3) (Integral phase condition) Prove that the condition∫ 1

0
〈u(τ), v̇(τ)〉 dτ = 0

is a necessary condition for the L2-distance between two (smooth) 1-periodic
functions u and v,

ρ(σ) =
∫ 1

0
‖u(τ + σ)− v(τ)‖2 dτ,

to achieve a local minimum with respect to possible shifts σ.

(4) (Gauss points)
(a) Apply the Gramm-Schmidt orthogonalization procedure:

ψ0 = ϕ0, ψn = ϕn −
n−1∑
j=0

〈ϕn, ψj〉
〈ψj , ψj〉ψj , n = 1, 2, . . . ,

with the scalar product

〈f, g〉 =
∫ +1

−1
f(x)g(x) dx, f, g ∈ C[−1, 1],

to the set of functions ϕj(x) = xj , j = 0, 1, . . .. The resulting orthogonal
polynomials are the Legendre polynomials. Verify that

ψ0(x) = 1,
ψ1(x) = x,

ψ2(x) =
1
2

(3x2 − 1),

ψ3(x) =
1
2

(5x2 − 3x),

ψ4(x) =
1
8

(35x4 − 30x2 + 3),

ψ5(x) =
1
8

(63x5 − 70x3 + 15x).
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(b) Find, by Newton’s method, all roots (Gauss points) of the above
polynomials ψj(x), for j = 1, 2, . . . , 5, with accuracy ε = 10−13.

(5) (Branching point)
(a) Prove that (0, 0) and (1, 1) are simple branching points of the con-

tinuation problem

f(x1, x2) = x2
1 − x1x2 − x1x

2
2 + x3

2 = 0,

and compute vectors tangent to the branches passing through them.
(b) Evaluate the test function (10.62) along the equilibrium branch x2 =

x1, and check that it changes sign at the branching points.
(c) Continue a branch of the perturbed problem f(x) − ε = 0 passing

near the point x = (−2,−2) for several small |ε|. Use the results to continue
the second branch of the original problem.

(6) (Generalized flip continuation) Specify an extended system that
allows for the continuation of a generalized flip bifurcation of the discrete-
time system

x �→ f(x, α), x ∈ R
n, α ∈ R

3.

(7) (Fixed points and periodic orbits of the Hassel-Lawton-May
model) Consider the following recurrence relation:

xk+1 =
rxk

(1 + xk)β
,

where xk is the density of a population at year k, and r and β are growth
parameters.

(a) Write the model as a one-dimensional dynamical system

y �→ R + y − eb ln(1 + ey), (E.1)

by introducing the new variable and parameters: y = lnx,R = ln r, b = lnβ.
(b) Set R = 3.0, b = 0.1 and compute an orbit of (E.1) starting at y0 = 0.

Observe the convergence of the orbit to a stable fixed point y(0) ≈ 2.646.
(c) Continue the obtained fixed point y(0) with respect to the parameter

b within the interval 0 ≤ b ≤ 3. Detect a supercritical flip bifurcation at
b1 ≈ 1.233.

(d) Switch to the period-two cycle bifurcating at the flip point and
continue it with respect to b until the next period doubling happens at
b2 ≈ 2.1937. Verify that b1 is a branching point for the period-two cycle.

(e) Switch to the period-four cycle bifurcating at the flip point and
continue it with respect to b until the next period doubling happens at
b4 ≈ 2.5691.

(f) Continue the flip bifurcations for period-one, -two, and -four cycles
in two parameters (b, R) within the region 0 ≤ b ≤ 3, 0 ≤ R ≤ 10.0. Verify
the Feingenbaum universality. Where could chaos be expected?
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(8) (Arnold tongue in the perturbed delayed logistic map) Con-
sider the following recurrence relation (see Example 7.1 in Chapter 7):

xk+1 = rxk(1− xk−1) + ε, (E.2)

where xk is the density of a population at year k, r is the growth rate, and
ε is the migration rate.

(a) Introduce yk = xk−1 and rewrite (E.2) as a planar dynamical system(
x
y

)
�→

(
rx(1− y) + ε

x

)
. (E.3)

(b) Set r = 1.9, ε = 0 and iterate an orbit of (E.3) starting at (x0, y0) =
(0.5, 0.2) until it converges (approximately) to a fixed point.

(c) Activate the parameter r and continue the located fixed point. Check
that a Neimark-Sacker bifurcation happens at r = 2, and verify that the
critical multipliers have the form

µ1,2 = e±iθ0 , θ0 =
π

3
.

Is it a strong resonance or not?
(d) Iterate the map (E.3) for r = 2.01, 2.05, 2.10, and 2.15 using various

initial data. Check that the iterations converge to closed invariant curves
giving rise to quasiperiodic sequences {xk}.

(e) Set r = 2.177 and iterate an orbit starting from the last point ob-
tained in Step (d). Observe that the orbit converges to a cycle of period
seven. Select a point on the cycle with maximal x-coordinate.

(f) Continue this period-seven cycle with respect to r (see Figure 7.21 in
Chapter 7). Interpret the resulting closed curve on the (r, x)-plane. (Hint:
Each point of the period-seven orbit is a fixed point of the seventh iterate
of the map (E.3).) Check that the cycle of period-seven exists inside the
interval r1 < r < r2, where r1 ≈ 2.176 and r2 ≈ 2.201 are fold bifurcation
points.

(g) Continue the period-seven cycle from Step (e) with respect to ε and
find its super-critical period doubling (flip) bifurcation at ε ≈ 0.0365.

(h) Continue the Neimark-Sacker bifurcation found in Step (c) on the
(r, ε)-plane and obtain the curve h(1) shown in Figure 7.22 in Chapter 7.

(i) Continue the fold for the period-seven orbits starting at two bifurca-
tion points obtained in Step (f) varying (r, ε) (see the curves t(7)1,2 in Fig-
ure 7.22). Which point on the Neimark-Sacker curve approaches the fold
curves? Find the corresponding θ0. Is it in accordance with the theory of
the Neimark-Sacker bifurcation and phase locking? Where is the period-six
cycle?

(j) Continue the flip bifurcation curve f (7) starting at the point found
in Step (g) on the (r, ε)-plane, thus delimiting the region of existence of
the period-seven cycle (see Figure 7.22). Verify that f (7) has two points in
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common (outside the region depicted in Figure 7.22) with the fold bifurca-
tion curves t(7)1,2, where the period-seven cycle has multipliers µ(7)

1,2 = ±1 (a
codim 2 bifurcation).

(9) (Equilibria and limit cycles in a predator-prey model) Consider
the following system of ODEs [Bazykin 1985]:

ẋ = x− xy

1 + αx
,

ẏ = −γy +
xy

1 + αx
− δy2,

where x and y are prey and predator densities, respectively, α is a satura-
tion parameter of the predator functional response, γ describes the natural
predator mortality, and δ is the predator competition rate for some external
resources. When α = δ = 0 we obtain the classical Volterra system.

(a) Set α = 0, γ = 2, δ = 0.5, and numerically integrate an orbit of the
system starting at (x0, y0) = (1, 1). Verify that the orbit converges to the
stable equilibrium (x, y) = (2.5, 1.0). Try several different initial points.

(b) Continue the equilibrium found with respect to the parameter α and
detect and locate a fold bifurcation point. Activate the parameter δ and
compute the fold bifurcation curve t in the (α, δ)-plane (see Figure 10.14).
Find a Bogdanov-Takens point B = (α0, δ0) ≈ (0.2808, 0.171) on the fold
curve.

α

h

δ

t

B

FIGURE 10.14. Fold (t) and Hopf (h) bifurcation curves of the predator-prey
model; the Bogdanov-Takens point is labled by B.

(c) Starting at the Bogdanov-Takens point, continue the Hopf bifurcation
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curve h emanating from this point (see Figure 10.14). Predict the stability
of the limit cycle that appears upon crossing the Hopf curve near the point
B.

(d) Choose a point on the Hopf bifurcation curve near its maximum with
respect to the parameter δ at (α1, δ1) ≈ (0.199586, 0.2499). Decrease δ by
a small increment (e.g., set δ = 0.229) and find a stable limit cycle gener-
ated via the Hopf bifurcation by numerical integration of the system. Try
several initial data not far from the cycle and check its stability. Determine
(approximately) the period of the cycle.

(e) Continue the cycle from Step (d) with respect to the parameter δ
in both possible directions. Monitor the period T0 of the cycle as well as
its multipliers. Notice that the period T0 grows rapidly as δ approaches
δ0 ≈ 0.177 (see Figure 10.15). Guess which bifurcation the cycle exhibits.

T 0

δ

FIGURE 10.15. Dependence of the cycle period T0 on δ; δ0 ≈ 0.177 corresponds
to the homoclinic bifurcation.

Plot the cycle for increasing values of T0, and trace the change in its shape
as it approaches a homoclinic orbit.

(f) Continue the homoclinic bifurcation curve in the (α, δ)-plane and con-
vince yourself that it tends to the Bogdanov-Takens point B (see Appendix
2).

(10) (“New” Lorenz model) Consider the following system [Lorenz
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1984, Shil’nikov et al. 1995]
ẋ = −y2 − z2 − ax + aF,
ẏ = xy − bxz − y + G,
ż = bxy + xz − z,

where (a, b, F,G) are parameters. Fix a = 0.25, b = 4.
(a) Verify that the system exhibits a fold-Hopf bifurcation (λ1 = 0, λ2,3 =

±iω0) at ZH = (G0, F0) ≈ (1.682969, 1.684052). (Hint: See Exercise 12 to
Chapter 8.)

(b) Starting from the fold-Hopf point ZH, continue the fold (t) and the
Hopf (h) bifurcation curves of the system. Find a cusp bifurcation point
C = (Gc, Fc) ≈ (0.292, 0.466) on the fold curve (see Figure 10.16).

t

F

G

h

C

ZH

FIGURE 10.16. Fold (t) and Hopf (H) bifurcation curves of the “new” Lorenz
model; codim 2 bifurcation points: ZH – fold-Hopf, C – cusp.

(11) (Limit cycles and heteroclinic orbits in a predator–double-
prey system) Consider the system

ẋ = x(α− x− 6y − 4z),
ẏ = y(β − x− y − 10z),
ż = −z(1− 0.25x− 4y + z),

describing the dynamics of two prey populations affected by a predator
(see, e.g., Bazykin [1985]).
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(a) Fix α = 2.4, β = 1.77. Integrate the system starting at (x0, y0, z0) =
(0.9, 0.6, 0.001) and observe that the orbit converges toward a stable equi-
librium (x0, y0, z0) ≈ (0.6919, 0.228, 0.085).

(b) Continue the equilibrium from Step (a) with respect to the parameter
β and show that it undergoes a supercritical Hopf bifurcation at βH =
1.7638 . . ..

(c) Take β = 1.76 and find a stable limit cycle in the system by numerical
integration. Check that the period of the cycle T0 ≈ 26.5.

(d) Continue the limit cycle with respect to the parameter β and mon-
itor the dependence of its period T0 upon β (see Figure 10.17). Plot the

β

T
0

FIGURE 10.17. Dependence of the cycle period T0 upon β; β0 ≈ 1.75353 corre-
sponds to the heteroclinic bifurcation.

cycle for different values of T0 and try to understand its limiting position
as T0 → ∞ for β → β0 ≈ 1.7353. (Hint: The limit cycle tends to a het-
eroclinic cycle composed of three orbits connecting saddle points; two of
these orbits belong to the invariant coordinate planes and persist under
parameter variation (see Figure 10.18).)

(e) Analyze bifurcations detected on the cycle curve, and continue several
flip and fold bifurcation curves varying the parameters (α, β).

(12) (Periodically forced predator-prey system) Reproduce the para-
metric portraits of the periodically forced predator-prey system presented
in Example 9.3 of Chapter 9.
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z

x

y

FIGURE 10.18. Heteroclinic connection.

(13) (Moore-Penrose continuation)

Definition 10.4 Let A be an n × (n + 1) matrix of rank n. The Moore-
Penrose inverse of A is the (n + 1)× n matrix A+ = AT (AAT )−1.

(a) Consider the following linear system

Ay = a, y ∈ R
n+1, a ∈ R

n.

Prove that y = A+a is a solution to this system satisfying the orthogonality
condition 〈v, y〉 = 0, where v ∈ R

n+1 is a nonzero vector such that Av = 0.
(b) Now consider a smooth continuation problem:

F (y) = 0, F : R
n+1 → R

n.

Let y0 ∈ R
n+1 be a point sufficiently close to a regular point on the curve

defined by the continuation problem. Denote A(y) = Fy(y) and define the
iterations

yj+1 = yj −A+(yj)F (yj), j = 0, 1, 2, . . . .
Explain why these iterations are asymptotically equivalent to the geometric
construction presented in Figure 10.7.

(c) Devise an efficient implementation of the Moore-Penrose continua-
tion. (Hint: See Allgower & Georg [1990].)

10.6 Appendix 1: Convergence theorems for
Newton methods

In this appendix we formulate without proof two basic theorems on the
convergence of the Newton and Newton-chord methods. To give a theorem



526 10. Numerical Analysis of Bifurcations

on the convergence of Newton’s method, expand f(ξ) near point x as a
Taylor series and explicitly write the quadratic terms:

f(ξ) = f(x) + A(x)(ξ − x) +
1
2
B(x; ξ − x, ξ − x) + O(‖ξ − x‖3),

where

Bj(x;h, h) =
∑

k,l=1,...,n

∂2fi(ξ)
∂ξk∂ξl

∣∣∣∣
ξ=x

hkhl, j = 1, 2, . . . , n,

is the bilinear part of f at x. Denote by T (x, r) the ball bounded by a
sphere of radius r centered at the point x ∈ R

n:

T (x, r) = {ξ ∈ R
n : ‖ξ − x‖ ≤ r}.

Theorem 10.4 (Kantorovich) Let

sup
ξ∈T (x(0),r0)

sup
‖h‖≤1

‖A−1(x(0))B(ξ;h, h)‖ = M <∞,

and let
δ = ‖A−1(x(0))f(x(0))‖.

Suppose that

2δM < 1,

δ ≤ r0
2

(1 +
√

1− 2δM).

Then, iterations (10.3), (10.4) converge to a solution x0 ∈ T (x(0), r0) of
system (10.2), moreover,

‖x(j) − x0‖ ≤M−12−j(2δM)2
j

, j = 0, 1, . . . . ✷

Theorem 10.5 Under the conditions of Theorem 10.4, the Newton-chord
method (10.5), (10.6) converges to a solution x0 ∈ T (x(0), r1), of system
(10.2), where r1 = min (r0,M−1). Moreover,

‖x(j) − x0‖ ≤ δ(1− 2δM)−1/2
[
1− (1− 2δM)1/2

]j
, j = 0, 1, . . . . ✷

10.7 Appendix 2: Detection of codim 2
homoclinic bifurcations

While following a codim 1 homoclinic orbit in two parameters, we can
expect codim 2 singularities at certain points on the obtained curve. By
definition, at such a point one of Shil’nikov’s nondegeneracy conditions (see
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(H.0)–(H.3) in Section 6.4 of Chapter 6 and (SNH.1)–(SN.3) in Section 7.1
of Chapter 7) is violated. First of all, the equilibrium x0 to which the
homoclinic orbits tends can lose hyperbolicity via a fold or Hopf bifurca-
tion. These points are end points of regular homoclinic orbit loci. Curves
corresponding to homoclinic orbits to saddle-node/saddle-saddle equilibria
originate at the fold parameter values. There are other types of end points,
namely, those corresponding to the “shrinking” of the homoclinic orbit to
a point (as at the Bogdanov-Takens and other local codim 2 bifurcations)
or the “breaking” of the orbit into parts by the appearance of a hetero-
clinic cycle formed by more than one orbit connecting several equilibria.
We will not consider these cases, instead we focus on codim 1 cases where
there is a unique homoclinic orbit to a hyperbolic or saddle-node equi-
librium. The appearance of codim 2 homoclinic bifurcation points leads
to dramatic implications for system dynamics which will not be discussed
here (see Champneys & Kuznetsov [1994] for a review of two-parameter
bifurcation diagrams respective to these points).

Codimension-two homoclinic bifurcations are detected along branches of
codim 1 homoclinic curves by locating zeros of certain test functions ψi

defined in general for an appropriate truncated boundary-value problem.
In the simplest cases, test functions are computable via eigenvalues of the
equilibrium or their eigenvectors and from the homoclinic solution at the
end points. In other cases we have to enlarge the boundary-value problem
and simultaneously solve variational equations with relevant boundary con-
ditions. A test function is said to be well defined if, for all sufficiently large
T > 0, it is a smooth function along the solution curve of the truncated
problem and has a regular zero approaching the critical parameter value as
T →∞. In fact, in all cases presented below, we have the stronger property
that the limit of the test function exists and gives a regular test function
for the original problem on the infinite interval also.

Let us label the eigenvalues of A(x0, α) = fx(x0, α) with nonzero real
part as in Section 10.3.3:

Re µn− ≤ · · · ≤ Re µ1 < 0 < Re λ1 ≤ · · · ≤ Re λn+ .

In accordance to Chapter 6, the eigenvalues with zero real part are called
critical, while the stable (unstable) eigenvalues with real part closest to
zero are termed the leading stable (unstable) eigenvalues. In this appendix
we assume that all eigenvalues and necessary eigenvectors of A(x0, α) (and
its transpose AT (x0, α)) can be accurately computed along the homoclinic
curve.

10.7.1 Singularities detectable via eigenvalues
The following test functions can be monitored along a homoclinic curve
corresponding to a hyperbolic equilibrium to detect codim 2 singularities
which are well defined for both the original and truncated (10.94) problems.
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Neutral saddle:
ψ1 = µ1 + λ1.

Double real stable leading eigenvalue:

ψ2 =
{

(Re µ1 − Re µ2)2, Im µ1 = 0,
−(Im µ1 − Im µ2)2, Im µ1 = 0.

Double real unstable leading eigenvalue:

ψ3 =
{

(Re λ1 − Re λ2)2, Im λ1 = 0,
−(Im λ1 − Im λ2)2, Im λ1 = 0.

Notice that the regularity of ψ2,3 follows from the fact that they represent
the discriminant of the quadratic factor of the characteristic polynomial
corresponding to this pair of eigenvalues.

Neutral saddle, saddle-focus, or focus-focus:

ψ4 = Re µ1 + Re λ1.

Neutrally divergent saddle-focus:

ψ5 = Re µ1 + Re µ2 + Re λ1, ψ6 = Re λ1 + Re λ2 + Re µ1.

Three leading eigenvalues:

ψ7 = Re µ1 − Re µ3, ψ8 = Re λ1 − Re λ3.

In order to detect homoclinic orbits to nonhyperbolic equilibria while
continuing a locus of hyperbolic homoclinics, the truncated problem (10.94)
should be formulated in such a way that it can be continued through the
degenerate point. To this end it is necessary to modify the eigenvalue label-
ing to label as µi the n− leftmost eigenvalues and as λi the n+ rightmost
eigenvalues irrespective of their location with respect to the imaginary axis.
This accordingly modifies the meaning of the terms “stable” and “unsta-
ble” in the definition of the projection matrices Lu,s in (10.92). With this
modification, we can simply define the following test functions.

Nonhyperbolic equilibria:

ψ9 = Re µ1, ψ10 = Re λ1.

A zero of ψ9,10 corresponds to either a fold or Hopf bifurcation of the con-
tinued equilibrium x0. In the first case the bifurcation is called a noncen-
tral saddle-node homoclinic bifurcation (see below), while the second one is
usually referred to as a Shil’nikov-Hopf bifurcation. Generically these sin-
gularities are end points of a locus of homoclinic orbits to hyperbolic equi-
libria. However, there exist continuous extensions of the solution curves of
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FIGURE 10.19. Continuation through a Shil’nikov-Hopf with n = 3: The ho-
moclinic locus is denoted by H and the point-to-periodic heteroclinic curve by
H̃.

the truncated boundary-value problem (10.94) through both singularities.
Beyond the Shil’nikov-Hopf codim 2 point, there exists a solution curve
H̃ approximating a heteroclinic connection Γ1 between x0 and the limit
cycle C appearing via the Hopf bifurcation (see Figure 10.19). A simi-
lar property holds for the saddle-node bifurcation. Suppose we continue a
saddle homoclinic curve H toward a fold bifurcation of x0, which means
that an extra equilibrium approaches x0. Assume that at the saddle-node
point an unstable eigenvalue approaches zero. Beyond the codim 2 point,
the truncated boundary-value problem (10.94) has a solution approximat-
ing a heteroclinic orbit connecting the two equilibria along the nonleading
stable manifold and existing along H̃ (see Figure 10.20 for a planar illustra-
tion). More precisely, the continuation algorithm switches from the original
equilibrium to the approaching one,10 while the projection boundary con-
ditions place the end points of the solution in the “stable” and “unstable”
eigenspaces of the new x0. Close to the codim 2 point, the latter gives a
good approximation to the unstable eigenspace of the original equilibrium.

10.7.2 Orbit and inclination flips
Now consider test functions for two forms of global degeneracy along a
curve of homoclinic orbits to a saddle, namely orbit- and inclination-flip

10Beyond the critical point it is the approaching equilibrium that is labeled x0.
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FIGURE 10.20. Continuation through a noncentral saddle-node homoclinic bi-
furcation. The hyperbolic homoclinic curve is denoted by H, the noncentral het-
eroclinic curve by H̃, and the curve of folds by SN . Along the right-hand branch
SNH of the fold curve there also exists a central saddle-node homoclinic.

bifurcations. Therefore we additionally assume that there are no eigenvalues
of A(x0, α) with zero real part, while the leading eigenvalues are real and
simple, that is,

Re µn− ≤ · · · ≤ Re µ2 < µ1 < 0 < λ1 < Re λ2 ≤ · · · ≤ Re λn+ .

Then, it is possible to choose normalized eigenvectors ps1 and pu1 of AT (x0, α)
depending smoothly on (x0, α) and satisfying

AT (x0, α)ps1 = µ1p
s
1, AT (x0, α)pu1 = λ1p

u
1 .

Here and in what follows the dependence on x0 and α of eigenvalues and
eigenvectors is not indicated, for simplicity. Accordingly, normalised eigen-
vectors qs1 and qu1 of A(x0, α) are chosen depending smoothly on (x0, α)
and satisfying

A(x0, α)qs1 = µ1q
s
1, A(x0, α)qu1 = λ1q

u
1 .

An orbit flip bifurcation occurs when the homoclinic orbit changes its
direction of approach to the saddle between the two components of a lead-
ing eigenvector. The defining equation for the orbit-flip bifurcation (with
respect to the stable manifold) can be written as

lim
t→∞ e−µ1t 〈ps1, x(t)− x0〉 = 0, (A.1)
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where x(t) is a homoclinic solution and the growth of the exponential factor
counterbalances the decay of ‖x(t)−x0‖ as t→∞. Similarly, the equation
for the orbit-flip with respect to the unstable manifold is given by

lim
t→−∞ e−λ1t 〈pu1 , x(t)− x0〉 = 0. (A.2)

At a point where either condition (A.1) or (A.2) is fulfilled, the homo-
clinic orbit tends to the saddle (in one time direction) along its nonleading
eigenspace (see Figure 10.21 for an illustration in three dimensions). The

q s

q u
1

1

2
q s

W u

s

Γ
0

x0W

FIGURE 10.21. Orbit flip with respect to the stable manifold in R
3.

truncated test functions which should be evaluated along the solution curve
of (10.94) are therefore given by:

Orbit-flip (with respect to the stable manifold):

ψ11 = e−µ1T 〈ps1, x(+T )− x0〉.
Orbit-flip (with respect to the unstable manifold):

ψ12 = eλ1T 〈pu1 , x(−T )− x0〉.
The inclination-flip bifurcation is related to global twistedness of the sta-

ble and unstable manifolds W s,u(x0) of the saddle x0 around its homoclinic
orbit. Recall from Chapter 6 that at each point x(t) of the homoclinic orbit
the sum of tangent spaces

Z(t) = X(t) + Y (t)

is defined, where

X(t) = Tx(t)W
s(x0), Y (t) = Tx(t)W

u(x0).
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Generically, codim Z(t) = 1, that is, X(t) ∩ Y (t) = span{ẋ(t)}. In the
three-dimensional case, the space Z(t) merely coincides with the plane X(t)
tangent to W s(x0) at a point x(t) in Γ (see Figure 10.22). In order to
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FIGURE 10.22. (a) Simple and (b) twisted homoclinic orbits.

describe the defining equations for the inclination-flip bifurcation we have
to introduce the adjoint variational problem

ϕ̇(t) = −AT (x(t), α)ϕ(t),
ϕ(t) → 0 as t→ ±∞,∫ ∞

−∞〈ϕ(t)− ϕ0(t), ϕ0(t)〉 dt = 0,
(A.3)

where A(x, α) = fx(x, α). The first equation in (A.3) is the adjoint vari-
ational equation introduced in Section 6.4.1 of Chapter 6. The integral
phase condition with a reference vector-function ϕ0(·) selects one solution
out of the family cϕ(t) for c ∈ R

1. The solution ϕ(t) is orthogonal to the
above defined subspace Z(t) for each t, thus, its limit behavior as t→ ±∞
determines the twistedness of the space Z(t) around the homoclinic orbit.
Inclination-flip bifurcations occur at points along a homoclinic curve where
this twistedness changes without an orbit flip occurring. The defining equa-
tions for the inclination-flip bifurcation with respect to the stable manifold
are given by

lim
t→−∞ eµ1t 〈qs1, ϕ(t)〉 = 0, (A.4)

and with respect to the unstable manifold by

lim
t→∞ eλ1t 〈qu1 , ϕ(t)〉 = 0, (A.5)

where the exponential factors neutralize the decay of ‖ϕ(t)‖ as t → ±∞.
If either (A.4) or (A.5) holds, the stable (unstable) manifolds of the saddle
x0 are neutrally twisted around the homoclinic orbit (see Figure 10.23 for
a three-dimensional illustration).
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FIGURE 10.23. Inclination flip with respect to the stable manifold in R
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Next we define Ps(x0, α) to be the (n− × n) matrix whose rows form a
basis for the stable eigenspace of A(x0, α). Similarly, Pu(x0, α) is a (n+ ×
n) matrix, such that its rows form a basis for the unstable eigenspace of
A(x0, α). Consider now replacing (A.3) by the truncated equations

ϕ̇(t) + AT (x(t), α)ϕ(t) + εf(x(t), α) = 0,
Ps(x0, α)ϕ(+T ) = 0,
Pu(x0, α)ϕ(−T ) = 0,∫ T

−T
〈ϕ(t)− ϕ0(t), ϕ0(t)〉 dt = 0.

(A.6)

Here, ε ∈ R
1 is an artificial free parameter, which turns (A.6) into a well-

posed boundary-value problem and remains almost zero along its solution
curve. Evaluating the limits in (A.4) and (A.5) at t = ±T , yields the
following test functions.

Inclination-flip (with respect to the stable manifold):

ψ13 = e−µ1T 〈qs1, ϕ(−T )〉.

Inclination-flip (with respect to the unstable manifold):

ψ14 = eλ1T 〈qu1 , ϕ(+T )〉.

To evaluate practically the truncated test functions ψ13,14 along the ho-
moclinic curve, we have to continue the solution to the extended BVP
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composed of (10.94) and (A.6):

f(x0, α) = 0,
ẋ(t)− f(x(t), α) = 0,

Ls(x0, α)(x(−T )− x0) = 0,
Lu(x0, α)(x(T )− x0) = 0,∫ T

−T
〈x(t)− x0(t), ẋ0(t)〉 dt− 1 = 0,

ϕ̇(t) + AT (x(t), α)ϕ(t) + ε f(x(t), α) = 0,
Ps(x0, α)ϕ(+T ) = 0,
Pu(x0, α)ϕ(−T ) = 0,∫ T

−T
〈ϕ(t)− ϕ0(t), ϕ0(t)〉 dt = 0.

This produces the (approximations to) homoclinic solution x(t) and the
bounded solution ϕ(t) to the adjoint variational equation simultaneously.

The test functions ψ11,12,13,14 are well defined for both the original and
truncated boundary-value problems.

10.7.3 Singularities along saddle-node homoclinic curves
Suppose that a generic saddle-node homoclinic orbit is continued. Recall
that in this case the truncated boundary-value problem is composed of
equations (10.94) and (10.96). Let p0 be a null-vector of AT (x0, α) normal-
ized according to

〈p0, p0〉 = 1

and differentiable along the saddle-node homoclinic curve. Then the fol-
lowing test functions will detect noncentral saddle-node homoclinic bifur-
cations, where the closure of the homoclinic orbit becomes nonsmooth (i.e.
the condition (SNH.1) of Section 7.1 in Chapter 7 is violated).

Noncentral saddle-node homoclinic orbit:

ψ15 =
1
T
〈x(+T )− x0), p0〉, (A.7)

ψ16 =
1
T
〈x(−T )− x0), p0〉. (A.8)

These functions measure the component of the one-dimensional center man-
ifold in which the two end points of the approximate homoclinic orbit lie,
and are well defined along the saddle-node bifurcation curve (see Figure
10.24). Both ψ15 and ψ16 converge to smooth functions along the curve
of central saddle-node homoclinic orbits as T → ∞. Which of the test
functions (A.7), (A.8) is annihilated is determined by whether the critical
homoclinic orbit is a center-to-stable or unstable-to-center connection.

Remarks:
(1) The test functions ψ9,10 and ψ15,16 provide us with two different

strategies for detecting noncentral saddle-node homoclinic orbits. This al-
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FIGURE 10.24. Continuation through a noncentral saddle-node homoclinic bi-
furcation while following a central saddle-node homoclinic curve.

lows us to switch between the continuation of saddle and central saddle-
node homoclinic orbits at such points.

(2) A nontransverse saddle-node homoclinic bifurcation (where the con-
dition (SNH.3) from Section 7.1 is violated) can be detected as a limit
point with respect to the parameter along a curve of central saddle-node
homoclinic bifurcations. ♦

10.8 Appendix 3: Bibliographical notes

The literature on numerical bifurcation analysis is vast and grows rapidly,
together with computer software developed to support the analysis of dy-
namical systems. We can recommend the lectures by Beyn [1991] and the
two tutorial papers by Doedel, Keller & Kernévez [1991a, 1991b] as good
general introductions to numerical methods for dynamical systems (see also
Guckenheimer & Worfolk [1993]).

The theory of Newton’s method to locate solutions of nonlinear systems
is fully presented in Kantorovich & Akilov [1964], for example. Rank-one
updates to improve iteratively the quality of the Jacobian approximation in
Newton-like iterations were first introduced by Broyden [1965] using certain
minimal conditions. A detailed convergence analysis of the Broyden method
can be found in Dennis & Schnabel [1983].

An algorithm to compute the Taylor expansions of the stable and unsta-
ble invariant manifolds of a hyperbolic equilibrium was derived by Hassard
[1980]. Our presentation in Section 10.1.3 that uses the projection technique
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is based on Kuznetsov [1983].
The integral phase condition for limit cycle computation was first pro-

posed by Doedel [1981]. Computation of limit cycles by shooting and mul-
tiple shooting has been implemented by Khibnik [1979] and by Holodniok
& Kubic̆ek [1984a]. Systematic usage of orthogonal collocation for compu-
tation of limit cycles is due to Doedel & Kernévez [1986] (see also Doedel,
Jepson & Keller [1984]). General convergence theorems for collocation at
Gaussian points have been established by de Boor & Swartz [1973]. An effi-
cient algorithm, taking into account the special structure of matrices arising
in Newton’s method applied to the orthogonal collocation discretization,
has been implemented by Doedel [1981]. It allows for the simultaneous
computation of the cycle multipliers (see Fairgrieve & Jepson [1991] for an
improvement).

Since equilibrium computation and many bifurcation problems can be re-
duced to continuation of implicitly defined curves, a number of continuation
packages have been developed in the last two decades. They are all based on
the predictor-corrector method with slight variations. Early standard codes
to solve continuation problems were developed by Kubic̆ek [1976] (DER-
PAR) and Balabaev & Lunevskaya [1978] (CURVE). Note that the Moore-
Penrose inverse was implemented in CURVE to perform the corrections.
Since then, several universal continuation codes have appeared. We men-
tion PATH by Kaas-Petersen [1989], PITCON by Rheinboldt & Burkardt
[1983], BEETLE by Nikolaev (see Khibnik, Kuznetsov, Levitin & Nikolaev
[1993]), ALCON by Deuflhard, Fiedler & Kunkel [1987], several illustrative
codes in the book by Allgower & Georg [1990], as well as the continua-
tion segments of the bifurcation codes AUTO86/97 by Doedel & Kernévez
[1986], BIFPACK by Seydel [1991], and CONTENT by Kuznetsov and Lev-
itin [1997]. The survey paper by Allgower & Georg [1993] contains some
information on the availability of these and other continuation codes. The
general theory of continuation is developed and presented by Keller [1977]
(who introduced pseudo-arclength continuation), Rheinboldt [1986], Seydel
[1988, 1991] and Allgower & Georg [1990].

The detection and location of bifurcation points based on monitoring
the eigenvalues (multipliers) is implemented in AUTO86. Test functions to
locate Hopf and Neimark-Sacker bifurcations based on Hurwitz determi-
nants have been proposed by Khibnik [1990] and implemented in the code
LINLBF, where they are also used for the continuation of the correspond-
ing bifurcations by the minimally augmented approach. The detection of
Hopf bifurcations with the help of the bialternate matrix product is es-
sentially due to Fuller [1968] (who refers to even earlier contributions by
Stéphanos [1900]). This approach has been reintroduced within a bifurca-
tion framework by Guckenheimer & Myers [1996], successfully applied to
several problems, and implemented in CONTENT. The regularity theorem
for the resulting minimally augmented system is due to Guckenheimer, My-
ers & Sturmfels [1997]. Several test functions appropriate for large systems
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have developed by Moore, Garret & Spence [1990]. Modified minimally
augmented systems, where the defining function for the bifurcation is com-
puted by solving a bordered linear system, were introduced by Griewank
& Reddien [1984] for the fold continuation and by Govaerts, Guckenheimer
& Khibnik [1997] for the Hopf continuation. Other methods to continue
Hopf bifurcation using bordered systems are discussed by Beyn [1991], Chu,
Govaerts & Spence [1994], and Werner [1996]. General properties of bor-
dered matrices were established by Govaerts & Pryce [1993]. The location
and continuation of fold and Hopf points via extended augmented systems
has been considered by several authors, including Moore & Spence [1980],
Rheinboldt [1982], Roose & Hlavaček [1985], and Holodniok & Kubic̆ek
[1984b]. These methods are implemented in AUTO86 (see Doedel, Keller
& Kernévez [1991a]) and CONTENT. The solution of the linear systems
arising at each Newton correction can be efficiently implemented by using
their special structure.

Detection and analysis of branching points (called “bifurcation points”)
can be found in Allgower & Georg [1990]. The program STAFF by Borisyuk
[1981] (based on the program CURVE) detects branching points and sup-
ports branch switching. So do the programs AUTO86 and CONTENT,
as well as several other bifurcation codes. Note that this feature allows
switching to the continuation of the double-period cycle at a flip bifurca-
tion point. AUTO86, CONTENT, and other programs can also start cycle
continuation from a Hopf point.

Verification of the nondegeneracy condition for the fold bifurcation is
supported by LINLBF, where formula (10.49) is used. Numerical compu-
tation of the first Lyapunov coefficient is performed by the code BIFOR2
by Hassard, Kazarinoff & Wan [1981] and by the corresponding part of the
program LINLBF by Khibnik. Both programs use numerical differentia-
tion and compute intermediate quadratic coefficients of the center manifold.
The algorithm presented in Section 10.2.3 differs from those just mentioned
in using the invariant expression for l1 and requiring only the directional
derivatives. It is implemented in CONTENT.

Two-parameter continuation of all equilibrium, fixed-point, and cycle
codim 1 bifurcations, as well as many codim 2 bifurcations in three param-
eters, is supported by the program LINLBF and its variants (see Khibnik
[1990], Khibnik, Kuznetsov, Levitin & Nikolaev [1993]) . Codim 1 bifurca-
tions of equilibria and cycles can be continued by AUTO86, CANDYS/QA
[Feudel & Jansen 1992], and CONTENT.

One way to locate a homoclinic orbit numerically is by the continua-
tion of a limit cycle to large period (see Doedel & Kernévez [1986]). A
shooting technique for homoclinic orbit location and continuation was im-
plemented into the code LOOPLN by Kuznetsov [1983] (see also Kuznetsov
[1990, 1991]). Rodŕıguez-Luis, Freire & Ponce [1990] also developed a ho-
moclinic continuation method based on shooting. Since these approaches
have obvious limitations, boundary-value methods to locate and continue
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codim 1 homoclinic bifurcation have been proposed and analyzed by Has-
sard [1980], Miura [1982], Beyn [1990b, 1990a], Doedel & Friedman [1989],
Friedman & Doedel [1991, 1993], Schecter [1993], Bai & Champneys [1996],
and Sandstede [1997b]. Champneys & Kuznetsov [1994] and Champneys,
Kuznetsov & Sandstede [1996] have extended these BVP methods to deal
with codim 2 homoclinic bifurcations, including orbit and inclination flips
(see Appendix 2), and wrote a standard AUTO86 driver HomCont [Champ-
neys, Kuznetsov & Sandstede 1995] for these problems. There is a way
to obtain a good starting solution for the homoclinic continuation by a
homotopy method (see Doedel, Friedman & Monteiro [1994], Champneys
& Kuznetsov [1994]). Beyn [1991, 1994] has developed a method to start
the homoclinic curve from a Bogdanov-Takens bifurcation, while Gaspard
[1993] proposed an algorithm to start such curves from a fold-Hopf point.

Systematic bifurcation analysis requires repeated continuation of differ-
ent phase objects, and detection and analysis of their singularities and
branch switching. These computations produce a lot of numerical data
that should be analyzed and finally presented in graphical form. Thus,
continuation programs should not only be efficient numerically, but should
allow for interactive management and have a user-friendly graphics inter-
face. The development of such programs is progressing rapidly. One of the
most popular continuation/bifurcation programs, AUTO86, comes with a
simple interactive graphics browser called PLAUT that allows for graphi-
cal presentation of computed data. There are versions of PLAUT for most
of the widespread workstations. There were several attempts to improve
the user interface of AUTO. A special interactive version of AUTO86 was
developed at Princeton by Taylor & Kevrekidis [1990] for SGI worksta-
tions. The program XPPAUT for workstations running under UNIX and
the X11 Window System by B. Ermentrout is another example.11 It also
performs simulations and computes one-dimensional invariant manifolds of
equilibria. An interactive version AUTO94 was also designed by E. Doedel,
X. Wang, and T. Fairgrive for UNIX workstations with X11. This ver-
sion has extended numerical capabilities, including the continuation of all
codim 1 bifurcations of limit cycles and fixed points. The software has
been upgraded in 1997 and now supports the continuation of homoclinic
orbits using HomCont. It is called AUTO97 [Doedel, Champneys, Fair-
grieve, Kuznetsov, Sandstede & Wang 1986].12 For IBM-PC compatible
computers, an interactive DOS program LOCBIF has been developed by
Khibnik, Kuznetsov, Levitin & Nikolaev [1993]. The numerical part of the
program is based on the noninteractive code LINLBF and allows for contin-
uation of equilibrium, fixed-point, and limit cycle bifurcations up to codim

11XPPAUT is available via ftp from ftp.math.pitt.edu in the directory
/pub/bardware.

12AUTO97 is available via ftp from ftp.cs.concordia.ca in the directory
/pub/doedel/auto.



10.8 Appendix 3: Bibliographical notes 539

3. LOCBIF supports much of the continuation strategy described in Sec-
tion 10.4 of this chapter.13 A popular simulation program DsTool14 [Back,
Guckenheimer, Myers, Wicklin & Worfolk 1992] incorporates the numerical
part of LOCBIF and emulates its interface.

The new generation of continuation/bifurcation software is represented
by the interactive program CONTENT15 developed by Yu.A. Kuznetsov
and V.V. Levitin. It runs on most popular workstations under UNIX/X11/
Motif and on PCs under Linux or MS-Windows 95/NT and supports nu-
merical computation of orbits, continuation of equilibria (fixed points) and
cycles, detection and normal form analysis of bifurcations, their continu-
ation in two and three parameters, and branch switching, as described in
this chapter.

The development of computer algebra has an impact on dynamical sys-
tem studies (see, e.g., a collection of papers edited by Tournier [1994] on
computer algebra and differential equations). One can attempt to locate
equilibria of a polynomial system using methods from commutative algebra
implemented in popular symbolic manipulation systems such as MAPLE
[Char, Geddes, Gonnet, Leong, Monagan & Watt 1991a, Char, Geddes,
Gonnet, Leong, Monagan & Watt 1991b], Mathematica [Wolfram 1991], or
REDUCE [Hearn 1993]. A very good presentation of the relevant notions
(ideals, varieties, Groebner basis, etc.) and algorithms is given by Cox, Lit-
tle & O’Shea [1992]. Another important field of application of symbolic
manipulations is the theory of normal forms (see, e.g., Chow, Drachman
& Wang [1990], Sanders [1994]). Actually, the most complex expressions
for normal form coefficients given in this book have been obtained with
MAPLE. Finally, let us mention an interactive system SYMCON for con-
tinuation/bifurcation analysis of equilibria of symmetric systems of ODEs
by Gatermann & Hohmann [1991], in which a combination of symbolic and
numerical methods is implemented.

13The program LOCBIF is available from Computer Algebra Nederland Ex-
pertise Center, Kruislaan 419, 1098 VA Amsterdam, The Netherlands.

14DsTool is vailable by ftp from cam.cornell.edu in the directory
/pub/dstool.

15The program CONTENT is available via ftp from ftp.cwi.nl in the direc-
tory /pub/CONTENT.
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Appendix A
Basic Notions from Algebra,
Analysis, and Geometry

In this appendix we summarize for the convenience of the reader some basic
mathematical results that are assumed to be known in the main text. Of
course, reading this appendix cannot substitute for a systematic study of
the corresponding topics via standard textbooks.

A.1 Algebra

A.1.1 Matrices
Let A be an n×m matrix with complex elements ajk ∈ C

1:

A =


a11 a12 · · · a1m
a21 a22 · · · a2m
· · ·
an1 an2 · · · anm

 ,

and let AT denote its transpose:

AT =


a11 a21 · · · an1
a12 a22 · · · an2
· · ·
a1m a2m · · · anm

 .
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The product of an n × m matrix A and an m × l matrix B is the n × l
matrix C = AB with the elements

cij =
m∑
k=1

aikbkj , i = 1, 2, . . . , n, j = 1, 2, . . . , l.

The following property holds:

(AB)T = BTAT .

The determinant of a square n×n matrix A is the complex number defined
by

detA =
∑

(i1,i2,...,in)∈Sn

(−1)δ(i1,i2,...,in)ai1ai2 · · · ain ,

where Sn is the set of all permutations of n indices, and δ = 0 when the
multiindex (i1, i2, . . . , in) can be obtained from the multi-index (1, 2, . . . , n)
by an even number of one-step permutations; δ = 1 otherwise. A square
matrix A is called nonsingular if detA = 0. For a nonsingular matrix A,
there is the inverse matrix A−1, such that AA−1 = A−1A = I, where I is
the identity n× n matrix

I =


1 0 0 · · · 0
0 1 0 · · · 0
· · ·
0 0 · · · 0 1

 .

If A and B are two n× n matrices, then

det(AB) = detA detB.

The rank of an n × m matrix A is the order of the largest nonsingular
square submatrix of A.

The sum of two n×m matrices A and B is the n×m matrix C = A+B
with the elements

cij = aij + bij , i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

The product of a complex number λ and an n×m matrix A is the n×m
matrix B = λA with the elements

bij = λaij , i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

Consider a function x �→ f(x) defined by a convergent series

f(x) =
∞∑
k=0

fkx
k
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(analytic function). Given a square matrix A, we can introduce a square
matrix f(A) by

f(A) =
∞∑
k=0

fkA
k,

where A0 = I, Ak = AAk−1, k = 1, 2, . . .. For example,

eA =
∞∑
k=0

1
k!
Ak.

A.1.2 Vector spaces and linear transformations
A complex n× 1 matrix

v = (v1, v2, . . . , vn)T =


v1
v2
· · ·
vn


is called a vector. The set of all such vectors is a linear space that can
be identified with C

n. In this space, addition between two elements and
multiplication of an element by a complex number are defined component-
wise.

A subset X ⊂ C
n is called the linear subspace (hyperplane) of C

n if
x ∈ X and y ∈ X imply x + y ∈ X and λx ∈ X for any λ ∈ C

1. A linear
subspace Z is called the sum of two linear subspaces X and Y if any vector
z ∈ Z can be represented as z = x + y for some vectors x ∈ X and y ∈ Y .
Symbolically: Z = X + Y . If such a prepresentation is unique for each z,
Z is called the direct sum of X and Y and is denoted by Z = X ⊕ Y .

Vectors {a1, a2, . . . , ak} from C
n are called linearly independent when

α1a1 + α2a2 + · · ·+ αkak = 0,

if and only if αj = 0 for all j = 1, 2, . . . , k. The set

L = span{a1, a2, . . . , ak} =

{
v ∈ C

n : v =
k∑

i=1

αiai, αi ∈ C
1

}

is a linear subspace of C
n. If {a1, a2, . . . , ak} are linearly independent,

dimL = k. A set of n linearly independent vectors is called a basis. The
set of unit vectors

e1 =


1
0
· · ·
0

 , e2 =


0
1
· · ·
0

 , . . . , en =


0
0
· · ·
1
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is the standard basis in C
n. Any vector v ∈ C

n can be uniquely represented
as

v =


v1
v2
· · ·
vn

 = v1e1 + v2e2 + · · ·+ vnen.

If {ε1, ε2, . . . , εn} is another basis, any vector v ∈ C
n can also be repre-

sented as
v = u1ε1 + u2ε2 + · · ·+ unεn,

where uk ∈ C
1 are components of v in this basis. Denote u = (u1, u2, . . . , un)T .

Then
v = Cu,

where the n× n matrix C is nonsingular and has the elements cij that are
the components of the basis vectors εj in the standard basis

εj = c1je1 + c2je2 + · · ·+ cnjen, j = 1, 2, . . . , n.

An n× n matrix A can be identified with a linear transformation of the
space C

n

v �→ Av.

In a basis {ε1, ε2, . . . , εn} this transformation will have the form

u �→ Bu,

where the matrix B is given by

B = C−1AC.

The matrices A and B are called similar. The determinants of similar ma-
trices coincide.

A.1.3 Eigenvectors and eigenvalues
A nonzero complex vector

v = (v1, v2, . . . , vn)T ∈ C
n

is called an eigenvector of an n× n matrix A if

Av = λv,

for some λ ∈ C
1. The complex number λ is called an eigenvalue of A

corresponding to the eigenvector v. The eigenvalues of A are roots of the
characteristic polynomial

h(λ) = det(A− λI),

and every root is an eigenvalue. Thus, there are n eigenvalues if we count
their multiplicities as the roots of h(λ).
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A.1.4 Invariant subspaces, generalized eigenvectors, and
Jordan normal form

A linear subspace X ⊂ C
n is called an invariant subspace of the matrix A

if AX ⊂ X, that is, if w ∈ X implies Aw ∈ X.
If λ is a root of the characteristic polynomial, then there is an invariant

subspace (eigenspace) of A that is spanned by the eigenvector v ∈ C
n

associated with λ:

X = {x ∈ C
n : x = ωv, ω ∈ C

1}.
If λ is a multiple root of the characteristic polynomial of multiplicity m,

then one can find 1 ≤ l ≤ m linearly independent eigenvectors v1, v2, . . . , vl,
corresponding to λ. For each eigenvector vj , there is a maximal chain of
complex vectors {w(j)

1 , w
(j)
2 , . . . , w

(j)
kj
}, such that

Aw
(j)
1 = λw

(j)
1 ,

Aw
(j)
2 = λw

(j)
2 + w

(j)
1 ,

· · ·
Aw

(j)
kj

= λw
(j)
kj

+ w
(j)
kj−1.

The chain can be composed of only one vector w(j)
1 , that is merely the eigen-

vector vj . The vectors w(j)
k with k ≥ 2 are called generalized eigenvectors

of A corresponding to the eigenvalue λ. The subspace

X = {x ∈ C
n : x = ω1w

(j)
1 + ω2w

(j)
2 + · · ·+ ωkw

(j)
k , ωj ∈ C

1}
is an invariant subspace of A.

Eigenvectors and generalized eigenvectors corresponding to distinct eigen-
values are linearly independent. The vectors {w(j)

1 , w
(j)
2 , . . . , w

(j)
kj
} compos-

ing a chain corresponding to a multiple eigenvalue λ are also linearly inde-
pendent.

Theorem A.1 (Jordan normal form) The space C
n can be decomposed

into linear invariant subspaces of the matrix A corresponding to its eigen-
values and spanned by the corresponding eigenvectors and generalized eigen-
vectors of A. In a basis given by all the eigenvectors and generalized eigen-
vectors, the matrix A has a block-diagonal form with square blocks

λ 1 0 · · · · · · 0
0 λ 1 0 · · · 0
· · ·
0 · · · · · · 0 λ 1
0 · · · · · · · · · 0 λ

 ,

whose dimension is equal to the length of the corresponding chain. ✷
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This form is called the Jordan normal form or Jordan canonical form. It
also follows from this theorem that the product of all the eigenvalues of the
matrix A is equal to its determinant:

detA = λ1λ2 · · ·λn.

If the matrix A is real, then it has linear invariant subspaces of R
n

spanned by eigenvectors and generalized eigenvectors corresponding to its
real eigenvalues and also by the real and imaginary parts of complex eigen-
vectors corresponding to its complex eigenvalues with, say, positive imagi-
nary part. Such subspaces are called (real) generalized eigenspaces of A.

If λ is an eigenvalue of A, then µ = f(λ) is an eigenvalue of B = f(A),
where f is an analytic function.

A.1.5 Fredholm Alternative Theorem
Let A be a real n×m matrix and let b ∈ R

n be a real vector. The null-space
of A is the linear subspace of R

m composed of all vectors x ∈ R
m for which

Ax = 0. The range of A is the set of all x ∈ R
n for which Ay = x for some

y ∈ R
m.

Theorem A.2 (Fredholm Alternative Theorem) The equation Ax =
b has a solution if and only if bT v = 0 for every vector v ∈ R

n satisfying
AT v = 0. ✷

Notice that bT v =
∑n

j=1 bjvj is the standard scalar product in R
n. The

theorem means that the null-space of AT is the orthogonal complement of
the range of A and that together they span the whole R

n. In other words,
any vector b ∈ R

n can be uniquely decomposed as b = br + b0, where br is
in the range of A, b0 is in the null-space of AT , and br is orthogonal to b0.

If A is a complex matrix and b is a complex vector, Theorem A.2 remains
valid if we replace transposition by transposition composed with complex
conjugation.

A.1.6 Groups
A set G is a group if a product “◦”: G × G → G is defined which satisfies
the following properties:

(i) f ◦ (g ◦ h) = (f ◦ g) ◦ h for all f, g, h ∈ G;
(ii) there is a unit element e ∈ G such that g ◦e = e◦g = g, for all g ∈ G;
(iii) for each g ∈ G, there is a unique element g−1 ∈ G such that g−1◦g =

g ◦ g−1 = e.

All real nonsingular n× n matrices with the matrix product and the unit
I form the general linear group denoted by GL(n). All n × n matrices
satisfying ATA = I compose its orthogonal subgroup O(n).
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A.2 Analysis

If y = g(x), g : R
n → R

m, and z = f(y), f : R
m → R

k, are two maps,
then their superposition h = f ◦ g is a map z = h(x), R

n → R
k, defined by

the formula
h(x) = f(g(x)).

Let fy(y) denote the Jacobian matrix of f evaluated at a point y ∈ R
n:

fy(y) =
(
∂fi(y)
∂yj

)
,

where i = 1, 2, . . . ,m, j = 1, 2, . . . , n. If we similarly define hx(x) and
gx(x), then

hx(x) = [fy(y)]|y=g(x) [gx(x)]

(the chain rule).

A.2.1 Implicit and Inverse Function Theorems
Consider a map

(x, y) �→ F (x, y),

where
F : R

n × R
m → R

n,

is a smooth map defined in a neighborhood of (x, y) = (0, 0) and such that
F (0, 0) = 0. Let Fx(0, 0) denote the matrix of first partial derivatives of F
with respect to x evaluated at (0, 0):

Fx(0, 0) =
(
∂Fi(x, y)
∂xj

)∣∣∣∣
(x,y)=(0,0)

.

Theorem A.3 (Implicit Function Theorem) If the matrix Fx(0, 0) is
nonsingular, then there is a smooth locally defined function y = f(x),

f : R
n → R

m,

such that
F (x, f(x)) = 0,

for all x in some neighborhood of the origin of R
n. Moreover,

fx(0) = −[Fx(0, 0)]−1Fy(0, 0). ✷
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The degree of smoothness of the function f is the same as that of F .
Consider now a map

y = g(x),

where
g : R

n → R
n

is a smooth function defined in a neighborhood of x = 0 and satisfying
g(0) = 0. The following theorem is a consequence of the Implicit Function
Theorem.

Theorem A.4 (Inverse Function Theorem) If the matrix gx(0) is non-
singular, then there is a smooth locally defined function x = f(y),

f : R
n → R

n,

such that
g(f(y)) = y

for all y in some neighborhood of the origin of R
n. ✷

The function f is called the inverse function for g and is denoted by
f = g−1.

A.2.2 Taylor expansion
Let Ω be a region in R

n containing the origin x = 0. Denote by Ck(Ω,Rm)
the set of maps (vector-valued functions) y = f(x), f : Ω → R

m, having
continuously differentiable components up to and including order k ≥ 0. If
f ∈ Ck(Ω,Rm) with a sufficiently large k, the function f is called smooth.
A C∞ function has continuous partial derivatives of any order. Any func-
tion f ∈ Ck(Ω,Rm) can be represented near x = 0 in the form (Taylor
expansion)

f(x) =
k∑

|i|=0

1
i1!i2! · · · in!

∂|i|f(x)
∂xi11 ∂x

i2
2 · · · ∂xinn

∣∣∣∣
x=0

xi11 x
i2
2 · · ·xinn + R(x),

where |i| = i1 + i2 + · · ·+ in and R(x) = O(‖x‖k+1) = o(‖x‖k), namely,

‖R(x)‖
‖x‖k → 0

as ‖x‖ → 0. Here ‖x‖ =
√
xTx.

A C∞-function f is called analytic near the origin if the corresponding
Taylor series

∞∑
|i|=0

1
i1!i2! · · · in!

∂|i|f(x)
∂xi11 ∂x

i2
2 · · · ∂xinn

∣∣∣∣
x=0

xi11 x
i2
2 · · ·xinn

converges to f(x) at any point x sufficiently close to x = 0.
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A.2.3 Metric, normed, and other spaces
Let X be a set of elements for which addition and multiplication by (com-
plex) numbers satisfying standard axioms are defined. The set X can consist
of functions, for example, X = Ck(Ω,Cm).

The set X is a metric space if a function ρ : X ×X → R
1 is defined such

that:

(i) ρ(x, y) = ρ(y, x) for all x, y ∈ X;
(ii) ρ(x, y) ≥ 0 and ρ(x, y) = 0 if and only if x = y;
(iii) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for all x, y, z ∈ X.

The function ρ is called a metric (or distance). A sequence {xk}∞
k=1 of

elements xk ∈ X has a limit x0 ∈ X (convergent) if for any ε > 0 there is
an integer N(ε) such that

ρ(xk, x0) < ε,

for all k ≥ N(ε). Notation: x0 = limk→∞ xk. A function f : X → X is
continuous at x0 if

lim
k→∞

f(xk) = f(x0),

for all sequences such that limk→+∞ xk = x0. A function g : X → X is
called Hölder-continuous at x0 if there exist a constant L0 and an index
0 < β ≤ 1, such that

ρ(g(x), g(x0)) ≤ L0[ρ(x, x0)]β

for all x sufficiently close to x0.
A set S ⊂ X is closed if it contains the limits of all convergent sequences

such that for any finite k, xk ∈ S. A sequence {xk}∞
k=1 of elements xk ∈ X

is a Cauchy sequence if for any ε > 0 there is an integer N(ε) such that for
every n,m ≥ N ,

ρ(xn, xm) < ε.

If the sequence {xk}∞
k=1 has a limit, it is a Cauchy sequence. If any Cauchy

sequence has a limit in X, the space X is called complete.
The set X is a normed space if a function ‖ · ‖ : X → R

1 is defined such
that:

(i) ‖x‖ ≥ 0 and ‖x‖ = 0 implies x = 0;
(ii) ‖αx‖ = |α|‖x‖ for any (complex) number α;
(iii) ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X.

The function ‖ · ‖ is called a norm. Any normed space is a metric space
with the metric ρ(x, y) = ‖x − y‖. If X is complete in this metric, it is
called a Banach space. The space of continuous functions C0(Ω,Cm) is a
Banach in the norm

‖f‖ = max
i=1,2,...,m

sup
ξ∈Ω

|fi(ξ)|.
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A set S ⊂ X is bounded if ‖x‖ < C with some C > 0 for all x ∈ S.
The set X is a space with a scalar product if for each pair of (x, y) ∈ X

a complex number 〈x, y〉 (called the scalar product) is defined so that the
following properties hold:

(i) 〈x, y〉 = 〈y, x〉 for all x, y ∈ X;
(ii) 〈x, αy〉 = α〈x, y〉 for all x, y ∈ X and any complex number α;
(iii) 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉 for all x, y, z ∈ X;
(iv) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0.

Any space X with a scalar product is a normed space with ‖x‖ =
√〈x, x〉.

If it is a Banach space in this norm, it is called a Hilbert space. The space
C
n is a Hilbert space with the scalar product

〈x, y〉 = x̄T y =
n∑

k=1

x̄kyk.

Thus, it is also a Banach space and a complete metric space. Note that

〈x,Ay〉 = 〈ĀTx, y〉,
for any x, y ∈ C

n and a complex matrix A. The space C0(Ω,Cm) is a space
with the scalar product

〈f, g〉 =
∫

Ω
f̄ T (x)g(x) dx,

but is not a Hilbert space.

A.3 Geometry

A.3.1 Sets
To denote that x is an element of a set X, we write x ∈ X. A set A is a
subset of X (A ⊂ X) if x ∈ A implies x ∈ X. If A and B are two sets, then
the set A ∪ B consists of all elements that belong to either A or B, while
the set A ∩ B is composed of all elements that belong to both A and B.
The set of all ordered pairs (a, b), such that a ∈ A and b ∈ B, is called the
direct product of two sets A and B and is denoted by A×B.

The following notations are used for the standard sets:

R
1: the set of all real numbers −∞ < x < +∞; R

1
+ denotes the set of all

nonnegative real numbers x ≥ 0;
R
n: the direct product of n sets R

1; an element x ∈ R
n is considered as

a vector (one-column matrix) x = (x1, x2, . . . , xn)T ;
C

1: the set of all complex numbers z = x+ iy, where x, y ∈ R
1, i2 = −1.

Any z ∈ C
1 can be represented as z = ρeiϕ = ρ(cosϕ + i sinϕ), where

ρ = |z| =
√
x2 + y2 and ϕ = arg z; z̄ = x− iy;
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C
n: the direct product of n sets C

1; an element z ∈ C
n is considered as

a vector (one-column matrix) z = (z1, z2, . . . , zn)T ;
Z: the set of all integer numbers {. . . ,−2,−1, 0, 1, 2, . . .}; Z+ denotes the

set of all nonnegative integers k = 0, 1, 2, . . .;
S

1: the unit circle: S
1 = {x ∈ R

2 : x2
1 + x2

2 = 1};
T

2: the two-torus: T
2 = S

1 × S
1.

A.3.2 Maps
Let X and Y be two sets. A (single-valued) map (or function)

f : X → Y

is said to be defined from X to Y if, for any element x ∈ X, an element
y ∈ Y is specified. We write

y = f(x),

or
x �→ f(x).

A map f : X → X is called a transformation of X. A map f : X → Y can
be defined only for elements of a subset D ⊂ X. In this case, D is called the
domain of definition of f . The set f−1(Y0) of all x ∈ X such that f(x) ∈ Y0
is called the preimage of Y0 ⊂ Y .

A.3.3 Manifolds
For our purposes, it is sufficient to consider the manifold M ⊂ R

n as a set
of points in R

n that satisfy a system of m scalar equations:

F (x) = 0,

where F : R
n → R

m for some m ≤ n. The manifold M is smooth (differen-
tiable) if F is smooth and the rank of the Jacobian matrix Fx is equal to
m at each point x ∈ M . At each point x of a smooth manifold M , an
(n −m)-dimensional tangent space TxM is defined. This space consists of
all vectors v ∈ R

n that can be represented as v = γ̇(0), where γ : R
1 →M

is a smooth curve on the manifold satisfying γ(0) = x. Alternatively, TxM
can be characterized as the orthogonal complement to

span{∇F1,∇F2, . . . ,∇Fm},
where

∇Fk =
(
∂Fk

∂x1
,
∂Fk

∂x2
, . . . ,

∂Fk

∂xn

)T

, k = 1, 2, . . . ,m,

are linear independent gradient vectors at point x. One can introduce n−m
coordinates near each point x ∈M by projecting to TxM , so that a smooth
manifold M is locally equivalent to R

n−m.
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A region Ω ∈ R
n is a closed set of points in R

n bounded by a piecewise
smooth (n− 1)-dimensional manifold.
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équations diffiérentialles’, Proc. Soc. Math. France 29, 224–228.

Hale, J. [1971], Functional Differential Equations, Springer-Verlag, New
York.

Hale, J. [1977], Theory of Functional Differential Equations, Springer-
Verlag, New York.
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for planar maps, 395

period-doubling, 448
tangent, 452, 453

bifurcation diagram, 62–65, 72, 221,
252, 280, 300, 303, 307,
321, 337, 344, 345, 348,
356, 365, 391, 393, 397,
407, 414, 435, 438, 439,
450, 451, 454, 463, 501,
516

definition of, 61
for 1:1 resonance, 413
for 1:2 resonance, 424
for 1:3 resonance, 433, 434
for Bautin bifurcation., 312
for Bogdanov-Takens bifurca-

tion, 322

for fold-Hopf bifurcation, 337,
339

for Hopf-Hopf bifurcation, 358,
362

for the generalized flip bifur-
cation, 402

of a fold bifurcation, 81
of a normal form, 66
of a pitchfork bifurcation, 62
of Bazykin’s predator-prey sy-

sem, 326
of one- and two-dimensional

systems, 62
one-parameter, 65, 478
universal, 65, 200

bifurcation function, 484
bifurcation sequences, 438, 445, 446
bordered system, 502
boundary conditions, 36

Dirichlet, 34, 36
Neumann, 34
periodic, 472
projection, 511

boundary-value problem
for continuation of the Neimark-

Sacker bifurcation of cy-
cles, 509

for cycle continuation, 483,
507

for flip continuation, 508
using bordering, 509

for fold continuation, 507
for homoclinic continuation,

512
for saddle-node homoclinic con-

tinuation, 513
periodic, 472

branch switching, 499
at codim 2 points, 515

Broyden update, 467, 469, 517

CANDYS/QA, 537
Cartesian leaf, 208
Center Manifold Theorem, 152, 293,

325, 348, 369
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for homoclinic orbits, 220, 232,
234

with symmetry, 277
chain rule, 547
change of coordinates, 84
chaotic attractor, 449, 455
chaotic dynamics, 139
chaotic oscillations, 450
characteristic polynomial, 469, 544
codimension, definition of, 63
computer algebra, 105, 378, 539
conditions

Andronov-Pontryagin, 72
bifurcation, 62, 65–67, 79, 113,

250, 296, 315, 393, 397
for cusp, 398
for the Bautin bifurcation,

311
for the homoclinic bifurca-

tion, 198
Hopf, 91

Dirichlet boundary, 189
for structural stability, 71
genericity, 66, 86, 102, 116,

135, 200, 209, 214, 215,
217, 220, 237, 252, 255,
257, 259, 282, 297, 300,
303, 311, 314, 321, 325,
344, 395, 398, 401, 488

for Hopf bifurcation, 67
invariance, 471
Morse-Smale, 72
nondegeneracy, 66, 67, 86, 104,

135, 250, 297, 303, 320,
324, 334, 343, 355, 358,
362, 368, 396, 406, 407,
413, 432, 444, 458

for 1:1 resonance, 413
for 1:2 resonance, 423

orthogonality, 349
periodicity, 477
phase, 472, 477

integral, 473, 484, 507, 518
integral, for homoclinic or-

bits, 510

Shil’nikov chaotic, 346
transversality, 66, 86, 135, 209,

297, 303, 320, 336, 368
constant

Feigenbaum, 124, 139
numerical approximation to,

517
Lipschitz, 145

CONTENT, 537, 539
continuation, 450–452, 472, 478,

505
fold for cycles, 508
Moore-Penrose, 482
natural, 482
of codim 1 bifurcations of limit

cycles, 507
of codim 1 equilibrium bifur-

cations, 501
of equilibria and cycles, 479
of homoclinic orbits, 510
of limit cycles, 483, 516

from a Hopf point, 494
pseudo-arclength, 482
strategy, 515

continuation problem, 479, 483,
496, 515

for the fold bifurcation, 501
for the Hopf bifurcation, 501
numerical solution of, 479
perturbation of, 500

Contraction Mapping Principle, 17,
128, 145, 467

convergence, 483
criteria, 469
linear, 467
quadratic, 466
superlinear, 468

coordinate
angle, 146
change, 41, 42, 117, 121, 122,

130, 132–134, 203, 300,
303, 398, 401, 404, 417

complex, 308
linear, 320

complex, 130
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dilatation, 140
polar, 87, 108, 128, 129
shift, 117, 121, 144, 382

parameter-dependent, 129,
301, 307, 317, 349

transformation, 131, 311, 318
linear, 417

correspondence map, 475
cross-section, 252, 267

local, 162, 202
transversal, 256

CURVE, 536, 537
curve

bifurcation, 294, 303
fold, 294, 298, 303, 323
Hopf, 296, 299

invariant, 268
smooth, 551

cycle, 27, 191
blow-up, 340, 365
cross-section to, 26
definition of, 9
heteroclinic, 339, 348, 365, 375,

378, 425, 434, 442–444,
527

hyperbolic
in planar systems, 55
in three-dimensional systems,

56
limit, 10, 109, 206

saddle, 55
of a continuous-time system,

9
of a discrete-time system, 10
of a reaction-diffusion system,

35
of period three, 138
of period two, 119, 120, 138
period of, 9
stable, 16

of period seven, 273

Denjoy’s theorem, 291
determinant, 542, 544, 546
diffeomorphism, 49, 50, 314, 325

differential equations, 23, 29, 37
autonomous, 18
ordinary, 20
time-periodic, 30, 448
with partial derivatives, 33

directional derivatives, 490
discretization, 473, 478, 483, 508
displacement, 465
dissipative structure, 35, 191
distance, 549
divergence, 30, 33, 56, 224, 232,

378
doubling operator, 140, 141, 517

restricted to the unstable man-
ifold, 142

DsTool, 539
dynamical systems

classification of, 39
continuous-time, 5, 40, 79, 152,

157, 162, 163, 272, 276,
478, 484

an example of, 8
definition of, 7
diffeomorphic, 41, 42
discrete-time, 5, 7, 17, 40, 113,

115, 140, 156, 157, 188,
272, 404, 478, 483, 487,
504, 506

conjugate, 41
equivariant, 276, 277
finite- and infinite-dimensional,

5
generic, 46
Hamiltonian, 199, 232, 238
induced, 67, 374
infinite-dimensional, 33, 145,

189
invariant, 276, 347, 368, 372,

424, 427, 433, 438
invertible, 6
Morse-Smale, 78
notion of, 1
smooth, 7
structurally stable, 72, 78

on tori, 271
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symmetric, 62
numerical analysis of, 539

with symmetry, 276

eigenbasis, 470
eigenspace, 511, 545

central, 233
generalized, 546
leading, 232
principal (leading), 213

eigenvalues, 469
central, 233
critical, 152
definition of, 544
double, 298, 300, 315, 321,

326, 391, 428, 460
leading, 232
multiple, 545
principal (leading), 213

eigenvector
adjoint, 315, 411, 415, 428,

435, 470, 514
definition of, 544
generalized, 315, 410, 415

definition of, 545
elliptic integral, 386, 391, 425
equation

algebraic branching, 498
Bautin’s, 108
characteristic, 28, 48, 91
Duhamel’s integral, 193
fixed point, 393
logistic delayed, 135
Rayleigh’s, 107
restricted to the center man-

ifold, 165, 166
Riccati, 388
Ricker’s, 123, 138
Van der Pol’s, 107
variational

adjoint, 532
fundamental matrix solu-

tion of, 29
equations

Brusselator, 105

differential, 18
FitzHugh-Nagumo, 73
Lorenz, 276

center manifolds of, 187
Picard-Fuchs, 386
reaction-diffusion, 33, 34
time-periodic, 397
variational, 29
Volterra, 370
with delays, 37

equilibria, 9
conjugate, 279, 282
hyperbolic, 46, 48

on the plane, 49
of a reaction-diffusion system,

35
homogeneous and nonho-

mogeneous, 35
of ODE, 22
saddle, 49, 59
stable, 16, 22, 49
topologically equivalent, 48
unstable, 49

equilibrium
analysis, 469
center, 372
central, 448
continuation, 463
definition of, 9
fixed, 279, 282
focus-focus, 237, 242
hyperbolic, 46, 68, 79, 152,

236, 479
location, 463, 464, 516
node, 251
repelling, 464
saddle, 48, 49, 61, 213, 226,

237, 251, 365, 470
definition of, 46

saddle-focus, 48, 213, 215, 220,
226, 237, 346

saddle-node, 251, 323, 443
three-dimensional, 254

saddle-saddle, 255, 256
stable, 36, 43, 464
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equilibrium curve, 479, 484, 495
equivalence, 39

finite-smooth, 205
local topological, 48, 68
node-focus, 44
of bifurcation diagrams, 63
orbital, 42, 45, 101, 102, 299,

368, 373
local, 308
smooth, 334, 352, 356, 428

relation, 39
smooth, 42, 45, 268, 423
smooth orbital, 45
topological, 41, 42, 44, 45, 48–

50, 61, 62, 64, 70, 141,
200, 214, 215, 217, 222,
250, 252, 257, 268, 270,
366, 399, 406, 445, 463

and orientation properties,
51

definition of, 40
local, 43, 64, 66, 67, 83, 90,

108, 116, 118, 120, 123,
127, 155, 159, 161, 162,
280–282, 284, 285, 287,
288, 306, 313, 314, 324,
325, 344, 347, 361, 368–
370, 375, 399, 400, 403,
413, 428

near a homoclinic bifurca-
tion, 200

of phase portraits, 40
error estimate, 466, 467, 478
extended system, 158, 211

Feigenbaum cascade, 454
Feigenbaum’s universality, 139, 455
finite differences, 476, 489, 490
first return map, 450
fixed points, 145

hyperbolic, 50, 52, 269
locally topologically equiva-

lent, 50
of the doubling operator, 140
saddle, 50, 52, 141, 221

stable, 274
unstable, 274

fixed-point curve, 487
flow, 5, 10

semi-, 6
suspension, 24

Fredholm Alternative Theorem, 172,
315, 331, 411, 416, 546

frequency locking, 271
function

absolutely bounded, 145
analytic, 543, 546, 548
angular, 269
continuous, 549
Hölder-continuous, 235, 549
Hamilton, 19, 31, 376, 377,

383, 460
inverse, 548
Lipschitz continuous, 145
smooth, 548

functional, 473

gradient, 23, 26, 208
group, 276, 278

definition of, 546
general linear, 546
inverse element, 546
orthogonal, 289
representation of, 276, 347,

368
symmetry, 290
unit, 276, 546

half-parabola, 312
Hamilton function, 238
Hamiltonian systems, 339, 348, 368,

377, 383, 391, 459, 460
perturbation of, 324, 375

Hassel-Lawton-May model, 519
Henon map, 138
heteroclinic structure, 346, 410,

446
heteroclinic tangency, 346
HomCont, 538
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homeomorphism, 40–42, 44, 45, 64,
72, 110, 111, 141, 205,
239, 281, 314, 325, 347,
370, 399, 428

close to identity, 83
close to the identity, 78
parameter-dependent, 64, 325,

370
homoclinic loop, 373, 442

big, 328
homoclinic structure, 407, 410, 414,

427, 434, 435, 449, 454,
455

homoclinic tangency, 414
homotopy method, 500
hysteresis, 305

Implicit Function Theorem, 82, 84,
91, 112, 121, 129, 281,
295, 301, 318, 324, 335,
354, 386, 399, 479, 495

formulation of, 547
increment, 489
interaction

fold-Hopf, 343
Hopf-Hopf, 367

interpolation, 477
intersection

of stable and unstable sets,
196

transversal of manifolds, 197,
199, 211, 414

invariant circle, 406
invariant curve, 52, 407, 434

closed, 126, 128, 135, 143, 275,
288, 407, 414, 427, 435,
446, 448–450

destruction of, 455
stable, 137, 149

invariant manifold, 47, 48, 50–52,
75, 151, 158, 160, 163,
202, 203, 213, 226, 259,
345, 346, 366, 367, 407,
414, 434, 446, 449

approximation of, 470

center, 152, 155–159, 162, 166,
167, 169–171, 173, 179,
182, 186, 191, 192, 250,
251, 256, 272, 277, 281,
289, 306, 314, 348, 369,
400, 403, 443, 448, 470,
488

computation of, 165, 171
in parameter-dependent sys-

tem, 157
linear approximation to, 166,

167
nonuniqueness of, 153, 161,

165
parameter-dependent, 160
projection method for the

computation of, 171
quadratic approximation to,

165, 167
representation of, 165
restriction to, 155, 167, 169–

171, 174, 182, 193, 252,
255, 298, 299, 396

global behavior of, 52
of a cycle, 55
of a fixed point, 55
of a limit cycle, 218

twisted, 57
stable, 46, 47, 49, 52, 74, 129,

141, 470, 471
topology of, 216
twisted, 217
unstable, 47, 49, 52, 141, 142,

162, 471
one-dimensional, 512

invariant manifolds, 263, 449
invariant set, 47, 250, 264, 277,

278, 450
closed, 11
definition of, 11
stability of, 16

invariant subspace, 545, 546
invariant torus, 267, 290, 341, 356,

366, 367, 448, 449
destruction of, 345, 367
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three-dimensional, 356, 366
Inverse Function Theorem, 85, 99,

118, 302, 390
formulation of, 548

iterate, 397
fourth, 436
second, 119, 420, 427
third, 431

Jordan block, 316
Jordan normal form, 546

Klein bottle, 264
Kronecker delta, 487

Lagrange basis polynomials, 477
Legendre polynomial, 478
limit cycle, 162, 163, 201, 209, 214,

215, 220, 237, 256, 272,
328, 339, 341, 382, 434,
494

conjugate, 280
continuation, 463
diffeomorphic, 42
fixed, 279
hyperbolic, 54, 55, 263, 367,

472
stable, 382

invariant, 279
location, 463, 472, 478
nonhyperbolic, 327
principal, 448
saddle, 221
stable, 313, 327, 444, 450
symmetric, 279
unstable, 313, 327

linear subspace, 543, 545
direct sum of two, 543
sum of two, 543

linearization
C1, 204, 218, 220, 239, 243,

247
finite-smooth, 247

LINLBF, 536–538
LOCBIF, 538

logistic map, 138
LOOPLN, 537
Lorenz system, 186, 289
Lyapunov coefficient, 161, 187, 314,

373
first, 99, 179, 191, 193, 299,

309, 311, 312, 327, 338,
362, 370, 375, 391, 458,
515, 516

invariant expression for mul-
tidimensional systems, 178

numerical computation of,
492

second, 309, 311, 327, 370,
391

Lyapunov function, 22
Lyapunov-Schmidt method, 248

Möbius band, 217, 218
Malgrange Preparation Theorem,

391
manifold, 47, 141

definition of, 551
equilibrium, 81, 304
fixed-point, 115
immersed, 47, 50, 77
linear, 47
noncentral, 328
smooth, 40, 551

compact, 70
one-dimensional, 394, 479

stable
local, 50

map
approximate, 397, 413, 414
definition of, 551

MAPLE, 378, 539
maps

conjugate, 41
diffeomorphic, 41
orientation-preserving and orientation-

reversing, 50
Mathematica, 539
matrix

elements of, 541
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identity, 542
inverse, 542
nonsingular, 542, 546
null-space of, 546
range of, 546
rank of, 542
similar, 544
sum, 542
transpose, 541

maximal chain, 545
Melnikov integral, 212, 231, 241,

247
for n-dimensional systems, 229

method of unknown coefficients,
95, 122

model
advertising diffusion, 108
FitzHugh-Nagumo, 225, 240
Lorenz “new”, 374, 522
of a predator-prey ecosystem,

325
predator-prey discrete-time, 139

model system, 300
modulae, 66
Moore-Penrose inverse, 483, 525
multipliers, 50, 52, 56, 113, 119,

123, 137, 141, 157, 394,
478

double, 410, 427, 454
of a cycle, 55

near a homoclinic bifurca-
tion, 214

of a fixed point, 49
of a limit cycle, 42

Newton iterations, 465, 481, 482,
485

convergence of, 466
Newton method, 138, 465, 481,

517, 535
convergence of, 525
modified, 466

Newton-Broyden method, 468
Newton-chord method, 466
norm, 549

normal form, 373, 382
approximate, 300, 393, 397
topological, 63
truncated, 342, 347, 356, 365,

366, 377, 406
normal form map

for 1:2 resonance, 457
for 1:3 resonance, 429
for 1:4 resonance, 436

normally hyperbolic, 268
numerical integration, 464, 472

operator
evolution, 5, 393

and flow, 10
associated with ODEs, 21
of a reaction-diffusion sys-

tem, 35
properties of, 6

projection, 172, 187
orbit

heteroclinic, 345, 346, 425, 459
homoclinic, 195, 323, 327, 346,

368, 375, 382, 384, 426,
443, 444, 459, 526

computation of, 510
nontransversal, 435
regular, 229, 512
saddle-focus, 374

of period two, 427
orbits, 41

definition of, 8
heteroclinic, 195, 199
homoclinic, 59, 65, 196, 199,

203, 207, 215, 217, 220,
226, 237, 238, 251, 252,
257, 259, 323–325

algebraic, 209
double, 225
in Lorenz system, 277
nontransversal, 263
nontwisted, 217
saddle-node, 255
secondary, 224, 228
stable and unstable, 201
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to a cycle, 57
to a nonhyperbolic limit cy-

cle, 263
to a saddle-node, 255, 328
to a saddle-saddle, 259
to nonhyperbolic equilibria,

250
twisted, 217

of continuous-time dynamical
systems, 8

of discrete-time dynamical sys-
tems, 8

of ODEs, 21
periodic, 9, 141

Poincaré map associated with,
26

shift along, 24
orthogonal collocation, 476
oscillator, 316, 318

Van der Pol, 371

parabola
discriminant, 322
semicubic, 304, 398

parameter change, 300, 303, 398,
401

parameter portrait, 325
PATH, 536
period return map, 448
phase locking, 271, 272, 367, 414
phase portrait, 40, 46, 428, 445,

464
definition of, 10
elements of, 11
of a continuous-time dynam-

ical system, 10
phase space, 2
Picard iterations, 409, 412, 421,

430, 437
PITCON, 536
Poincaré map, 23, 54–56, 59, 72,

162, 163, 202, 218, 252,
256, 261, 272, 283, 285,
312, 313, 397, 403, 446,
448, 475, 507

an explicit example of, 32
of a cycle, 27

Poincaré map
for periodically forced systems,

30
Poincaré normal form, 404

for the Bautin bifurcation, 308
for the fold-Hopf bifurcation,

332
for the Hopf bifurcation, 96
for the Hopf-Hopf bifurcation,

350
point

bifurcation, 300, 495
codim 2, 297

Bogdanov-Takens, 504, 515
branching, 495, 496, 515, 519

detection of, 499
simple, 498, 502

collocation, 476
cusp, 304, 369, 515
extremum, 485
fold, 479, 516
fold-Hopf, 515
Gauss, 478, 518
generalized flip, 401
Hopf, 516
Hopf-Hopf, 502, 515
initial, 465, 479
saddle-node, 160
self-crossing, 495

polarization identity, 491
Pontryagin method, 425
prediction

secant, 481
tangent, 480

predictor-corrector method, 480
product

bialternate, 297, 371, 485, 486,
488, 501, 536

definition of, 486
direct, 484, 550

of the phase and parame-
ter spaces, 115

group, 546
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matrix, 542
scalar, 315, 349, 470, 550

projection
central, 328
standard, 295, 296, 304, 394,

395, 502
property

flat, 345, 410
Hamiltonian, 383
orthogonality, 331
strong inclination, 216, 239
typical, 78

quasiperiodic solution, 450

reaction-diffusion system, 188, 189,
191, 290

REDUCE, 539
Reduction Principle, 155
region, definition of, 552
regularity, 303, 310, 320, 336, 466

of Hopf bifurcation curve, 371
restriction, 159, 162
return map, 109
rotation number, 270, 271, 406

saddle
neutral, 296, 323, 328, 395,

504
separatrix, 339
standard, 156, 162

saddle quantity, 201, 214, 219, 228,
236, 240, 324, 328, 346,
374, 444

scaling, 319, 361, 438
linear, 302, 335
singular, 324, 339, 376, 377,

382, 425, 458, 460
seasonal variability, 450
separatrix, 49, 348, 384, 434, 442
sequence

Cauchy, 549
convergent, 549
of two symbols, 3

set, 550

biorthogonal, 350
subset of, 550

shift
map, 8
unit-time, 397, 412, 420, 430,

437
Shil’nikov snake, 221
shooting, 473, 512

multiple, 475
simple, 474, 475

singularity, 66, 515
cusp, 304, 373
fold, 82, 507
Hopf-Hopf, 502

singularity theory, 111
Smale horseshoe map, 1, 12, 57,

72, 221, 261, 346, 368,
435

and a homoclinic structure,
53

and symbolic dynamics, 15
construction of, 12
invariant set of, 14, 15
structural stability of, 16

smoothness, 144
finite, 129, 154

space
Banach, 36

definition of, 549
complete metric, 5, 16, 17
complete normed, 36
completion of, 35, 189
finite-dimensional, 4
function, 128, 141, 144, 189,

248
Hilbert, 36, 190

definition of, 550
incomplete, 35
infinite-dimensional, 33
linear, 543
metric, 4, 11, 549

closed subset of, 549
complete, 145, 549

normed, 35
bounded set in, 550
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complete, 145
definition of, 549

of continuously differentiable
vector functions, 34

of sequences, 3, 8, 16
tangent, 531, 551
with a scalar product, 550

spectral problem, 190
split function, 198, 201, 231, 384,

385
singular, 210

stability, 466
asymptotic, 16

global, 18
conditions, 36
exponential, 469
Lyapunov, 16
numerical, 475
of a closed invariant curve,

18, 128
of a cycle, 25, 27, 29
of a fixed point, 17, 27

infinite-dimensional, 17
of a limit cycle, 37

determination via multipli-
ers, 27

of a periodic orbit, 17
of an equilibrium, 22, 36
of cycles, 312
of equilibria, 469
of invariant set

definition of, 16
of periodic solutions, 31
of the invariant curve, 148
structural, 68, 69, 71, 78, 270

and genericity, 272
Andronov’s, 71
conditions for, 71
strict, 70

STAFF, 537
state space, 1, 2

Banach, 40
complete metric, 40
definition of, 2
function, 3, 33, 140

infinite-dimensional, 18, 140
of a chemical reactor, 3
of an ecological system, 3
of an ideal pendulum, 2
structure on, 4

step-size control, 483
Stokes formula, 378
strange attractors, 18, 347
strong resonance, 396, 408, 448,

461, 504, 516
1:1, 397, 410, 427, 452, 454
1:2, 397, 415, 451–455, 457

accumulation of, 455
in Henon map, 457

1:3, 397, 428
1:4, 397, 435, 445, 457
in a periodically forced predator-

prey system, 449
in adaptive control model, 457

subharmonics, 450
subspace

fixed-point, 277, 278
linear, 277

superposition, 203, 206, 218, 220,
240, 244, 260, 475, 547

suspension, 156, 162
symbolic dynamics, 3, 8, 9, 11

number of cycles of, 10
symbolic manipulation, 293, 308,

539
SYMCON, 539
system

amplitude, 337, 356, 375–378
dynamical, 37
gradient, 77, 111, 390
Hamiltonian, 19
integrable, 348
local, 35
reaction-diffusion, 33

tangency
heteroclinic, 368
infinite-order, 328
quadratic, 378, 403

Taylor
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expansion, 548
series, 548

Taylor expansion, 84, 91, 93, 109,
117, 130, 155, 165, 166,
169, 173, 182, 301, 313,
314, 316, 324, 332, 343,
409, 418, 470, 496, 526,
535

term
resonant, 133, 308, 352, 405

test function, 484, 515
for codim 1 bifurcations of

maps, 487
for the fold bifurcation, 485
for the Hopf bifurcation, 486

test functions, 527
time

parametrization of, 42
reparametrization, 98, 99, 109,

110, 112, 300, 308, 318,
319, 334, 376, 378

scaling, 98
topological invariant, 216, 222
topological normal form, 65, 161,

200, 281, 282, 284, 285,
287, 293, 300, 312, 347,
368, 390, 397

definition of, 66
for Bautin bifurcation, 314
for the Bogdanov-Takens bi-

furcation, 325
for the cusp bifurcation, 303,

306
of maps, 398, 399
on the plane, 307

for the flip bifurcation, 119,
123

for the fold bifurcation, 80,
86, 114, 116, 118

for the generalized flip bifur-
cation, 402, 403

for the Hopf bifurcation, 67,
86, 100

transformation, 551
linear, 544
near-identical, 131

traveling
impulse, 228

double, 228
waves, 73

truncated map, 405
truncated normal form, 406

universal unfolding, 67, 391

variable
change, 333, 429, 436
transformation, 350, 422

variational equation, 508
vector field, 18, 23, 30, 378

rotation of, 199
vectors, 543

components of, 544
linearly independent, 543, 545
unit, 543

versal deformation, 67

wave
rotating, 35, 290
standing, 35, 191, 290
system, 225
trains, 228
traveling, 225

XPPAUT, 538








