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1. Consider a system of differential equations in R4. How many stable equilibria and periodic

orbits can be born at the following bifurcations:

(i) An equilibrium state with the eigenvalues of the linearisation matrix equal to −1± i, −0.5,

0 and the Lyapunov coefficients l2 = l3 = 0, l4 6= 0?

(ii) A periodic orbit with the multipliers −2, −0.5, 1?

(iii) A periodic orbit with the multipliers −1, −0.5, 0.5 and the first Lyapunov coefficient

negative?

(iv) A periodic orbit with the multipliers 0.5 and e±2πiω with irrational ω and the first Lyapunov

coefficient negative?

(v) A homoclinic loop to an equilibrium with the eigenvalues of the linearisation matrix equal

to −2± i, −2, 1?

2. (i) Find the Taylor expansion at zero, up to the second order terms, for the center manifold

in the following system of differential equation:


ẋ = y,

ẏ = 3x2 − z2,

ż = −2z + x2 + z2,

(ii) Find the Taylor expansion at zero, up to the third order terms, for the restriction of the

following map to the center manifold:

{
x̄ = −x+ 2x2 + 3xy,

ȳ = 3y − x2.

3. Compute the first Lyapunov coefficient for the zero equilibria of the following systems:

(i)

{
ẋ = y,

ẏ = −x+ 3x2 + 2xy,

and

(ii)

{
ẋ = y + x2 + xy − 2y2,

ẏ = −x− y2 − xy + 2x2,

4. Consider the following map on the interval [0, 1]:

x̄ = fa(x) = a(x− x3)

with a positive parameter a.

(i) For which values of a the map has a fixed point with the multiplier +1 or −1?

(ii) For which values of a the map has a stable fixed point?

(iii) For which values of a the map has an orbit of period 2?



5. Consider a two-parameter family of two-dimensional maps which have a fixed point with

multipliers (1 + µ)e±iω where the parameter µ varies near 0 and ω near ω0 = 2π/5.

(i) By counting resonant terms, show that the normal form for such map is given by

z̄ = (1 + µ)e±iω[z(1 + (L+ iΩ)|z|2) + A(z∗)4 +O(|z|5)],

where z is a complex variable, z∗ is complex-conjugate to z, and A = aeiψ, L, and Ω are

constants.

(ii) Assume that the first Lyapunov coefficient satisfies L < 0. By scaling z we can always

make L = −1 in this case. In the polar coordinates z = reiφ the normal form recasts as

r̄ = (1+µ)r(1−r2+ar3 cos(5ϕ−ψ)+O(r4)), φ̄ = φ+
2π

5
+δ+Ωr2−ar3 sin(5ϕ−ψ)+O(r4)),

where δ = ω − 2π/5 is a small parameter; you do not need to verify this formula. We know

that the condition L < 0 implies that a closed invariant curve is born from the fixed point at

small µ > 0. The invariant curve attracts all orbits from a small neighbourhood of the fixed

point, independent of µ and δ. It can be shown that the curve has an equation r = f(ϕ)

where f is a smooth, positive, periodic function of φ. Show that

f =
√
µ+O(µ).

(iii) Show that in the (µ, ω)-plane near the origin there exists a region corresponding to the

existence of orbits of period 5 and that the boundaries of this region are tangent to the line

δ + Ωµ = 0.



Solutions:

Question 1 (seen similar). Consider a system of differential equations in R4. How many stable

equilibria and periodic orbits can be born at the following bifurcations:

(i, 4 points) An equilibrium state with the eigenvalues of the linearisation matrix equal to −1 ± i,

−0.5, 0 and the Lyapunov coefficients l2 = l3 = 0, l4 6= 0?

There is only one eigenvalue on the imaginary axis, so dimW c = 1, so no periodic orbits here. As

l4 6= 0, we may have 4 equilibria born, 2 of them stable (since the other eigenvalues have negative

real parts).

(ii, 4 points) A periodic orbit with the multipliers −2, −0.5, 1?

There are multipliers outside the unit circle, so no stable periodic orbits can be born.

(iii, 4 points) A periodic orbit with the multipliers −1, −0.5, 0.5 and the first Lyapunov coefficient

negative?

This is a subcritical period-doubling bifurcation, hence one periodic orbit is born.

(iv, 4 points) A periodic orbit with the multipliers 0.5 and e±2πiω with irrational ω and the first

Lyapunov coefficient negative?

A stable invariant torus is born at this bifurcation; the flow on this torus can be smoothly conjugate

to a linear rotation if the rotation number is made Diophantine. After that, infinitely many stable

periodic orbits can be created on the invariant torus.

(v, 4 points) A homoclinic loop to an equilibrium with the eigenvalues of the linearisation matrix

equal to −2± i, −2, 1?

The saddle value is negative, so just 1 stable periodic orbit is born.



Question 2 (partly seen similar) (i, 10 points) Find the Taylor expansion at zero, up to the second

order terms, for the center manifold in the following system of differential equation:


ẋ = y,

ẏ = 3x2 − z2,

ż = −2z + 2x2 + z2.

(ii, 10 points) Find the Taylor expansion at zero, up to the third order terms, for the restriction of

the following map to the center manifold:

{
x̄ = −x+ 2x2 + 3xy,

ȳ = 3y − x2.

(i) The linearisation matrix

 0 1 0

0 0 0

0 0 −2

 has a double zero eigenvalue (algebraic multiplicity 2 and

geometric multiplicity 1) and one eigenvalue equal to −2. So, the center manifold is 2-dimensional

and tangent to the two-dimensional invariant subspace corresponding to the zero eigenvalue, i.e. to

the plane z = 0. Let us kill the x2 term in the equation for ż: after the transformation

znew = z + ax2 + bxy + cy2,

we find

d

dt
znew + 2znew =

dz

dt
+ 2z + 2ax2 + 2bxy + 2cy2 + 2ax

dx

dt
+ b

dx

dt
y + bx

dy

dt
+ 2cy

dy

dt
=

= 2x2 + 2ax2 + 2bxy + 2cy2 + 2axy + by2 +O(z2 + |x|3 + |y|3).

Take a = −1, b = 1, c = −1/2, then

d

dt
znew = −2znew +O(z2new + |x|3 + |y|3).

It follows that in the new coordinates the center manifold satisfies znew = O(x|3 + |y|3), which
gives, in the old coordinates

z = x2 − xy + y2/2 +O(x|3 + |y|3).

(ii) The linearisation matrix is

(
−1 0

0 3

)
. The center manifold is 1-dimensional and tangent to

y = 0. Do the coordinate transformation ynew = y + ax2. We have

ȳnew − 3ynew = −x2 + ax2 − 3ax2 +O(|x|3 + |y|3).

If we take a = −1/2, then the quadratic term will be killed, so the center manifold satisfies

ynew = O(|x|3 + |y|3), which gives, in the old coordinates,

y = x2/2 +O(|x|3).



This gives the map on the center manifold in the form

x̄ = −x+ 2x2 + 3x3/2 +O(x4).

Question 3 (seen similar).

Compute the first Lyapunov coefficient for the zero equilibria of the following systems:

(i, 10points)

{
ẋ = y,

ẏ = −x+ 3x2 + 2xy,

and

(ii, 10points)

{
ẋ = y + x2 + xy − 2y2,

ẏ = −x− y2 − xy + 2x2,

(i) Let z = x− iy, so x = (z + z∗)/2, y = i(z − z∗)/2. The system takes the form

ż = iz − 3i(z + z∗)2/4 + (z2 − (z∗)2)/2 = iz + z2(2− 3i)/4− 3izz∗/2− (z∗)2(2 + 3i)/4.

We use the formula

L1 =
1

2ω2
Re(iab)

where ω is the coefficient of iz and a,b are the coefficients of z2 and zz∗, respectively. This gives

L1 =
3

8
.

(ii) The equation is time-reversible (it does not change if we change t → −t, x → y, y → x), so

all Lyapunov coefficients are zero.

Question 4 (seen similar). Consider the following map on the interval [0, 1]:

x̄ = fa(x) = a(x− x3)

with a positive parameter a.

(i, 5 points) For which values of a the map has a fixed point with the multiplier +1 or −1?

The fixed points are O1 : x = 0 and O2 : x =
√

1− 1/a (the point O2 exists at a > 1). The

multiplier equals to λ = a(1 − 3x2), so λ = 1 corresponds to a = 1 (point O1) and λ = −1

corresponds to a = 2 (point O2).

(ii, 7 points) For which values of a the map has a stable fixed point?

If |λ| < 1, the fixed point is stable, so O1 is stable at a < 1 and O2 is stable at a < 2. The stability

at λ = 1 is determined by the sign of the 3d derivative while the stability at λ = −1 is determined

by the sign of the Schwartz derivative. Since f ′′′(0) = −6a is negative, the point O1 is stable at



a = 1. The Schwartzian S = f ′′′/f ′− 3
2
(f ′′/f ′)2 = −6/(1−3x2)− 3

2
(6x)2/(1−3x2)2 = −6 1+6x2

(1−3x2)2

is negative for all x, so O2 is stable at a = 2. Thus, a stable fixed point exists at a ≤ 2.

(iii, 8 points) For which values of a the map has an orbit of period 2?

An orbit of period 2 is born at the period-doubling bifurcation of the point O2 at a = 2; since the

Schwartzian is negative, the domain of existence corresponds to a > 2. The period-2 orbit (x1, x2)

can disappear only if its multiplier becomes equal to 1 - this would mean the following system of

equations has a solution with x1 6= x2:

x1 = fa(x2), x2 = fa(x1), f ′(x1)f
′(x2) = 1.

In our case we have

x1 = a(x2 − x32), x2 = a(x1 − x31), a2(1− 3x21)(1− 3x22) = 1.

By taking the sum and difference and product of the first two equations, we find

x1 − x2 + a(x1 − x2)(1− x21 − x1x2 − x22) = 0 =⇒ a =
1

x21 + x22 + x1x2 − 1
,

and

x1 + x2 = a(x1 + x2)(1− x21 + x1x2 − x22) =⇒ a =
1

1− x21 − x22 + x1x2
,

so

x21 + x=2 1.

By dividing the 3d equation to the product of the first two, we obtain

(1− 3x21)(1− 3x22) = (1− x21)(1− x22) =⇒ x21x
2
2 = (x21 + x22)/4 = 1/4.

The only possible solution is x21 = x22 = 1/2, but this contradicts the condition x1 6= x2. Thus, the

point of period 2 exists for all a > 2.

Question 5.

Consider a two-parameter family of two-dimensional maps which have a fixed point with multipliers

(1 + µ)e±iω where the parameter µ varies near 0 and ω near ω0 = 2π/5.

(i, 6 points, partly seen) By counting resonant terms, show that the normal form for such map is

given by

z̄ = (1 + µ)e±iω[z(1 + (L+ iΩ)|z|2) + A(z∗)4 +O(|z|5)],

where z is a complex variable, z∗ is complex-conjugate to z, and A = aeiψ, L, and Ω are constants.

The term zm(z∗)n is present in the normal form if the resonance condition e2πi/5 = e2πi/5(m−n) is

satisfied. This condition gives

2πi

5
+ 2πis =

2πi

5
(m− n) =⇒ m = n+ 1 + 5s



where s is an arbitrary integer. There are only two non-negative integer solutions with 2 ≤ m+n ≤ 4:

m = 2, n = 1 (s = 0), and m = 0, n = 4 (s = −1). This gives the required normal form.

(ii, 7 points, partly seen) Assume that the first Lyapunov coefficient satisfies L < 0. By scaling z

we can always make L = −1 in this case. In the polar coordinates z = reiφ the normal form recasts

as

r̄ = (1+µ)r(1−r2+ar3 cos(5ϕ−ψ)+O(r4)), φ̄ = φ+
2π

5
+δ+Ωr2−ar3 sin(5ϕ−ψ)+O(r4)),

where δ = ω−2π/5 is a small parameter; you do not need to verify this formula. We know that the

condition L < 0 implies that a closed invariant curve is born from the fixed point at small µ > 0.

The invariant curve attracts all orbits from a small neighbourhood of the fixed point, independent

of µ and δ. It can be shown that the curve has an equation r = f(ϕ) where f is a smooth, positive,

periodic function of φ. Show that

f =
√
µ+O(µ).

It is enough to show that the annulus

|r −√
µ| ≤ 2aµ

is invariant with respect to µ - the invariant curve attracts all orbits from this annulus, so it must

lie in this annulus. The rest is a straightforward computation: at the outer boundary of the annulus

we have

r̄

r
≤ (1 + µ)(1− r2 + 2ar3) ≤ (1 + µ)(1− µ− 4aµ

√
µ+ 2aµ

√
µ+O(µ2)) < 1,

and at the inner boundary

r̄

r
≥ (1 + µ)(1− r2 − 2ar3) ≤ (1 + µ)(1− µ+ 4aµ

√
µ− 2aµ

√
µ+O(µ2)) > 1.

(iii, 7 points, unseen) Show that in the (µ, ω)-plane near the origin there exists a region corresponding

to the existence of orbits of period 5 and that the boundaries of this region are tangent to the line

δ + Ωµ = 0.

The restriction of the map onto the invariant curve is

φ = φ+
2π

5
+ δ + Ωµ+O(µ3/2),

so the rotation number is larger than 2π/5 at δ > −Ωµ + O(µ3/2) and smaller than 2π/5 at

δ < −Ωµ + O(µ3/2). As the rotation number depends continuously on parameters, the region of

existence of the points of period 5 is indeed tangent to the line δ = −Ωµ.
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