
Lecture I

In essence, Dynamical Systems is a science which studies
differential equations. A differential equation here is the equation

ẋ(t) = f(x(t), t)

where f is a given function, and x(t) is an unknown function. We think about
t as time, and the set of numbers x ∈ Rn is supposed to describe the state of a
certain system. So, a solution of the given differential equation represents the
dependence of the state of the system on time, which means the differential
equation under consideration describes how the state of the system varies
with time, i.e. it describes the dynamics of the system. Mathematically, the
term “dynamical system” has a specific meaning of a one-parameter family
of transformations of the state space, and this family must satisfy a group
property. The precise definition will be given later. Formally, a dynamical
system defined in this way does not need to be generated by differential
equations. Still, differential equations provide the basic example of dynamical
systems.

The main idea of the dynamical systems approach to differential equa-
tions is that instead of looking for closed formulas that would solve these
equations (which is a hopeless task in most cases), we try to find out which
qualitative properties the solutions possess. One of such properties is given
by the following fundamental theorem.

Theorem 1.1. Given any x0 ∈ Rn and t0 ∈ R1 such that the function
f is continuous in a small neighbourhood of (x0, t0) and has a derivative
f ′x := ∂f∂x which is also continuous in this neighbourhood, there exists a
unique solution to the differential equation

ẋ = f(x, t) (1)

which satisfies the initial condition

x(t0) = x0. (2)

Denote this solution as x(t) = X(t;x0, t0), then the function X is smooth,
i.e. it has continuous derivatives with respect to (t, x0, t0).
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Problem (1),(2) is called Cauchy problem. The existence and uniqueness
of the solution to the Cauchy problem is quite natural: once we know x(t0)
from (2), we can compute x′(t0) by plugging x = x0, t = t0 into the right-hand
side of (1), then we can compute x′′(t0) by differentiating (1) with respect
to time and plugging the already obtained values of x(t0) and x′(t0) into the
resulting expression, and so on - we can inductively compute the values of
all the derivatives of x(t) at t = t0, i.e. equations (1), (2) define the Taylor
expansion of the sought solution x(t) completely. However, this argument
alone does not prove Theorem 1: we can compute the Taylor expansion only
when the function f is infinitely differentiable, and even in this case the
analyticity of the solution x(t) (necessary in order to define x(t) uniquely by
its Taylor expansion) is not a priori true.

The standard way to prove Theorem 1.1 is to rewrite the Cauchy problem
(1),(2) as the following integral equation:

x(t) = x0 +
∫ t

t0
f(x(s), s)ds. (3)

Obviously, any continuous solution to (3) solves the Cauchy problem (1),(2),
and vice versa. Then, one considers a sequence of Picard iterations. This is
the sequence of functions x(n)(t), n = 0, 1, . . . ,, defined by the rule

x(0)(t) = x0 = const,

x(n+1)(t) = x0 +
∫ t

t0
f(x(n)(s), s)ds.

(4)

One shows that this sequence converges uniformly on a certain small interval
[t0 − δ, t0 + δ]. Since the convergence is uniform, it follows that the limit
function x∗(t) = lim

n→+∞
x(n)(t) is continuous, and, by taking the limit in the

iteration formula (4), it satisfies (3), i.e. we obtain the sought solution of
the Cauchy problem. Moreover, the iterations converge to x∗ uniformly with
all derivatives, which proves the smoothness of x∗ with respect to t0 and x0.
Instead of implementing this approach directly, we will proof the existence,
uniqueness and smoothness of the solution to (3) by referring to a gener-
alization of the above described construction, Banach contraction mapping
principle, which we briefly discuss below.
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Metric and Banach spaces, contraction map-

ping principle, smoothness

A set Y is called a metric space if for any two elements y1 and y2 from Y
a distance ρ(y1, y2) is defined, which is a non-negative real-values function
which satisfies

ρ(y1, y2) = 0 ⇐⇒ y1 = y2,

ρ(y1, y2) = ρ(y2, y1),

ρ(y1, y2) ≤ ρ(y1, y3) + ρ(y2, y3) for every y1, y2, y3.

A metric space Y is called complete if any Cauchy sequence in Y has a limit
in Y . Namely, if a sequence yn ∈ Y satisfies the Cauchy property: for every
ε > 0 there exists N(ε) such that ρ(yn1 , yn2) < ε for every n1 ≥ N(ε), n2 ≥
N(ε), then it has a limit y∗ ∈ Y , i.e. for every ε > 0 there exists M(ε) such
that if n ≥M(ε), then ρ(yn, y

∗) < ε.
For example, Rn is a complete metric space (for any distance function

equivalent to ρ(y(1), y(2)) =

√√√√ n∑
j=1

(y
(1)
j − y

(2)
j )2 ; two distance functions on

the same set are equivalent if convergence in terms of one distance function
implies convergence in terms of the other one, and vice versa). Importantly,
any closed subset of a complete metric space is also a complete metric space.

Let Y and Z be metric spaces. Consider the set Ŷ of all continuous
bounded functions Z → Y . Define the distance between elements of Ŷ as
follows: for two functions ŷ1(z) and ŷ2(z) the distance between them is given
by

ρ̂(ŷ1, ŷ2) = sup
z∈Z

ρ(ŷ1(z), ŷ2(z))

(this is called a metric of uniform convergence on Ŷ ). It is an easy exercise to
check that if Y is complete, then Ŷ with the metric of uniform convergence
is also a complete metric space. Our basic example is the space of continuous
functions on a closed interval.

A map T which takes a metric space Y into itself is called contracting if
there exists a constant q < 1 such that for every pair of points y1, y2 from Y
we have

ρ(Ty1, T y2) ≤ qρ(y1, y2). (5)

In particular, ρ(Ty1, TY2) → 0 if ρ(y1, y2) → 0, i.e. a contracting map T is
always continuous.
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Theorem (Banach Principle). Any contracting map T of a complete
metric space Y has a unique fixed point y∗ ∈ Y :

Ty∗ = y∗,

and
lim

n→+∞
T ny0 = y∗

For any y0 ∈ Y .

Proof. Take any y0 ∈ Y and define yn = T ny0. By (5), we have

ρ(yn+1, yn) ≤ qnρ(y1, y0),

hence, for every k ≥ 0

ρ(yn+k, yn) ≤
n+k−1∑
j=n

ρ(yj+1, yj) ≤ Cqn,

where the constant C = ρ(y0, y1)/(1− q) is independent of n. Since q < 1, it
follows that yn is a Cauchy sequence, therefore it has a limit, y∗, by virtue of
completeness of the space Y . We have yn → y∗; therefore yn+1 = Tyn → Ty∗

by continuity of T . Since the sequences yn+1 and yn must have the same
limit, it follows that y∗ = Ty∗, i.e. the existence of the sought fixed point is
proven. The uniqueness is obvious: if both y∗ and y∗∗ are fixed points of T ,
then

ρ(y∗, y∗∗) ≤ qρ(y∗, y∗∗) =⇒ ρ(y∗, y∗∗) = 0 =⇒ y∗ = y∗∗.

We will be further interested in the question of how the fixed point of the
contracting map depends on parameters. Let a map T depend on a parameter
µ. Namely, let M be a metric space, and T : Y ×M → Y . Let T be contin-
uous with respect to µ at some µ0 ∈ M which means T (y, µ) → T (y, µ0) as
µ→ µ0, for every y ∈ Y . Let T be uniformly contracting in a neighbourhood
of µ0, which means that for all µ ∈M which are close enough to µ0 the map
T is contracting on Y and the contraction coefficient q in (5) can be chosen
independent from µ (and bounded away from 1).
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Theorem (on continuous dependence). The fixed point of the uni-
formly contracting map T is continuous with respect to µ at µ = µ0.

Proof. Let y∗(µ) be the fixed point of T at the given value of µ, i.e.

T (y∗(µ), µ) = y∗(µ).

We have
ρ(y∗(µ), y∗(µ0)) = ρ(T (y∗(µ), µ), T (y∗(µ0), µ0)) ≤

≤ ρ(T (y∗(µ), µ), T (y∗(µ0), µ)) + ρ(T (y∗(µ0), µ), T (y∗(µ0), µ0)) ≤

≤ q ρ(y∗(µ), y∗(µ0)) + ρ(T (y∗(µ0), µ), T (y∗(µ0), µ0)),

which implies

ρ(y∗(µ), y∗(µ0)) ≤
1

1− q
ρ(T (y∗(µ0), µ), T (y∗(µ0), µ0)). (6)

The continuity of T at µ = µ0 implies that the right-hand side of (6) tends
to zero as µ→ µ0, hence ρ(y∗(µ), y∗(µ0))→ 0 as well.

Note that if the map T is uniformly continuous with respect to µ on
Y × M , then estimate (6) implies that the fixed point depends on µ uni-
formly continuously too.

In order to study the smooth dependence on parameters, we need to have
a linear structure on Y . Recall the definitions. A normed linear space is a
linear space Y with a norm defined on it. The norm is a real-valued positive
function ‖ · ‖ such that

‖y‖ = 0⇐⇒ y = 0,

‖y1 + y2‖ ≤ ‖y1‖+ ‖y2‖ for every y1 ∈ Y, y2 ∈ Y,

‖λy‖ = |λ|‖y‖ for every y ∈ Y, λ ∈ R1.

The norm defines a metric ρ(y1, y2) = ‖y2 − y1‖, so a linear normed space is
always a metric space. A normed linear space is called Banach space when it
is complete. Note that any closed subspace of a Banach space is a complete
metric space. An example of a finite-dimensional Banach space is Rn for any
n ≥ 1; a space of bounded continuous functions R1 → Rn with the uniform
norm is an example of an infinite-dimensional Banach space.
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If Y and Z are normed linear spaces, then the norm of a linear operator
A : Y → Z is defined as

‖A‖ = sup
y∈Y,y 6=0

‖Ay‖
Z

‖y‖
Y

.

Obviously,
‖AB‖ ≤ ‖A‖ ‖B‖.

A bounded linear operator A is the derivative (the Frechet derivative) of a
map T : Y → Z at a point y0 if

T (y0 + ∆y) = T (y0) + A∆y + o(‖∆y‖)

for all small ∆y ∈ Y . Such operator A, when exists, is uniquely defined. We
will denote the derivative as T ′(y0), or ∂T

∂y
(y0). It is easy to see that when Y

and Z are finite-dimensional, then such defined derivative T ′ is the matrix
of partial derivatives of T (the Jacobian matrix).

Two properties of the derivative are important for us. One is the chain
rule:

[T (G(y))]′ = T ′(G(y)) G′(y),

the other is the following inequality: given a convex subset Y of a normed
linear space,

‖T (y1)− T (y2)‖ ≤ sup
y∈Y
‖T ′(y)‖ ‖y1 − y2‖ for every y1 ∈ Y, y2 ∈ Y. (7)

Note that the convexity of Y is important in the last inequality. The con-
vexity means that if y1 ∈ Y , y2 ∈ Y , then the entire straight-line segment
{sy1 + (1− s)y2|s∈[0,1]} that connects y1 and y2 also lie in Y . Thus, one can
consider the function H(s) = T (sy1 +(1−s)y2) defined on the segment [0, 1].
Note that H(1) = T (y1) and H(0) = T (y2). Since H is a function of one
variable, one has

H(1)−H(0) =
∫ 1

0
H ′(s)ds,

which immediately implies

‖H(1)−H(0)‖ ≤ sup
s∈[0,1]

‖H ′(s)‖.

Since, by the chain rule, H ′(s) = T ′(sy1 + (1 − s)y2)(y1 − y2), and, by con-
vexity, sy1 + (1− s)y2 ∈ Y for all s ∈ [0, 1] the sought inequality (7) follows.
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We will call a map T defined on a subset Y smooth on Y if both the map
itself and its Frechet derivative T ′(y) is uniformly continuous and uniformly
bounded on Y . In what follows Y is a closed and convex subset of a Banach
space. By virtue of (7), if a smooth map T : Y → Y satisfies

sup
y∈Y
‖∂T
∂y
‖ = q < 1, (8)

then this map is contracting (hence it has a unique fixed point in Y ). Now, let
the smooth contracting map T depend smoothly on a parameter µ. Namely,
we assume that µ belongs to a convex subset M of some Banach space (in
our further examples µ runs a ball M in Rn), and that our map T is a smooth
map Y ×M → Y . We also assume that the contraction constant q in (8) is
uniformly smaller than 1 for all µ ∈M .

Theorem (on smooth dependence). The fixed point y∗(µ) of the
smooth contracting map T depends smoothly on the parameter µ.

Proof. Take any value of µ ∈M and add a small increment ∆µ to µ. Let
y = y∗(µ) and y + ∆y = y∗(µ+ ∆µ). We have

T (y + ∆y, µ+ ∆µ) = T (y, µ) + ∆y. (9)

Hence,

‖∆y‖ ≤ ‖T (y + ∆y, µ+ ∆µ)− T (y, µ+ ∆µ)‖+ ‖T (y, µ+ ∆µ)− T (y, µ)‖ ≤

≤ sup
(y,µ)∈Y×M

‖∂T
∂y
‖ ‖∆y‖+ sup

(y,µ)∈Y×M
‖∂T
∂µ
‖ ‖∆µ‖,

which, by (8), gives
‖∆y‖ ≤ K‖∆µ‖ (10)

where K = 1
1−q sup ‖∂T

∂µ
‖ < ∞. Now, using the definition of the derivative,

we rewrite (9) as

∆y =
∂T

∂y
∆y +

∂T

∂µ
∆µ+ o(‖∆y‖+ ‖∆µ‖).

Since o(‖∆y‖) = o(‖∆µ‖) by (10), we obtain

(Id− ∂T

∂y
)∆y =

∂T

∂µ
∆µ+ o(‖∆µ‖),
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hence

∆y =

[
Id− ∂T

∂y

]−1
∂T

∂µ
∆µ+ o(‖∆µ‖),

which means that y∗ indeed has a derivative with respect to µ, and this
derivative is given by

∂y∗

∂µ
=

[
Id− ∂T

∂y
(y∗(µ), µ)

]−1
∂T

∂µ
(y∗(µ), µ). (11)

The inverse to
[
Id− ∂T

∂y

]
in this formula can be found by the rule

[
Id− ∂T

∂y

]−1
=
∞∑
k=0

(
∂T

∂y

)k

(the series in the right-hand side converges uniformly since ‖(∂T
∂y

)k‖ ≤ qk by

(8)). The required uniform continuity and uniform boundedness of ∂y∗

∂µ
fol-

lows from the uniform continuity and uniform boundedness of
[
Id− ∂T

∂y

]−1
and ∂T

∂µ
(and from the uniform continuity of y∗(µ) - see remark after the the-

orem on continuous dependence).

Note that if the contracting map T is Cr-smooth with respect to (y, µ)
(i.e. its higher order derivatives exist up to the order r and are uniformly
continuous and uniformly bounded), then the fixed point y∗ depends on µ
also Cr-smoothly. One proves this (and also finds the higher order derivatives
of y∗) just by differentiating formula (11) with respect to µ).

A corollary of the contraction mapping principle is given by the following

Theorem (on implicit function). Let Y,M,Z be Banach spaces and
the map F : Y ×M → Z be Cr-smooth (r ≥ 1) in a small neighbourhood of
(y0, µ0) ∈ Y ×M . Let F (y0, µ0) = 0 and let the inverse to ∂F

∂y
(y0, µ0) exist

and be bounded. Then, for all µ sufficiently close to µ0 there exists a uniquely
defined y∗(µ) such that

F (y∗(µ), µ) = 0. (12)

The function y∗(µ) is Cr-smooth.
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Proof. Rewrite equation (14) as

y = y −D−10 F (y, µ), (13)

where we denote D0 = ∂F
∂y

(y0, µ0). We will prove the theorem by showing

that the right-hand side of (46) defines, for all µ close to µ0, a contracting
map T of a small ball with the center at y0. We have

∂T

∂y
= Id−D−10

∂F

∂y
= −D−10

(
∂F

∂y
(y, µ)− ∂F

∂y
(y0, µ0)

)
.

Since D−10 is bounded and ∂F
∂y

is continuous, it follows that

∂T

∂y
(y, µ)→ 0 as (y, µ)→ (y, µ0),

i.e. there exists δ0 > 0 such that

sup
‖µ−µ0‖≤δ0,‖y−y0‖≤δ0

‖∂T
∂y

(y, µ)‖ = q < 1.

Thus, given any δ ≤ δ0, the map T is contracting on Bδ = {‖y − y0‖ ≤ δ}.
The ball Bδ is a closed convex subset of a Banach space (the space Y ), so
we are left to show that T (Bδ) ⊂ Bδ for all sufficiently small δ and all µ
sufficiently close to µ0. In order to do this, expand

F (y, µ) = F (y0, µ0)+D0(y−y0)+
∂F

∂µ
(y0, µ0)(µ−µ0)+o(‖y−y0‖)+o(‖µ−µ0‖).

This gives us, by (46), that

‖T (y, µ)− y0‖ ≤ ‖
∂F

∂µ
(y0, µ0)‖ ‖µ− µ0‖+ o(‖µ− µ0‖) + o(‖y − y0‖)

(recall that F (y0, µ0) = 0). When y ∈ Bδ, this gives us

‖T (y, µ)− y0‖ ≤ K‖µ− µ0‖+ o(δ)

for some K < ∞. Thus, if δ and ‖µ − µ0‖ are small enough, we have
‖T (y, µ)− y0‖ ≤ δ, i.e. T (y, µ) ∈ Bδ, as was required.
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Note that applying this theorem to a function F (y, µ) = µ − G(y) gives
us the following

Theorem (on inverse function). Let Y,M be Banach spaces and the
map G : Y ×M be Cr-smooth (r ≥ 1) in a small neighbourhood of y0 ∈ Y .
Let the inverse to G′(y0) exist and be bounded. Then, for all µ sufficiently
close to µ0 = G(y0) there exists a uniquely defined y∗(µ) such that

G(y∗(µ)) = µ. (14)

The function y∗(µ) is Cr-smooth.
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Lecture II

Now we can return to the proof of Theorem 1.1 on the existence and
uniqueness of the solution to Cauchy problem

ẋ = f(x, t), x(t0) = x0. (15)

We rewrite this problem as the integral equation

x(t) = x0 +
∫ t

t0
f(x(s), s)ds. (16)

By Banach principle, in order to prove the existence and uniqueness of the
solution to this equation, it is enough to prove that the operator T which
maps a function x(s)s∈[t0−δ,t0+δ] to the function

x̄(t) = x0 +
∫ t

t0
f(x(s), s)ds (17)

is contracting on the appropriate function space. Recall that both f and f ′x
are continuous in a neighbourhood of the point (x0, t0) by the condition of
Theorem 1, therefore they are bounded in any sufficiently small ball with the
center at this point. Choose a sufficiently small δ0 and denote

M = sup
‖x−x0‖≤δ0,|t−t0|≤δ0

‖f(x, t)‖, (18)

L = sup
‖x−x0‖≤δ0,|t−t0|≤δ0

‖∂f
∂x

(x, t)‖. (19)

Take any δ > 0 which satisfy

δ ≤ δ0, Mδ ≤ δ0, Lδ ≤ q < 1. (20)

Let Y be the space of continuous functions x(s)s∈[t0−δ,t0+δ] which satisfy

‖x(s)− x0‖ ≤Mδ for all s ∈ [t0 − δ, t0 + δ]. (21)

We equip the space Y with the uniform norm. Obviously, Y is a closed and
convex subset of the Banach space of all continuous functions on the interval
[t0 − δ, t0 + δ].
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We will next show that the map T takes the space Y into itself and that
T is contracting on Y . If x(s) is any function from Y , then ‖x(s)− x0‖ ≤ δ0
by (21),(20) and, therefore, ‖f(x, s)‖ ≤M by (18), for all s ∈ [t0− δ, t0 + δ].
It follows (see (17) that

‖x̄(t)− x0‖ ≤
∫ t

t0
‖f(x(s), s)‖ds ≤M(t− t0) ≤Mδ for all |t− t0| ≤ δ,

which means that the function x̄ (the image of the function x by T ) belongs
to the space Y as well. Thus, we have shown that T (Y ) ⊂ Y . In order to
prove contraction, compute the derivative of T with respect to the function
x. By (17), if we take any function x(s) and give it an increment ∆x(s), then
the image x̄ gets an increment

∆x̄(t) =
∫ t

t0

∂f

∂x
(x(s), s) ∆x(s)ds+ o(‖∆x‖).

This means that the derivative T ′x is the operator

∆x 7→
∫ t

t0

∂f

∂x
(x(s), s) ∆x(s)ds.

Since

sup
|t−t0|≤δ

‖
∫ t

t0

∂f

∂x
(x(s), s) ∆x(s)ds‖ ≤ sup

|t−t0|≤δ

∫ t

t0
‖∂f
∂x

(x(s), s)‖ ‖∆x(s)‖ds ≤

≤ Lδ sup
|s−t0|≤δ

‖∆x(s)‖ ≤ q sup
|s−t0|≤δ

‖∆x(s)‖

(see (19),(20)), we find that ‖T ′x‖ ≤ q < 1 indeed, which proves the existence
and uniqueness of the solution to integral equation (16) (hence, to the original
Cauchy problem (15)). The smoothness of the solution with respect to (x0, t0)
follows from the smoothness of the contracting map T . Note that if f is of
class Cr, then the map T is Cr as well, hence the solution to the Cauchy
problem is Cr with respect to (t, t0, x0), r ≥ 1. It also follows that if f is
continuous or smooth with respect to some parameter µ, then the solution
of the Cauchy problem depends on µ continuously or smoothly, respectively.
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Theorem 1.1. gives us the existence of the solution x(t) only on a small
time interval [t0 − δ, t0 + δ]. However, if at the point (t0 + δ, x(t0 + δ)) the
conditions of the theorem (the continuity of f and f ′x in a neighbourhood
of the point) are still fulfilled, one can consider t0 + δ as the new t0, and
x(t0 + δ) as the new x0, apply the theorem to the new t0 and x0 and, thus,
continue the solution further, to larger values of time, in a unique way. One
can, therefore, consider the maximal time interval I on which the solution
to Cauchy problem (15) is defined uniquely, and ask whether this interval is
finite or infinite, and if it is finite from right or left, then what happens at
the corresponding end point. If the maximal interval ends at a finite point
t = a, i.e. the solution x(t) does not continue in a unique way beyond this
point, then one possibility is that

lim
t→a

x(t) =∞.

If this is not the case, then at every limit point of x(t) at t = a the conditions
of Theorem 1.1 must be violated, i.e. either f or f ′x must be discontinuous
in a neighbourhood of this point. Indeed, assume the contrary. If x∗ is a
partial limit point of x(t) at t = a, this means that for any neighbourhood U
of the point (t = a, x = x∗) there exists a sequence of the values tn → a for
which (tn, x(tn)) ∈ U . If the conditions of Theorem 1.1 hold at (a, x∗), then
we can take the neighbourhood U such that f and f ′x were continuous and
bounded everywhere in U , i.e. we take U to be a box of radius δ0 such that
(18),(19) hold (with t0 = a and x0 = x∗). Then for any initial point in U
the solution can be continued uniquely at least for time δ, which depends on
the constants δ0,M,L only (see (20)), hence its is independent on the point
in U . It follows that if we start with tn sufficiently close to t = a, then the
solution can be continued beyond t = a, a contradiction.

As we see, if f and f ′x are continuous for all (x, t) ∈ Rn × R1, then the
only possibility for the maximal interval to end at a finite time corresponds
to x(t) becoming infinite at the end point. In other words, the solution in this
case continues uniquely as long as it remains bounded. One of the methods
which is useful for determining whether the solution stays finite or goes to
infinity (without actually finding the solution) is discussed next.
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Comparison principle

The method is based on the three following theorems (versions of the so-
called comparison principle).

Theorem 2.1. Suppose a function u(t) : [a, b]→ R1 satisfies the inequal-
ity

du

dt
≤ f(u(t), t) for all t ∈ [a, b] (22)

for some continuous function f : R1 × [a, b] → R1, and a function v(t) :
[a, b]→ R1 satisfies the inequality

dv

dt
> f(v(t), t) for all t ∈ [a, b]. (23)

Assume v(a) > u(a). Then v(t) > u(t) for all t ∈ [a, b].

Proof. If, on the contrary, u(t) − v(t) ≥ 0 at some t ∈ [a, b], then, by
continuity of the functions u and v, it follows from u(a)−v(a) < 0 that there
exists t∗ > a such that u(t∗) = v(t∗) and u(t) < v(t) at t < t∗. It follows

that
d(u− v)

dt
(t∗) ≥ 0, hence f(u(t∗), t∗) > f(v(t∗), t∗), which is impossible

as u(t∗) = v(t∗).

An immediate consequence of Theorem 2.1 is the following

Theorem 2.2. Let the functions u(t) and v(t) with values in R1 solve,
at t ∈ [a, b], the equations

du

dt
= g(u, t),

dv

dt
= f(v, t)

for some continuous functions g and f such that

g(x, t) < f(x, t) for all (x, t) ∈ R1 × [a, b].

Assume v(a) > u(a). Then v(t) > u(t) for all t ∈ [a, b].

Note that in order to formulate a similar statement where the strict in-
equality v(a) > u(a) on the initial conditions is replaces by a non-strict one,
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v(a) ≥ u(a), we need more restrictions to be imposed on the right-hand side
of the differential equations and inequalities under consideration. Namely,
we have the following

Theorem 2.3. Let f(x, t) and h(x, t) be continuous functions R1 ×
[a, b]→ R1, with continuous derivatives f ′x and h′x. Let

h(x, t) ≤ f(x, t) for all (x, t) ∈ R1 × [a, b].

Let v(t) and w(t) solve the equations

dv

dt
= f(v, t) and

dw

dt
= h(w, t)

with the initial conditions such that

w(a) ≤ v(a).

Let u(t) satisfy

h(u, t) ≤ du

dt
≤ f(u, t) for all t ∈ [a, b].

Assume w(a) ≤ u(a) ≤ v(a). Then w(t) ≤ u(t) ≤ v(t) for all t ∈ [a, b].

Proof. Let vε(t) be the solution of the Cauchy problem

dvε
dt

= f(vε, t) + ε, vε(a) = v(a) + ε (24)

for ε > 0. As
dvε
dt

> f(vε, t) and vε(a) > u(a), Theorem 2.1 implies that

vε(t) > u(t) for all t ∈ [a, b]. By taking the limit ε → 0, we find that
v(t) ≥ u(t) for all t ∈ [a, b], as required (in order to be able to take this limit,
we need a continuity of the solution of Cauchy problem (24) with respect
to the parameter ε; this continuity is guaranteed since both f and f ′x are
continuous, i.e. the equation satisfies the conditions of Theorem 1.1). The
inequality w(t) ≤ u(t) is proved in the same way.
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Let us consider a simple example of the use of the comparison principle.
Let y(t) be the solution of the Cauchy problem

ẏ = y2 + t2, y(0) = 1. (25)

There is no explicit formula for the solutions of this equation. However, since
ẏ ≥ y2, we can conclude from Theorem 2.3 that y(t) ≥ u(t) at t ≥ 0, where

u̇ = u2, u(0) = 1.

This is easily solved as u(t) =
1

1− t
, so we find that

y(t) ≥ 1

t− 1
.

As we see, the solution of (25) is unbounded: it must tend to +∞ as t→ t∗

for some t∗ ≤ 1. In order to find a lower bound on t∗, note that at t ≤ 1 we
have

dy

dt
≤ y2 + 1 =⇒

∫ y(t)

1

dy

y2 + 1
≤ t =⇒ arctan(y)− arctan(1) ≤ t =⇒

=⇒ y ≤ tan(t+
π

4
),

i.e. y(t) remains bounded at least for t < π
4
. Thus, we can estimate the end

of the maximal existence interval as

t∗ ∈ [
π

4
, 1].

Sublinear right-hand side, globally defined so-

lutions

In fact, it is quite rare that the solutions of systems of differential equations
are defined for all t ∈ (−∞,+∞). A class of systems for which this is the
case is given by the systems with sublinear right-hand side. Namely, we will
call a function f(x, t) which maps Rn×R1 → R1 sublinear if If there exist a
continuous functions α(t) and β(t) such that

‖f(x, t)‖ ≤ α(t)‖x‖+ β(t) for all x and t.
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Note that linear systems

dx

dt
= A(t)x+ b(t)

also belong to the class of sublinear systems we just defined.

Theorem 2.4. Let a sublinear function f be continuous along with f ′x
for all x ∈ Rn and t ∈ R1. Then any solution of

ẋ = f(x, t)

exists for all t ∈ (−∞,+∞).

Proof. Let x(t) be a solution, denote y(t) = x2(t) = ‖x(t)‖2. We have

dy

dt
= 2x(t)·dx

dt
≤ 2‖x(t)‖ ‖dx

dt
‖ ≤ 2α(t)‖x‖2+2β(t)‖x(t)‖ ≤ (2α(t)+β(t))‖x‖2+β(t),

so
dy

dt
≤ (2α(t) + β(t))y + β(t).

By Theorem 2.3, y(t) ≤ u(t) for all t ≥ 0, where u is a solution of the linear
equation

u̇ = (2α(t) + β(t))u+ β(t).

This solution is given by

u(t) = e
∫ t

0
(2α(s)+β(s))ds

[
u(0) +

∫ t

0
β(s)e−

∫ s

0
(2α(σ)+β(σ))dσds

]
,

and it is well-defined and stays finite for all t, hence y(t) = ‖x(t)‖2 cannot
become infinite at a finite value of t ≥ 0. This proves that the solution x(t)
continues for all t ≥ 0. In order to prove that it continues for all t ≤ 0 as
well, define z(t) = x(−t)2. We have

dz

dt
= −2x(−t)·x′(−t) ≤ 2‖x(−t)‖ ‖x′(−t)‖ ≤ 2α(t)‖x(−t)‖2+2β(t)‖x(−t)‖ ≤

≤ (2α(t) + β(t))‖x(−t)‖2 + β(t),

so
dz

dt
≤ (2α(t) + β(t))z + β(t),
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and the finiteness of z(t) = x(−t)2 for all t ≥ 0 (hence the existence of x(t)
for all t ≤ 0) follows by the comparison with the solution of a linear equation,
as before.

Let X(t; t0, x0) be the (uniquely defined) solution of the Cauchy problem
x(t0) = x0 for a given system of sublinear differential equations, or any
other differential equations for which the solutions are defined globally, for
all t ∈ (−∞,+∞). As we have shown, for every t1 and t2 the map Ut1→t2 :
x0 7→ X(t2; t1, x0) is smooth. Moreover, the smooth map Ut2→t1 is inverse
to Ut1→t2 . Indeed, Ut1→t2 takes the point x0 at t = t1 and maps it to the
point of the corresponding solution at t = t2, while Ut2→t1 maps this latter
point to the point on the same solution at t = t1, i.e. to the same point
x0: by uniqueness, there is only one solution that passes through the point
X(t2; t1, x0) at t = t2, so this solution must equals to x0 at t = t1, by the
definition of the function X. Thus, each map Ut1→t2 : Rn → Rn is smooth
with a smooth inverse, i.e. it is a diffeomorphism of Rn or, simply, a smooth
coordinate transformation.

We may use this to introduce new coordinates y(t, x) = Ut→0(x). By the
definition, if x(t) is a solution of the system of differential equations under
consideration, then y(t, x(t)) is the initial value for this solution at time t = 0.

Thus, y(t, x(t)) does not depend on time, hence
dy

dt
= 0. We have proved the

following

Theorem 2.5. Given any Cr-smooth system of differential equations

ẋ = f(x, t), x ∈ Rn,

whose all solutions are defined for all t ∈ (−∞,+∞), there exists a Cr-
smooth, time-dependent change of variable x which brings the system to the
trivial form

ẏ = 0.

In a sense, this theorem gives a general formula for solutions of all such
differential equations. Of course, it is too general to be useful for actual
solving the equations. However, it is a valid mathematical fact, that all such
equations are equivalent up to a change of coordinates. In particular, all
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linear equations in Rn are equivalent from this point of view. It is intuitively
clear, that the theory should not stop here (for example, we know that differ-
ent linear equations may show quite different behaviour). Obviously, in order
to be able to distinguish between different types of behaviour of solutions of
differential equations, one has to restrict possible types of allowed coordinate
transformations. There is no universal recipe of how to do this for a gen-
eral system of differential equations; one should adopt different approaches
for different classes of equations. A first idea coming to mind is to allow
only time-independent coordinate transformations. This is indeed a proper
approach when we consider the so-called autonomous differential equations.
Their study is the main subject of Dynamical Systems theory, and we will
focus on this class for the most of the rest of this course.
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Lecture III

A system of differential equations is called autonomous, if its right-hand
side does not depend on time:

ẋ = f(x). (26)

Here x ∈ Rn; the point x is often called a phase point, and the set of all
phase points (i.e. Rn in our case) is called the phase space. An orbit xt of a
point x0 is the solution of system (26) which passes through the point x0 at
t = 0. We will further always assume that f is a smooth function, so there
is a unique orbit for each point x0 ∈ Rn (by the existence and uniqueness
theorem). Clearly, if xt is the orbit of x0, then xt−t0 is a solution of the
smooth autonomous system (26) that corresponds to x = x0 at t = t0, i.e. if
we know all the orbits of (26), then we know all the solutions of it.

For a fixed t, the map Xt : x0 7→ xt is called the time-t shift map of the
system. In our notations xt = Xt(x0) (e.g. x0 = X0(x0)). By uniqueness
of solutions, xt = Xt−s(xs) for any s (for which xs is defined), i.e. xt =
Xt(x0) = Xt−s(xs) = Xt−s(Xs(x0)). In other words, the time shift maps of
the autonomous system satisfy the group property: for all s and t

Xt−s ◦Xs = Xt (27)

in the region of of the phase space where the maps Xs and Xt are defined.
The family of maps Xt (parameterised by the time) is called the flow of the
system.

In general, a one-parameter group of maps is called a dynamical system;
if a dynamical system is parameterised by a continuous parameter, i.e. it
is isomorphic to the additive group R1, then such dynamical system is also
called a flow. Such defined flow does not need to be generated by a smooth
system of differential equations, however the autonomous differential equa-
tions whose solutions are defined for all t ∈ R1 provide the main example.
Often, a system of differential equations does not have solutions defined for
all t ∈ R1. In this case the time shifts do not, strictly speaking, form a well-
defined group (as the domains of definition of the maps Xt do not coincide
for different t in this case, so the composition of such maps is not always de-
fined). In such situation, one should use the term flow with caution, bearing
in mind that the group property (27) is satisfied only for some subregions of
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the phase space (which may depend on s and t). It may also happen that
even if the solutions are not globally defined for all t ∈ R1, still every orbit
is defined for all t ≥ 0 (e.g. Theorem 3.5 gives examples of such behaviour).
In this case the domain of definition of each map Xt with t ≥ 0 is the whole
phase space, so such maps form a semigroup according to (27), and one may
call the family {Xt}t≥0 a semiflow. Importantly, the maps Xt are all smooth
(by the smooth dependence on initial conditions), and their inverse (the maps
X−t) are also smooth, so the maps Xt are diffeomorphisms; we say that the
smooth autonomous system of differential equations generates a smooth flow.

As an example, consider the equation

ẋ = x

with x ∈ R1. The time-t map x0 7→ etx0 is for each t ∈ R1 well-defined (it
is a linear map whose domain is the whole phase space). So this differential
equation generates a proper flow. Another example:

ẋ = x2.

The time-t map is given by x0 7→
x0

1− tx0
and is defined at tx0 < 1, i.e.

its domain of definition is not the whole phase space if t 6= 0. In a similar
example,

ẋ = −x3,

the time-t map is given by x0 7→
x0√

1 + 2tx20
and is defined at 2tx20 > −1.

In particular, at t ≥ 0 each time-t map is defined for all x0 ∈ R1, i.e. these
maps form a semiflow.

Another key concept in the analysis of autonomous differential equations
is the notion of a phase curve. If xt is an orbit of system (26), then the curve
which xt draws in the phase space as t runs the maximal existence interval
of xt is called a phase curve. By construction, for each point x0 in the phase
space there is a unique phase curve of (26) which passes through this point,
i.e. the phase space is foliated by the phase curves. This is a smooth foliation
(because of the smooth dependence of the curves on the initial conditions).
The vector f(x) is, by (26), tangent to the phase curve that passes through
the point x. Thus, the problem of solving autonomous differential equation
(26) can be interpreted as follows: given a smooth vector field f(x) find the
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foliation with one-dimensional leaves such that the leaves are tangent to the
vector field everywhere (except for the points where f = 0). We note that
a phase curve can correspond to two opposite directions of the time flow;
to avoid this ambiguity, in drawing pictures of the phase curves (the “phase
portraits”) the direction of the phase curve (the direction of the tangent
vector f) is denoted by arrows.

The simplest type of a phase curve is an equilibrium state. Namely, if
the phase curve corresponds to a stationary solution xt = x∗ = const, then
this curve consists of only one point, x∗. Such points are called equilibria.
Obviously, a point x∗ is an equilibrium state of system (26) if and only if
f(x∗) = 0.

An important type of phase curves is given by closed phase curves. These
correspond to periodic solutions of (26). Namely, a phase curve that corre-
sponds a solution xt is closed if and only if xt0 = xt0+T for some t0 and T 6= 0.
By uniqueness, the orbit of xt0 coincides with the orbit of xt0+T in this case,
i.e. we have xt = xt+T for all t, which means periodicity of xt. Recall that
phase curves cannot have self-intersections, i.e. the closed phase curve is a
simple closed curve (a homeomorphic image of a circle).

Example. For a system

ẋ1 = −x2, ẋ2 = x1

the point x1 = x2 = 0 is an equilibrium state, while all the other phase
curves are closed: these are the circles x21 + x22 = const which correspond to
the solutions (x1 = A cos t+B sin t, x2 = A sin t−B cos t) with A2 +B2 6= 0.

Given an autonomous system of differential equations the ultimate goal
is to build its “phase portrait”, i.e. to create a picture which captures the
behaviour and mutual position of all the system’s phase curves. This problem
is generally solvable for systems in R2 and R1 only, in higher dimensions it
admits a reasonable solution only for some special cases. Even the question
on how to define rigorously the notion of the phase portrait is unresolved in
Rn for n ≥ 3. In R2, the phase portrait can be defined constructively, as
the so-called “scheme” by Leontovich and Maier. Namely, one indicates all
isolated equilibria and isolated closed phase curves, and the so-called special
phase curves asymptotic to equilibria. This set of curves separates the phase
plane into a number of cells, and one draws one orbit in each cell. Unless
the system is very degenerate, the resulting phase portrait gives a complete
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description of the behaviour of the system on a plane, as it is shown in
the classical book by Andronov, Gordon, Leontovcich and Maier. In higher
dimensions we do not know exactly how to provide a complete description of
system’s behaviour. Therefore, there is no constructive definition of the phase
portrait for systems in Rn with n ≥ 3. Instead of defining the phase portrait
itself, one defines what does it mean that two systems have the same phase
portraits. This introduces a certain equivalence relation on the set of systems
(then, formally, the term “phase portrait” can just refer to the corresponding
equivalence class). The natural classical equivalence relation goes back to the
work by Andronov and Pontryagin: two systems are topologically equivalent
if there exists a homeomorphism of the phase space which takes the phase
curves of one system to the phase curves of the other. This is a very important
notion, as it allows to discuss the qualitative features of the behaviour of
systems of differential equations in formal mathematical terms, i.e. properly
formulate and prove theorems, etc.. However, from the very beginning it was
clear that the notion of topological equivalence does not exactly captures our
intuitive idea of qualitative similarity between the dynamic behaviour. For
example, systems{

ẋ1 = −x1
ẋ2 = −x2

and

{
ẋ1 = −x1 − x2
ẋ2 = x1 − x2

are topologically equivalent although their phase portraits look quite different
(the phase curves for the first system are rays of the straight lines convergent
to equilibrium state at zero, while the phase curves of the second system are
spirals). In other words, the topological equivalence relation is too weak in
order to distinguish the oscillatory and monotone behaviour in this example.
On the other hand, systems{

φ̇1 =
√

2

φ̇2 = 1
and

{
φ̇1 =

√
3

φ̇2 = 1

are not topologically equivalent if we consider them as systems on a torus (i.e.
if we identify the points (φ1 +m,φ2 +n) for all integer m and n), eventhough
there is no obvious difference in the phase portraits (each phase curve forms
a dense subset of the torus, for both systems). So, the topological equiv-
alence is, probably, too strong for this example. These examples are well
understood and do not create significant problems. In general, however, it
occurs that for many types of systems with chaotic behaviour in Rn (n ≥ 3)
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the topological equivalence relation is too strong to provide a comprehensi-
ble classification. Moreover, no reasonable weaker form of the equivalence
relation is known for such systems.

A trivial example of topological equivalence is given by the following

Theorem 3.1. Let f : Rn → Rn be smooth and λ : Rn → R1 be smooth
and everywhere positive. Then the two systems in Rn

ẋ = f(x) and ẋ = λ(x)f(x)

are topologically equivalent.

Proof. We prove that the two systems have exactly the same phase curves,
i.e. the sought homeomorphism is just the identity map. The phase curve
x = x(t) of the first system will be the phase curve of the second system
if and only if the function x(s(t)) satisfies the second system for some time
reparameterisation s(t). By plugging x(s(t)) into the second system, we
obtain

ẋ(s)
ds

dt
= λ(x(s))f(x(s).

Since x(s) solves the first system, i.e. ẋ(s) = f(x(s)), we find that we may
take as the sought s(t) the solution of

ds

dt
= λ(x(s)).

Since λ is positive scalar, we can write

t =
∫ s

0

ds

λ(x(s))
,

which gives us t as a monotonically increasing function of s, so s(t) is defined
as the inverse of this function.

As we see, in the geometrical approach to autonomous differential equa-
tions based on the notions of phase curves and topological equivalence we
ignore the exact pace of time along the phase curves (we only retain the infor-
mation about its direction). Therefore, in this approach we do not, strictly
speaking, consider a system of differential equations as a dynamical system
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(the two systems in Theorem 3.1 generate different flows eventhough they
have exactly the same phase portraits). In fact, both views on the solutions
of differential equations (as a smooth flow, and as a smooth foliation tangent
to a given vector field) should be used in parallel.

In fact, there is rarely a point in stressing the distinction between the or-
bits of the system (which are functions of t) and the phase curves of it (which
are curves in Rn, the graphs of the orbits). When there is no confusion, we
will use the term “orbit” (also “trajectory”) to mean the corresponding phase
curve as well. It is also typical to say “set of orbits” meaning the set of all
the points of these orbits.

Limit sets, invariant sets, absorbing domains,

attractors, Lyapunov functions

A central notion of the dynamical system theory is that of a limit set (an
ω-limit set) of a trajectory. Typically, given an initial condition x0, we are
not concerned with the transient process (i.e. with a behaviour on an initial
finite time interval, which does not repeat itself). We want to know to which
sustainable behaviour the given initial conditions will lead in the future, i.e.
what is the limit of the orbit xt as t→ +∞. If xt tends to a certain constant,

lim
t→+∞

xt = x∗,

then dx
dt

= f(xt) → f(x∗) (by the continuity of f). Moreover, as dx
dt

cannot
stay bounded away from zero (otherwise xt would not have a limit), it follows
that f(x∗) = 0, i.e. if xt has a limit than it is necessarily an equilibrium state.

This observation allows us to give a complete characterisation of au-
tonomous equations in R1.

Theorem 3.2. Consider an equation

ẋ = f(x)

where x ∈ R1. Let a < b be such that f(a) = f(b) = 0 and f(x) 6= 0 for all
x ∈ (a, b). If f(x) > 0 on (a, b), then xt → b as t → +∞ and xt → a as
t→ −∞ for every x0 ∈ (a, b). If f(x) < 0 on (a, b), then xt → a as t→ +∞
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and xt → b as t→ −∞ for every x0 ∈ (a, b).

Proof. The points a and b are equilibria of the system. Since different
phase curves cannot intersect, an orbit xt starting in (a, b) cannot get to
these equilibria at a finite time, i.e. the orbit can never leave the interval
(a, b) and must stay there for all times from −∞ to +∞. It follows that
dxt
dt

(= f(xt)) remains non-zero for all times, hence xt is a monotonous func-
tion of t. It is also a bounded function, as we just have shown. Thus it must
have a limit both as t → +∞ and t → −∞. These limits must be equi-
libria of the system, i.e. one of them must be a and the other is b. Which
is which, that depends on whether xt is a decreasing or increasing function
of x: if f(xt) > 0, then xt is increasing, so limt→+∞ xt > limt→−∞ xt, hence
limt→+∞ xt = b and limt→−∞ xt = a, and if f(xt) < 0, then xt is decreasing,
so limt→+∞ xt < limt→−∞ xt, hence limt→+∞ xt = a and limt→−∞ xt = b.

We have a similar behaviour if f keeps a constant sign on an infinite
interval: if f > 0 on this interval, then any trajectory in the interval tends
to its right end as t grows and to its left end as t decreases, and if f < 0
on this interval, then any trajectory in the interval tends to its right end
as t decreases and to its left end as t increases; the difference with the case
of a finite interval is that x = ±∞ can be achieved at a finite moment of
time t. The above theorem says us that the behaviour of equations in R1 is
determined completely by the equilibrium states (the zeros of the right-hand
side f) and by the sign of f in the intervals between the equilibria: every
trajectory tends to the nearest equilibrium from the side determined by the
side of f(x0).

In higher dimensions in general, it is quite often that an orbit has more
than a single (partial) limit point.

Definition. If xtm → x∗ for some sequence of time values tm → +∞,
then x∗ is called an ω-limit point of the trajectory xt or, what is the same, an
ω-limit point of the initial point x0. The union of all limit points of a given
trajectory (or of a given initial condition) is called its ω-limit set. Similarly,
α-limit points and the α-limit set are defined, by taking the limit tm → −∞.

As every bounded sequence in Rn has at least one partial limit point,
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it follows that every bounded trajectory has a non-empty ω-limit set. For
examples of ω- and α-limit sets consider the system

ẋ1 = −x2 + x1(1− x21 − x22), ẋ2 = x1 + x2(1− x21 − x22). (28)

Introduce polar coordinates x1 = r cosφ, x2 = r sinφ. The system takes the
form

ṙ = r(1− r2), φ̇ = −1. (29)

As the first equation is independent on φ, one shows (e.g. by Theorem 3.2)
that r(t)→ +∞1 as t→ +∞, for any r0 6= 0. Thus, the ω-limit set for any
point x0 6= 0 is the curve r = 1 (every point on this curve is a limit point, as
ṗhi 6= 0, i.e. when the point xt approaches r = 1 it rotates with a non-zero
velocity, hence it regularly visits a neighbourhood of every point on the curve
r = 1). The ω-limit set of the equilibrium state x = 0 is the equilibrium state
itself. If we reverse the direction of time, we notice that r(t)→∞ as t→ −∞
for every r0 > 1. If r0 < 1, then r(t) → 0 as t → −∞. Therefore, the α-
limit set of every point x0 inside the circle r = 1 consists of a single point
x = 0, while this set is empty (or we may say that the α-limit set is infinity)
if r0 > 1. For the points on the circle r = 1 their α-limit set is the circle itself.

Theorem 3.3. Let xt be a trajectory which does not tend to infinity as
t→ +∞. Then its ω-limit set Ω(x0) is non-empty and closed. The set Ω(x0)
consists of entire phase curves (i.e. with every point x∗0 ∈ Ω(x0) the phase
curve of x∗0 lies in Ω(x0) entirely), and either it is connected, or each of its
connected components are unbounded. For a bounded trajectory xt the ω-limit
set is always connected.

Proof. Since the infinity is not a limit of xt, it follows that there exists a
bounded sequence xtm for some tm → +∞. Every partial limit point of this
sequence belongs to Ω(x0), so Ω(x0) 6= ∅. To prove the closeness of Ω(x0),
we need to show that if x∗k is a sequence of ω-limit points of xt, and x∗k → x∗∗

as k → +∞, then the point x∗∗ is also an ω-limit point of xt. In fact, this
is obvious: as xk is an ω-limit point of xt, it follows that for any ε > 0 and
T > 0 there exists tk,ε such that ‖x∗k − xtk,ε‖ < ε and tk,ε > T . As x∗∗ is a
limit point of x∗k, then for any ε > 0 there exists k such that ‖x∗∗ − x∗k‖ < ε.
Hence, for any ε > 0, we have ‖x∗∗ − xtk,ε‖ < 2ε, i.e. x∗∗ is an ω-limit point
of xt indeed.
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Let Xt denotes the time-t shift map. If x∗0 ∈ Ω(x0), then xtm → x∗0 for
some tending to plus infinity sequence tm. By continuity of the map Xt for
any t for which this map is defined we have Xt(xtm) → Xt(x

∗
0), i.e. for any

point x∗t = Xt(x
∗
0) on the phase curve of x∗0 we have xt+tm → x∗t . This means

that x∗t ∈ Ω(x0), i.e. the entire phase curve of x∗0 lies in Ω(x0) indeed.
To prove the claim about the connected components of Ω(x0), let us as-

sume its converse, i.e. let Ω(x0) has at least two connected components, A
and B, and let A be bounded. It follows that there is an open bounded set
C ⊃ A such that the boundary of C does not intersect Ω and the closure of
C does not intersect B. Let a ∈ A and b ∈ B. Since both a and b are ω-limit
sets of xt, it follows that there exist two tending to plus infinity sequences,
tm,1 and tm,2, such that tm+1,1 > tm,2 > tm,1 for all m, and xtm,1 → a and
xtm,2 → b. Since a lies in the interior of C and b lies in the interior of the
complement to C, it follows that xtm,1 ∈ C and xtm,2 6∈ C for all m large
enough. Hence, the arc of the phase curve x = xt between the points xtm,1

and xtm,2 must intersect the boundary of C at some t∗m ∈ (tm,1, tm,2) for each
m large enough. Thus, we have found a tending to infinite sequence of points
xt∗m which belong to the boundary of C. Since C is bounded, its boundary is
bounded as well, so it is a closed bounded set. Hence, the sequence xt∗m has
a partial limit point in this set. This point is an ω-limit point of xt, but this
contradicts to the assumption that the boundary of C does not intersect the
ω-limit set of xt.

In the same way one proves the same statement for the α-limit sets. By
the theorem above, ω- (and α-) limit sets give examples of invariant sets,
namely the sets which consist of entire trajectories. A general invariant set
is not necessarily built of ω- and α- limit sets, however if an iinvariant set is
closed, it must contain, along with each its point, both the ω- and α- limit
sets of this point.

By the definition, invariant sets are invariant with respect to the time-
shift maps Xt, i.e. they are taken by such maps into itself. As we mentioned,
the maps Xt may be not everywhere defined (for some initial conditions the
trajectory may go to infinity at a finite time, so beyond this time the time-
shift map is undefined). So a proper formulation of the invariance of the set Λ
with respect to time-shift maps should be as follows: Xt(Λ∩Dom(Xt)) ⊆ Λ
for every t ∈ R1, where we denote as Dom(Xt) the domain of definition of
the map Xt. The importance of the invariant sets in general is that once an
invariant set Λ is known, one can restrict the system on the set Λ, namely
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consider the behaviour of the flow maps Xt on the set Λ only (this may be
much simpler than studying the flow in the whole phase space). An invariant
set, usually, does not need to be a smooth manifold. However, invariant
smooth manifolds can exist, and restriction of the system on such a manifold
can be defined explicitly, as follows. Let one be able to decompose the phase
variables x into two groups of variables, x = (u, v), so the invariant manifold
Λ is written as u = ϕ(v) for some smooth function ϕ (so the value of the
v-variables defines the value of the u-variables in a unique way for every
point on Λ, i.e. the points on Λ are completely defined by the v-variables
alone; one says that the u-variables are enslaved by the v-variables). Let the
original system take the form

u̇ = g(u, v), v̇ = h(u, v) (30)

in these variables. We are given that Λ is invariant, so ut = ϕ(vt) for all
times if the starting point belongs to Λ. Thus, for any solution of our system
which starts on Λ we have

v̇ = h(ϕ(v), v). (31)

This is the sought restriction of the system on Λ. As the right-hand side
is smooth, this equation defines the evolution of the v-variables completely,
hence it carries a complete information on the behaviour of the trajectories
that lie in Λ. As the number of the v-variables (the dimension of the v-space)
is smaller than the number of the x-variables (which equals the dimension of
the v-space plus the dimension of the u-space), the system on Λ is simpler
than the original system.

It is easy to check whether a given smooth manifold is invariant or not.
Let a set Λ be defined by the equation F (x) = 0, where F is a smooth
function Rn → Rk. If

rank

(
∂F

∂x

)
= k (32)

everywhere on Λ, then this equation defines an an (n−k)-dimensional smooth
manifold in Rn. In particular, if F is a scalar function Rn → R1, then this
condition reads as

F ′(x) 6= 0 for all x such that F (x) = 0.

If Λ is invariant for the system

ẋ = f(x),
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then for any x0 ∈ Λ we have xt ∈ Λ for all t, i.e. F (xt) is identically zero for
all t. Therefore, d

dt
F (xt)t=0 = 0 for each x0 ∈ Λ, which reads as

∂F

∂x
· f(x) = 0 for all x such that F (x) = 0. (33)

This condition is, thus, necessary for the invariance of the set Λ. Let us
show that if (32) holds, then condition (33) is also a sufficient condition for
the invariance of the manifold Λ. Indeed, take any point x0 ∈ Λ. By (32),
one can introduce variables (w, v) = x, w ∈ Rk, v ∈ Rn−k such that near
x0 = (w0, v0)

det

(
∂F (u, v)

∂w

)
6= 0.

By virtue of the implicit function theorem, it follows that the equation
F (w, v) = 0 can be uniquely resolved with respect to the w variables near
the point x0, i.e. the manifold Λ near x0 can be written in the form

w = ϕ(v)

for some smooth function ϕ : Rn−k → Rk defined in a small neighbourhood
of v0. Choose u = w − ϕ(v) as a new variable instead of w. In the variables
(u, v) the manifold Λ is simply given by the equation

u = 0.

As the function F (x) must vanish on Λ, we have

F (0, v) ≡ 0.

By differentiating this identity with respect to v, we find

∂F

∂v
(0, v) ≡ 0.

Hence condition (32) in this coordinates transforms into

det
∂F

∂u
(0, v) 6= 0.

If we write the system in the form (30), i.e. f =

(
g
h

)
, then condition (33)

transforms into
g(0, v) ≡ 0.
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Hence, if we take the uniquely defined solution vt of the equation

v̇ = h(0, v)

with the initial condition v0, then the function xt = (0, vt) will solve equation
(30) with the initial condition x0 = (0, v0), i.e. it is the uniquely defined so-
lution of our system with the initial condition x0. As we see, u stays zero on
this solution as time changes, which means that the solution does not leave
Λ, i.e. the manifold Λ is invariant indeed.

We stress again that an invariant set does not need to be a smooth mani-
fold. An important example of invariant sets (which can have a very compli-
cated nature) is given by attractors. The notion of attractor is parallel to the
notion of ω-limit set. While an ω-limit set indicates the asymptotic regime
(as t → +∞) which corresponds to a given initial condition, an attractor is
supposed to capture the asymptotic behaviour of the system as a whole or, at
least, for a sufficiently representative set of initial conditions. No definition
of attractor exists which would express this idea in an entirely satisfactory
way. Attractors we consider here (or the so-called maximal attractors) are
defined relative to a choice of the so-called absorbing domain. The latter is
defined as follows.

Let an open, bounded region U ∈ Rn have the following property: there
exists T > 0 such that for each point x0 in the closure cl(U) of the domain
U the forward trajectory xt of this point lies in U (i.e. strictly inside it) for
all t ≥ T . In other words,

Xt(cl(U)) ⊂ U for all t ≥ T.

Then U is called an absorbing domain. Note that it is important in this
definition that the time T can be chosen the same for each x0.

Examples. Consider a system ẋ = −x with x ∈ Rn. Any open ball
U = {‖x‖ < R} is an absorbing domain. Here cl(U) = {‖x‖ ≤ R}. As the
time T one can take any strictly positive number. Indeed, given any T > 0
we have e−T < 1. By solving our system we find xT = e−Tx0, so if x0 ∈ cl(U),
i.e. if ‖x0‖ ≤ R, then ‖xT‖ = e−T‖x0‖ < R, i.e. xT ∈ U .

In the next example, every trajectory enters a connected bounded open
region V and stays there forever after, however V is not an absorbing domain,
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since the time T after which all the trajectories that start in cl(V ) will remain
in V is different for different trajectories and is unbounded. The system of
this example is given by

u̇ = −u((u− 1)2 + v2), v̇ = −v((u− 1)2 + v2).

It differs from the system in the previous example by a time change, i.e. by
the multiplication of the right-hand side to a scalar factor (u−1)2 +v2. This
factor is positive everywhere except for the point O1(u = 1, v = 0). Thus,
the phase curves of the system that do not pass through the point O1 are the
same as in the system

u̇ = −u, v̇ = −v,

i.e. the trajectories lie in the straight lines u/v = const, and all except for
those with the initial condition at (v = 0, u ≥ 1) tend to the equilibrium state
O(0, 0) as t → +∞. The trajectory (v = 0, u > 1) tends to the equilibrium
state O1. Thus, every trajectory tends to an equilibrium O or O1 as t→ +∞,
so for any region V which contains both the equilibria every forward trajec-
tory eventually enters V and stays there forever. Now, take the open set V
such that its boundary intersects the segment I = {v = 0, 0 < u < 1} and
a part of this segment does not lie in V . The segment I is a phase curve
of our system, α-limit set is the equilibrium O1 and the ω-limit set is the
equilibrium O. As both the equilibria lie in V , for any initial conditions in a
part of I close to O1 the forward orbit starts inside V , then leaves V , then
enters V again and stays there forever (it tends to O ∈ V ). As the initial
point tends to O1, the time of re-entry to V tends to infinity (it is a general
fact that as the phase velocity is zero at the equilibrium, the time necessary
to leave its neighbourhood tends to infinity as the initial point tends to the
equilibrium). Thus, as we mentioned, for such chosen region V there is no
chance to choose a common T > 0 such that Xt(cl(V )) ⊂ V for all t ≥ T .

A fairly general example of an absorbing domain is constructed as follows.
Note that if at every point of the boundary of an open bounded region U the
vector field of the system is non-zero, is not tangent to the boundary, and
looks strictly inside U , then U is an absorbing domain. Indeed, every phase
curve of the system is tangent to the vector field, so the phase curves which
cross the boundary of U must enter U as time grows. After that they cannot
leave. In fact, no trajectory that starts inside U can leave U , as in this case
the trajectory must intersect the boundary of U and get out, which would
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mean that the tangent vector to the trajectory at the moment of intersection
with the boundary of U looks outside U , a contradiction. Thus, we just have
shown that xT ∈ U for any x0 ∈ cl(U) and any T > 0, i.e. U is an absorbing
domain indeed. For a more formal argument, let us assume that there exists
a smooth function F : Rn → R1 such that the domain U is given by

F (x) < 0,

and F (x) = 0 is the boundary of U . The condition that the vector field of
the system

ẋ = f(x)

looks strictly inside U on the boundary of U reads as

∂F

∂x
· f(x) < 0 for all x such that F (x) = 0. (34)

Let an orbit xt intersect the boundary of U at the time moment t0. Then,
taking into account F (xt0) = 0 we have

F (xt) = F (xt0) +
d

dt
F (xt)t=t0

t+ o(t− t0) = (t− t0)
∂F

∂x
· f(x) + o(t− t0),

so F (xt) > 0 for all small t < t0 and F (xt) < 0 for all small t > t0. This
implies that no orbit starting at F (x) < 0 can get to the region F (x) > 0 as
time grows, and every orbit starting at the boundary F (x) = 0 must enter
the region F (x) < 0. Thus, XT (cl(U)) ∈ U for any T > 0, i.e. condition
(34) indeed guarantees that U is an absorbing domain. A different condition
for the existence of an absorbing domain, based on the use of a Lyapunov
function, will be discussed later.

Given an absorbing domain U the associated attractor (or a maximal
attractor in U) is defined as

A =
∞⋂
m=0

XmT (cl(U)) (35)

(where T > 0 is the time entering the definition of the absorbing domain).

Theorem 3.4. The attractor is a non-empty, closed and bounded set.
If the absorbing domain U is connected, then A is connected. The attractor
satisfies

A =
⋂
t≥0

Xt(U). (36)
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Given any ε > 0 there exists τ(ε) > 0 such that Xt(U) lies in the ε-
neighbourhood of A for all t ≥ τ(ε). In particular, the ω-limit set of every
point in cl(U) lies in A. The attractor is an invariant set: if a point belongs
to A, then its entire trajectory lies in A for all t ∈ (−∞,+∞). Moreover,
every trajectory which entirely (i.e. for all t ∈ (−∞,+∞)) lies in cl(U) lies
in A, i.e. the attractor is the maximal invariant subset of cl(U).

Proof. As XT (cl(U)) ⊂ U ⊂ cl(U), it follows that all forward iterations
XmT = (XT )m are well-defined, and X(m+1)T (cl(U)) = XmT (XT (cl(U))) ⊂
XmT (cl(U)). Thus, the sets XmT (cl(U)) form a sequence of nested closed
and bounded sets, hence their intersection A is indeed non-empty, bounded
and closed. If U is connected, then all these sets in the nested sequence are
connected, so A is connected as well in this case. In order to prove (36), note
that ⋂

t≥0
Xt(U) ⊆

∞⋂
m=0

XmT (cl(U))

always, so we only need to show

∞⋂
m=0

XmT (cl(U)) ⊆
⋂
t≥0

Xt(U).

In words, this means we need to show that if x ∈ XmT (cl(U)) for all m ≥ 0,
then X−tx ∈ U for all t ≥ 0. Now, given t ≥ 0 let m ≥ 0 be an integer such
that t ≤ (m−1)T . Then, since X−tx = XmT−t(X−mTx) and, by assumption,
X−mT

x ∈ cl(U), the inequality mT − t ≥ T implies (by the definition of
the absorbing domain) that X−tx ∈ U , as required. This proves (36). This
formula means x ∈ A if and only if X−tx ∈ U for all t ≥ 0, i.e. A consists
of all points whose backward orbits never leave U . Moreover, if x ∈ A, then
X−Tx ∈ U , which implies Xtx = Xt+T (X−Tx) ∈ U for all t ≥ 0. Thus, the
attractor consists of all points whose entire orbit lies in U , for t ∈ (−∞,+∞).
This shows that the attractor contains every invariant subset of U . In fact,
every invariant subset of cl(U) must lie strictly in U , as XT (cl(U)) ⊂ U
and the invariant set is invariant with respect to XT . Hence, the attractor
contains every invariant subset of cl(U) As forward orbits of the points in
cl(U) stay in U as t→ +∞, it follows that the ω-limit set of every point of
cl(U) lies in cl(U). Since this set is invariant by Theorem 3.3, it proves that
it is contained in the attractor. In order to prove a remaining claim of the
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theorem, note that

Xt(U) = XmT (Xt−mT (U)) ⊂ XmT (U) if t−mT ≥ T.

Thus, for any m ≥ 0 all the sets Xt(U) lie in XmT (U) for all t large enough.
Now, take any ε > 0 and let Aε be the ε-neighbourhood of A. We will prove
that Xt(U) ⊂ Aε for all t large enough (and, hence, finish the theorem) if we
show that there exists m ≥ 0 such that XmT (cl(U)) ⊂ Aε. In order to prove
the latter, assume it is not the case. Then, for every m ≥ 0 there is a point
xm ∈ XmT (cl(U)) such that xm 6∈ Aε. The sequence xm is bounded, hence it
has a partial limit point, and this limit point stays at a distance of at least
ε from A. On the other hand, this limit point belongs to the intersection of
all the sets XmT (cl(U)) (since these sets are closed and nested), so it must
belong to A by (35), a contradiction.

As Theorem 3.4 shows, by restricting the system onto the maximal at-
tractor we will hardly loose any information about the asymptotic behaviour
of the orbits entering the absorbing domain under consideration. At the same
time, the dimension of the attractor can be much smaller than the dimension
of the phase space, hence one hopes that the restriction of the system onto
an attractor may greatly simplify the analysis. While the structure of the
attractor can be extremely complicated (e.g. beyond human comprehension)
in many cases, there cases when it is sufficiently simple and can be analysed
in detail. These cases include systems on a plane (where attractors consist
of equilibria, periodic orbits and orbits that connect them) and systems with
a global Lyapunov functions, where attractors consist of equilibria and con-
necting orbits only. Before we discuss this, we stress again that the attractor
is not defined by the system alone, it depends on the choice of the absorbing
domain. For example, in system (28) one can choose any disc x21+x22 < R2 as
an absorbing domain if R > 1 (as criterion (34) is fulfilled with the function
F = x21 +x22−R2 = r2−R2, see also (29)). The maximal invariant set inside
such domain is the disc x21 + x22 ≤ 1. This attractor is seemingly too large,
e.g. the orbits inside this disc do not attract anything. A more reasonable
choice of the absorbing domain would be an annulus R2 > x21 + x22 > ρ2 with
R > 1 > ρ > 0. Then the attractor will consist of the only one periodic orbit
x21 + x22 = 1. This is a better choice of the attractor, as it coincides with the
ω-limit sets of all orbits of the system except for one unstable equilibrium at
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zero.

A useful tool for establishing the existence of absorbing domains (and
analysing the dynamics of systems in general) is given by Lyapunov functions.
There can be different versions of them. We start with a Lyapunov function
at infinity. Let a smooth scalar function V : Rn → R1 satisfy the two
following properties:

V (x)→ +∞ as ‖x‖ → +∞, (37)

∂V

∂x
· f(x) ≤ 0 for all ‖x‖ ≥ K for some K > 0. (38)

Then this function is called a Lyapunov function at infinity for the system
ẋ = f(x).

Theorem 3.5. If the system ẋ = f(x) with a smooth right-hand side
f : Rn → Rn has a Lyapunov function at infinity, then every forward trajec-
tory is defined and remains bounded for all t ∈ [0,+∞).

Proof. It is enough to prove that the trajectory stays bounded (since the
only possibility for a solution to be not defined for all positive t corresponds
to ‖xt‖ → ∞ at a finite time). Thus, the proof of the theorem is obtained
immediately, as the unboundedness of a trajectory would clearly contradict to
(37), (38): by (37) the function V (xt) must be unbounded if xt is unbounded,
but V (xt) is, on the other hand, a non-increasing function of time when xt
is large, as

d

dt
V (xt) =

∂V

∂x
· ẋ =

∂V

∂x
· f(x) ≤ 0

at ‖xt‖ > K by virtue of (38). More formally, note that if a smooth scalar
function ϕ(t) is unbounded at t ≥ 0, then for any R there must exist mo-
ment of time such that ϕ(t) > R and ϕ′(t) > 0 (if ϕ′(t) ≤ 0 all the time
when ϕ(t) > R, then for any time moment t1 such that ϕ(t1) > R we obtain
for all t ∈ [0, t1] that ϕ(t) is nonincreasing and R < ϕ(t1) ≤ ϕ(t) ≤ ϕ(0),
i.e. ϕ would be bounded by max(R,ϕ(0)) in this case). If a trajectory xt is
unbounded, then V (xt) is also unbounded, hence there must be a moment

of time for which
d

dt
V (xt) > 0 and V (xt) > R = max

‖x‖≤K
V (x). The latter

inequality implies ‖xt‖ > K, hence
d

dt
V (xt) ≤ 0 by (38), a contradiction.
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Theorem 3.6. If the inequality (38) is strict :

∂V

∂x
· f(x) < 0 for all ‖x‖ ≥ K for some K > 0, (39)

then there exists Q ≥ 0 such that every forward orbit of the system must enter
the ball BQ : {‖x‖ < Q} and remain there forever. Namely, for every initial
condition x0 there exists T (x0) ≥ 0 such that xt ∈ BQ for all t ≥ T (x0).
Moreover, BQ is an absorbing domain (i.e. T (x0) can be taken the same for
all x0 ∈ cl(BR)).

Proof. First, let us show that any forward orbit must visit the ball BK ,
i.e. for any x0 there exists T (x0) such that ‖xt‖ < K at t = T (x0). Indeed, if
it is not the case, then the orbit stays outside BK for all positive times, hence
its ω-limit set Ω also lies outside BK (the ω-limit set is non-empty because
the orbit does not tend to infinity by Theorem 3.5). By (39), the function
V (xt) is strictly decreasing along every orbit which stays outside BK :

d

dt
V (xt) =

∂V

∂x
· ẋ =

∂V

∂x
· f(x) < 0.

This function is bounded, so it must have a limit

V ∗ = lim
t→+∞

V (xt).

In particular, if y ∈ Ω, then y = limxtn for some sequence tn → +∞, hence

V (y) = limV (xtn) = lim
t→+∞

V (xt) = V ∗.

So, the value of V is the same (V = V ∗) for all ω-limit points of xt. In
particular (recall that the ω-limit set Ω is invariant, i.e. it consists of entire
trajectories), the function V (yt) staus constant for any trajectory yt from
Ω. In the other hand, as yt lies outside BK , the function V (yt) must be
decreasing strictly, a contradiction.

Now, let us show that every orbit that starts in BK cannot get outside
BQ where Q > K is chosen such that

min
‖x‖=Q

V (x) > max
‖x‖=K

V (x) (40)

(such Q always exists as V (x) → +∞ as ‖x‖ → ∞). Indeed, if the claim is
not true, then we would have an orbit xt such that for some moments t1 < t2

‖xt1‖ = K‖, ‖xt2‖ = Q and K < ‖xt‖ < Q for al t ∈ (t1, t2).

37



This is, however, impossible: as ‖xt‖ ≥ K, the function V (xt) must be
strictly decreasing for t ∈ (t1, t2), which would give V (xt2) < V (xt1), a
contradiction to (40).

Thus we have shown that the claim of the theorem is indeed true with
T (x0) < ∞ defined as any moment after the orbit xt enters BK . To finish
the theorem, we must prove that we can take T the same for all x0 ∈ cl(BQ).
Note that given any x0 ∈ cl(BQ), if xt = Xt(x0) ∈ BK for some t, then
Xt(U(x0)) ⊂ BK for some sufficiently small neighbourhood U of x0 (the ball
BK is open, so the point xt lies at a finite distance from the boundary of
BK , so every point close to xt also lies inside BK , and all the points from set
Xt(U(x0)) are indeed close to xt, as U(x0) is small and Xt is a continuous
map for any fixed given t). Thus, we can cover the closed ball cl(BQ) by
open sets U(x) such that for each of these sets there exists a time moment
t(U) such that Xt(U) ⊂ BK . Now recall that the ball cl(BQ) is compact,
so one can choose a finite subcover from any cover of it by open sets. Let
Ui, i = 1, . . . ,m, be this finite subcover. Take T > max1≤i≤m t(Ui). Since
it is the maximum of a finitely many finite numbers, T is finite. By the
construction, for any point x0 ∈ cl(BQ) its orbit visited the ball BK at some
moment of time before T . As we have proved above, this implies that none
of these orbits can leave BQ at t ≥ T , which means that BQ is an absorbing
domain, as required.

As we have seen, the expression ∂V
∂x
· f(x) in condition (39) is the time

derivative of V (xt) if xt is a solution of the system ẋ = f(x). It is important
that one can compute derivatives of V (xt) without explicitly knowing the
solution xt. Thus,

d

dt
V (xt) =

∂V

∂x
·f(x),

d2

dt2
V (xt) =

d

dt

(
∂V

∂x
|
x=xt
·f(xt)

)
=
∂

∂x

(
∂V

∂x
·f(x)

)
·f(x), . . .

Note also that we do not actually need the strict inequality (39) in Theorem
3.6 to be fulfilled for all x; we only need the function V (xt) be strictly in-
creasing. Thus, the claim of Theorem 3.6 holds true, if we change condition
(39) to the requirement that the first non-zero time derivative of V (xt) is
strictly negative. Namely, condition (39) in Theorem 3.6 can be replaced by
this:
for each x such that ‖x‖ > K there exists m such that

dm

dtm
V (x) < 0 and

dj

dtj
V (x) = 0 if 1 ≤ j < m. (41)
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In the case described by Theorem 3.6, if we take the sufficiently large
ball BQ as an absorbing domain, then the attractor A we obtain will be the
maximal bounded invariant set of the system. We may call A the maximal
attractor of the system under consideration. It will attract all forward orbits
of the system, so if we are able to understand its structure, then we under-
stand the dynamics of the system completely. As we mentioned, this is rarely
possible. One of the cases when this problem is solvable is given by the sys-
tems which possess a global Lyapunov function. Namely, consider a system
ẋ = f(x) with a smooth right-hand side f : Rn → Rn. A smooth function
V which satisfies condition (37) and, for all x which are not equilibria of the
system (i.e. f(x) 6= 0), satisfies condition (41) is a global Lyapunov function
for the system.

Theorem 3.7. If a system ẋ = f(x) has a global Lyapunov function,
then its every orbit is defined and bounded at t ≥ 0. The ω-limit set of every
orbit is the subset of the set of equilibria. If an α-limit set of an orbit is
non-empty (i.e. if the orbit does not tend to infinity as t → −∞), then its
α-limit set is also a subset of the set of equilibria. If all equilibria are iso-
lated, then each ω-limit set or (non-empty) α-limit set consists of only one
equilibrium state, i.e. every orbit tends to an equilibrium as t → +∞ and
either to infinity or to an equilibrium as t→ −∞. If the set of all equilibria
is bounded, then the system has a bounded maximal attractor. The attractor
is connected and consists of the equilibria and, possibly, orbits that connect
the equilibria.

Proof. Since the global Lyapunov function is also a Lyapunov function at
infinity, Theorem 3.5 guarantees the existence and boundedness of all forward
orbits. Condition (41) implies that V (xt) is a strictly monotone function of
time along any orbit xt which is not an equilibrium. Arguing exactly like in
Theorem 3.6 we thus obtain that V must stays constant along any orbit in
the ω- or α-limit set of xt, which immediately imply that each orbit in the ω-
or α-limit set of xt must be an equilibrium. By Theorem 3.3 the ω-limit set
must be connected, so it is a connected subset of the set S of the equilibrium
states. Hence, if all equilibria are isolated, then any connected component of
S is a single point, so the ω-limit set of any orbit consists of only one point in
this case; the same for α-limit sets. Finally, if S is bounded, then condition
(41) holds everywhere outside a certain ball, i.e. Theorem 3.6. is applied
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which guarantees the existence of a connected absorbing domain into which
all forward orbits of the system enter eventually. The corresponding attrac-
tor A contains all orbits bounded for all t ∈ (−∞,+∞), i.e. it contains the
set S, and any other orbit in A must have both ω- and α-limit sets lying in S.

Note that the condition that the equilibria are isolated is not restrictive
at all. As we see from the proof, it can be further weakened and replaced by
the requirements that every connected subset of the set equilibria consists
of a single point. This is true, for example, when the set of equilibria is
no more than countable. If the set of equilibria is finite (which is a most
typical case, of course), then the condition of the boundedness of this set is
also fulfilled. It is very rare, that a system has a continuous set of equilibria,
however orbits do not need to tend in this case to one equilibrium each, as
the following example shows.

Example. Consider the system
ẋ1 = −x2(1− x21 − x22)2 + x1(1− x21 − x12)3,

ẋ2 = x1(1− x21 − x22)2 + x2(1− x21 − x22)3.
(42)

It has an isolated equilibrium at zero and the whole line L : x21 +x22 = 1 filled
by equilibria. The function V = (x21 +x22−1)2 is a global Lyapunov function:

dV

dt
= 2(x21 + x22 − 1)(x1ẋ1 + x2ẋ2) = −2(x21 + x22)(1− x21 − x22)4 < 0

outside the set of equilibria. System (42) is obtained from system (28) by
multiplication of the right-hand side to the scalar factor (1− x21− x22)2. This
factor is non-negative at x21 + x22 6= 1, so the phase portraits of the two sys-
tems coincide outside the curve L (see Theorem 3.1). Therefore, the ω-limit
set of every orbit of system (42) which is not an equilibrium is the whole
curve L, like it is for system (28) (this becomes obvious when system (28) is
written in the polar coordinates, see (29)).

More examples of Lyapunov functions. A simple example of systems with
a global Lyapunov function is provided by the so-called gradient systems.
These are systems of the form

ẋ = −V ′(x) (43)
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where V : Rn → R1 is at least C2-smooth. Obviously, if V (x) → +∞ as
‖x‖ → ∞ (condition (37)), then it is a global Lyapunov function for system
(43):

dV

dt
= −V ′(x)2 < 0 if V ′(x) 6= 0.

A completely different example is given by Hamiltonian systems:
ẏ =

∂H(y, p)

∂p
,

ṗ = − ∂H(y, p)

∂y
,

(44)

where H(y, p) is a given smooth function (at least C2). Then H(y, p),
the Hamiltonian, or the energy of the system, is preserved by the system.
Namely,

d

dt
H(y, p) =

∂H

∂y
ẏ +

∂H

∂p
ṗ = 0.

Thus, H satisfies condition (38), so if

H(y, p)→ +∞ as ‖y‖+ ‖p‖ → ∞ (45)

(condition (37)), then H is a Lyapunov function in the sense of Theorem 3.5.
Note that the same energy function H will be a Lyapunov function for the
system obtained from (44) by the time reversal (the change of the sign of the
right-hand side). Therefore, by Theorem 3.4 (applied to system (44) at t ≥ 0
and to the time-reversed system at t ≤ 0) we obtain that condition (45)
guarantees the existence and boundedness of solutions of the Hamiltonian
system (44) for all t ∈ (−∞,+∞).

For example, any system of the form{
ẏ = p,
ṗ = g(y)

(46)

is Hamiltonian, the energy function here is

H =
p2

2
+ U(y) (47)
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where U ′(y) = −g(y) (note that this is a classical formula for mechanical

energy: the first term
p2

2
=

ẏ2

2
is a kinetic energy of a particle of mass

1, and U(y) is the potential energy). As it follows from the explanations
above, if the potential U(y) tends to +∞ as |y| → ∞, then all the solution
of system (46) are bounded and globally defined. Note however, that this is
not necessarily true if the potential does not grow to infinity. For example,
the system on a plane {

ẏ = p,
ṗ = y2,

(48)

defined by the Hamiltonian H =
p2

2
− y

3

3
has a solution y(t) =

6

(t− 1)2
which

tends to infinity as t→ 1−.
By itself, the conservation of energy H means that the level set H(y, p) =

C is invariant for the Hamiltonian system (44) for any constant C. Thus, one
may reduce the dimension by restricting the system on individual level sets of
H. In particular, in the case system (46) is two-dimensional, i.e. (y, p) ∈ R2,
one finds from (47) that

p = ±
√

2(C − U(y))

with some constant C, which reduces the system to one equation

dy

dt
= p = ±

√
2(C − U(y)),

which is solved as

±
∫ yt

y0

dy√
2(C − U(y))

= t− t0.

Returning to the Lyapunov functions, a working method of finding them
is just to try something/anything (e.g. a positive definite quadratic form
with indeterminate coefficients, or this plus some additional fourth order
terms, etc.). Another method is to try to look for a physical interpretation
of the system under consideration and guess which function of the state
variables can decrease with time due to a relevant physical process, like energy
dissipation, entropy increase, etc.. Often, one may try to separate the various
terms in the right-hand side into two groups: a “Hamiltonian core”, and a
“dissipative perturbation” (not necessarily small); then the Hamiltonian of
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the Hamiltonian part can be a Lyapunov function for the whole system.
Namely, consider a system of the form

ẏ =
∂H(y, p)

∂p
+ F (y, p),

ṗ = − ∂H(y, p)

∂y
+G(y, p),

(49)

where
∂H

∂y
F +

∂H

∂p
G ≤ 0 (50)

for ‖y‖+‖p‖ large enough (then we will build a Lyapunov function at infinity)
or for all (y, p) (then we will seek for a global Lyapunov function). Condition

(50) is equivalent to
dH

dt
≤ 0, so H can be a Lyapunov function if it tends

to +∞ as ‖y‖+ ‖p‖ grows (see (45)).
For example, consider the system

ẏ = p, ṗ = y − y3 − p.

This is a system of type (49) with F = 0, G = −p and H =
p2

2
− y2

2
+
y4

4
.

Conditions (45) and (50) are fulfilled. One checks that

dH

dt
= −p2 ≤ 0.

We have
d2H

dt2
= −2pṗ = −2p(y − y3 − p),

so both
dH

dt
and

d2H

dt2
vanish at p = 0. The third derivative at p = 0 equals

to
d3H

dt3
= −2p

d

dt
(y − y3 − p)− 2ṗ(y − y3 − p) = −2(y − y3)2,

and it is strictly negative outside the equilibria at y = 0 or y = ±1.
Thus, condition (41) is fulfilled everywhere except for the equilibrium states
O1(0, 0), O2(−1, 0) and O3(1, 0). Hence, H is a global Lyapunov function.
Since the number of equilibria is finite, Theorem 3.7 implies that every for-
ward orbit tends to one of the three equilibria. In fact, one may show that
there exists only two orbits (except for the point O1 itself) that tend to O1,
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the rest of the orbits tends to O2 and O3 (these two points are asymptotically
stable, i.e. each of them serves as the ω-limit set for every initial condition
from its neighbourhood). The attractor A of the system contains all three
equilibria. Sice A must be connected, it also contains orbits that connect O1

with O2 and O3. In fact, there is exactly two more orbits in A: one tends
to O2 as t → +∞ and the other tends to O3; as t → −∞, these two orbits
tend to O1. Clearly the above theorems are not enough for establishing this
detailed picture of the attractor – to prove the stability of the points O2,3

and to determine the number of orbits that tend to the saddle equilibrium
O1, one needs to perform a theory of local behaviour near the equilibrium
states presented in the next lecture.
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