


“There is nothing more practical than a good theory.”

James C. Maxwell

“. . . le souci du beau nous conduit aux mêmes choix que celui de l’utile.”

Henri Poincaré



Preface

Many phenomena in science and technology are dynamical in nature. Sta-

tionary regimes, periodic motions and beats from modulations have long been

believed to be the only possible observable states. However, discoveries in the

second half of the 20th century have dramatically changed our traditional view

of the character of dynamical processes. The breakthrough came with the dis-

covery of a new type of oscillations called dynamical chaos. A deepening of our

understanding of dynamical phenomena has since led us to a clear recognition

that ours is a nonlinear world. This has resulted in the emergence of nonlin-

ear dynamics as a scientific discipline whose aim is to study the common laws

(regularities) of nonlinear dynamical processes.

A typical scheme for investigating a new phenomenon usually proceeds as

follow: the relevant experiment or observation is studied by first construct-

ing an adequate mathematical model in the form of dynamical equations.

This model is analyzed and the result is compared with the experimental

phenomenon.

This approach was first suggested by Newton. The laws that Newton dis-

covered have provided a foundation for the mathematical modeling of numerous

problems, including Celestial mechanics. The solution of the restricted two-

body problem gives a brilliant explanation of the experimental Kepler’s laws.

In fact, starting with Newton, this method for modeling nature has dominated

the field for many years. However, even such a purely scientific approach

must be validated by questioning the correspondence between a real phe-

nomenon and its phenomenological model, which had been aptly put by Bril-

louin: “A mathematical model differs from reality just as a globe differs from

the earth”.
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A mathematical model in nonlinear dynamics usually consists of a sys-

tem of equations with analytically given nonlinearities, and a finite number

of parameters. The system may be described by ordinary differential equa-

tions, partial differential equations, equations with a delay, integro-differential

equations, etc. In this book we will deal only with lumped (discrete-space)

systems described by ordinary differential equations. Furthermore, we will re-

strict ourselves to a study of non-conservative systems thereby leaving aside the

“ideal” dynamics of Hamiltonian systems (which Klein, at the end of the 19th

century, had characterized as being the most “attractive mechanics without

friction”).

A system of differential equations is written in the form

dx

dt
= X(x) ,

where the independent variable t is called the time. One of the postulates of

nonlinear dynamics which dates back to Aristotle and is based on common

sense is that all observable states must be stable. This implies that in any

comprehensive study of systems of differential equations, our attention must

be focused on the character of the solutions over an infinite time interval. The

systems considered from this point of view are called dynamical. Although

the notion of a dynamical system is a mathematical abstraction — indeed

we know from cosmology that even our Universe has only a finite life time

— nevertheless, many phenomena of the real world have been successfully

explained via the theory of dynamical systems. In the language of this theory

the mathematical image of a stationary state is an equilibrium state, that of

self-oscillations is a limit cycle, that of modulation is an invariant torus with

a quasi-periodic trajectory, and the image of dynamical chaos is a strange

attractor; namely, an attracting limit set composed of unstable trajectories.

In principle, the first three types of motions cited may be explained by a

linear theory. That was the approach of the 19th century, which concerned

mainly various practical applications modeled in terms of linear ordinary or

partial differential equations. The most famous example is the problem of

controlling steam engines whose investigation had led to the solution of the

problem of stability of equilibrium states; namely to the classic Routh–Hurwitz

criterion.

The most remarkable events in nonlinear dynamics can be traced to the

twenties and the thirties of the 20th century. This period is characterized

by the rapid development of radio-engineering. A common feature of many



Preface xi

nonlinear radio-engineering problems is that the associated transient processes

are typically very fast, thereby making it less time-consuming to carry out

complicated experiments. The fact that the associated mathematical models

in those days are usually simple systems of quasi-linear equations also plays an

important role. This has in turn allowed researchers to conduct rather complete

investigations of the models using methods based on Poincaré’s theory of limit

cycles and Lyapunov’s stability theory.

Another significant event from that period is the creation of a mathemati-

cal theory of oscillations in two-dimensional systems. In particular, Andronov

and Pontryagin identified a large class of rough (structurally stable) systems

which admit a rather simple mathematical description. Moreover, all prin-

cipal bifurcations of limit cycles were studied (Andronov, Leontovich) and

complete topological invariants for both rough systems (Andronov, Pontrya-

gin) and generic systems (Leontovich, Mayer) were described. Shortly after

that, specialists from various areas of research applied these mathematically

transparent and geometrically comprehensive methods to investigate concrete

two-dimensional systems. This stage of the development is documented in the

classic treatise “Theory of oscillations” by Andronov, Vitt and Khaikin.1

Further development in this subject included the attempt at a straight-

forward generalization of the concepts of planar systems, namely, the aim of

extending the conditions of structural stability and bifurcations to the high-

dimensional case. In no way does this approach indicate narrow visions. On

the contrary, this was a mathematically sound strategy. Indeed, it was un-

derstood that entrance into space must bring new types of motions which

may become crucial in nonlinear dynamics. As was mentioned previously, the

mathematical image of modulation is a torus with quasi-periodic trajectories.

Quasi-periodic trajectories are a particular case of almost-periodic trajectories

which, by definition, are unclosed trajectories whose main feature is that they

have almost-periods — the time intervals over which the trajectory returns

close to its initial state. The quasi- and almost-periodic trajectories are self-

limiting. A broader class of self-limiting trajectories consists of Poisson-stable

trajectories. This kind of trajectory was discovered by Poincaré while studying

the stability of the restricted three-body problem. A Poisson-stable trajectory

also returns arbitrarily close to its initial state, but for an arbitrary but fixed

small neighborhood of the initial state, the sequence of the associated return

1This book was first published in 1937 but without the name of Vitt, who had already
been repressed.
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times may be unbounded, i.e. the motion is unpredictable. In accordance with

Birkhoff’s classification, stationary, periodic, quasi-periodic, almost-periodic

and Poisson-stable trajectories exhaust all types of motions associated with

non-transient behaviors.

In the early thirties Andronov posed the following basic question in connec-

tion with the mathematical theory of oscillations: Can a Poisson-stable trajec-

tory be Lyapunov stable? The answer was given by Markov: If a Poisson-stable

trajectory is stable in the sense of Lyapunov (to be more precise, uniformly

stable), then it must be almost-periodic. It seemed therefore that no other mo-

tions, apart from those which are almost-periodic, exist in nonlinear dynamics.

Therefore, despite new discoveries in the qualitative theory of high-dimensional

systems in the sixties it was not clear whether this theory had any value beyond

pure mathematics. But this did not last long.

For within a relatively short period of time Smale had established the foun-

dation for a theory of structurally stable systems with complex behavior in the

trajectories, a theory that is generally referred to nowadays as the hyperbolic

theory. In essence, a new mathematical discipline with its own terminology,

notions and problems has been created. Its achievements have led to one of

the most amazing fundamental discoveries of the 20th century — dynamical

chaos.2 Hyperbolic theory had provided examples of strange attractors which

might be the mathematical image of chaotic oscillations, such as the well-known

turbulent flows in hydrodynamics.

Nevertheless, the significance of strange attractors in nonlinear dynamics

were not widely appreciated, especially not by specialists in turbulence. There

were a few reasons for their reluctance. By mathematical construction, known

hyperbolic attractors possess such a complex topologically structure that it

did not allow one to conceive of any reasonable scenarios for their emergence.

This has led one to regard hyperbolic attractors as being the result of a pure

abstract scheme irrelevant to real dynamical processes.3 Moreover, the phe-

nomenon of chaos which has been observed in many concrete models could

scarcely be associated with hyperbolic attractors because of the appearance of

stable periodic orbits of long periods, either for the given parameter values, or

for nearby ones. This enabled skeptics to argue that any observable chaotic

2Chronologically, this discovery came after the creation of “relativity theory” and “quan-
tum mechanics”.

3The possibility of applying hyperbolic attractors to nonlinear dynamics remains prob-
lematic even today.
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behavior represents a transient process only. In this regard, we must empha-

size that the persistence of the unstable behavior of trajectories of a strange

attractor with respect to sufficiently small changes in control parameters is the

essence of the problem: In order for a phenomenon to be observable it must

be stable with respect to external perturbations.

The breakthrough in this controversy came in the mid seventies with the

appearance of a simple low-order model

ẋ = −σ(x− y) ,

ẏ = rx− y − xz ,

ż = −bz + xy ,

where chaotic behavior in its solutions was discovered numerically by E. Lorenz

in 1962. A detailed analysis carried out by mathematicians revealed the exis-

tence of a strange attractor which is not hyperbolic but structurally unstable.

Nevertheless, the main feature persisted, namely, the attractor preserved the

instability behavior of the trajectories under small smooth perturbations of

the system. Such attractors, which contain a single equilibrium state of the

saddle type, are called Lorenz attractors. The second remarkable fact related

to these attractors is that the Lorenz attractor may be generated via a fi-

nite number of easily observable bifurcations from systems endowed with only

trivial dynamics.

Since then, dynamical chaos has been almost universally accepted as a le-

gitimate and fundamental phenomenon of nature. The Lorenz model has since

become a de facto proof of the existence of chaos, even though the model itself,

despite its hydrodynamical origin, contains “too little water”.4 More recently,

a much more realistic mathematical model of a real physical system called

Chua’s Circuit has also been proved rigorously to exhibit dynamical chaos,

and whose experimental results agree remarkably well with both mathemati-

cal analysis and computer simulations [76–79].

We will not discuss further the relevance of the theory of strange attractors

but note only that the theory of nonlinear oscillations created in the thirties

had been so clear and understandable that generations of nonlinear researchers

were able to apply it successfully to solve problems from many scientific dis-

ciplines. A different situation occurred in the seventies. Limit cycles and tori

4The Lorenz system represents the simplest Galerkin approximation of the problem of
the convection of a planar layer of fluid.
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which exhibit a unified character were replaced by strange attractors which

possess a much more complex mathematical structure. They include smooth

or non-smooth surfaces and manifolds, sets with a local structure represented

as a direct product of an interval and a Cantor set, or even more sophisticated

sets. Today, a specialist in complex nonlinear dynamics must either have a

strong mathematical background in the qualitative theory of high-dimensional

dynamical systems, or at least a sufficiently deep understanding of its main

statements and results. We wish to remark that just as nonlinear equations

cannot usually be integrated by quadratures, the majority of concrete dynam-

ical models do not admit “a qualitative integration” by a purely mathematical

analysis. This inevitably leads to the use of computer analysis as well. Hence,

an ultimate requirement for any formal statement in the qualitative theory

of differential equations is that it must have a complete and concrete char-

acter. It must also be free of unnecessary restrictions which, paraphrasing

Hadamard, are not dictated by the needs of science but by the abilities of the

human mind.

In most cases, the parameter space of a high-dimensional model may be

partitioned into two regions according to whether the model exhibits simple

or complex behaviors in its trajectories. The primary indication or sign of the

presence of complex behavior will be associated in this book with the presence

of a Poincaré homoclinic trajectory. Although Poincaré had discovered these

trajectories in the restricted three-body problem, i.e. in a Hamiltonian system,

such trajectories are essential objects of study in all fields of nonlinear dynamics

as well. In general, the presence of Poincaré homoclinic trajectories leads

to rather important conclusions. It was simultaneously established by Smale

and L. Shilnikov (from opposite locations on the globe) that systems with

a Poincaré homoclinic trajectory possess infinitely many co-existing periodic

trajectories and a continuum of Poisson-stable trajectories. All of them are

unstable. In essence, these homoclinic structures are the elementary bricks of

dynamical chaos.

As for high-dimensional systems with simple behavior of trajectories, they

are quite similar to planar systems [80]. In principle, the only new feature is

the possibility of the existence in the phase space of an invariant torus with a

quasi-periodic trajectory covering the torus. So, any concrete model may be

completely analyzed in this region of the parameter space.

The situation is fundamentally different in the case of systems with complex

trajectory behavior. Indeed, it has been established recently by Gonchenko,



Preface xv

L. Shilnikov and Turaev that a complete analysis of most models of nonlinear

dynamics is unrealistic [28].

This book is concerned only with the qualitative theory of high-dimensional

systems of differential equation with simple dynamics. For an extremely rich

variety of such systems which arise in practical applications, the reader is

referred to the very large systems of nonlinear differential equations (typically

with dimensions greater than 10,000 state variables) associated with Cellular

Neural Networks [81], which include lattice dynamical systems and cellular

automata as special cases. We have partitioned this book into two parts. The

first part is mainly introductory and technical in nature. In it we consider

the behavior of trajectories close to simple equilibrium states and periodic

trajectories, as well as discuss some problems related to the existence of an

invariant torus. It is quite natural that we first present the classical results

concerning the stability problem. Of special concern are the unstable equilibria

and periodic trajectories of the saddle type. Such trajectories play a crucial role

in the contemporary qualitative theory. For example, saddle equilibrium states

may form unseparated parts of strange attractors. Saddles are also related

to some principally important problems of a nonlocal character, etc. Our

technique for investigating the behavior of systems near saddle trajectories in

this book is based on the method suggested by L. Shilnikov in the sixties. The

main feature of this method is that the solution near a saddle is sought not as

a solution of the Cauchy problem but as a solution of a special boundary-value

problem. Since this method has not yet been clearly presented in the literature,

but is known only to a small circle of specialists, it is discussed in detail in

this book.

In the second part of this book we analyze the principal bifurcations of

equilibrium states, as well as of periodic, homoclinic and heteroclinic trajec-

tories. The theory of bifurcations has a key role in nonlinear dynamics. Its

roots go back to the pioneering works of Poincaré and Lyapunov on the study

of the form of a rotating fluid. A bifurcation theory based on the notion of

roughness, or structural stability, has since been developed. Whereas in the

rough (robust) case small changes do not induce significant changes in the

states of a system, the bifurcation theory explains what happens in the non-

rough case, including many possible qualitative transformations. Some of these

transitions may be dangerous, possibly leading to catastrophic and irreversible

situations. The bifurcation theory allows one to predict many real-world phe-

nomena. In particular, notions such as the soft and the rigid (severe) regimes of
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excitation of oscillations, the safe and dangerous boundaries of the stability

regions of steady states and periodic motions, hysteresis, phase-locking, etc.,

have all been formulated and analyzed via bifurcation theory.

In this book we give special attention to the boundaries of stability of equi-

libria and periodic trajectories in the parameter space. Along with standard

bifurcations, both local and global, we also examine a bifurcation phenomenon

discovered recently by L. Shilnikov and Turaev [66], the so-called “blue sky

catastrophe”. The essence of this phenomenon is that in the parameter space

there may exist stability boundaries of a periodic trajectory such that upon

approaching the boundary both the length and the period of the periodic tra-

jectory tend to infinity, whereas the periodic orbit resides at a finite distance

from any equilibrium state in a bounded region of the phase space. This bi-

furcation has not yet been observed in models of physical systems, although a

three-dimensional two-parameter model with a polynomial right-hand side is

known [25].

This book is essentially self-contained. All necessary facts are supplied

with complete proofs except for some well-known classical results such as the

Poincaré–Denjoy theory on the behavior of trajectories on an invariant torus.

The basis of this book is a special course in which the first author gave at

the Nizhny Novgorod (formerly, Gorky) University over the last thirty years.

This course usually proceeds with a one-year lecture on the qualitative theory

of two-dimensional systems, which was delivered by Prof. E. A. Leontovich-

Andronova for many years. Besides that, discussions on certain aspects of

this course had formed the subject of student seminars, and weekly scientific

seminars at the Department of Differential Equations of the Institute for Ap-

plied Mathematics & Cybernetics. This book will appeal to beginners who

have chosen the qualitative theory and the theory of bifurcations and strange

attractors as their majors. Undoubtedly, this book will also be useful for spe-

cialists in the above subjects and in related mathematical disciplines, as well

as for a broad audience of interdisciplinary researchers on nonlinear dynamics

and chaos, who are interested in the analysis of concrete dynamical systems.

Part I of this book consists of six chapters and two appendices.

In Chap. 1 we describe the principal properties of an autonomous sys-

tem, give the notion of an abstract dynamical system and select the princi-

pal types of trajectories and invariant sets necessary for further presentation.

In addition, we discuss some problems of qualitative integration of differen-

tial equations which is based on the notion of topological equivalence. The
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material of this chapter also has reference value, beginners may call on it

when needed.

In Chap. 2 we examine the behavior of trajectories in a neighborhood of a

structurally-stable equilibrium state. Our approach here goes back to Poincaré.

Using this approach we classify the main types of equilibrium states. Special

attention is given to equilibria of the saddle types, and, in particular, to leading

and nonleading (strongly stable) invariant manifolds. We also give sufficient

attention to the asymptotic representation of solutions near a saddle point. As

mentioned, our methods are based on Shilnikov’s boundary-value problem. In

addition, we prove some theorems on invariant manifolds. We would like to

stress that along with well-known theorems on stable and unstable manifolds

of a saddle, some rather important results which we will need later are given

here. In the last section of the chapter some useful information concerning

Poincare’s theory of resonances for local bifurcation problems are presented.

In Chap. 3 we discuss structurally-stable periodic trajectories. Our con-

sideration is focused on the behavior of trajectories of the Poincaré map in a

neighborhood of the fixed point. As in the case of equilibria we investigate an

associated boundary-value problem near a saddle fixed point and prove a the-

orem on the existence of its invariant manifolds. Sections 3.10–3.12 and 3.14

are concerned only with the properties of periodic trajectories in continuous

time.

Invariant tori are considered in Chap. 4. More specifically, we study a non-

autonomous system which depends periodically, as well as quasi-periodically,

on time. This class of non-autonomous system can be extended to higher

dimensions by adding some equations having a specific form with respect to

cyclic variables. To prove the existence of an invariant torus in such a system,

we use a universal criterion, the so-called annulus principle which is applicable

for systems with small perturbations. In the case of a periodic external force,

the behavior of the trajectories on a two-dimensional invariant torus may be

modeled by an orientable diffeomorphism of a circle. In relation to this we

present a brief review of some related results from the Poincaré–Denjoy the-

ory. We complete this chapter with a discussion of an important problem of

nonlinear dynamics, namely, the synchronization problem associated with the

phenomenon of “beats” in modulations.

The final two chapters, Chap. 5 and 6, are dedicated to local and global

center manifolds, respectively. We re-prove in Chap. 5 a well-known result

that in a small neighborhood of a structurally unstable equilibrium state, or
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near a bifurcating periodic trajectory of a C
r-smooth dynamical system, there

exists locally an invariant C
r-smooth center manifold whose dimension is equal

to the number of characteristic exponents with a zero real part in the case of

equilibrium states, or to the number of multipliers lying on a unit circle in

the case of periodic trajectories. Our proof of the center manifold theorem

relates it to the study of a specific boundary value problem and covers all

basic local invariant manifolds (strongly stable and unstable, extended stable

and unstable, and strongly stable and unstable invariant foliations). We discuss

how the existence of the center manifold and the invariant foliation allows one

to reduce the problem of investigating the local bifurcations of a system to that

of a corresponding sub-system on the center manifold, thereby significantly

decreasing the dimension of the problem.

In Chap. 6 the proof of the analog of the theorem on the center manifold

for the case of global bifurcations is presented. Unlike the local case, the di-

mension of the non-local center manifold does not depend on the degree of

degeneracy of the Jacobian matrix, but is equal to some integer which can

be estimated in terms of the numbers of negative and positive characteris-

tic exponents of saddle trajectories comprising a heteroclinic cycle. Another

characteristic of the non-local center manifold is that it is only C
1-smooth in

general. The restriction on such center manifolds may only be used for study-

ing those bifurcation problems which admit the solution within the framework

of C
1-smoothness. Therefore, in contrast to the local bifurcation theory, one

cannot directly apply non-local center manifolds to study various delicate bi-

furcation phenomena which require more smoothness. Hence, the theorem

contains, in essence, certain qualitative results which only allow us to antici-

pate some possible dynamics of the trajectories in a small neighborhood of a

homoclinic cycle, as well as to estimate the dimensions of the stable and un-

stable manifolds of trajectories lying in its neighborhood, and, consequently,

to evaluate the number of positive and negative Lyapunov exponents of these

trajectories. We consider in detail only the class of systems possessing the

simplest cycle; namely, a bi-asymptotic trajectory (a homoclinic loop) which

begins and ends at the same saddle equilibrium state. We then extend this

result to general heteroclinic cycles.

In the Appendix we prove a theorem on the reduction of a system to a

special form which is quite suitable for analysis of the trajectories near a sad-

dle point. This theorem is especially important because an often postulated

assumption on a straight-forward linearization of the system near a saddle may
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sometimes lead to subsequent confusion when more subtle details of the be-

havior of the trajectories are desired. The essence of our proof is a technique

(based on the reduction of the problem to a theorem on strong stable invariant

manifold) for making a series of coordinate transformations which are robust

to small, smooth perturbations of the system. We will use this special form in

the second part of this book when we study homoclinic bifurcations.
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Chapter 1

BASIC CONCEPTS

1.1. Necessary background from the theory of
ordinary differential equations

The main objects of our study are autonomous systems of ordinary

differential equations written in the form

ẋ
def
=

dx

dt
= X(x) , (1.1.1)

where x = (x1, . . . , xn), X(x) = (X1, . . . , Xn). We assume that X1, . . . , Xn are

C
r-smooth (r ≥ 1) functions defined in a certain region D ⊆ R

n. In the theory

of dynamical systems it is customary to regard the variable t as time and the

region D as the phase space, which may be bounded or unbounded, or may

coincide with the Euclidean space R
n. A differentiable mapping ϕ : τ 7→ D,

where τ is an interval of the t-axis, is called a solution x = ϕ(t) of system

(1.1.1) if

ϕ̇(t) = X(ϕ(t)) , for any t ∈ τ . (1.1.2)

Since by assumption the conditions of Cauchy’s theorem hold, it follows that

for any x0 ∈ D and any t0 ∈ R
1 there exists a unique solution ϕ satisfying the

initial condition

x0 = ϕ(t0) . (1.1.3)

The solution is defined on some interval (t−, t+) containing t = t0. In

general, the endpoints t− and t+ may be finite, or infinite.

1



2 Chapter 1. Basic Concepts

The solutions of system (1.1.1) possess the following properties:

1. If x = ϕ(t) is a solution of (1.1.1), then obviously x = ϕ(t+ C) is also a

solution defined on the interval (t− − C, t+ − C).

2. The solutions x = ϕ(t) and x = ϕ(t+C) may be considered as solutions

corresponding to the same initial point x0 but at different initial time t0.

3. A solution satisfying (1.1.3) may be written in the form x = ϕ(t− t0, x0),

where ϕ(0, x0) = x0.

4. If x1 = ϕ(t1−t0, x0) then ϕ(t−t0, x0) = ϕ(t−t1, x1). Denoting t1−t0 as

a new t1 and t− t1 as t2, we get the so-called group property of solutions:

ϕ(t2, ϕ(t1, x0)) = ϕ(t1 + t2, x0) . (1.1.4)

It is well known that the solution x = ϕ(t− t0, x0) of the Cauchy problem

(1.1.3) for a C
r-smooth system (1.1.1) is smooth (Cr) with respect to time and

initial data x0. The first derivative ξ(t − t0, x0) ≡ ∂ϕ
∂x0

satisfies the so-called

variational equation ξ̇ = X ′(ϕ(t− t0, x0))ξ with the initial condition ξ(0;x0) =

I (the identity matrix). The variational equation is a linear non-autonomous

system obtained by formal differentation of (1.1.1). Further differentation gives

equations for higher derivatives.

There are two geometrical interpretations of the solutions of system (1.1.1).

The first interpretation relates to the phase spaceD, the second to the so-called

extended phase space D × R
1. In the first interpretation we may consider any

solution which satisfies the given initial condition (1.1.3) as a parametric equa-

tion (with parameter t) of some curve. This curve is traced out by the points

ϕ(t, x0) in phase space D as t varies. In standard terminology such curves

are called phase trajectories, or simply, trajectories (or orbits or, occasionally,

phase curves). A system of differential equations (1.1.1) defines the right-

hand side of a vector field in the phase space, where Eq. (1.1.2) means that

the velocity vector X(x) is tangent to the phase trajectory at the point x.

By uniqueness of the solution of Cauchy problem (1.1.3) for a smooth vec-

tor field X, there is only one trajectory passing through each point in the

phase space.

In the second interpretation, the solution of system (1.1.1) is considered as

a curve in the extended phase space D×R
1. Such a curve is called an integral

curve. There is an explicit link between trajectories and integral curves. Each
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phase trajectory is the projection of a corresponding integral curve onto the

phase space along the t-axis, as depicted in Fig. 1.1.1. However, in contrast to

integral curves which are curves in the strict sense of the term, their projections

onto the phase space may no longer be curves but points. Such points are called

equilibrium states. They correspond to the constant solutions x = x∗. By

(1.1.2) X(x∗) = 0, i.e. equilibrium states are singular points of the vector field.

It is natural to pose the following question: can phase trajectories intersect each

other? This question is resolved by the following theorem.

Theorem 1.1. Let a trajectory L, other than an equilibrium state, correspond

to a solution ϕ(t) of system (1.1.1) such that ϕ(t1) = ϕ(t2) for t1 6= t2. Then

ϕ(t) is defined for all t and is periodic, and L is a simple smooth closed curve.

If τ is the least period of ϕ(t), then the parametric equation of L assumes

the form x = ϕ(t), t0 ≤ t ≤ t0 + τ, where inside this interval distinct values of

t correspond to distinct points of L.

(a)

Fig. 1.1.1. The projection of an integral curve onto the phase space D may be an unclosed

trajectory (a) or, for example, a periodic trajectory (b).
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(b)

Fig. 1.1.1. (Continued)

For a proof of this theorem we refer the reader to the book Theory of Dy-

namical Systems on a Plane by Andronov, Leontovich, Gordon and Maier [6].

The trajectory L corresponding to a periodic solution ϕ(t) is called a

periodic trajectory.

Any other trajectory which is neither an equilibrium state nor a periodic

trajectory is an unclosed curve. It follows from Theorem 1.1 that an unclosed

trajectory has no points of self-intersection.

Note that any two solutions which differ from each other only in the choice

of the initial time t0 correspond to the same trajectory. Vice versa: any two

distinct solutions corresponding to the same trajectory are identical up to a

time shift t → t + C. It follows that all solutions corresponding to the same

periodic trajectory are periodic of the same period.

In the case where the solution corresponding to a given trajectory L is

defined for all t ∈ (−∞,+∞) we will say that L is an entire trajectory. Any

trajectory which lies in a bounded region is an entire trajectory.

From the view point of kinematics, the point ϕ(t) is called a representa-

tive point and its trajectory is called the associated motion. Moreover, for any
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trajectories other than equilibrium states, one can introduce a positive direc-

tion of the motion which points in the direction of increasing t. At each point of

such a trajectory this direction is determined by the associated tangent vector.

To emphasize this we will label all trajectories with arrowheads.

Along with system (1.1.1) let us consider an associated “time-reverse”

system

ẋ = −X(x) . (1.1.5)

The vector field of system (1.1.5) is obtained from that of (1.1.1) by reversing

the direction of each tangent vector. It is easy to see that each solution x = ϕ(t)

of system (1.1.1) corresponds to a solution x = ϕ(−t) of system (1.1.5) and

vice versa. It is clear also that systems (1.1.1) and (1.1.5) have the same phase

curves up to a change of time t → −t. Thus, the time-oriented trajectories of

one system are obtained from the corresponding trajectories of the other by

reversing the direction of the arrowheads.

Consider next the system

ẋ = X(x)f(x) , (1.1.6)

where the C
r-smooth function f(x) : D 7→ R

1 does not vanish in D. Observe

that systems (1.1.1) and (1.1.6) have the same phase curves which differ only

by time parametrization. Moreover, the trajectories of both systems have the

same directions if f(x) > 0, and opposite if f(x) < 0. If x = ϕ(t− t0, x0) is a

trajectory of (1.1.1) passing through x0 at x = x0, then parametrization of time

along this trajectory by the rule dt̃ = dt
f(ϕ(t−t0,x0))

or t̃ = t0 +
∫ t

t0
ds

f(ϕ(s−t0,x0))

gives a trajectory of (1.1.6). We will call a transformation of such kind rescaling

of time or change of time.

Observe that in the case of system (1.1.1) we are interested only in the

form of the trajectory, there is no need to involve the independent variable t.

In this case we can consider the following more symmetric system

dx1

X1
=
dx2

X2
= · · · =

dxn
Xn

.

If, for example, Xn is non-zero in a certain sub-region G ⊂ D, the form of the

trajectories in G may be found by solving the system

dxi
dxn

= XiX
−1
n .

This method is especially effective for studying two-dimensional systems.
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Generally speaking, not all trajectories may be continued over the infinite

interval τ = (−∞,+∞). In other words, not all trajectories are entire tra-

jectories.1 Examples of entire trajectories are equilibrium states and periodic

trajectories. From the point of view of dynamics, the entire trajectories, or

those which may be defined at least for all positive t over an infinite interval of

time, are of special interest. The reason is that, despite the importance of the

information revealed by transient solutions over a finite interval of time, the

most interesting phenomena observed in natural science and engineering ob-

tain an adequate explanation only if time t increases without bounds. Systems

whose solutions can be continued over an infinite period of time were named

dynamical systems by Birkhoff. An abstract definition of such systems which

takes into account their group properties, will be presented in the following

section.

1.2. Dynamical systems. Basic notions

Three components are used in the definition of a dynamical system. (1) A

metric space D called the phase space. (2) A time variable t which may be

either continuous, i.e. t ∈ R
1, or discrete, i.e. t ∈ Z. (3) An evolution law,

i.e. a mapping of any given point x in D and any t to a uniquely defined state

ϕ(t, x) ∈ D which satisfies the following group-theoretic properties:

1. ϕ(0, x) = x .

2. ϕ(t1, ϕ(t2, x)) = ϕ(t1 + t2, x) .

3. ϕ(t, x) is continuous with respect to (x, t) .

(1.2.1)

In the case where t is continuous the above conditions define a continuous

dynamical system, or flow. In other words, a flow is a one-parameter group

of homeomorphisms2 of the phase space D. Fixing x and varying t from −∞

to +∞ we obtain an orientable curve3 as before, called a phase trajectory.

The following classification of phase trajectories is natural: equilibrium states,

periodic trajectories and unclosed trajectories. We will call {x : ϕ(t, x), t ≥ 0}

a positive semi-trajectory and {x : ϕ(t, x), t ≤ 0} a negative semi-trajectory.

1There are systems whose solutions tend to infinity at some finite time. Such systems
are not dynamically defined systems.

2i.e. one-to-one, continuous mappings with continuous inverse. This follows directly from
the group property (1.2.1) that ϕ(−t, ·) is inverse to ϕ(t, ·).

3The orientation is induced by the direction of motion.
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Observe that in the case of an unclosed trajectory any point of the trajec-

tory partitions the trajectory into two parts: a positive semi-trajectory and a

negative semi-trajectory.

In the case where the mapping ϕ(t, x) is a diffeomorphism4 the flow is

a smooth dynamical system. In this case, the phase space D is endowed

with some additional smooth structures. The phase space D is usually cho-

sen to be either R
n, or R

n−k × T
k, where T

k may be a k-dimensional torus

S
1 × S

1 × · · · × S
1

︸ ︷︷ ︸

k times

, a smooth surface, or a manifold. This allows us to set up

a correspondence between a smooth flow and its associated vector field by

defining a velocity field

X(x) =
dϕ(t, x)

dt

∣
∣
∣
∣
t=0

. (1.2.2)

By definition, the trajectories of the smooth flow are the trajectories of the

system ẋ = X(x). In this book we will study mainly the properties of smooth

dynamical systems.

Discrete dynamical systems are often called cascades for simplicity. A

cascade possesses the following remarkable feature. Let us select a homeo-

morphism ϕ(1, x) and denote it by ψ(x). It is obvious that ϕ(t, x) = ψt(x),

where

ψt = ψ (ψ(· · ·ψ
︸ ︷︷ ︸

t−1 times

(x))) .

Hence, in order to define a cascade it is sufficient to specify only the homeo-

morphism ψ : D 7→ D.

In the case of a discrete dynamical system the sequence {xk}
+∞
k=−∞ where

xk+1 = ψ(xk), is called a trajectory of the point x0. Trajectories may be of

three types:

1. A point x0. The point is a fixed point of the homeomorphism ψ(x), i.e. it

is mapped by ψ(x) into itself.

2. A cycle (x0, . . . , xk−1), where xi = ψi(x0), i = (0, . . . , k − 1) and x0 =

ψk(x0) moreover, xi 6= xj for i 6= j. The number k is called the period,

and each point xi is called a periodic point of period k. Observe that a

fixed point is a periodic point of period 1.

4A one-to-one, differentiable mapping with a differentiable inverse.
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3. A bi-infinite trajectory, i.e. a sequence {xk}
+∞
−∞, where k → ±∞, xi 6= xj

for i 6= j. In this case, as in the case of flows, we will say that such a

trajectory is unclosed.

When ψ(x) is a diffeomorphism, the cascade is a smooth dynamical system.

Examples of cascades of this type appear in the study of non-autonomous

periodic systems in the form

ẋ = X(x, t) ,

where X(x, t) is continuous with respect to all variables in R
n×R

1, is smooth

with respect to x and periodic of period τ with respect to t. It is assumed

that the system has solutions which may be continued over the interval t0 ≤

t ≤ t0 + τ . Given a solution x = ϕ(t, x0), where ϕ(0, x0) = x0 we may define

a mapping

x1 = ϕ(τ, x) (1.2.3)

of the hyper-plane t = 0 into the hyper-plane t = τ . It follows from the

periodicity of X(x, t) that (X, t1) and (X, t2) must be identified if (t2 − t1) is

divisible by τ . Thus, (1.2.3) may be regarded as a diffeomorphism ψ : R
n →

R
n.5

Before proceeding further, we need to introduce some notions.

A set A is said to be invariant with respect to a dynamical system if

A = ϕ(t, A) for any t. Here, ϕ(t, A) denotes the set
⋃

x∈A

ϕ(t, x). It follows from

this definition that if x ∈ A, then the trajectory ϕ(t, x) lies in A.

We call a point x0 wandering if there exists an open neighborhood U(x0)

of x0 and a positive T such that

U(x0) ∩ ϕ(t, U(x0)) = ∅ for t > T . (1.2.4)

Applying the transformation ϕ(−t, ·) to (1.2.4) we obtain

ϕ(−t, U(x0)) ∩ U(x0) = ∅ for t < T .

Hence, the definition of a wandering point is symmetric with respect to rever-

sion of time.

5Observe that system (1.2.3) may be written as an autonomous system

ẋ = X(x, θ) , θ̇ = 1 ,

where θ is taken in modulo τ .
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Let us denote by W the set of wandering points. The set W is open and

invariant. Openness follows from the fact that together with x0 any point in

U(x0) is wandering. The invariance of W follows from the fact that if x0 is

a wandering point, then the point ϕ(t0, x0) is also a wandering point for any

t0. To show this let us choose ϕ(t0, U(x0)) to be a neighborhood of the point

ϕ(t0, x0). Then

ϕ(t0, U(x0)) ∩ ϕ(t, ϕ(t0, U(x0)) = ∅ for t > T .

Hence, the set of non-wandering points M = D\W is closed and invariant. The

set of non-wandering points may be empty. To illustrate the latter consider a

dynamical system defined by the autonomous system

ẋ = X(x, θ) ,

θ̇ = 1

in phase space R
n+1, x = (x1, . . . , xn). Observe that (1.2.4) holds here since

θ(t) = θ0 + t increases monotonically with t. Hence, every point in R
n+1 is a

wandering point.

It is clear that equilibrium states, as well as all points on periodic trajecto-

ries, are non-wandering. All points on bi-asymptotic trajectories which tend to

equilibrium states and periodic trajectories as t→ ±∞ are also non-wandering.

Such a bi-asymptotic trajectory is unclosed and called a homoclinic trajectory.

The points on Poisson-stable trajectories are also non-wandering points.

Definition 1.1. A point x0 is said to be positive Poisson-stable if given any

neighborhood U(x0) and any T > 0 there exists t > T such that

ϕ(t, x0) ⊂ U(x0) . (1.2.5)

If for any T > 0 there exists t such that t < −T and (1.2.5) holds, then the

point x0 is called a negative Poisson-stable point. If a point is positive and

negative Poisson stable it is said to be Poisson-stable.

Observe that if a point x0 is positive (negative) Poisson-stable, then any

point on the trajectory ϕ(t, x0) is also positive (negative) Poisson stable. Thus,

we may introduce the notion of a P+-trajectory (positive Poisson-stable), a

P−-trajectory (negative Poisson-stable) and merely a P -trajectory (Poisson-

stable). It follows directly from (1.2.5) that P+, P− and P -trajectories consist

of non-wandering points.
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It is obvious that equilibrium states and periodic trajectories are closed

P -trajectories.

Theorem 1.2. (Birkhoff)6 If a P+ (P−, P )-trajectory is unclosed, then its

closure Σ contains a continuum of unclosed P -trajectories.

Let us choose a positive sequence {Tn} where Tn → +∞ as n → +∞.

It follows from the definition of a P+-trajectory that there exists a sequence

{tn} → +∞ as n → +∞ such that ϕ(tn, x0) ⊂ U(x0). An analogous state-

ment holds in the case of a P−-trajectory. This implies that a P -trajectory

successively intersects any ε-neighborhood Uε(x0) of the point x0 infinitely

many times.7 Let {tn(ε)}
+∞
−∞ be chosen such that tn(ε) < tn+1(ε) and let

ϕ(tn(ε), x0) ⊂ Uε(x0). The values

τn(ε) = tn+1(ε) − tn(ε)

are called Poincaré return times. Two essentially different cases are possible

for an unclosed P -trajectory:

1. The sequence {τn(ε)} is bounded for any finite ε, i.e. there exists a

number L(ε) such that τn(ε) < L(ε) for any n. Observe that L(ε) → +∞

as ε→ 0.

2. The sequence {τn(ε)} is unbounded for any sufficiently small ε.

In the first case the P -trajectory is called recurrent. For such a trajectory

all trajectories in its closure Σ are also recurrent, and the closure itself is

a minimal set.8 The principal property of a recurrent trajectory is that it

returns to an ε-neighborhood of the point x0 within a time not greater than

L(ε). However, in contrast to periodic trajectories, whose return times are

fixed, the return time for a recurrent trajectory is not constrained.

In the second case, the closure Σ of the P -trajectory is called a quasi-

minimal set. In this case, there always exist in Σ other invariant closed sub-

sets which may be equilibrium states, periodic trajectories, or invariant tori,

6See the proof in [14].
7In the case of flows the set of times during which a P -trajectory passes through Uε(x0)

consists of infinitely many time intervals In(ε), where tn(ε) is chosen to be one of the values
in In(ε).

8A set is called minimal if it is non-empty, invariant, closed and contains no proper
subsets possessing these three properties.
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Fig. 1.2.1. The flow on a torus can be represented as a flow on the unit square. The slope
of all parallel trajectories is equal to ω2/ω1. Gluing the opposite sides of the square gives a
two-dimensional torus.

etc. Since a P -trajectory may approach such subsets arbitrarily closely, the

Poincaré return times can therefore be arbitrarily large.

The simplest example of a flow all of whose trajectories are Poisson stable

is a quasi-periodic flow on a two-dimensional torus T
2 defined by the equations

ẋ1 = ω1 ,

ẋ2 = ω2 ,
(1.2.6)

where ω1/ω2 is irrational. This flow may be represented as a flow defined on

a unit rectangle with the points (x1, 0) and (x1, 1), and (0, x2) and (1, x2)

identified, as shown in Fig. 1.2.1. In this case, Σ = T
2 is a minimal set, and

the flow possesses an unclosed trajectory which is everywhere dense on the

torus.9 When ω1/ω2 is rational, all trajectories of (1.2.6) on T
2 are periodic.

Let f(x1, x2) be a function defined on the torus T
2, i.e. f(x1 +1, x2 +1) =

f(x1 + 1, x2) = f(x1, x2). Assume also that f is smooth and vanishes at one

point (x0
1, x

0
2) only. The flow defined by the system

ẋ1 = ω1f1(x1, x2) ,

ẋ2 = ω2f2(x1, x2) ,

9This is called a quasi-periodic trajectory.
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on T
2 is quasi-minimal. In this case Σ also coincides with T

2. However, Σ

contains an invariant subset which is the point (x0
1, x

0
2). All trajectories of

the flow on the torus are Poisson stable except for two trajectories: one tends

to (x0
1, x

0
2) as t → +∞, whereas another as t → −∞, respectively. We will

meet other examples of quasi-minimal sets in multi-dimensional autonomous

systems.

Let us introduce next the notion of an attractor.

Definition 1.2. An attractor A is a closed invariant set which possesses a

neighborhood (an absorbing domain) U(A) such that the trajectory ϕ(t, x) of

any point x in U(A) satisfies the condition

ρ((ϕ(t, x),A) → 0 as t→ +∞ , (1.2.7)

where

ρ(x,A) = inf
x0∈A

‖x− x0‖ .

The simplest examples of attractors are stable equilibrium states, sta-

ble periodic trajectories and stable invariant tori containing quasi-periodic

trajectories.

This definition of an attractor does not preclude the possibility that it may

contain other attractors. It is reasonable to restrict the notion of an attractor

by imposing a quasi-minimality condition. There exist a variety of attractors

which meet this condition. Of special interest among them are the so-called

strange attractors which are invariant closed sets comprised of only unstable

trajectories.

To conclude this section we remark that there are also systems in which

t ∈ R
+ where R

+ denotes the non-negative half-line, or those in which t ∈

Z
+ where Z

+ denotes the set of non-negative integers. In the former case a

dynamical system is defined by a semi-flow (semi-group), or by a non-invertible

mapping in the latter.

1.3. Qualitative integration of dynamical systems

The study of any phenomenon which exhibits dynamical behavior usually be-

gins with the construction of an associated mathematical model of a dynam-

ical system in the form (1.2.1). Having a model in an explicit form allows

us to follow the evolution of its state as time t varies, since the initial data
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defines a unique solution of (1.2.1). To undertake a complete study of the

model we must find this solution, i.e. “to integrate” the original system. “In-

tegrating a system” means obtaining an analytical expression for its solution.

However, this goal can be achieved only for a very small class of dynamical

systems; namely, for systems of linear equations with constant coefficients,

and for some very special equations which might be integrated in quadratures.

Moreover, even if the solution is given in analytical form, the component func-

tions which define the solution may be so complicated that a straightforward

analysis becomes practically impossible. Besides that, the problem of find-

ing an analytical form of a solution is not the primary goal of nonlinear dy-

namics, which is concerned mainly with such “qualitative” properties as the

number of equilibrium states, stability, the existence of periodic trajectories,

etc. Thus, following Poincaré’s approach, instead of attempting a direct

integration of the differential equations, we try to extract information concern-

ing the character and form of the functions determined by these equations from

the equations themselves.10 More specifically, we seek to describe the impor-

tant qualitative features of these functions via a geometrical representation of

the phase trajectories. This is the reason why this method is called “qualitative

integration”.

The first step in our qualitative study is to identify all possible types of

trajectories having distinct behaviors and “forms”. The second step is to give

a description for each group of qualitatively similar trajectories. To achieve a

complete description it is necessary to identify certain more essential or “spe-

cial” trajectories. But here we run into a formidable problem: What properties

of the trajectories must we find in order to characterize the qualitative struc-

ture of the partition of the phase space into trajectories?

The first step is simple. In fact, it can be reformulated as follows: we must

find where a trajectory tends to as t→ +∞ (t→ −∞). Here, we must assume

that the trajectory L defined by x = ϕ(t) remains in some bounded region of

the phase space for t > t0 (t 6 t0). The following concepts are essential in this

study.

Definition 1.3. A point x∗ is called an ω-limit point of the trajectory L if

lim
k→∞

ϕ(tk) = x∗ ,

for some sequence {tk} where tk → +∞ as k → ∞.

10“Analyse des travans de Henri Poincaré faite par lui-même” [54].



14 Chapter 1. Basic Concepts

A similar definition of an α-limit point applies to tk → −∞ as k → ∞.

We denote the set of all ω-limit points of a trajectory L by ΩL, and that of

α-limit points by AL. Observe that an equilibrium state is the unique limit

point of itself. In the case where a trajectory L is periodic, all of its points are

α and ω-limit points, i.e. L = ΩL = AL. In the case where L is an unclosed

Poisson-stable trajectory, the sets ΩL and AL coincide with its closure L̄. The

set L̄ is either a minimal set (if L is a recurrent trajectory) or a quasi-minimal

set if the Poincaré return times of L are unbounded. All equilibrium states,

periodic trajectories, and Poisson-stable trajectories are said to be self-limit

trajectories.

The structure of the sets ΩL and AL has been more completely studied in

the case of two-dimensional dynamical systems where all trajectories remain

in some bounded domain of the plane as t → ±∞. In this case, Poincaré

and Bendixson [13] had established that the set ΩL can only be of one of the

following three topological types:

I. Equilibrium states.

II. Periodic trajectories.

III. Cycles composed of equilibrium states and of connecting trajectories

which tend to these equilibrium states as t→ ±∞.

Figure 1.3.1 shows examples of limit sets of type III where the equili-

brium states are labeled by O. Using the general classification above, we

may enumerate all types of positive semi-trajectories in planar systems:

1. equilibrium states;

2. periodic trajectories;

3. semi-trajectories tending to an equilibrium state;

4. semi-trajectories tending to a periodic trajectory;

5. semi-trajectories tending to a limit set of type III.

An analogous situation occurs in the case of negative semi-trajectories. Among

periodic trajectories in the two-dimensional case a special role is assumed by

those which are either the ω-limit set, or the α-limit set of unclosed trajectories

located in the inner, or the outer domain of a periodic trajectory, as shown in
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(a)

(b)

(c)

Fig. 1.3.1. Examples of two ω-limit homoclinic cycles in (a) and (c), and of a heteroclinic

cycle in (b) formed by two trajectories going from one equilibrium state to another.
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(a)

(b)

Fig. 1.3.2. (a) An ω-limit cycle. (b) A limit cycle which is both ω-limit and α-limit for

unclosed trajectories in its neighborhood.

Fig. 1.3.2. Such a periodic trajectory is called a limit cycle in the theory of

two-dimensional systems.

The corresponding situation in the case of higher dimensions is much more

complicated. In this case, in addition to equilibrium states and periodic tra-

jectories, the limit set may be a minimal, or a quasi-minimal set of various

topological types, such as a strange attractor in the form of a smooth, or a

non-smooth manifold, or a fractal set with a local structure represented as a

direct product of a disk and a Cantor set and ever more exotic sets.
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Let us now turn to the problem concerning the study of the totality of

trajectories. In fact, characterizing a dynamical system means topologically

(or qualitatively) partitioning the phase space into the region of the existence

of trajectories of different topological types. We usually refer to this problem

as “constructing the phase portrait”. This problem poses the question: When

are two phase portraits similar? In terms of the qualitative theory of dynamical

systems we can answer this question by introducing the notion of topological

equivalence.

Definition 1.4. Two systems are said to be topologically equivalent if there

exists a homeomorphism of the respective phase spaces which maps the trajec-

tories of one system into the trajectories of the second.11

This definition implies that equilibrium states, as well as periodic and un-

closed trajectories of one system, are respectively mapped into equilibrium

states, as well as periodic and unclosed trajectories of the other system. The

topological equivalence of two systems in some sub-regions of the phase space

is defined in a similar manner. The latter is usually used for studying local

problems, for example, in a neighborhood of an equilibrium state, or near pe-

riodic or homoclinic trajectories. The definition of topological equivalence of

two dynamical systems gives an indirect definition of the qualitative structure

of partition of the phase space into the regions of the existence of trajectories

of topologically different types. Such structures must be invariant with respect

to all possible homeomorphisms of the phase space.

Let G be a bounded sub-region of the phase space and let H = {hi} be a

set of homeomorphisms defined on G. We can introduce a metric as follows

dist(h1, h2) = sup
x∈G

‖h1x− h2x‖ .

Definition 1.5. We call a trajectory L, L ∈ G, special if for a sufficiently

small ε > 0, for all homeomorphisms hi satisfying dist(hi, I) < ε, where I is

the identity homeomorphism, the following condition holds

hiL = L .

It is clear that all equilibrium states and periodic trajectories are special

trajectories. Unclosed trajectories may also be special. For example, all tra-

jectories of a two-dimensional system which tend to saddle equilibrium states

11See Sec. 2.5 for details.
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both as t→ +∞ and as t→ −∞ are also special trajectories. Since such tra-

jectories separate certain regions in the plane they are called separatrices (see

examples of separatrices in Fig. 1.3.1). A definition for special semi-trajectories

may be introduced in an analogous way.

Definition 1.6. Two trajectories L1 and L2 are said to be equivalent if given

ε > 0, there exist homeomorphisms h1, h2, . . . , hm(ε) such that

L2 = hm(ε) · · ·h1L1 .

where dist(hk, I) < ε (k = 1, 2, . . . ,m(ε)).

We will call each set of equivalent trajectories a cell. Observe that all

trajectories in a cell are of the same topological type. In particular, if a cell is

composed of unclosed trajectories, then all of them have the same ω-limit set

and the same α-limit set.

Special trajectories and cells are especially important for two-dimensional

systems. In this case we may identify some set S by selecting a single trajectory

from each cell (all special trajectories belong to S by definition). We will call

this set S a scheme.12

Let us assume that S consists of a finite number of trajectories.13

Theorem 1.3. The scheme is a complete topological invariant.

This theorem, together with its proof, occupies a significant part of the book

Theory of Dynamical Systems on the Plane by Andronov, Leontovich, Gordon

and Maier [6]. This theory provides not only a mathematical foundation for a

theory of oscillations of two-dimensional systems but also gives a recipe for the

investigation of concrete systems. In particular, the investigation proceeds in

the following order: First, classify the equilibrium states, and then all special

trajectories such as separatrices tending to saddle equilibria and trajectories

approaching limit sets of type III, either as t → +∞, or as t → −∞. This

entire collection of special trajectories determines a schematic portrait called

a skeleton which allows one to partition the phase space into cells, as well as

to study the behavior of the trajectories within each cell.

Unfortunately, this does not work when we examine systems of higher

dimensions. The set of special trajectories in a three-dimensional system may

12The set S can be considered as a factor-system with respect to the above equivalence
relation.

13The finiteness condition of S is rather general, holding for a wide class of planar systems.
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already be infinite, or may even form a continuum. The same situation applies

to cells. Thus, the problem of finding a complete topological invariant in this

case seems to be quite unrealistic. This is the reason why we must reconcile to

the concept of a relatively-incomplete classification based on some topological

invariants which apply only to certain cases. Nevertheless, the basic approach

for studying concrete high-dimensional systems remains the same as in

the two-dimensional case; namely, it begins by examining the equilibrium

states and the periodic trajectories. We will consider this “comprehensive”

local theory in Chaps. 2 and 3, respectively.



Chapter 2

STRUCTURALLY STABLE EQUILIBRIUM

STATES OF DYNAMICAL SYSTEMS

2.1. Notion of an equilibrium state. A linearized
system

Let us consider a system of differential equations

ẋ = X(x) (2.1.1)

where x ∈ R
n and X is a smooth function in some region D ⊂ R

n.

Definition 2.1. A trajectory x(t) of system (2.1.1) is called an equilibrium

state if it does not depend on time, i.e. x(t) ≡ x0 = const.

It follows from the definition that the coordinates of the equilibrium state

can be found as the solution of the system:

X(x0) = 0 . (2.1.2)

If the Jacobian matrix ∂X/∂x is non-singular at the point x0, then, by virtue

of the implicit function theorem, there are no other solutions of Eq. (2.1.2)

nearby x0. This means that the equilibrium state is isolated. However, even

when the Jacobian matrix is singular the equilibrium state is usually isolated

(excluding the case where the right-hand side of X(x) is of a very special type).

Thus, in the general case system (2.1.1) has only a finite number of equilibrium

states in any bounded subregion of R
n. Furthermore, when the right-hand side

21



22 Chapter 2. Structurally Stable Equilibrium States of Dynamical Systems

of (2.1.1) is polynomial there are standard algebraic methods for the evaluation

of the number of equilibrium states.

From the point of view of numerical simulations the determination of all

isolated solutions of system (2.1.2) (or equivalently of all stationary states of

(2.1.1)) in a bounded subregion of R
n is a relatively simple task for small n.

However, the number of equilibrium states of a system of higher dimension may

be very large and therefore searching for all of them becomes problematic.

The study of system (2.1.1) near an equilibrium state is based on a standard

linearization procedure.

Let a point O(x = x0) be an equilibrium state of system (2.1.1). The

substitution

x = x0 + y (2.1.3)

shifts the origin to O. With the new variables the system may be written as

ẏ = X(x0 + y) , (2.1.4)

or, by Taylor expansion near x = x0, as

ẏ = X(x0) +
∂X(x0)

∂x
y + o(y) . (2.1.5)

Since X(x0) = 0 system (2.1.5) becomes

ẏ = Ay + g(y) , (2.1.6)

where

A =
∂X(x0)

∂x
;

A is a constant (n× n)-matrix and g(y) satisfies the condition

g(0) =
∂g(0)

∂y
= 0 . (2.1.7)

In the general case, the last term in (2.1.6) is of a higher order of smallness

(with respect to the usual norm) than the first term. It is apparent that the

behavior of the trajectories of system (2.1.6) in a small neighborhood of the

origin is governed primarily by the linearized system

ẏ = Ay . (2.1.8)

The study of linear systems was the major paradigm of non-conservative

dynamics in the 19th century and at the beginning of the 20th century. The
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main source of such systems was the theory of automatic control, in particular,

the control theory of steam engines. The central problem of linear dynamics

in that period was the search for the most effective criteria of stability for

stationary states.1

The stability of an equilibrium state is determined by the eigenvalues

(λ1, . . . , λn) of the Jacobian matrix A which are the roots of the character-

istic equation

det |A− λI| = 0 (2.1.9)

where I is the identity matrix. The roots of the characteristic equation are also

called the characteristic exponents of the equilibrium state. The equilibrium

state is stable when all of its characteristic exponents lie in the left half-plane

(LHP) on the complex plane. Moreover, any deviations from equilibrium de-

cay exponentially with decrements of damping proportional to the values Reλi,

(i = 1, . . . , n). Thus, the primary problem of constructing a simple and effec-

tive criterion of the stability of an equilibrium state was in finding some explicit

conditions in terms of the entries of the matrix A such that it would allow one

to determine, without having to solve the characteristic equation, when all of

its eigenvalues lie in open LHP.

Here, we present the most popular algorithm called a Routh–Hurwitz cri-

terion. Let (a0, . . . , an) be the coefficients of the polynomial det |λI −A|:

det |λI −A| = a0λ
n + a1λ

n−1 + · · · + an .

We construct an (n× n)-matrix:

Ã =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a1 a3 a5 · · · 0 0

a0 a2 a4 · · · 0 0

0 a1 a3 · · · 0 0

0 a0 a2 · · · 0 0
...

...
...

. . .
. . .

...

0 0 0 · · · an−1 0

0 0 0 · · · an−2 an

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(2.1.10)

and find the minors ∆1 = a1, ∆2 = a1a2 − a0a3, . . . , ∆n = det Ã. Here, ∆i is

the determinant of the matrix whose entries lie on the intersection of the first

i rows and the first i columns of the matrix Ã.

1The necessity for studying nonlinear nonconservative systems emerged only in the first
part of the 20th century, in the context of the investigation of the phenomenon of sustained
oscillations in vacuum-tube oscillators.
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Routh Hurwitz criterion. All characteristic exponents have negative

real parts if and only if each ∆i is positive.

The mathematical question of the correspondence between the properties

of the nonlinear system near the equilibrium state and those of the associated

linearized system was first posed in papers by Poincaré and Lyapunov. This

problem has now been resolved to a considerable extent. In the following

sections we will study it in detail and describe the behavior of trajectories of

nonlinear systems in a neighborhood of their structurally stable (equiv. rough)

equilibrium states, i.e. those which have no characteristic exponents with zero

real part. We note that the presentation below differs from the usual treatment

in the sense that we will focus on those features of the system which one needs

for the study of strange attractors containing saddle equilibrium states, for

example, the Lorenz attractor, the spiral attractors, double-scroll attractors in

the Chua circuit, etc.

2.2. Qualitative investigation of 2- and 3-dimensional
linear systems

In this and in the following two sections we will study the behavior of solutions

of the linearized system. Moreover, we will restrict ourselves to structurally

stable equilibrium states only.

Let us begin with low dimensional cases n = 2 and n = 3.

When n = 2 the system assumes this general form:

ẋ = a11x+ a12y ,

ẏ = a21x+ a22y .
(2.2.1)

The corresponding characteristic equation is

λ2 − (a11 + a22)λ+ (a11a22 − a12a21) = 0 (2.2.2)

and its roots are

λ1,2 = (a11 + a22)/2 ±
√

(a11 + a22)2/4 − (a11a22 − a12a21) .

The names of the basic equilibrium states of two-dimensional systems were

first given by Poincaré. They depend on the values of the characteristic expo-

nents λ1,2 as follows:
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1. Both λ1 and λ2 are real and negative: λ1 < 0 and λ2 < 0. Such an

equilibrium state O is called a stable node. When λ1 6= λ2 system (2.2.1)

can be reduced to

ξ̇ = λ1ξ ,

η̇ = λ2η
(2.2.3)

by a non-singular linear transformation of the space variables, where

ξ(t) and η(t) are the projections of the phase point (x(t), y(t)) onto the

eigenvectors of the matrix
( a11 a12

a21 a22

)
corresponding to the eigenvalues λ1

and λ2, respectively. The general solution of system (2.2.3) is

ξ = eλ1tξ0 , η = eλ2tη0 . (2.2.4)

Since both λ1,2 are negative, all trajectories are attracted to the origin

as t → +∞. Furthermore, every trajectory approaches the origin O

tangentially either to the ξ-axis or to the η-axis. In order to verify this,

let us examine the following equation of the integral curves of the system

(2.2.3)

ηξν0 = ξνη0 (2.2.5)

where ν = |λ2|/|λ1|. For definiteness, let |λ2| be greater than |λ1|. Then

ν > 1 and, by virtue of (2.2.5), all trajectories approach O tangentially

to the ξ-axis except for the two trajectories which lie on the η-axis, see

Fig. 2.2.1. The ξ- and η-axes are respectively called the leading and the

non-leading directions.

When λ1 = λ2 = −λ < 0 system (2.2.1) can be written in one of the

following forms below:

ξ̇ = −λξ + η ,

η̇ = −λη
(2.2.6)

(the non-trivial Jordan block), or

ξ̇ = −λξ ,

η̇ = −λη .
(2.2.7)
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Fig. 2.2.1. A stable node. Double arrows label the strongly stable (non-leading)
direction which coincides with the η-axis.

The general solution of the system (2.2.6) is given by

ξ = e−λtξ0 + te−λtη0 , η = e−λtη0 (2.2.8)

and that of the system (2.2.7) is given by

ξ = e−λtξ0 , η = e−λtη0 . (2.2.9)

Figure 2.2.2 shows the phase portrait in the first case. All trajectories

tend to O tangentially to the unique eigenvector, namely, the ξ-axis. In

the second case any trajectory approaches O along its own eigen-direction

as shown in Fig. 2.2.3. Such a node is called a dicritical node.

2. A pair of complex-conjugate roots: λ1,2 = −ρ ± iω, ρ > 0, ω > 0. In this

case the equilibrium state O is called a stable focus. By a non-singular

linear change of coordinates the system (2.2.1) can be transformed into:

ξ̇ = −ρξ − ωη ,

η̇ = ωξ − ρη .
(2.2.10)
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Fig. 2.2.2. Another stable node. Every trajectory enters the origin along the only
leading direction which is the ξ-axis.

Fig. 2.2.3. A dicritical node. Every trajectory tends to O along its own direction.
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In polar coordinates ξ = r cosϕ, η = r sinϕ, (2.2.10) can be recast as

ṙ = −ρr ,

ϕ̇ = ω .
(2.2.11)

The general solution of system (2.2.11) is given by

r(t) = e−ρtr0 ,

ϕ(t) = ωt+ ϕ0 ,
(2.2.12)

or, having returned to the Cartesian coordinates, by

ξ(t) = e−ρt(ξ0 cos(ωt) − η0 sin(ωt)) ,

η(t) = e−ρt(ξ0 sin(ωt) + η0 cos(ωt)) .
(2.2.13)

The phase portrait is represented in Fig. 2.2.4. Any trajectory (with

the exception of O) has the form of a “counter-clockwise” spiral tending

towards to the origin O as t→ +∞.

3. Both λ1 and λ2 are real but of opposite signs: λ1 = γ > 0, λ2 = −λ < 0.

Such an equilibrium point is called a saddle. A linear change of variables

Fig. 2.2.4. A stable focus on a plane.
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brings the system (2.2.1) to the form

ξ̇ = γξ ,

η̇ = −λη .
(2.2.14)

The general solution of the system (2.2.14) is given by

ξ = eγtξ0 , η = e−λtη0 . (2.2.15)

The corresponding equation of integral curves is given by

ηξν = ξν0η0 , (2.2.16)

where ν = λ/γ. The portrait of the phase space (or just “the phase

space”) near the saddle is shown in Fig. 2.2.5. There are four exclusive

trajectories called the separatrices, two stable and two unstable, which

tend to the saddle O as t→ +∞ and as t→ −∞ respectively. All other

trajectories pass by the saddle. The pair of the stable separatrices to-

gether with the saddle O compose the stable invariant subspace of the

Fig. 2.2.5. A planar saddle.
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saddle (the η-axis). The unstable invariant subspace of the saddle

(the ξ-axis) consists of the unstable separatrices and of the saddle

point.

4. The case where the real parts of both characteristic exponents are positive

can be simply reduced to the cases (1) and (2) above by the change

of time t → −t, so that the directions of the arrows in the respective

phase portraits are reversed. When the characteristic exponents are real,

the associated equilibrium state is called an unstable node. In the case

of complex characteristic exponents it is called an unstable focus (see

Figs. 2.2.6 and 2.2.7).

5. Let us now consider the equilibrium states of three-dimensional systems.

Consider first the case where the characteristic exponents λi (i = 1, 2, 3)

are real and λ3 < λ2 < λ1 < 0. Then, the associated three-dimensional

system may be reduced to the form

ẋ = λ1x , ẏ = λ2y , ż = λ3z . (2.2.17)

Fig. 2.2.6. An unstable node. The picture is obtained from Fig. 2.2.1 by reversing
the time.
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Fig. 2.2.7. An unstable focus. A trajectory traces out a “clockwise” spiral on the
plane.

Its general solution is given by

x = eλ1tx0 , y = eλ2ty0 , z = eλ3tz0 . (2.2.18)

Since all λi’s are negative, the point O is a stable equilibrium state, i.e. all

trajectories tend to O as t → +∞. Furthermore, all trajectories outside

of the non-leading plane (y, z) approach O along the leading direction

that coincides with the x-axis, see Fig. 2.2.8. Such an equilibrium state

is called a stable node.

Let us now consider the case where among the characteristic expo-

nents there is a pair of complex-conjugate λ2,3 = −ρ± iω. The equilib-

rium state of the system

ẋ = λ1x , ẏ = −ρy − ωz , ż = ωy − ρz (2.2.19)

in the case where −ρ < λ1 < 0, O is also called a stable node. The

general solution has the form

x(t) = eλ1tx0 ,

y(t) = e−ρt(y0 cos(ωt) − z0 sin(ωt)) ,

z(t) = e−ρt(y0 sin(ωt) + z0 cos(ωt)) .

(2.2.20)
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Fig. 2.2.8. A stable node in R3. The fewer the arrows the weaker is the rate of
contraction. The leading subspace EL is one-dimensional, two-dimensional subspace
Ess is non-leading.

(see (2.2.13)). The phase portrait of this system is shown in Fig. 2.2.9.

It follows from (2.2.20) that

√

y(t)2 + z(t)2 = e−ρt
√

y2
0 + z2

0 .

Moreover, for any trajectory whose initial point does not lie in the

non-leading plane (y, z), we obtain

√

y(t)2 + z(t)2 = C|x(t)|ν (2.2.21)

where ν = ρ/|λ1| and C =
√

y2
0 + z2

0/|x0|
ν . Since ν > 1, all such trajec-

tories approach O along the leading x-axis.

6. When λ1 < −ρ < 0 the equilibrium state of system (2.2.19) is called a

stable focus. Relation (2.2.21) still holds, but as ν < 1, all trajectories

for which C 6= 0 (i.e. having initial points which are not on the x-axis)

tend to O tangentially to the plane (y, z) as shown in Fig. 2.2.10. In this

case, the x-axis is called the non-leading direction and the (y, z)-plane is

the leading plane, respectively.
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Fig. 2.2.9. Another possible stable node in R3. Although the point O is a stable
focus on Ess, all trajectories outside Ess go to O along the one-dimensional leading
subspace EL.

Fig. 2.2.10. A stable focus in R3. In contrast to Fig. 2.2.9, all trajectories outside
of the one-dimensional subspace Ess tend to O tangentially to the two-dimensional
leading subspace EL.
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7. When all characteristic exponents lie to the right of the imaginary axis

(i.e. in the open right-half plane (RHP)), by reversion of time t→ −t, we

reduce the problem to the cases considered above. Here, all trajectories

tend to the equilibrium state as t→ −∞. As before, there exist two kinds

of equilibrium states, namely: an unstable node, if the characteristic

exponent nearest to the imaginary axis is real, and an unstable focus,

when the characteristic exponents nearest to the imaginary axis comprise

a complex-conjugate pair. The corresponding phase portraits are similar

to those shown in Figs. 2.2.8–2.2.10 but with all the arrows pointing in

the opposite direction.

8. If there are characteristic exponents both to the left and to the right of

the imaginary axis, the equilibrium state is either a saddle or a saddle-

focus (this name was also given by Poincaré), see Figs. 2.2.11–2.2.14.

Let us assume that λ1 > 0 and λs < 0, (s = 2, 3) in (2.2.17). Then,

the equilibrium state of system (2.2.17) is a saddle, see Fig. 2.2.11.

The general solution is also given by (2.2.18). Because λ1 > 0, λ2 < 0,

λ3 < 0, the coordinates y and z decay exponentially to zero as t→ +∞

Fig. 2.2.11. A saddle O with the two-dimensional stable subspace Es and the one-

dimensional unstable subspace Eu.
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Fig. 2.2.12. A saddle (1,2).

Fig. 2.2.13. A saddle-focus (2,1). It has a two-dimensional stable subspace Es and a

one-dimensional unstable subspace Eu.
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Fig. 2.2.14. A saddle-focus (1,2). Vice versa Fig. 2.2.13.

while the x-coordinate tends to infinity. On the other hand, the x-

coordinate decreases to zero as t → −∞. Therefore, all trajectories

which lie entirely in the stable subspace Es: x = 0, tend to the saddle O

as t → +∞, while all trajectories which lie in the unstable subspace Eu:

(y = 0, z = 0), tend to the saddle as t → −∞. The trajectories outside

of Es
⋃
Eu pass nearby but away from the saddle.

The trajectories of the system (2.2.19) near a saddle-focus behave

similarly. Now, λ1 > 0 and λ2,3 = −ρ ± iω, where ρ > 0. The only

difference is that in the case of a saddle, the point O is a node on the

stable subspace, whereas it is a stable focus on the stable subspace in the

case of a saddle-focus.

The case where λ1 < 0, Reλ2 > 0, Reλ3 > 0 is reduced to two

previous cases by changing the time variable t→ −t, see Figs. 2.2.12 and

2.2.14.
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2.3. High-dimensional linear systems. Invariant
subspaces

Let us consider the system

ẏ = Ay , (2.3.1)

where y ∈ R
n. The general solution is given by

y(t) = eAty0 . (2.3.2)

Recall that the exponential eB of a matrix B is defined as the sum of the matrix

series

eB = I +B +B2/2 + · · · +Bk/k! + · · · ,

here and below I denotes the identity matrix. Thus, the general solution of

the system (2.3.1) can be rewritten as

y(t) = (I +At+A2t2/2 + · · · +Aktk/k! + · · · )y0 . (2.3.3)

The convergence of the series (2.3.3) for any t is obvious since ‖Aktk/k!‖ does

not exceed ‖A‖k|t|k/k! which decays very fast as k → ∞. To verify that (2.3.3)

is the general solution, we should note from (2.3.3) that

y(0) = y0

and

ẏ(t) = (A+A2t+ · · · +Aktk−1/(k − 1)! + · · · )y0

= A(I +At+A2t2/2 + · · · +Ak−1tk−1/(k − 1)! + · · · )y0 = Ay(t) .

Let us elaborate the expression (2.3.2). If all eigenvalues of the matrix A are

real and different, then one may choose the eigen-basis as a coordinate frame

such that matrix A becomes diagonal, i.e.

A =







λ1 0
λ2

. . .

0 λn






,

where we have abused our notation by using the same symbol A to denote the

original matrix in the new basis to avoid clutter. In this basis we have

Ak =







λk1 0
λk2

. . .

0 λkn
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and, therefore

eAt =







eλ1t 0
eλ2t

. . .

0 eλnt






.

Thus, if we denote the components of the vector y ∈ R
n by (y1, . . . , yn) in the

given basis, then the solution of the system can be rewritten in the form:

ys(t) = eλstys0 , (s = 1, . . . , n) . (2.3.4)

If all eigenvalues (we will also call them the characteristic exponents) are

different as before, but some of them are complex, then there exists a basis in

which A attains a block-diagonal form:







A1 0
A2

. . .

0 Am






, (2.3.5)

where each block Aj corresponds to either a real eigenvalue, or to a pair of

complex-conjugate eigenvalues (recall that if A is the real matrix, then the

complex-conjugate λ∗i of any complex eigenvalue λi is also an eigenvalue). If

λj is real, its corresponding block is a (1 × 1)-matrix:

Aj = (λj) . (2.3.6)

If λ = ρ + iω and λ∗ = ρ − iω are a pair of complex-conjugate eigenvalues,

then the corresponding block is a (2 × 2)-matrix:

Aj =

(
ρ −ω

ω ρ

)

=

(
Reλ −Imλ

Imλ Reλ

)

. (2.3.7)

In this basis

Ak =







Ak1 0
Ak2

. . .

0 Akm






.

Furthermore, for the complex λ we have

Akj =

(
Re (λk) −Im (λk)

Im (λk) Re (λk)

)

,
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hence we obtain

eAt =







eA1t 0
eA2t

. . .

0 eAmt






,

where

eAjt =







eλt for Aj = (λ)






(
Re eλt −Im eλt

Im eλt Re eλt

)

= eρt
(

cos(ωt) − sin(ωt)

sin(ωt) cos(ωt)

)

for Aj =

(
ρ −ω

ω ρ

)

.

So, the general solution (2.3.2) has the form

ys(t) = eλst ys0 (2.3.8)

for real λs and

ys(t) = eρt(ys0 cos(ωt) − ys+1,0 sin(ωt)) (2.3.9)
{

ys+1(t) = eρt(ys0 sin(ωt) + ys+1,0 cos(ωt)) (2.3.10)

for complex λs = λ∗s+1 = ρ+ iω.

If A has some multiple eigenvalues one may make a linear transformation

so that A becomes block-diagonal in a Jordan basis. Blocks corresponding to

simple eigenvalues remain unchanged from the previous case, but for each real

eigenvalue λ of multiplicity k, the corresponding block is a (k × k)-matrix of

the form













λ δ1 0
λ δ2

λ
. . .
. . .

. . .

. . . δk−1

0 λ













, (2.3.11)
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where δi is either 0 or 1. For each pair of complex-conjugate eigenvalues of

multiplicity k, the corresponding block is a (2k × 2k)-matrix of the form












Λ δ1 I 0
Λ δ2 I

Λ
.. .
. . .

. . .

. . . δk−1 I
0 Λ













, (2.3.12)

where the matrix Λ is given by (2.3.7), I is the (2 × 2) identity matrix and δi
is either 0 or 1. In this case y(t) can also be easily found from formula (2.3.3).

For the coordinates ys corresponding to simple eigenvalues, formulae (2.3.12)

and (2.3.13) and (2.3.10) remain unchanged.

For coordinates (yi+1, . . . , yi+k) corresponding to a real eigenvalue λ of

multiplicity k in the case of the complete Jordan block (i.e. when all δ’s in

(2.3.15) are equal to 1) the following formulae are valid:

yi+k(t) = eλtyi+k,0 ,

yi+k−1(t) = eλt(yi+k−1,0 + tyi+k,0) ,

...
...

...

yi+j(t) = eλt
s=k∑

s=j

yi+s,0t
s−j

(s− j)!
,

...
...

...

(2.3.13)

or, equivalently,

(yi+1(t), . . . , yi+k(t)) = eλt(yi+1,0, . . . , yi+k,0)e
Jkt , (2.3.14)

where Jk denotes the (k × k)-matrix











0 0
1 0

1 0
. . .

. . .

. . .
. . .

0 1 0












(this is the transposed non-diagonal part of (2.3.15)).
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For coordinates (yi+1, . . . , yi+2k), corresponding to a pair of the complex-

conjugate eigenvalues of multiplicity k in the case of the complete Jordan block,

we have

yi+2j−1(t) = eρt
s=k∑

s=j

(yi+2s−1,0 cos(ωt) − yi+2s,0 sin(ωt))ts−j/(s− j)! ,

yi+2j(t) = eρt
s=k∑

s=j

(yi+2s−1,0 sin(ωt) + yi+2s,0 cos(ωt))ts−j/(s− j)!

(2.3.15)

or, equivalently

(
yi+1 (t) · · · yi+2k−1 (t)

yi+2 (t) · · · yi+2k (t)

)

= eΛt
(
yi+1,0 · · · yi+2k−1,0

yi+2,0 · · · yi+2k,0

)

eJkt ,

(2.3.16)

where Λ is matrix (2.3.7), Jk is the same as in (2.3.14).

If λ is real and the Jordan block is not complete, i.e. in (2.3.15) some

δj vanish, then the block corresponding to λ may be partitioned into two

sub-blocks as follows





















λ δ1 0 |

λ
. . . |
. . . δj−1 | 0

0 λ |
− − − − | − − − −

| λ δj+1 0

0 | λ
. . .

|
. . . δk

| 0 λ





















and the exponential is separately found for each sub-block. Analogous calcu-

lations are carried out for each complex eigenvalue λ of multiplicity k with a

non-complete Jordan block.

We can now prove the following lemma which gives a standard estimate

for the norm of the exponential matrix. This estimate will be frequently used

throughout the book.
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Lemma 2.1. For given an arbitrarily small ε > 0, one can choose an appro-

priate basis in R
n such that the solution y(t) = eAty0 of the linear system

ẏ = Ay

satisfies the following inequalities

‖y(t)‖ ≤ ‖eAt‖ ‖y0‖ ≤ e(max Reλi+ε)t ‖y0‖ for t ≥ 0 ; (2.3.17)

‖y(t)‖ ≥ ‖e−At‖−1 ‖y0‖ ≥ e(min Reλi−ε)t ‖y0‖ for t ≥ 0 ; (2.3.18)

‖y(t)‖ ≤ ‖eAt‖ ‖y0‖ ≤ e(min Reλi−ε)t ‖y0‖ for t ≤ 0 ; (2.3.19)

‖y(t)‖ ≥ ‖e−At‖−1 ‖y0‖ ≥ e(max Reλi+ε)t ‖y0‖ for t ≤ 0 , (2.3.20)

where λi (i = 1, . . . , n) are the characteristic exponents of the matrix A and the

norm ‖ · ‖ of the vector y ∈ R
n denotes the Euclidean norm:

√

y2
1 + · · · + y2

n.

Proof. The proof is analogous for all four inequalities, so let us consider the

first one. To prove (2.3.35) in the case when all characteristic exponents are

simple, we choose the basis such that equalities (2.3.12), (2.3.13) and (2.3.10)

hold whence (2.3.35) follows immediately.

In the case of multiple characteristic exponents, after choosing the Jordan

basis the formulae for y(t) (see (2.3.29) and (2.3.31)) have power factors tk

which give the following estimate for the norm of y(t):

‖y(t)‖ ≤ emax(Reλi)t‖y0‖ Q(|t|) ,

where Q is a polynomial of degree less than the largest multiplicity of the

characteristic exponents. Since for any arbitrarily small ε > 0 there is some

C(ε) such that

Q(|t|) ≤ Ceε|t| ,

we obtain the estimate

‖y(t)‖ ≤ Ce(max Reλi+ε)t ‖y0‖ for t ≥ 0 .

To make the constant C equal to 1 we note that the Jordan basis can be

chosen such that non-zero values δj ’s in (2.3.15) and (2.3.22) are equal to the

given arbitrarily small ε. To do this, instead of the coordinates

(yi+1, . . . , yi+k) ,
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which correspond to the Jordan block (2.3.15) for real eigenvalues, we must

choose the coordinates

(yi+1/ε
k−1, yi+2/ε

k−2, . . . , yi+k) .

Similarly, for complex eigenvalues (see formula (2.3.22)), we must replace the

coordinates

(yi+1, . . . , yi+2k)

by the coordinates

(yi+1/ε
k−1, yi+2/ε

k−1, yi+3/ε
k−2, yi+4/ε

k−2, . . . , yi+2k−1, yi+2k) .

In this basis, the factor εs−j appears in front of ts−j in formulae (2.3.29) and

(2.3.31) or, equivalently, the coefficient ε appears in front of Jkt in (2.3.30) and

(2.3.32). As a result we obtain the following estimate for y(t)

‖y(t)‖ ≤ emax(Reλi)t‖y0‖ ‖eεJkt‖ . (2.3.21)

Since ‖Jk‖ < 1, the following estimate is valid:

‖eεkt‖ ≤ (1 + ε‖Jk‖t+ ε2‖Jk‖
2t2/2 + · · ·+

+εm‖Jk‖
mtm/m! + · · · ) = eε‖Jk‖t ≤ eεt ,

whence (2.3.39) implies (2.3.35).

It is easily seen from the proof that, when the exponents with the maximal

real part are simple, we may then assume ε = 0 in inequalities (2.3.35), (2.3.38).

If the exponents with the minimal real part are simple, then we may assume

ε = 0 in inequalities (2.3.36) and (2.3.37).

We note also that any arbitrary basis alters inequalities (2.3.35)–(2.3.38) so

that an additional coefficient may appear in the right-hand side (the coefficient

is, generally, greater than 1 in (2.3.35) and (2.3.37) and less than 1 in (2.3.36)

and (2.3.38). Indeed, the transformation from one basis to another is merely

a linear change of variables

x = Py

with some non-singular matrix P . In the new variables x we have

‖x‖ ≤ ‖P‖ ‖y‖ , ‖y‖ ≤ ‖P−1‖ ‖x‖ .

Thus, instead of (2.3.35), for example, we obtain the following inequality for

x(t):

‖x(t)‖ ≤ Ce(max Reλi+ε)t‖x0‖ for t ≥ 0 , (2.3.22)
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where

C = ‖P‖ ‖P−1‖ ≥ 1 . (2.3.23)

In the particular case where all of the characteristic exponents λi lie to the

left of the imaginary axis, inequality (2.3.35) becomes the following

‖y(t)‖ ≤ e−λt‖y0‖ for t ≥ 0 , (2.3.24)

where λ > 0 is such that Reλi < −λ at all i (and if the characteristic exponents

nearest to the imaginary axis are simple, one may choose λ = min |Reλi|).

Thus, in this case, every trajectory of the linear system (2.3.1) tends exponen-

tially to O as t → +∞. Such an equilibrium state is called an exponentially

asymptotically stable equilibrium state.

Let us reorder the characteristic exponents of the stable equilibrium state

so that Reλ1 ≥ Reλ2 ≥ · · · ≥ Reλn. We assume also that first m expo-

nents have the same real parts Reλi = Reλ1 (i = 1, . . . ,m) and Reλi <

Reλ1 (i = m+ 1, . . . , n). Let us denote by EL and Ess the m-dimensional and

the (n − m)-dimensional eigen-subspaces of the matrix A, which correspond

to the characteristic exponents (λ1, . . . , λm) and (λm+1, . . . , λn), respectively.

The subspace EL is called the leading invariant subspace and Ess is called the

non-leading or the strongly stable invariant subspace.

These names are derived from the fact that as t → +∞ all trajectories,

except for those lying in Ess, tend to the equilibrium state O tangentially to

the subspace EL. Moreover, the trajectories from Ess tend to O faster than

e(Reλm+1+ε)t, whereas the convergence velocity of the other trajectories does

not exceed e(Reλ1−ε)t, where the constant ε > 0 may be chosen arbitrarily

small.

To prove this statement we note that each vector y ∈ R
n is uniquely

represented in the form y = u + v, where u ∈ EL and v ∈ Ess. In the (u, v)

coordinates system (2.3.1) is written as

u̇ = A1u ,

v̇ = A2v ,

where spectrA1 = {λ1, . . . , λm} and spectrA2 = {λm+1, . . . , λn}. The general

solution is given by

u(t) = eA1tu0 , v(t) = eA2tv0 . (2.3.25)
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According to Lemma 2.1 (see (2.3.36), (2.3.35)), it follows from (2.3.43) that

‖u(t)‖ ≥ e(Reλ1−ε)t‖u0‖ ,

‖v(t)‖ ≤ e(Reλm+1+ε)t‖v0‖

for positive t, where ε may be made arbitrarily small by a suitable choice of

the bases in EL and Ess. Hence we can obtain the following inequality

‖v(t)‖ ‖u0‖
ν ≤ ‖v0‖ ‖u(t)‖ν (2.3.26)

where ν > 1. It is seen from (2.3.44) that if ‖u0‖ 6= 0, then any trajectory

approaches O tangentially to the leading subspace v = 0.

In the case m = 1, i.e. where λ1 is real and Reλi < λ1, (i = 2, . . . , n), the

leading subspace is a straight line. Such an equilibrium state is called a stable

node (see Figs. 2.2.8, 2.2.9).

If m = 2 and λ1,2 = −ρ ± iω, ρ > 0, ω 6= 0, then the corresponding

equilibrium state is called a stable focus. The leading subspace here is two-

dimensional and all trajectories which do not belong to E ss have the shape of

spirals winding around towards O, see Fig. 2.2.10.

The unstable case, where Reλi > 0, (i = 1, . . . , n), is reduced to the previ-

ous one by reversion of time t→ −t. Therefore, the solution can be estimated

as:

‖y(t)‖ ≤ e−λ|t|‖y0‖ , for t ≤ 0 , (2.3.27)

where λ > 0 is an arbitrary constant satisfying Reλi > λ. By virtue of (2.3.45),

all trajectories tend exponentially to O as t → −∞. Such equilibrium states

are exponentially completely unstable.

The leading and the non-leading subspaces are defined here in the same way

as in case of stable equilibrium states (but for t → −∞). When the leading

subspace is one-dimensional, the equilibrium state is called an unstable node.

When the leading subspace is two-dimensional and a pair of complex-conjugate

exponents is nearest to the imaginary axis, then such an equilibrium state is

called an unstable focus.

Now, let k characteristic exponents lie to the left of the imaginary axis and

(n − k) to the right of it, i.e. Reλi < 0 (i = 1, . . . , k) and Reλj > 0 (j =

k+1, . . . , n), where k 6= 0, n. Such an equilibrium state is an equilibrium state

of the saddle type.



46 Chapter 2. Structurally Stable Equilibrium States of Dynamical Systems

A linear non-singular change of variables transforms the system (2.3.1) into

u̇ = A−u ,

v̇ = A+v
(2.3.28)

where spectrA− = {λ1, . . . , λk} and spectrA+ = {λk+1, . . . , λn}, and u ∈

R
k, v ∈ R

n−k. The general solution is given by

u(t) = eA
−tu0 , v(t) = eA

+tv0 . (2.3.29)

According to Lemma 2.1, for the variables u and v the estimates analogous,

respectively, to (2.3.42) and (2.3.45) are valid, i.e. any trajectory from the stable

invariant subspace Es: v = 0 tends exponentially to O as t → +∞, and any

trajectory from the unstable invariant subspace Eu: u = 0 tends exponentially

to O as t → −∞; the neighboring trajectories pass nearby but away from the

saddle.

Thus, the saddle is the stable equilibrium for the system on E s and is

completely unstable on Eu. Furthermore, stable and unstable leading and non-

leading subspaces, respectively, EsL, EuL, Ess and Euu can be defined in the

subspaces Es and Eu. We will call a direct sum EsE = Es ⊕ EuL the extended

stable invariant subspace, and EuE = Eu⊕EsL the extended unstable invariant

subspace. The invariant subspace EL = EsE ∩ EuE is called the leading saddle

subspace.

If the point O is a node in both Es and Eu, such an equilibrium state is

called a saddle. Therefore, the dimensions of both EsL and EuL are equal

to 1.

When the point O is a focus on at least one of two subspaces E s and Eu,

then O is called a saddle-focus. Depending on the dimensions of the stable

and the unstable leading subspaces, we may define three types of saddle-foci;

namely:

• saddle-focus (2,1) — a focus on Es and a node on Eu;

• saddle-focus (1,2) — a node on Es and a focus on Eu;

• saddle-focus (2,2) — a focus on both Es and Eu;

The phase portraits for two types of three-dimensional saddles and saddle-

foci (2, 1) and (1, 2) are shown in Figs. 2.2.11–2.2.14; a four-dimensional saddle-

focus (2, 2) is schematically represented in Fig. 2.3.1.
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Fig. 2.3.1. The pseudo-projection of a saddle-focus (2,2) into R3. Both stable and unstable
invariant subspaces are of dimension two.

2.4. Behavior of trajectories of a linear system near
saddle equilibrium states

The theory considered in the previous sections is sufficient to resolve the

following important question. Let a linear system have a structurally stable

equilibrium state O of the saddle type. Choose a point M+ in the stable invari-

ant subspace Es of O and a point M− in its unstable subspace Eu. Surround

the point M+ by a small neighborhood V +, and the point M− by a neighbor-

hood V −. We ask if there are any points within V + whose trajectories reach

V −. How is the set of such points organized and which properties does the

map defined by the trajectories that connect V + and V − possess?
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This problem is purely geometrical for the linearized system. However,

we notice that this setting is almost identical to that of the problem of the

behavior of trajectories near saddle equilibria in chaotic systems.

Let us first consider three-dimensional examples. Let the point O be a

saddle, i.e. both of its leading exponents are real. To be specific, let us suppose

that the stable subspace is two-dimensional and the unstable subspace is one-

dimensional. The system can then be written as

ẋ = −λ1x ,

u̇ = −λ2u ,

ẏ = γy ,

where 0 < λ1 < λ2, γ > 0. The unstable subspace Eu here coincide with

the y-axis, and the stable subspace Es is the (x, u)-plane. The u-axis is the

non-leading subspace Ess and the x-axis is the leading subspace EsL. The

extended unstable subspace EuE is the (x, y)-plane and the extended stable

subspace EsE is the entire space R
3.

The general solution of the system is

x(t) = e−λ1t x0 ,

u(t) = e−λ2t u0 ,

y(t) = eγt y0 .

In Es we choose a point M+(x+, u+, y = 0) not lying in Ess, i.e. x+ 6= 0.

Without loss of generality, we suppose x+ > 0. Let us choose a small ε > 0

and at the point M+ build a small rectangle Π+ = {x = x+, |u − u+| <

ε, |y| < ε}. The coordinates on Π+ are (u, y). The intersection y = 0 of the

stable subspace with Π+ partitions Π+ into two sub-components. Choose the

component (shaded area in Fig. 2.4.1) where y > 0 and follow trajectories

starting with each point on it.

Consider a neighborhood Uδ: {|x| ≤ δ, |u| ≤ δ, |y| ≤ δ} of the saddle for

some δ > 0. Starting with any pointM(x = x+, u, y > 0) ∈ Π+, the trajectory

leaves Uδ as t→ +∞, crossing Π−: {y = δ} at the point M̄(x̄, ū, y = δ) whose

coordinates are given by the following formulae

x̄ = e−λ1t x+ , ū = e−λ2t u , (2.4.1)

δ = eγt y . (2.4.2)
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Fig. 2.4.1. Trajectories near a saddle. The image of the rectangle Π+ is a curvilinear triangle
on Π− which is tangential to the extended unstable subspace EuE . The intersection of the
stable subspace Es on Π+ is mapped into the point M−.

By resolving (2.4.2) we obtain the flight time from Π+ to Π−

t =
1

γ
ln
δ

y
.

Substituting the latter into (2.4.1) gives us the expression for the coordinates

of the points M in terms of those of M̄

x̄ = x+
(y

δ

)ν

,

ū = u
(y

δ

)αν

,
(2.4.3)

where ν = λ1/γ, α = λ2/λ1 > 1. It is clear from this formula that the map

M 7→ M̄ is contracting with respect to the non-leading coordinate u provided
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that y is small enough. Moreover, as y → +0 (i.e. the point M tending to ES)

the contraction becomes infinitely strong.

The map (2.4.3) along the trajectories of the system takes the upper part

of the rectangle Π+ onto a curvilinear wedge on Π−:

C2 x̄
α ≤ ū ≤ C1 x̄

α , C1,2 = (u+ ± ε)/(x+)α . (2.4.4)

The wedge adjoins to the point M−(x̄ = 0, ū = 0, ȳ = δ) = Π− ∩ Eu. Since

α > 1 and C1,2 6= ∞ (as x+ 6= 0) the wedge touches the extended unstable

subspace EuE : ū = 0 at the point M−, as shown in Fig. 2.4.1.

The case when Es is one-dimensional and Eu is two-dimensional is reduced

to that considered above by means of the reversion of time. Therefore, if we

choose the points M+ ∈ Es and M− ∈ Eu\Euu and construct two transverse

rectangles Π+ and Π−, the set of points on Π+ whose trajectories reach Π−

has also the form a curvilinear wedge as in (2.4.4), and its image on Π− is one

of the two components of Π−\Eu as shown in Fig. 2.4.2.

Fig. 2.4.2. The behavior of trajectories near this saddle is the reverse situation depicted in
Fig. 2.4.1.
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Fig. 2.4.3. The map near a saddle-focus (2, 1). The zebra pattern on Π+ is mapped along

the trajectories inside two spirals around the point M− which is the image of the intersection

of Es and Π+.2

When O is a saddle-focus (2,1) (see Fig. 2.4.3) the system can be repre-

sented in the form

ẋ = −ρx− ωu ,

u̇ = ωx− ρu ,

ẏ = γy ,

(2.4.5)

2Remark. We must notice that the formulae below are derived for the case where the
cross-section Π+ is oriented along but not transversally to the x-axis.
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where ρ > 0, ω > 0, γ > 0. The general solution here is given by

x(t) = e−ρt(x0 cos(ωt) − u0 sin(ωt)) ,

u(t) = e−ρt(x0 sin(ωt) + u0 cos(ωt)) ,

y(t) = eγty0 .

(2.4.6)

Let us select an arbitrary pointM+(x+, u+, y = 0) on Es\O. We can always

assume u+ = 0 due to a rotation of the coordinate frame, so that formulae

(2.4.5) and (2.4.6) remain unchanged. Through the point M+ we construct

the rectangle Π+ = {u = 0, |x − x+| < ε, |y| < ε}. Since the derivative u̇

does not vanish at M+, it does not vanish in a small neighborhood of M+ by

virtue of continuity. Therefore, the trajectories starting with Π+ must cross it

transversely.

The trajectories starting from Π+ ∩ {y > 0} leave the neighborhood of the

saddle-focus and pass through the plane Π−: y = δ. In this case the map from

Π+ ∩ {y > 0} into Π− is represented by the formulae:

x̄ = xe−ρt cos(ωt) ,

ū = xe−ρt sin(ωt) ,

δ = yeγt ,

or

x̄ = x
(y

δ

)ν

cos

(
ω

γ
ln
y

δ

)

,

ū = −x
(y

δ

)ν

sin

(
ω

γ
ln
y

δ

)

,

where ν = ρ/γ. Having introduced the polar coordinates x̄ = r̄ cos(ϕ̄) and

ū = r̄ sin(ϕ̄) on Π−, the map may be written as

r̄ = |x|
(y

δ

)ν

,

ϕ̄ = −
ω

γ
ln
(y

δ

)

+ ϕ0 ,

where

ϕ0 =

{

0 , if x+ > 0

π , if x+ < 0 .
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The rectangle Π+ is bounded by the segments of the straight lines x =

x+ + ε and x = x+ − ε. The image of Π+ on Π− is therefore bounded by a

pair of logarithmic spirals defined by:

(|x+| − ε) e
ρ
ω

(ϕ0−ϕ̄) ≤ r̄ ≤ (|x+| + ε) e
ρ
ω

(ϕ0−ϕ̄)

which wind around the point M− = Π− ∩ Eu as drawn in Fig. 2.4.3.

The above result can easily be transformed to apply to a saddle-focus (1,2)

in backward time.

Let us consider next a saddle-focus (2,2). The system is written in the

following form:

ẋ1 = −ρ1x1 − ω1x2 ,

ẋ2 = −ρ1x2 + ω1x1 ,

ẏ1 = ρ2y1 − ω2y2 ,

ẏ2 = ρ2y2 + ω2y1

where ρ1 > 0, ω1 > 0, ρ2 > 0, ω2 > 0. The general solution is given by

x1 = e−ρ1t (x10 cos(ω1t) − x20 sin(ω1t)) ,

x2 = e−ρ1t (x10 sin(ω1t) + x20 cos(ω1t)) ,

y1 = eρ2t (y10 cos(ω2t) − y20 sin(ω2t)) ,

y2 = eρ2t (y10 sin(ω2t) + y20 cos(ω2t)) .

(2.4.7)

The map T from Π+ = {x2 = 0, |x1 − x+
1 | < ε, |y1| < ε, |y2| < ε} into

Π− = {ȳ2 = 0, |ȳ1 − y−1 | < ε, |x̄1| < ε, |x̄2| < ε} along the trajectories of the

system is given by the following formulae:

x̄1 = x1e
−ρ1t cos(ω1t) ,

(2.4.8)
x̄2 = x1e

−ρ1t sin(ω1t) ,

y1 = ȳ1e
−ρ2t cos(ω2t) ,

(2.4.9)
y2 = −ȳ1e

−ρ2t sin(ω2t) .

In order to find the domain D of the map T it is more convenient to use

(2.4.8) and (2.4.9) directly rather than to express the flight time t through

(y1, y2). If we choose an arbitrary x1 satisfying |x1−x
+
1 | < ε, and ȳ1 satisfying

|ȳ1 − y−1 | < ε, and a sufficiently large t, then formulae (2.4.8) and (2.4.9)
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give us the values of x̄1, x̄2, y1, y2 such that the trajectory starting with the

point M = (x1, 0, y1, y2) of Π+ intersects Π− at the point M̄ = (x̄1, x̄2, ȳ1, 0).

The domain D is composed of all points M whose x1-coordinate lies in the

interval |x1 − x+
1 | < ε and whose y1,2-coordinates are found from (2.4.9) for

some appropriate choice of ȳ1 and t.

By virtue of (2.4.9), the point (y1, y2) traces out a logarithmic spiral as

t varies while x1 and ȳ1 are kept fixed. This means that the set D has the

shape of a roulette stretched along the x1-direction, and twisted in the (y1, y2)-

coordinates. The image of D in Π− has a similar shape, see Fig. 2.4.4.

y1

x2

x1

y1

y2

x1

Fig. 2.4.4. The map near a saddle-focus (2, 2). See comments in the text.
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In a high-dimensional case the system near a saddle is represented in the

following form:

ẋ = A−x , ẏ = A+y ,

u̇ = B−u , v̇ = B+v ,

where x and y are the leading variables, u and v are the non-leading ones. The

spectrum of the matrix A− lies on a straight line Re z = −λ < 0 in the complex

plane and the spectrum of A+ lies on a straight line Re z = γ > 0. The real

parts of the eigenvalues of the matrix B− are strictly less than some −λ̂ < −λ,

whereas those of the matrix B+ are strictly greater than some γ̂ > γ.

Thus, Es is the subspace (y = 0, v = 0);

Eu : (x = 0, u = 0);

Ess : (x = 0, y = 0, v = 0);

EsL : (u = 0, y = 0, v = 0);

Euu : (x = 0, u = 0, y = 0);

EuL : (x = 0, u = 0, v = 0);

EsE : (v = 0);

EuE : (u = 0);

EL : (u = 0, v = 0).

Let us select some points M+(x = x+, u = u+, y = 0, v = 0) ∈ Es\Ess

and M−(x = 0, u = 0, y = y−, v = v−) ∈ Eu\Euu, ‖x+‖ 6= 0, ‖y−‖ 6= 0.

The map from an ε-neighborhood of M+ into an ε-neighborhood of M− along

trajectories of the system is given by

x̄ = eA
−tx , ȳ = eA

+ty , (2.4.10)

ū = eB
−tu , v̄ = eB

+tv , (2.4.11)

where t is the flight time.

Because Eq. (2.4.10) for the leading coordinates is independent of

Eq. (2.4.11) for the non-leading coordinates, the action of the map in the

leading coordinates is the same as in the examples above. By Lemma 2.1, it

follows from (2.4.10) that

‖y‖ = ‖e−A
+tȳ‖ ≥ e−(γ+··· )t (‖y−‖ − · · · )

whence

t ≥
1

γ + · · ·
ln

(‖y−‖ − · · · )

‖y‖
.
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We observe that (by fixing the size of both neighborhoods) the flight time t

grows to infinity as y → 0, proportionally to ln ‖y‖. Moreover, by Lemma 2.1,

the following estimates

‖ū‖ ≤ ‖eB
+t‖ ‖u‖ ≤ e−λ̂t ‖u‖ ,

‖v‖ ≤ ‖e−B
−t‖ ‖v̄‖ ≤ e−γ̂t ‖v̄‖ ,

hold, which implies that the map is strongly contracting in the non-leading

stable directions and strongly expanding in the non-leading unstable directions,

provided ‖y‖ is sufficiently small. In fact, it follows from formulae (2.4.10) and

(2.4.11) that:

‖ū‖ ≤ C1‖x̄‖
α1 , C1 = (‖u+‖ + ε)/(‖x+‖ − ε)α1 , α1 = λ̂/λ > 1 ,

‖v‖ ≤ C2‖y‖
α2 , C2 = (‖v−‖ + ε)/(‖y−‖ − ε)α2 , α2 = γ̂/γ > 1 .

Since ‖x+‖ 6= 0 and ‖y−‖ 6= 0, it follows that C1,2 6= ∞, and therefore the

domain of the map (x, y, u, v) 7→ (x̄, ȳ, ū, v̄) is located inside a wedge tangential

to the extended stable subspace EsE at the point M+, and the range of the

map lies inside a wedge tangential to the extended unstable subspace EuE at

the point M−. Figures 2.4.5–2.4.8 illustrate the action of the map for four-

dimensional saddles and saddle-focus (2,1).

2.5. Topological classification of structurally stable
equilibrium states

The contrast between the linearized system

ẏ = Ay (2.5.1)

and the original nonlinear system

ẏ = Ay + g(y) (2.5.2)

is that integrating the latter is, generally speaking, an unrealistic problem.

This leads us to a very natural question first posed by Poincaré and Lyapunov:

Under what conditions do trajectories of the system (2.5.2) near the equilib-

rium state behave similarly to the trajectories of the linearized system (2.5.1)?

The answer presumably depends on what we understand by “similar be-

havior”. The reader should be aware that the classical understanding of this

question differs significantly from the contemporary view.
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Fig. 2.4.5. The map near a saddle in R4. The point O has two eigenvalues with positive
real parts and two eigenvalues with negative real parts, i.e. the saddle has a two-dimensional
stable and a two-dimensional unstable subspace.

Fig. 2.4.6. The map near a saddle in R4. The point O is a saddle with a three-dimensional
stable subspace Es and a one-dimensional unstable subspace Eu.
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Fig. 2.4.7. The map along trajectories passing by a saddle-focus (2,1). The difference between
the maps is in the dimension of the stable and the unstable subspaces. See the location of
eigenvalues.

Fig. 2.4.8. The map along trajectories passing by a saddle-focus (2,1). The difference between
the maps is in the dimension of the stable and the unstable subspaces. See the location of
eigenvalues.
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In contemporary terminology, two systems are said to behave identically if

they are topologically equivalent.

Definition 2.2. Two n-dimensional systems

ẏ = Y1(y) and ẏ = Y2(y)

defined in regions D1 and D2 respectively, are topologically equivalent in

subregions U1 ⊆ D1 and U2 ⊆ D2 if there exists a homeomorphism

η : U1 → U2 ,

which maps a trajectory (a semi-trajectory, an interval of a trajectory) of the

first system into a trajectory (a semi-trajectory, an interval of a trajectory) of

the second one while preserving the orientation (direction of motion).

We also emphasize that the question of equivalence of the original nonlinear

system and its linearization at an equilibrium state is senseless if there is at

least one characteristic exponent on the imaginary axis. That is, one may not

expect topological equivalence between both systems if the equilibrium state

is structurally unstable. The following two examples illustrates this point for

the planar case.

The first example deals with a pair of purely imaginary exponents, λ1,2 =

±iω, ω > 0. Let us consider a nonlinear system

ẋ = −ωy + g1(x, y) ,

ẏ = ωx+ g2(x, y) ,
(2.5.3)

where we suppose that the functions g1 and g2 vanish at the origin along with

their first derivatives. The general solution of the associated linearized system

is given by

x = x0 cos(ωt) − y0 sin(ωt) ,

y = y0 cos(ωt) + x0 sin(ωt) .

Here, phase trajectories are closed curves (concentric circumferences) sur-

rounding the origin (Fig. 2.5.1). Such an equilibrium state is called a center.

The phase portrait of the nonlinear system is rather different in the general

case. For instance, if we assume g1 = −x(x2 + y2) and g2 = −y(x2 + y2),
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Fig. 2.5.1. A center. Every trajectory here is a “counter-clockwise”concentric cirle.

then the following general solution of Eq. (2.5.3) can be easily found in polar

coordinates:

r2 =
1

2t+ r−2
0

, ϕ = ωt+ ϕ0 .

In this case, all trajectories have the shape of spirals winding around the

origin as shown in Fig. 2.5.2. Evidently, in any small neighborhoods of both

equilibrium states there is no homeomorphism that maps trajectories of such

a system onto those of the linearized system (since a homeomorphism maps

closed curves onto closed curves). Thus, our system is not topologically equiv-

alent to its linearization.

For our second example, let one exponent λ1 be equal to zero and let the

other exponent be equal to λ2 = −λ < 0. This system can be written in the

form

ẋ = g1(x, y) ,

ẏ = −λy + g2(x, y) ,
(2.5.4)
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Fig. 2.5.2. Accounting for nonlinearities causes a change in the behavior of the trajectories
near the center. They behave like spirals winding around O.

where the functions g1 and g2 vanish at the origin along with their first deriva-

tives. The solution of the linearized system is

x = x0 , y = e−λty0 .

The phase portrait is shown in Fig. 2.5.3. The entire x-axis consists of equi-

librium states of the linearized system, and, each equilibrium state attracts

only one pair of trajectories. It is obvious that the nonlinear system may

preserve a continuum of equilibrium states only for a very special choice of

functions g1 and g2 and therefore topological equivalence between the original

and linearized system is scarcely expected here.

Figure 2.5.4. demonstrates the phase portrait when g1 = x2, g2 = 0. One

can see that the two local phase portraits have nothing in common. The

equilibrium state in Fig. 2.5.4 is called a saddle-node.

The problem of topological classification of structurally stable equilibrium

states finds its solution in the following theorem:

Theorem 2.1. (Grobman Hartman) Let O be a structurally stable equilib-

rium state. Then, there are neighborhoods U1 and U2 of O where the original

and the linearized systems are topologically equivalent.
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Fig. 2.5.3. Each point on the x-axis is a stable equilibrium state which attracts a pair of
trajectories.

Fig. 2.5.4. A structurally unstable point of saddle-node type. The point O is stable in the
“node” region (x < 0) but unstable in the “saddle” region (x > 0).
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We note that the equilibrium state of the nonlinear system (2.5.2) is then

said to be locally topologically equivalent to that of its linear part (2.5.1).

Let us go further and set up the question of topological equivalence among

linear systems. Assign to a structurally stable equilibrium state the topological

type (k, n− k) when k characteristic exponents lie to the left of the imaginary

axis, and (n− k) to the right of it.

Theorem 2.2. Linear systems with equilibrium states of the same type are

topologically equivalent.

The proof of this theorem is constructive in the sense that the homeomor-

phism η: R
n 7→ R

n may be found explicitly. For example, let us consider two

linear systems, the first has a focus at the origin

ẋ = −x+ y ,

ẏ = −x− y
(2.5.5)

and the second one has a node

ẋ = −x ,

ẏ = −
1

3
y .

(2.5.6)

Both systems are topologically equivalent, because the homeomorphism

(x, y) 7→ (x cos(τ) + y3 sin(τ) , y3 cos(τ) − x sin(τ)) ,

where τ(x, y) = − ln(x2 + y6)/2, maps trajectories of (2.5.6) onto trajectories

of (2.5.5).

A very important conclusion follows directly from Theorems 2.1 and 2.2,

namely that an n-dimensional system can have only (n+1) different topological

types of structurally stable equilibrium states.

In particular, any system with a structurally stable equilibrium state of

type (k, n− k) is locally topologically equivalent to the system

ẋ = Akx (2.5.7)

with the matrix

Ak =

(
−Ik 0

0 In−k

)

,
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where by Ii we denote the i-dimensional identity matrix. If we assume x =
( u

v

)

where u ∈ R
k, v ∈ R

n−k, then the system (2.5.7) may be represented in the

form

u̇ = −u ,

v̇ = v .
(2.5.8)

The solution of (2.5.8) is given by

u(t) = e−Iktu0 , v(t) = eIn−ktv0 . (2.5.9)

In the case k = n all trajectories of the system (2.5.9) tend to the equilib-

rium state at the origin as t → +∞. Hence, by virtue of Theorems 2.1 and

2.2, any trajectory from a sufficiently small neighborhood of an equilibrium

state of type (n, 0) of the nonlinear system also tends to the equilibrium state

as t → +∞. Such an equilibrium state is called a stable topological node or

sink. We remark that the n-dimensional stable foci and nodes considered in

the previous section are topologically equivalent by virtue of Theorem 2.2 and

therefore both are stable sinks.

For an equilibrium state O of type (0, n), any trajectory from a small

neighborhood of O tends to O as t → −∞. As t → +∞ any trajectory,

excluding O, leaves the neighborhood. Such an equilibrium state is called an

unstable topological node or source.

We call the remaining structurally stable equilibrium states topological sad-

dles. It follows from the Grobman–Hartman theorem that a topological saddle

of the original nonlinear system has local stable and local unstable manifolds

W s
loc and Wu

loc of dimension k and (n− k), respectively. Namely, if h is a local

homeomorphism which maps the trajectories of the linearized system onto tra-

jectories of the nonlinear system (such a homeomorphism exists here by virtue

of Theorem 2.1), then the images hEs and hEu of the stable and unstable in-

variant subspaces of the linearized system are, exactly, the stable and unstable

manifolds. As in the linear case, a positive semi-trajectory starting with any

point in W s
loc lies entirely in W s

loc and tends to O as t → +∞. Similarly, a

negative semi-trajectory starting with any point of W u
loc lies entirely in W u

loc

and tends to O as t → −∞. The trajectories of points outside of W s
loc ∪W

u
loc

escape from any neighborhood of the saddle as t → ±∞ The manifolds W s
loc

and Wu
loc are invariant manifolds, i.e. they consist of whole trajectories (until

they leave some neighborhood of the topological saddle).
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It is obvious that if two systems X1 and X2 are topologically equivalent,

the homeomorphism establishing this topological equivalence, maps the equi-

librium states of system X1 onto equilibrium states of system X2. If O1 is an

equilibrium state of system X1 and O2 is the image of O1 under the homeo-

morphism, then a trajectory asymptotic to O1 as t → +∞ (resp. t → −∞) is

mapped into a trajectory asymptotic to O2 as t → +∞ (t → −∞). Conse-

quently, the dimensions of the stable (unstable) manifolds of locally topologi-

cally equivalent saddles are identical. Thus, we arrive at the following theorem

Theorem 2.3. Two structurally stable equilibrium states are locally topologi-

cally equivalent if and only if they are of the same topological type.

The topological approach has excellently resolved the classification problem

of structurally stable equilibrium states. However, it does not provide answers

to a number of important questions such as the question concerning the ex-

ponential velocity of the convergence to an equilibrium state, of the character

(monotonic or oscillating) of this convergence, the smoothness of the invariant

manifolds, etc. These subtle (i.e. indistinguishable by local homeomorphisms)

details of the behavior of the trajectories near equilibrium states are of the

great importance in the study of various homoclinic bifurcations which play a

principal role for dynamical systems with complex dynamics.

2.6. Stable equilibrium states. Leading and
non-leading manifolds

Let an n-dimensional system of the C
r (r ≥ 1) class of smoothness have a

structurally stable equilibrium state O at the origin. Near O the system is

written in the form

ẏ = Ay + h(y) , (2.6.1)

where A is a constant (n × n)-matrix whose spectrum, defined as the set of

all eigenvalues of A, lies outside of the imaginary axis in the complex plane,

h: R
n → R

n is a C
r function such that

h(0) = 0 , h′y(0) = 0 . (2.6.2)

Let O be a stable equilibrium, i.e. all n characteristic exponents (λ1, . . . , λn)

have negative real parts. For a solution of the linearized system

ẏ = Ay (2.6.3)
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estimate (2.3.22) holds (according to Lemma 2.1) which implies that any tra-

jectory tends to the origin exponentially. Does this property of exponential

convergence of trajectories to the equilibrium state persist for the original

nonlinear system? The following theorem answers this question in the affirma-

tive.

Theorem 2.4. For a sufficiently small δ > 0 and for any y0 such that ‖y0‖ <

δ, the trajectory y(t) of the nonlinear system (2.6.1) starting with y0 satisfies

the following inequality for all t ≥ 0:

‖y(t)‖ ≤ Ce(max Reλi+ε)t ‖y0‖ , (2.6.4)

where the positive constant ε > 0 may be chosen infinitesimally small by means

of decreasing δ, and C > 0 is some factor depending upon the choice of the basis

in R
n.

Proof. From (2.6.1), given the square of the norm

‖y(t)‖2 = 〈y(t), y(t)〉 ,

where 〈·, ·〉 denotes a scalar product in R
n, we have

d

dt
‖y(t)‖2 = 2〈y(t), ẏ(t)〉 = 2〈y,Ay〉 + 2〈y, h(y)〉 . (2.6.5)

By expanding the function h(y) in a Taylor series near O, we have

h(y) = h(0) + h′y(0)y + o(‖y‖) . (2.6.6)

It follows from (2.6.2) that

h(y) = o(‖y‖) ,

i.e. given ε > 0 we may choose δ > 0 such that

‖h(y)‖ ≤
1

2
ε‖y‖ (2.6.7)

for all y such that ‖y‖ ≤ δ. From (2.6.7) we obtain the estimate

|2〈y, h(y)〉| ≤ ε‖y‖2 (2.6.8)

for the second term in (2.6.5). In order to obtain an estimate for the first

term 2〈y,Ay〉 in (2.6.5) we choose the Jordan basis similar to the case when
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we estimated solutions of linear systems (Lemma 2.1). In the given basis

the matrix A is assigned by formulae (2.3.5)–(2.3.7), (2.3.10) and (2.3.11).

Furthermore, we will choose the basis so that non-zero values δj in (2.3.11) are

equal to ε/2. For components of the vector z = Ay we have

zi = λiyi (2.6.9)

when λi is real and simple; or

zi = yiReλi − yi+1Imλi ,

zi+1 = yi+1Reλi + yiImλi
(2.6.10)

when λi, λi+1 is a pair of complex-conjugate characteristic exponents; or

zi+j = λi+jyi+j + δjyi+j+1 , j = 1, . . . , k (2.6.11)

when λi+1 = · · · = λi+k is an exponent of multiplicity k (here δk ≡ 0); or

zi+2j−1 = yi+2j−1Reλi+1 − yi+2jImλi+1 + δjyi+2j+1

zi+2j = yi+2jReλi+1 − yi+2j−1Imλi+1 + δjyj+2j+2

(j = 1, . . . , k; δk ≡ 0)

(2.6.12)

when λi+1 = λi+3 = · · · = λi+2k−1 and λi+2 = λi+4 = · · · = λi+2k are the

complex-conjugate characteristic exponents of multiplicity k. Recall that the

quantities δj in (2.6.11) and (2.6.12) may be either 0 or ε/2.

It follows from formulae (2.6.9) and (2.6.10) that if the exponents are sim-

ple, then

〈y, z〉 =

n∑

i=1

y2
iReλi . (2.6.13)

In the case of multiple characteristic exponents from (2.6.9)–(2.6.12) we

obtain the estimate

|〈y, z〉 −
n∑

i=1

y2
i Reλi| ≤

ε

2




∑

realλi=λi+1

|yiyi+1| +
∑

complexλi=λi+2

|yiyi+2|





and since |yi yj | ≤
1
2 (y2

i + y2
j ), we obtain

|〈y, z〉 −
n∑

i=1

y2
i Reλi| ≤

ε

2
‖y‖2 . (2.6.14)
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It follows from (2.6.5), (2.6.8) and (2.6.13)–(2.6.14) that we may estimate

any trajectory y(t) as

d

dt
‖y(t)‖2 ≤ 2(max Reλi + ε)‖y(t)‖2

or
d

dt
‖y(t)‖ ≤ (max Reλi + ε)‖y(t)‖ (2.6.15)

unless y(t) leaves the δ-neighborhood of the point O. By virtue of (2.6.15), the

norm of y(t) decays monotonically as t increases and therefore, if ‖y0‖ ≤ δ,

then ‖y(t)‖ ≤ δ for t ≥ 0. Thus, the inequality (2.6.15) is valid for any positive

semi-trajectory starting inside the δ-neighborhood of the point O.

In order to integrate the inequality, we notice that (2.6.15) is equivalent to

d

dt

(

‖y(t)‖e−(max Reλi+ε)t
)

≤ 0 .

This implies that ‖y(t)‖e−(max Reλi+ε)t decreases monotonically as t increases,

whence we get

‖y(t)‖e−(max Reλi+ε)t ≤ ‖y0‖

which coincides with (2.6.4) when C = 1. The transition to an arbitrary basis

leads to the appearance of the coefficient C 6= 1 in (2.6.4) (see (2.3.41)).

Remark. If the class of smoothness of the system is C
2 or higher and if

the characteristic exponent nearest to the imaginary axis is simple, one may

set ε = 0 in the inequality (2.6.4).

Indeed, in this case the first term in the right-hand side of (2.6.5) is esti-

mated as

2〈y,Ay〉 ≤ max (Reλi)

n∑

i=1

y2
i .

Therefore, the value ε in (2.6.15) is determined only by the inequality (2.6.7).

If h ∈ C
r (r ≥ 2), then the reminder term of Taylor series (2.6.6) is estimated

as

‖y‖2(max h′′) ,

where the maximum is taken in the δ-neighborhood of O. It follows that the

constant ε in (2.6.7) may be chosen such that

ε ≤ K‖y‖ .
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Since y decreases exponentially, the constant ε in (2.6.15) may be replaced by a

time-dependent function ε(t), which decays at least exponentially as t→ +∞,

and in particular, the integral
∫∞

0
ε(s)ds is finite.

It follows from (2.6.15) that

d

dt
ln ‖y(t)‖ ≤ max Reλi + ε(t)

whence

ln ‖y(t)‖ ≤ ln ‖y0‖ + t max Reλi +

∫ t

0

ε(s) ds

or, due to the convergence of the integral,

ln ‖y(t)‖ ≤ ln ‖y0‖ + t max Reλi + lnC ,

from which we obtain inequality (2.6.4) with ε = 0.

We remark that for h ∈ C
1 the integral

∫∞

0
ε(s)ds may in general diverge.

For example, in the case where y ∈ R
1 and

h(y) =

∫ y

0

ds

ln |s|
,

if y decays exponentially to zero, then the value ε(t) tends to zero asymptoti-

cally as ∼ |h(y(t))|/|y(t)| ∼ 1
t .

The above theorem asserts that a topologically stable node is an exponen-

tially stable equilibrium state. As we have seen in Sec. 2.3, in the linear case

the velocity and the character of convergence of the most of trajectories to the

equilibrium are determined by the leading coordinates. This feature persists in

the nonlinear case as well. Here, the role of the non-leading subspace is played

by an invariant non-leading manifold, whose existence in high-dimensional

nonlinear systems was discovered by Petrovsky.

Let us reorder the characteristic exponents so that

0 ≥ Reλ1 ≥ Reλ2 ≥ · · · ≥ Reλn .

Let m > 0 be such that the first m exponents have the same real part

Reλi = Reλ1 , (i = 1, . . . ,m)

and

Reλi < Reλ1 , (i = m+ 1, . . . , n) .
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Assume m < n. Each vector y may be uniquely decomposed as

y = u+ v ,

where u = (u1, . . . , um) and v = (v1, . . . , vn−m) are the projections onto the

leading and the non-leading eigen-subspaces EL and Ess of the matrix A, re-

spectively. With the new variables the system takes the form

u̇ = A1u+ f(u, v) ,

v̇ = A2v + g(u, v) ,
(2.6.16)

where spectrA1 = {λ1, . . . , λm} and spectrA2 = {λm+1, . . . , λn}, the functions

f, g ∈ C
r and

f(0) = 0 , g(0) = 0 , f ′(0) = 0 , g′(0) = 0 (2.6.17)

Definition 2.3. Let U be a neighborhood of the point 0. A set W ⊆ U is

said to be locally invariant if a trajectory starting with any point M ∈ W lies

entirely in W until it leaves U.

Theorem 2.5. (On non-leading manifold) In a neighborhood U of a sta-

ble equilibrium state O there exists an (n−m)-dimensional C
r-smooth invari-

ant manifold W ss
loc (non-leading or strongly stable) which passes through O and

is tangential at O to the non-leading subspace Ess : u = 0. A trajectory y(t)

starting with any point y0 outside W ss
loc tends to 0 tangentially to the leading

subspace v = 0. Moreover, for t ≥ 0

‖y(t)‖ ≥ Ce(Reλ1−ε)t ρ(y0,W
ss
loc) , (2.6.18)

where ρ(y0,W
ss
loc) denotes the distance between y0 and W ss

loc.

In contrast, all trajectories from W ss
loc tend to O faster, namely

‖y(t)‖ ≤ Ce(Reλm+1+ε)t ‖y0‖ . (2.6.19)

The proof of the existence and smoothness of the non-leading manifold will

be given in Chap. 5. For now, let us prove the second part of the theorem,

namely, inequalities (2.6.18) and (2.6.19).

Since W ss
loc is tangential to the subspace u = 0, it is defined by an equation

of the form

u = ϕ(v) , (2.6.20)
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where ϕ ∈ C
r and

ϕ(0) = 0 , ϕ′(0) = 0 . (2.6.21)

Since W ss
loc is an invariant set it follows that if u0 = ϕ(v0), then u(t) =

ϕ(v(t)) for t ≥ 0, and therefore

u̇ = ϕ′(v)v̇ for u = ϕ(v) ,

or, by virtue of (2.6.16),

A1ϕ(v) + f(ϕ, v) = ϕ′(v)(A2v + g(ϕ, v)) . (2.6.22)

Let us introduce a new variable

w = u− ϕ(v)

so that in the new coordinates the equation of W ss
loc is w = 0. Such a change

of variables is called a straightening of a manifold. The system (2.6.16) is now

recast as

v̇ = A2v + g(w + ϕ(v), v) ,

ẇ = A1w +A1ϕ(v) + f(w + ϕ(v), v) − ϕ′(v)v̇

= A1w +A1ϕ(v) + f(w + ϕ(v), v) − ϕ′(v)(A2v + g(w + ϕ(v), v)) .

(2.6.23)

Using (2.6.22), the last equation may be rewritten as

ẇ = A1w + [f(w + ϕ, v) − f(ϕ, v)] − ϕ′(v) [g(w + ϕ, v) − g(ϕ, v)]

or, since the terms in the square brackets vanish when w = 0, as

ẇ = (A1 + g̃(w, v))w , (2.6.24)

where

g̃ ≡

[∫ 1

0

f ′u(ϕ(v) + sw, v) ds− ϕ′(v)

∫ 1

0

g′u(ϕ(v) + sw, v) ds

]

∈ C
r−1 .

Moreover, by virtue of (2.6.17) and (2.6.21),

g̃(0, 0) = 0 .

From (2.6.24) for the norm of the vector w(t) we have

‖w(t)‖
d

dt
‖w(t)‖ = 〈w(t), (A1 + g̃(w, v))w(t)〉 .



72 Chapter 2. Structurally Stable Equilibrium States of Dynamical Systems

Because g̃(0, 0) = 0, it follows that

|〈w(t), g̃(w, v)w(t)〉| ≤
ε

2
‖w(t)‖2

provided that ‖y0‖ is sufficiently small. Hence

d

dt
‖w‖ ≥

〈w,A1w〉

‖w‖
−
ε

2
‖w‖ .

Now, following the same steps as in the proof of Theorem 2.4, we get that

d

dt
‖w‖ ≥ (Reλ1 − ε)‖w‖ . (2.6.25)

Finally we obtain

‖w(t)‖ ≥ e(Reλ1−ε)t ‖w0‖ ,

i.e. (2.6.18) is justified.

Let us now show that if an initial point lies outside of W ss
loc, the associated

trajectory tends to O tangentially to the leading subspace v = 0. To do this,

we consider a value z(t) = ‖v(t)‖/‖w(t)‖, w 6= 0, and show that z(t) → 0

as t → +∞. For d‖w(t)‖/dt we have estimate (2.6.25). Analogously, from

(2.6.23) we can obtain

d

dt
‖v‖ ≤ (Reλm+1 + ε)‖v‖ + ‖w‖ max ‖g′u‖ , (2.6.26)

where the maximum is taken in a neighborhood of diameter ‖y(t)‖ of the point

O. From here and (2.6.25) it follows that

d

dt
z =

1

‖w‖

d

dt
‖v‖ − z

1

‖w‖

d

dt
‖w‖ ≤ κ(t) − µz , (2.6.27)

where µ = Reλm+1 − Reλ1 + 2ε > 0 and

κ(t) → 0 as t→ +∞ . (2.6.28)

By (2.6.27) we obtain d
dte

µtz(t) ≤ eµtκ(t) or

z(t) ≤ z0e
−µt +

∫ t

0

e−µ(t−s)κ(s) ds .

In order to prove that z(t) → 0, we must show that

I(t) =

∫ t

0

e−µ(t−s)κ(s) ds→ 0 as t→ ∞ .
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For arbitrary T > 0 we can write

I(t) =

∫ T

0

e−µ(t−s)κ(s) ds+

∫ t

T

e−µ(t−s)κ(s) ds

whence

I(t) ≤ e−µt

(
∫ T

0

eµs ds

)

max
s≥0

κ(s) +

(∫ t

0

e−µ(t−s) ds

)

max
s≥T

κ(s)

≤ e−µt
1

µ
eµT max

s≥0
κ(s) +

1

µ
max
s≥T

κ(s) . (2.6.29)

By virtue of (2.6.28), the second summand in (2.6.29) can be made to

be infinitesimally small if we choose a sufficiently large T . By choosing a

sufficiently large t, the first term in (2.6.29) can be made infinitesimally small

too. Therefore, I(t) → 0 as t→ +∞.

Thus, if w0 6= 0, then ‖v(t)‖/‖w(t)‖ → 0, i.e. any trajectory that does

not lie in W ss
loc, touches tangentially the leading subspace as t → +∞. In

particular, this implies that W ss
loc is a unique m-dimensional smooth invariant

manifold which is tangential to the non-leading subspace at the point O.

In order to prove estimate (2.6.19) for trajectories from W ss
loc, we notice that

in the restriction of the system (2.6.23)–(2.6.24) to the non-leading manifold

v̇ = A2v + g(ϕ(v), v) (2.6.30)

the point O is a stable equilibrium state with characteristic exponents (λm+1,

. . . , λn). Therefore, the exponential estimate (2.6.19) holds for system (2.6.30)

by virtue of Theorem 2.4. End of the proof.

It should also be noticed that the theorem on the non-leading manifold

is valid for system (2.6.30). This implies that most trajectories from W ss
loc

tend to O at the rate eReλm+1t. The exclusive trajectories that tend to O

faster compose a C
r-smooth manifold W sss

loc which is tangential at O to the

eigen-subspace corresponding to characteristic exponents λi of A such that

Reλi < Reλm+1. The non-leading manifold theorem is also applied to the

system onW sss
loc , etc. As a result we obtain a hierarchy of non-leading manifolds

W ss,W sss,W ssss, . . . , composed of trajectories which tend to the equilibrium

point at ever increasing rates.

As in the linear case, there are two basic kinds of stable equilibrium states

according to the behavior of the system in the leading coordinates: a stable
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node and a stable focus. The point O is called a node if m = 1, i.e. the leading

characteristic exponent λ1 is simple and real:

0 > −λ = λ1 > Reλi (i = 2, . . . , n) . (2.6.31)

The point O is called a focus if m = 2 and the leading characteristic exponents

comprise a pair of complex-conjugate numbers:

0 > Reλ1 = Reλ2 > Reλi (i = 3, . . . , n) . (2.6.32)

It is clear that if the point O is either a node or a focus, then for any matrix

close to A, it remains a node or a focus, respectively. Conversely, in the case

where neither (2.6.31) nor (2.6.32) holds, a small perturbation of the matrix

A always ensures the validity of at least one of these relations.

In the case where the equilibrium state is a node, the non-leading manifold

is (n − 1)-dimensional and it partitions a neighborhood of the point O into

two components. Trajectories outside of W ss
loc approach O tangentially to the

w-axis along two opposite directions, from side w > 0 for the first compo-

nent, and from side w < 0 for the second. Equation (2.6.24) for the leading

coordinate w has the form

ẇ = −λw + o(w) . (2.6.33)

It is evident that trajectories from each component tend to O monotonically

(see Figs. 2.6.1 and 2.6.2).

When the equilibrium state is a focus, the non-leading manifold is (n− 2)-

dimensional and it does not divide a neighborhood of the point O. If λ1,2 =

−ρ± iω, then Eq. (2.6.24) of the leading coordinates may be written as

ẇ1 = (−ρ+ · · · )w1 − (ω + · · · )w2 ,

ẇ2 = (−ρ+ · · · )w2 + (ω + · · · )w1 ,
(2.6.34)

or in polar coordinates as

ṙ = (−ρ+ · · · )r ,

ϕ̇ = ω + · · · ,
(2.6.35)

hereafter the ellipsis denotes terms of a higher order.

We can see from (2.6.35) that the motion of trajectories tending to O has

an oscillatory character. The trajectories that do not lie in W ss
loc have the shape
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Fig. 2.6.1. A stable node. There is a certain hierarchy of strongly stable local manifolds.
Any trajectory converges monotonically to the node O.

Fig. 2.6.2. In contrast to Fig. 2.6.1, the loci of convergence of trajectories to the node include
an oscillating character, namely, a focus.
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Fig. 2.6.3. A stable focus.

of spirals tending toward O without any definite direction but tangentially to

the leading plane v = 0 as shown in Fig. 2.6.3.

For stable equilibrium states of nonlinear systems the non-leading manifold

plays a role similar to that of the non-leading invariant subspace in the linear

case. Recall that in the linear case an equilibrium point has also a leading

invariant subspace which, however, has no adequate analogue in the non-linear

case. The difference is that in general the leading manifold of a non-linear

system may have a finite smoothness only.

Example. A two-dimensional system:

ẇ = −w ,

v̇ = −2v + w2 ,
(2.6.36)

has a stable node at the origin O. The general solution is given by

w = w0e
−t , v = v0e

−2t + w2
0te

−2t . (2.6.37)
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Fig. 2.6.4. The only non-leading local manifold W ss
loc

. The leading local manifold W L
loc

of a
node cannot be uniquely defined.

If we take two trajectories, one from the region w > 0 and another from

w < 0, their union with O forms an invariant manifold tangential to the

leading subspace EL at O, see Fig. 2.6.4. Any such manifold can be considered

as a leading one but each has only C
1-smoothness at the point O because, by

virtue of (2.6.37),
dv

dw
= e−t

(
2v0
w0

− w0 + 2w0t

)

,

whence
d2v

dw2
=

2v0
w2

0

− 2 + 2t

hence, d2v/dw2 → +∞ as t→ +∞. In the general case the following theorem

holds (see Chap. 5 for the proof).

Theorem 2.6. The system (2.6.16) has an m-dimensional invariant leading

manifold WL
loc which is tangential to the subspace v = 0 at the equilibrium state
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O and its smoothness is equal to min (r, rL) ≥ 1, where

rL =

[
Reλm+1

Reλ1

]

. (2.6.38)

Here, [x] denotes the largest integer which is strictly less than x.

Remark 1. The leading manifold is, generally speaking, non-unique (see

example above).

Remark 2. It follows from (2.6.38) that when Reλ1 tends to zero, the

smoothness of the leading manifold increases to ∞.

The case where Reλi > 0, (i = 1, . . . , n), is reduced to that considered

above by reversion of time t→ −t. The following estimate therefore holds

‖y(t)‖ ≤ Ce(min Reλi−ε)|t| y0 for t ≤ 0 . (2.6.39)

This means that such an equilibrium state is exponentially completely un-

stable. In complete analogy with stable equilibrium states (but for t→ −∞),

the non-leading manifold W uu
loc and the leading manifold WL

loc may be defined.

In correspondence with the behavior of trajectories in the leading coordinates,

two basic kinds of equilibrium states are selected:

— when the characteristic exponent nearest to the imaginary axis is real

and simple (i.e. of multiplicity m = 1), the trajectories not lying in W uu
loc

leave O as t → +∞ along one of two opposite directions tangential to

the leading axis. Such an equilibrium state is called an unstable node;

— in the case where a pair of simple complex-conjugate characteristic ex-

ponents is nearest to the imaginary axis, all trajectories not lying in

Wuu
loc spiral away from O without any definite direction but tangentially

to the leading plane as t→ +∞. Such an equilibrium state is called an

unstable focus.

2.7. Saddle equilibrium states. Invariant manifolds

Let k characteristic exponents of the structurally stable equilibrium state O

lie to the left of the imaginary axis and (n− k) to the right of it, i.e. Reλi <

0, i = 1, . . . , k and Reλj > 0, j = k + 1, . . . , n, where k 6= 0, n.
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We have already seen in Sec. 2.5 that such an equilibrium state has the

stable and the unstable invariant sets W s
loc and Wu

loc which are locally homeo-

morphic to a k-dimensional and an (n−k)-dimensional disk, respectively. The

invariant sets W s
loc and Wu

loc intersect at only one point, namely, the equilib-

rium state O. If we puncture O off, both sets consist of semi-trajectories: W s
loc

is composed of positive semi-trajectories and W u
loc is composed of negative

semi-trajectories.

Continuation of W s
loc and Wu

loc along trajectories outside of a neighborhood

of the saddle yields us the global stable invariant manifold W s and the global

unstable invariant manifold W u of the equilibrium state O. In the case of a

linear system they are just a k-dimensional and an (n− k)-dimensional invari-

ant subspaces of the matrix A. In the nonlinear case the manifolds W s and

Wu may be embedded in R
n in a very complicated way. We will see below

how the relative location of both W s and Wu in the phase space greatly af-

fects the global dynamics of the system. This is one reason why calculation

(analytical, when possible, and numerical) of these manifolds is a key element

in the qualitative study of specific systems.

We must emphasize that the results which may be obtained from the

Grobman–Hartman theorem do not allow one to determine W s or Wu, or

to estimate their smoothness. At the same time, the local manifolds W s
loc and

Wu
loc are well-defined smooth objects. The existence of analytical invariant

manifolds of a saddle in analytic systems was proven by Poincaré as well as by

Lyapunov who used a different method (in terms of the so-called conditional

stability). For smooth systems Perron and Hadamard obtained similar results.

A linear non-singular change of variables transforms a nonlinear system

near a saddle equilibrium state into the following form

u̇ = A−u+ f(u, v) ,

v̇ = A+v + g(u, v) ,
(2.7.1)

where u ∈ R
k, v ∈ R

n−k, spectrA− = {λ1, . . . , λk}, spectrA+ = {λk+1, . . . ,

λn} and f and g are some C
r-smooth (r ≥ 1) functions which vanish at the

origin along with their first derivatives.

Theorem 2.7. A structurally stable saddle O has C
r-smooth invariant man-

ifolds W s
loc and Wu

loc (see Figs. 2.7.1 and 2.7.2) whose equations are

W s
loc : v = ψ(u) (2.7.2)

Wu
loc : u = ϕ(v) (2.7.3)
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Fig. 2.7.1. The local stable W s
loc

and the unstable manifold W u
loc

of a saddle on the plane.

Fig. 2.7.2. Same as Fig. 2.7.1 but in R3.
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where

ψ(0) = 0 , ψ′(0) = 0 (2.7.4)

ϕ(0) = 0 , ϕ′(0) = 0 . (2.7.5)

We prove this theorem in the next section.

The condition of invariance of the manifolds W s
loc and Wu

loc may be

expressed as

v̇ = ψ′(u)u̇ when v = ψ(u) ,

u̇ = ϕ′(v)v̇ when u = ϕ(v) ,

or

A+ψ(u) + g(u, ψ) = ψ′(u)(A−u+ f(u, ψ)) (2.7.6)

A−ϕ(v) + f(ϕ, v) = ϕ′(v)(A+v + g(ϕ, v)) . (2.7.7)

Relations (2.7.6) and (2.7.7) yield an algorithm for computing the invariant

manifolds near the saddle. First of all we expand ϕ and ψ in the Taylor series

with symbolic coefficients and then substitute them into (2.7.6) and (2.7.7)

and collect similar terms. As a result the formulae obtained allow one to

sequentially determine any number of terms in the expansions of the functions

ϕ and ψ through the Taylor coefficients of the functions f and g.

For example, for the two-dimensional analytic system

u̇ = −λu+
∑

i+j≥2

αiju
ivj ,

v̇ = γv +
∑

i+j≥2

βiju
ivj

Eq. (2.7.6) has the form

γψ +
∑

i+j≥2

βiju
iψj = ψ′(u)(−λu+

∑

i+j≥2

αiju
iψj) .

If we substitute the expression

ψ(u) = ψ2u
2 + ψ3u

3 + · · ·
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with indefinite coefficients ψi into this equation and equate the coefficients of

u2, we obtain

γψ2 + β20 = −2λψ2 ,

hence we find

ψ2 = −β20/(2λ+ γ) .

Having equated coefficients of u3, we obtain

γψ3 + β30 + β11ψ2 = −3λψ3 + 2ψ2α20 ,

yielding

ψ3 = −(β30 + β11ψ2 − 2ψ2α20)/(3λ+ γ) .

Repeating this procedure, we find step by step all of the coefficients of the

Taylor expansion of the function ψ. The formula for calculating the m-th

coefficient is the following:

(mλ+ γ)ψm = Fm(βij , αij , ψ2, . . . , ψm−1) ,

where Fm is some expression which depends only upon a finite number of

coefficients α and β, and on the first (m − 1) coefficients of the expansion of

ψ. One may show that the coefficients of ψm decrease rapidly as m increases

so that the series converges.

Following the scheme previously employed for the non-leading manifold we

can locally straighten W s and Wu near O, using the change of variables

ξ = u− ψ(v) ,

η = v − ϕ(u) .

In the new coordinates the equations of the invariant manifolds become

W s
loc : η = 0 , W u

loc : ξ = 0 ,

the invariance implying that η̇ = 0 when η = 0 and ξ̇ = 0 when ξ = 0.

The system may be written as

ξ̇ = (A− + h1(ξ, η)) ξ ,

η̇ = (A+ + h2(ξ, η)) η ,
(2.7.8)

where hi ∈ C
r−1 and

hi(0, 0) = 0 , i = 1, 2 . (2.7.9)
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For convenience, let us denote the characteristic exponents with positive

real parts as γ1, . . . , γn−k. We assume also that the characteristic exponents

are ordered so that

Reλk ≤ · · · ≤ Reλ2 ≤ Reλ1 < 0 < Re γ1 ≤ Re γ2 ≤ · · · ≤ Re γn−k .

The functions h1,2 are small near the saddle and therefore, as long as the

trajectory remains in a neighborhood of the saddle, the inequalities

d

dt
‖ξ(t)‖ ≤ (Reλ1 + ε)‖ξ(t)‖ for t ≥ 0 ,

d

dt
‖η(t)‖ ≤ (Re γ1 − ε)‖η(t)‖ for t ≤ 0

hold in the Jordan basis (see the proof of Theorem 2.4). After integrating we

obtain

‖ξ(t)‖ ≤ e(Reλ1+ε)t ‖ξ0‖ for t ≥ 0 , (2.7.10)

‖η(t)‖ ≤ e(Re γ1−ε)t ‖η0‖ for t ≤ 0 . (2.7.11)

It follows from these estimates that a trajectory which lies neither in W s
loc

nor inWu
loc must escape from any small neighborhood of the saddle as t→ ±∞.

Moreover, the time that a positive semi-trajectory spends near the saddle is

proportional to ln ‖η0‖ and for the negative semi-trajectories it is proportional

to ln ‖ξ0‖.

The system (2.7.1) in its restriction to the stable manifold W s
loc: v = ψ(u)

is defined by the equation

u̇ = A−u+ h1(u, ψ(u)) , (2.7.12)

hence, the point O is a stable equilibrium state on W s
loc. In the generic case

it is either a node (provided there is only one leading coordinate), or a focus

(provided there are two leading coordinates corresponding to a pair of complex-

conjugate characteristic exponents).

In its restriction to W u
loc the system becomes

v̇ = A+v + h2(ϕ(v), v) . (2.7.13)

The point O is here a completely unstable equilibrium state, in general, it is

either a node or a focus.

Now, in complete analogy to the linear case, we can select four basic kinds

of saddle equilibria according to their behavior in the leading coordinates:
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• saddle : a node on W s
loc and on W u

loc;

• saddle-focus (2,1) : a focus on W s
loc and a node on W u

loc;

• saddle-focus (1,2) : a node on W s
loc and a focus on W u

loc;

• saddle-focus (2,2) : a focus on W s
loc and a focus on W u

loc.

Theorems 2.5 and 2.6 hold for the systems (2.7.12) and (2.7.13). This im-

plies that there exist a non-leading and a leading stable invariant sub-manifolds

W ss
loc, W

sL
loc in W s

loc and unstable invariant sub-manifolds W uu
loc , W

uL
loc in Wu

loc.

In addition, we will close this section by describing the existence of three more

smooth invariant manifolds of the saddle equilibrium state. Let us introduce

the notation

rsL =

[

λ̂

Reλ1

]

, (2.7.14)

ruL =

[
γ̂

Re γ1

]

, (2.7.15)

where λ̂ and γ̂ are the real parts of the non-leading stable and unstable ex-

ponents nearest to the imaginary axis, respectively, and where [x], as before,

denotes the largest integer which is strictly less than x.

Theorem 2.8. In a small neighborhood of a structurally stable equilibrium

state of saddle type there exist the following smooth invariant manifolds:

• a C
min (r,ruL)-smooth extended stable manifold W sE

loc which contains W s
loc

and which is tangential at the point 0 to the direct sum of the stable and

the leading unstable eigen-space of the linearization matrix (thus, W sE
loc

is transverse to W uu
loc );

• a C
min (r,rsL)-smooth extended unstable manifold W eE

loc which contains

Wu
loc and which is tangential at the point 0 to the direct sum of the

unstable and the leading stable eigen-space of the linearization matrix

(it is transverse to W ss
loc);

• a C
min (r,rsL,ruL)-smooth leading saddle manifold WL

loc = WuE
loc ∩W sE

loc .

The proof of this theorem is given in Chap. 5. We notice merely that

the manifold W sE
loc , generally speaking, is not unique, however any two such

manifolds have the same tangent at each point of W s
loc. Similarly, any two

manifolds W uE
loc are tangential everywhere on W u

loc.
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2.8. Solution near a saddle. The boundary-value
problem

In this section we discuss a method for constructing a solution of a nonlinear

system near a saddle equilibrium state. We will use this method throughout

the book and, in particular, to prove the existence and the smoothness of the

stable and the unstable manifolds of the saddle equilibrium point.

Let us consider an n-dimensional system

u̇ = A−u+ f(u, v) ,

v̇ = A+v + g(u, v) ,
(2.8.1)

where u ∈ R
k, v ∈ R

m (k+m = n), and the functions f and g are C
r-functions

(r ≥ 1) which vanish at the origin along with their first derivatives. We assume

that spectrA− = {λ1, . . . , λk} lies strictly to the left of the imaginary axis and

spectrA+ = {γ1, . . . , γm} lies strictly to the right of it.

Taking into account the nonlinearities while constructing a solution of the

system (2.8.1) near the saddle O, we may identify a number of difficulties.

Firstly, a trajectory of the system can stay near the point O for a very long

time; the closer an initial point is to the stable manifold W s
loc, the larger this

dwelling time will be. Moreover, this time is equal to infinity if the initial

point lies on W s
loc. Thus, we need formulae which can work on an infinitely

large time interval. Obviously the major obstacle here is the instability of the

initial-value problem near the saddle. Let us consider, for instance, a solution

u(t) = eA
−t u0 , v(t) = eA

+t v0

of the initial-value problem of the linearized system. When we add a small

perturbation ∆v to v0, we can estimate the corresponding increment of v(t)

which is given by

‖∆v(t)‖ = ‖eA
+t ∆v‖ � ‖∆v‖ .

This inequality implies that arbitrarily small perturbations of the initial data

may cause finite changes in the solutions provided that the integration time

is sufficiently long. This kind of instability occurs not only in computer

simulations but also in recursive construction of analytical expressions. So,

if we are looking for a solution of the system (2.8.1) using the method of

successive approximations, starting with the solution of the linear system we

will generate terms of the type (eA
+t v0)

m at the m-th step; namely, the terms

with arbitrarily large exponents.
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Of course, the same problem also arises near a completely unstable equi-

librium point. However, in this case, a solution of the initial-value problem

becomes stable upon reversing the time variable. In the case of a saddle,

however, after the change t → −t a solution becomes stable with respect to

the variables v, but unstable with respect to the variables u.

The principal idea for overcoming these obstacles is to integrate the system

with respect to the variables u in forward time, and with respect to v in

backward time. More specifically, instead of solving an initial-value problem,

we must solve the following boundary value problem:

given any u0 and v1, where ‖u0‖ ≤ ε and ‖v1‖ ≤ ε, and any τ > 0, find a

solution of the system (2.8.1) on the interval t ∈ [0, τ ] such that

u(0) = u0 , v(τ) = v1 . (2.8.2)

For linear systems the solution of the boundary value problem has the form

u(t) = eA
−t u0 , v(t) = e−A

+(τ−t)v1 . (2.8.3)

As both ‖eA
−t‖ and ‖e−A

+(τ−t)‖ are bounded for all t ∈ [0, τ ] (see inequality

(2.3.35)), this solution is stable with respect to perturbations of the initial

values (u0, v1, τ). This technique can be applied in the nonlinear case as well.

As we will see, a solution of the boundary value problem of a nonlinear system

can be obtained by the method of successive approximations, starting with

solution (2.8.3) of the linear problem.

Theorem 2.9. For sufficiently small ε > 0 and any τ ≥ 0, and u0 and v1
such that ‖u0‖ ≤ ε, ‖v1‖ ≤ ε a solution of the boundary value problem (2.8.2)

exists, is unique and depends continuously on (u0, v1, τ).

For a two-dimensional system, the existence of such a solution is geometri-

cally obvious, see Fig. 2.8.1. In a small neighborhood of the point O there are

infinitely many trajectories which begin on a straight line u = u0 and end on

the straight line v = v1. The flight-time may vary from zero to infinity.

In the general case, the proof of Theorem 2.9 is analytical. Let us consider

a system of integral equations

u(t) = eA
−t u0 +

∫ t

0

eA
−(t−s) f(u(s), v(s)) ds

v(t) = e−A
+(τ−t) v1 −

∫ τ

t

e−A
+(s−t) g(u(s), v(s)) ds

(2.8.4)
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v1

Fig. 2.8.1. The boundary value problem near a saddle. The flight time τ → +∞ as a nearby
initial point on u = u0 tends to the stable manifold v = 0.

with respect to the functions u(t) and v(t) on the interval t ∈ [0, τ ]. By

differentiating the right-hand side of formula (2.8.4) with respect to t one can

easily verify that any continuous solution {u(t), v(t)} of this system is a solution

of the system (2.8.1). Moreover, as u(0) = u0 and v(τ) = v1, the solution of the

system (2.8.4) is the desired solution of the boundary value problem (2.8.2).

The converse is also true. Let {u(t), v(t)}t∈[0,τ ] be a solution of the bound-

ary value problem. It follows from (2.8.1) that

d

dt
(e−A

−tu(t)) = e−A
−tf(u(t), v(t)) ,

d

dt
(e−A

+tv(t)) = e−A
+tg(u(t), v(t)) ,

whence

e−A
−tu(t) = u0 +

∫ t

0

e−A
−s f(u(s, v(s)) ds ,

e−A
+tv(t) +

∫ τ

t

e−A
+s g(u(s), v(s)) ds = e−A

+τ v1 ,
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and, consequently, (2.8.4) is valid. Thus, the solution of the boundary value

problem is identical to that of the system of the integral equations (2.8.4).

We will construct a solution of system (2.8.4) by the method of successive

approximations. As the first approximation we choose

u(1)(t) = eA
−tu0 , v(1)(t) = e−A

+(τ−t)v1 ,

and for each successive approximation we will use the formula

u(n+1)(t) = eA
−t u0 +

∫ t

0

eA
−(t−s) f(u(n)(s), v(n)(s)) ds ,

v(n+1)(t) = e−A
+(τ−t)v1 −

∫ τ

t

e−A
+(s−t) g(u(n)(s), v(n)(s)) ds .

(2.8.5)

We will show that this sequence converges uniformly to some limit function

{u∗(t), v∗(t)}. First, let us prove that

‖u(n)(t)‖ ≤ 2ε , ‖v(n)(t)‖ ≤ 2ε (2.8.6)

for all n and t ∈ [0, τ ]. When n = 1 it follows directly from ‖u0‖ ≤ ε and

‖v1‖ ≤ ε as well as from the inequalities

‖eA
−t‖ ≤ e−λt ,

‖e−A
+(τ−t)‖ ≤ e−γ(τ−t) ,

(2.8.7)

where λ > 0 and γ > 0 are such that the spectrum of the matrix A− lies

strictly to the left of the straight-line Re z = −λ in the complex plane, and

the spectrum of the matrix A+ lies strictly to the right of the straight-line

Re z = γ.

We will use mathematical induction to prove inequality (2.8.6) for all n.

Firstly, observe that since both f and g vanish at the point O along with their

first derivatives, it follows that

∥
∥
∥
∥

∂(f, g)

∂(u, v)

∥
∥
∥
∥
≤ δ , (2.8.8)

‖f, g‖ ≤ δ‖u, v‖ , (2.8.9)

where ‖u, v‖ denotes max{‖u‖, ‖v‖}. In this equation, the constant δ can be

made arbitrarily small by decreasing the size of the neighborhood of the point
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O. Choose ε small such that for all u and v from the 2ε-neighborhood of the

saddle, the inequality

2δmax (λ−1, γ−1) ≤ 1 (2.8.10)

is satisfied. From (2.8.5) and (2.8.9) we obtain

‖u(n+1)(t)‖ ≤ ‖u0‖ + δ

∫ t

0

e−λ(t−s)‖u(n)(s), v(n)(s)‖ ds ,

‖v(n+1)(t)‖ ≤ ‖v1‖ + δ

∫ τ

t

e−γ(s−t)‖u(n)(s), v(n)(s)‖ ds ,

whence

‖u(n+1)(t), v(n+1)(t)‖ ≤ ε+ δmax (λ−1, γ−1) max
0≤s≤τ

‖u(n)(s), v(n)(s)‖ .

Using (2.8.10) we have that if

‖u(n)(t), v(n)(t)‖ ≤ 2ε ,

then

‖u(n+1)(t), v(n+1)(t)‖ ≤ 2ε ,

i.e. (2.8.6) holds for all n. Let us now prove that

max
0≤t≤τ

‖u(n+1)(t) − u(n)(t), v(n+1)(t) − v(n)(t)‖

≤
1

2
max

0≤s≤τ
‖u(n)(s) − u(n−1)(s), v(n)(s) − v(n−1)(s)‖ . (2.8.11)

Indeed, by (2.8.5)

‖u(n+1)(t) − u(n)(t)‖

≤

∫ t

0

‖eA
−(t−s)‖ ‖f(u(n)(s), v(n)(s)) − f(u(n−1)(s), v(n−1)(s))‖ ds .

Hence, taking into account the inequality

‖f(u(n)(s), v(n)(s)) − f(u(n−1)(s), v(n−1)(s))‖

≤ max
(u,v)

∥
∥
∥
∥

∂(f, g)

∂(u, v)

∥
∥
∥
∥
‖u(n)(s) − u(n−1)(s), v(n)(s) − v(n−1)(s)‖
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we obtain from (2.8.7) and (2.8.8) that

‖u(n+1)(t) − u(n)(t)‖

≤ δλ−1 max
0≤s≤τ

‖u(n)(s) − u(n−1)(s), v(n)(s) − v(n−1)(s)‖ .

Analogously,

‖v(n+1)(t) − v(n)(t)‖

≤ δγ−1 max
0≤s≤τ

‖u(n)(s) − u(n−1)(s), v(n)(s) − v(n−1)(s)‖ .

Since the values u(n) and v(n) lie inside the 2ε-neighborhood of the saddle

for all n, the value δ in the last two inequalities satisfies (2.8.10), and hence

inequality (2.8.11) follows.

By virtue of (2.8.11) the series

∞∑

n=1

(u(n+1)(t) − u(n)(t), v(n+1)(t) − v(n)(t))

is majorized by a geometric progression with the coefficient 1/2. Therefore,

this series converges uniformly to some continuous function {u∗(t), v∗(t)}. By

construction, {u∗(t), v∗(t)} is the limit of successive approximations (2.8.5).

Taking the limit n → ∞ in (2.8.5), we determine that {u∗(t), v∗(t)} satis-

fies relation (2.8.4), i.e. we have the solution of the boundary-value problem.

Because the convergence is uniform, {u∗(t), v∗(t)} depends continuously upon

the initial value (u0, v1, τ).

To prove uniqueness, let us suppose that Eqs. (2.8.4) have a second solution

{u∗∗(t), v∗∗(t)}t∈[0,τ ]. Then, by using the same algorithm as that in the proof

of inequality (2.8.11) we may show that

‖u∗∗(t) − u∗(t), v∗∗(t) − v∗(t)‖

≤
1

2
max

0≤s≤τ
‖u∗∗(s) − u∗(s), v∗∗(s) − v∗(s)‖

for all t ∈ [0, τ ], i.e. u∗∗ ≡ u∗ and v∗∗ ≡ v∗. End of the proof.

Remark. It is clear from the proof that the result on the existence and

continuity of solutions of the boundary value problem holds when the functions

f, g in the right-hand side of system (2.8.1) depend explicitly on time. The

requirements here are that for all t the functions f and g must vanish at
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u = 0, v = 0 and the norm of their derivatives with respect to u and v must

be bounded by a small constant δ (see inequalities (2.8.8)–(2.8.10)), uniformly

with respect to t. We emphasize that the smoothness of the functions f and g

with respect to t is not required.

Theorem 2.10. The solution of the boundary-value problem depends C
r-

smoothly on (u0, v1, t, τ).

Proof. Let {u∗(t), v∗(t)}t∈[0,τ ] be a solution of the boundary value prob-

lem corresponding to (u0, v1, τ). Denote v0 = v∗(0). The trajectory {u∗, v∗}

depends C
r-smoothly on (u0, v0, t, τ) as it is a solution of the initial-value prob-

lem. Therefore to prove the theorem we must show that v0 depends smoothly

on (u0, v1, t, τ). Since v1 = v∗(t = τ) is a smooth function with respect to

(u0, v0, t, τ), it is sufficient (according to the implicit function theorem) to

verify that the derivative ∂v1/∂v0 = ∂v∗/∂v0|t=τ is non-singular.

The derivatives ∂u∗/∂v0 and ∂v∗/∂v0 can be found as solutions of the

system of variational equations

U̇ = A−U + f ′u(u
∗(t), v∗(t)) U + f ′

v(u
∗(t), v∗(t)) V ,

V̇ = A+V + g′u(u
∗(t), v∗(t)) U + g′v(u

∗(t), v∗(t)) V ,
(2.8.12)

with the initial conditions

U(0) = 0 , V (0) = Im , (2.8.13)

where U ≡ ∂u∗/∂v0, V ≡ ∂v∗/∂v0 and Im is the (m×m) identity matrix. The

fact that the matrix of derivatives ∂v1/∂v0 ≡ V (τ) is non-singular means that

there exists a matrix Q such that

V (τ) Q = Im . (2.8.14)

In addition we notice that if such matrix Q exists, then

Q =

(
∂v1
∂v0

)−1

. (2.8.15)

Equations (2.8.12) are linear with respect to the variables U and V , therefore,

if we postmultiply both the right and the left-hand sides of (2.8.12) by Q, it

is easily seen that Ũ ≡ UQ and Ṽ ≡ V Q also satisfy Eqs. (2.8.12). Moreover,
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in order that both satisfy (2.8.13) and (2.8.14) the following conditions must

hold

Ũ(0) ≡ 0 , Ṽ (τ) ≡ Im . (2.8.16)

Thus, the derivative matrix ∂v1/∂v0 is non-singular if and only if the boundary-

value problem (2.8.16) for the system of variational equations has a solution.

To complete the proof of the theorem we note that the existence and

uniqueness of a solution of boundary value-problem (2.8.16) for the system

of variational equations (2.8.12) follows from the remark to the previous theo-

rem. Moreover, since the derivatives of the right-hand side of system (2.8.12)

with respect to U and V are (without the constant matrices A+ and A−)

f ′(u∗(t), v∗(t)) and g′(u∗(t), v∗(t)), respectively, it follows that they can be

estimated by the same constant δ as the derivatives of the nonlinear part of

the right-hand side of system (2.8.1) with respect to u and v. The boundary

value problem for the system of variational equations is therefore solvable for

‖u0, v1‖ ≤ ε where ε may be taken the same as in the boundary value problem

for the original system.

As it is seen from the proof, the derivative of the solution (u∗(t), v∗(t)) of

the boundary-value problem for system (2.8.1) with respect to v1 is given by

∂(u∗(t), v∗(t))

∂v1
=
∂(u∗(t), v∗(t))

∂v0

(
∂v1
∂v0

)−1

= (U(t), V (t))V (τ)−1 = (Ũ(t), Ṽ (t)) ,

where (U, V ) is the solution of initial value problem (2.8.12),(2.8.13) and (Ũ , Ṽ )

is the solution of boundary value problem (2.8.12),(2.8.16).

Analogously, one can prove that the derivative with respect to u0 is found

as a solution of the boundary value problem

U(0) = In , V (τ) = 0 . (2.8.17)

Summarizing: The derivatives of the solution of the boundary value problem

for system (2.8.1) with respect to u0 and v1 are found as the solutions of the

corresponding boundary value problems obtained by formal differentiation of

the equations and boundary conditions.

In the same way, one can show that if system (2.8.1) depends smoothly on

some set of parameters µ, then the derivative of {u∗, v∗} with respect to µ is

found as a solution of the boundary value problem

U(0) = 0 , V (τ) = 0 (2.8.18)
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for a non-homogeneous system of variational equations derived from a formal

differentiation of system (2.8.1) with respect to µ, namely

U̇ = A−U + f ′u(u
∗(t), v∗(t), µ) U

+f ′v(u
∗(t), v∗(t), µ) V + f ′

µ(u
∗(t), v∗(t), µ)

V̇ = A+V + g′u(u
∗(t), v∗(t), µ) U

+g′v(u
∗(t), v∗(t), µ) V + g′µ(u

∗(t), v∗(t), µ) .

(2.8.19)

Just like the solution of the boundary-value problem for the homogeneous

equations, the solution of the problem (2.8.18),(2.8.19) is found as a limit of

successive approximations for the system of integral equations

U(t) =

∫ t

0

eA
−(t−s) [f ′u(s)U(s) + f ′

v(s)V (s) + f ′
µ(s)] ds

V (t) = −

∫ τ

t

eA
−(s−t) [g′u(s)U(s) + g′v(s)V (s) + g′µ(s)] ds .

(2.8.20)

The proof of uniform convergence of the successive approximations is simi-

lar to the proof of Theorem 2.9. The key inequality of (2.8.11) for convergence

holds under the same condition
∥
∥
∥
∥

∂(f, g)

∂(u, v)

∥
∥
∥
∥
≤ δ

as in Theorem 2.9, i.e. the unique solution of the boundary value problem

(2.8.18), (2.8.19) exists for the same ε as the solution of the boundary value

problem for the original system.

Derivatives of a higher-order with respect to the variables (u0, v1) can also

be found as solutions of a boundary-value problem by considering the varia-

tional equations for the first order variational equations (2.8.12). Because the

variables (u0, v1) are no longer the boundary conditions for ∂(u∗, v∗)/∂(u0, v1)

(see (2.8.16) and (2.8.17)) but they occur in Eqs. (2.8.12) as parameters only

(this is because the right-hand side of the system (2.8.12) depends on {u∗(t),

v∗(t)}, while {u∗(t), v∗(t)} depends on (u0, v1)), it follows that the second

derivatives and higher ones are found in a similar manner as the solutions

of the non-homogeneous boundary value problems analogous to (2.8.18) and

(2.8.19).

For example, the boundary value problem for ∂2(u∗, v∗)/∂(v1)
2 is obtained

by the formal differentiation, with respect to v1, of variational equations
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(2.8.12) with boundary conditions (2.8.16), i.e.

Ż = A−Z + f ′uZ + f ′vW

+f ′′uuU
∗U∗ + f ′′uvV

∗U∗ + f ′′vuU
∗V ∗ + f ′′vvV

∗V ∗ ,

Ẇ = A+W + g′uZ + g′vW

+g′′uuU
∗U∗ + g′′uvV

∗U∗ + g′′vuU
∗V ∗ + g′′vvV

∗V ∗ ,

Z(0) = 0 , W (τ) = 0 ,

where we have introduced the notation

U∗(t) ≡ ∂u∗(t)/∂v1 , V ∗(t) ≡ ∂v∗(t)/∂v1

and

Z ≡ ∂2(u∗)/∂(v1)
2 , W ≡ ∂2(v∗)/∂(v1)

2 .

Let us show how this theory can be applied to prove the existence and

smoothness of the stable and the unstable manifolds (Theorem 2.7 of the pre-

vious section). We will consider only the case of the stable manifold W s; as

for the unstable manifold W u one repeats the method for the system obtained

from (2.8.1) by reversing time.

Note that our conclusions concerning the uniform convergence of succes-

sive approximations (2.8.5) and, consequently, successive approximations for

boundary value problems for variational equations (2.8.12) as well as for non-

homogeneous variational equations (2.8.19) and for the variational equations

for the variational equations etc., remain valid for all τ ≥ 0 including τ = +∞.

Thus, the system

u(t) = eA
−t u0 +

∫ t

0

eA
−(t−s) f(u(s), v(s)) ds ,

v(t) = −

∫ ∞

t

e−A
+(s−t) g(u(s), v(s)) ds

(2.8.21)

obtained from (2.8.4) with τ = +∞, for all ‖u0‖ ≤ ε has a unique solution

which lies in the 2ε-neighborhood of the point O for t ≥ 0. Moreover, this

solution depends C
r-smoothly on u0.

It is easy to verify by direct differentiation that a solution of the system

(2.8.21) is also a solution of the system (2.8.1).
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Conversely, it follows from the proof of Theorem 2.9 that for any solution

{u(t), v(t)} of system (2.8.1) which stays in a small neighborhood of O for all

t ≥ 0, relation (2.8.4) holds with u0 = u(0) and v1 = v(τ) satisfying for any

τ ≥ 0. Therefore, taking the limit in relation (2.8.4) we see that any bounded

solution of system (2.8.1) satisfies the system of integral equations (2.8.21).

Thus, for any u0 satisfying ‖u0‖ ≤ ε, there exists a unique v0 such that

the trajectory beginning with (u0, v0) does not leave a neighborhood of the

saddle as t → +∞. Let us denote v0 = ψ(u0). By definition, the union of all

points (u0, ψ(u0)) is an invariant set of the system (2.8.1): It consists of all

trajectories which remain in a neighborhood of the equilibrium state O for all

t ≥ 0. In particular, this set contains the point O itself; i.e. ψ(0) = 0. Because

ψ ∈ C
r, this set is a smooth invariant manifold. The system on this manifold

is written as

u̇ = A−u+ f(u, ψ(u)) .

Since the derivatives f ′
u and f ′v vanish at the origin, the linearized equation is

u̇ = A−u .

The spectrum of A− lies to the left of the imaginary axis, therefore O is an

exponentially asymptotically stable on the invariant manifold under consider-

ation. This means that all trajectories in this manifold tend to O as t→ +∞;

i.e. this smooth invariant manifold is the stable invariand manifold W s of O.

We have proved the existence and smoothness of W s which completes the proof

of Theorem 2.7.

In conclusion, we remark that this method of reduction of the problem of

existence of the invariant manifold to solving an integral equation was proposed

by Lyapunov and proved to be rather useful for studying non-autonomous

systems especially.

2.9. Problem of smooth linearization. Resonances

We discussed earlier (see the Grobman–Hartman theorem in Sec. 2.5) that in

a neighborhood of a structurally stable equilibrium state the system

ẋ = Ax+ f(x) , (2.9.1)

where

f(0) = 0, f ′(0) = 0 ,
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is topologically equivalent to the linearized system

ẏ = Ay . (2.9.2)

Let us now ask a very natural question: Can system (2.9.1) be reduced to

system (2.9.2) by some smooth change of variables

y = x+ ϕ(x) , (2.9.3)

where ϕ(0) = 0 and ϕ′(0) = 0? Poincaré was the first who posed this question

and considered it in the analytic case. We remark that a smooth change of

variables preserves the eigenvalues (λ1, . . . , λn) of the matrix A and, moreover,

when it is locally close to identity like (2.9.3) it preserves the matrix A itself.

Observe that such a change of variables is local, i.e. the smooth equivalence is

assumed to be valid only in a small neighborhood of the equilibrium state O.

While reducing the original nonlinear system to linear form we run into

a number of difficulties, and the main one is caused by the presence of

resonances.

The set {λ1, . . . , λn} of the eigenvalues (λ1, . . . , λn) of the matrix A is called

a resonant set if there exists a linear relationship

λk = (m,λ) =

n∑

j=1

mjλj , (2.9.4)

where m = (m1, . . . ,mn) is the row of non-negative integers such that |m| =
n∑

j=1

mj ≥ 2. The relation itself is called a resonance and |m| is called the order

of the resonance.

Let the function f(x) be C
N-smooth, then its expansion

f(x) = f2(x) + · · · + fN (x) + oN (x) (2.9.5)

is valid, where fl(x) (l = 2, . . . , N) is a homogeneous polynomial of the power

l; hereafter oN (·) stands for the terms which vanish at the origin along with

the first N derivatives.

The following lemmas are well known.

Lemma 2.2. Let f(x) ∈ C
N and assume there are no resonances of order

|m| ≤ N . Then there is a polynomial change of variables

y = x+ ϕ2(x) + · · · + ϕN (x) (2.9.6)
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(where ϕl(x) (l = 2, . . . , N) is a homogeneous polynomial of power l) which

transforms system (2.9.1) into

ẏ = Ay + oN (y) . (2.9.7)

Proof. Substituting (2.9.6) into (2.9.1) we obtain

ẏ = ẋ+

N∑

l=2

∂ϕl(x)

∂x
ẋ

= Ax+ f2(x) + · · · + fN (x) + oN (x)

+

N∑

l=2

∂ϕl(x)

∂x
[Ax+ f2(x) + · · · + fN (x) + oN (x)]

= Ay −Aϕ2(x) − · · · −AϕN (x) + f2(x) + · · · + fN (x)

+

N∑

l=2

∂ϕl(x)

∂x
[Ax+ f2(x) + · · · + fN (x)] + . . . , (2.9.8)

where the last summand denoted by the ellipsis contains terms of degree N+1

and higher. The remaining terms (except for Ay) must cancel each other,

therefore one must assume that ϕ2(x) satisfies the equation

−Aϕ2(x) + f2(x) +
∂ϕ2(x)

∂x
Ax = 0 ; (2.9.9)

ϕ3(x) satisfies

−Aϕ3(x) + f3(x) +
∂ϕ3(x)

∂x
Ax+

∂ϕ2(x)

∂x
f2(x) = 0 ; (2.9.10)

...
...

...
...

ϕN (x) satisfies

−AϕN (x) + fN (x) +
∂ϕN (x)

∂x
Ax+

∑

p+q=N+1

∂ϕp(x)

∂x
fq(x) = 0 . (2.9.11)

Let us now prove the lemma for the case where the matrix A is diagonal

A =






λ1 0
. . .

0 λn




 .
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Recall that ϕl(x) and fl(x) are homogeneous vector-polynomials, i.e.

ϕl(x) = (ϕl1(x), . . . , ϕlk(x), . . . , ϕln(x)) ,

fl(x) = (fl1(x), . . . , flk(x), . . . , fln(x)) ,

k = 1, . . . , n .

Represent the polynomials ϕlk(x) and flk(x) in the form

ϕlk(x) =
∑

m1+···+mn=l

cmkx
m ,

flk(x) =
∑

m1+···+mn=l

dmkx
m .

Equations (2.9.9)–(2.9.11) may now be rewritten in the component-by-

component form

−λkϕ2k(x) +

n∑

j=1

λj
∂ϕ2k(x)

∂xj
xj + f2k(x) = 0 , (2.9.12)

−λkϕ3k(x) +
n∑

j=1

λj
∂ϕ3k(x)

∂xj
xj + f3k(x) +

n∑

j=1

∂ϕ2k(x)

∂xj
f2j(x) = 0 , (2.9.13)

...
...

...
...

−λkϕNk(x) +

n∑

j=1

λj
∂ϕNk(x)

∂xj
xj + fNk(x) +

n∑

j=1

∑

p+q=N+1

∂ϕpk(x)

∂xj
fqj(x) = 0 ,

(2.9.14)

where k = 1, 2, . . . , n.

First solve (2.9.12). Equating the coefficients of the similar terms we obtain

the equation

[(m,λ) − λk]cmk + dmk = 0 . (2.9.15)

It is clear that this equation may be resolved since there are no resonances,

i.e. we can find

cmk =
dmk

λk − (m,λ)
, (2.9.16)

and, consequently, the expression for ϕ2(x).

Substituting ϕ2(x) into Eq. (2.9.13) we obtain the equation for unknown

coefficients of ϕ3(x)

[(m,λ) − λk]cmk + d̃mk = 0 (2.9.17)
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with d̃mk = dmk+d′mk, where d′mk is the coefficient of xm in the second sum in

(2.9.13). Proceeding in the analogous manner we obtain all ϕl (l = 2, . . . , N)

satisfying Eqs. (2.9.9)–(2.9.11).

This proves the lemma when all eigenvalues of A are real and different

(because A is brought to the diagonal form by a linear change of variables in

this case). If there are simple complex eigenvalues, then A is brought to a

block-diagonal form:

Akk = λk if λk is real

Akk = Ak+1,k+1 = Reλk, Ak,k+1 = −Ak+1,k = Imλk if λk = λ∗k+1

where ∗ denotes complex conjugation. This matrix is made diagonal by a

complex coordinate transformation

x′k = xk if λk is real

x′k = xk + ixk+1, x′k+1 = xk − ixk+1 if λk = λ∗k+1 .

Since x′k+1 = x′∗k , it follows that the new function f satisfies

fl,k+1(x
′) = flk(x

′)∗

for such k that λk = λ∗k+1 is complex. Now, the coordinate transformation ϕ

defined by (2.9.12)–(2.9.14) satisfies

ϕl,k+1(x
′) = ϕlk(x

′)∗

for those k. Obviously then, the real coordinate transformation

yk = xk +
∑N
l=2 Reϕlk(x

′)

yk+1 = xk+1 +
∑N
l=2 Imϕlk(x

′)

brings the system to the desired form (2.9.7).

In case multiple eigenvalues are present, the matrix A can be written in

the Jordan form (real on complex): The eigenvalues λk fill the main diagonal,

plus some of upper diagonal entries may be non-zero:

Ak,k+1 = δk .

Thus, additional terms

δkϕl,k+1(x) and δj
∂ϕlk
∂xj

xj+1
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may appear in (2.9.12)–(2.9.14). Obviously, this does not change the conclusion

of the lemma: relation (2.9.17), by which the sought coefficients cmk are defined

inductively, remains the same with the only difference that d′mk is expressed

now in terms of a wider range of coefficients cm′k′ . Namely, d′mk is a function

of such cm′k′ that:

(1) |m′| < |m|, or (2) m′ = m and k′ > k,

or (3) |m′| = |m| and

n∑

j=1

j ·m′
j <

n∑

j=1

j ·mj
(2.9.18)

(only case 1) is possible when the eigenvalues are simple). Thus, one may

introduce the partial order among the vector-monomials xmek (where ek =

(0, 0, . . . , 1
︸ ︷︷ ︸

k

, 0, . . . , 0)) in the following way:

xmek is of a higher order than xm
′

ek′ if one

of the three options of (2.9.18) holds.

Formula (2.9.17) then allows for determining the coefficients cmk sequentially,

for monomials of higher and higher orders. End of the proof.

It is immediately seen from (2.9.15) that in the case of resonance λk =

(m,λ) it is impossible to eliminate monomials dmkx
mek. Thus, a sufficiently

smooth linearization is impossible in the resonant case. In the same way as

Lemma 2.2, the following result may be proved.

Lemma 2.3. Let f(x) ∈ C
N . Then, there exists a polynomial change of vari-

ables which transforms system (2.9.1) into

ẏ = Ay +R(y) + oN (y) (2.9.19)

with

R(y) =

2≤|m|≤N
∑

(m,λ)=λk

bmky
mek , (2.9.20)

where ek is the k-th basis vector, and the coefficient bmk of the resonant mono-

mial ymek is found in terms of the coefficients of the polynomials fl(x) with

l ≤ |m|.

Let f(x) now be a Taylor series. As N increases, the size of a neighbor-

hood of the point O where such changes of variables are valid decreases. Fur-

thermore, the neighborhood may shrink to the equilibrium state as N → ∞.
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Therefore, the two following theorems are only concerned with the formal

series.

Theorem 2.11. (Poincaré) If the eigenvalues of the matrix A are non-

resonant, then a formal change

y = x+ ϕ2(x) + · · · + ϕl(x) + . . . (2.9.21)

brings system (2.9.1) to linear form (2.9.2).

Theorem 2.12. (Dulac) A formal change of variables brings the system

(2.9.1) to

ẏ = Ay +R(y) , (2.9.22)

where R(y) is a formal series

R(y) =

∞∑

(m,λ)=λk

bmky
mek . (2.9.23)

Let us discuss next the question of the convergence of these series. Following

Arnold [10], we introduce a few useful preliminary notions.

Consider a complex n-dimensional space C
n. The set

λk = (m,λ) ,
n∑

j=1

mj ≥ 2 , mj ≥ 0 ,

where mj ’s are integers, is called a resonant (hyper)plane. By keeping (λ1, . . . ,

λn) fixed as k and m vary we may obtain a countable set of such planes.

Definition 2.4. A collection λ = {λ1, . . . , λn} belongs to the Poincaré region

if the convex hull of the n points λ1, . . . , λn in the complex plane does not

contain zero. Otherwise, the collection λ = {λ1, . . . , λn} belongs to the Siegel

region.

Each point in the Poincaré region satisfies at most a finite number of res-

onances and lies in such a neighborhood which has no intersection with other

resonant planes. In contrast, the resonant planes are dense in the Siegel region.

Theorem 2.13. (Poincaré) If the eigenvalues of the matrix A are non-

resonant and belong to the Poincaré region, then system (2.9.1) with an ana-

lytical right-hand side can be reduced to linear form by an analytical change of

variables.
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Poincaré proved this theorem using majorant series. The principal require-

ment in his formulation is the condition of the existence of a straight-line

passing through the origin in the complex plane such that all n eigenvalues

(λ1, . . . , λn) lie to one side of this line.

In the case where there are resonances in the Poincaré region, the formal

series which defines the change of variables in Theorem 2.12 is convergent.

Therefore, the following result holds.

Theorem 2.14. (Dulac) If the eigenvalues of the matrix A belong to the

Poincaré region, then an analytical change of coordinates transforms system

(2.9.1) with the analytical right-hand side into the form

ẏ = Ay +R(y) ,

where R(y) is a finite-order polynomial composed by resonant monomials.

The situation outside the Poincaré region is much more complicated. Spe-

cific conditions on eigenvalues under which the linearizing series converges and

system (2.9.1) can still be reduced to linear form were found by Siegel. It is

important to note that eigenvalues satisfying these conditions compose a dense

set of positive measure.

Poincaré and Dulac considered complex analytical systems. We are inter-

ested in the real case. In the real case, the Poincaré region is determined by

the conditions Reλi < 0 or Reλi > 0 (i = 1, . . . , n), i.e. where the equilibrium

state is stable or completely unstable, respectively. If there are eigenvalues on

the imaginary axis, or both in the left and right half-planes, then the system

falls in the Siegel region. For example, suppose a two-dimensional system has

a saddle equilibrium state with the eigenvalues λ1 < 0 < λ2. If the saddle

index ν = −λ1λ
−1
2 is rational (ν = p

q ), there is an infinite set of resonances of

the type
λ1 = (rq + 1)λ1 + prλ2 ,

λ2 = qrλ1 + (pr + 1)λ2 , r = 1, 2, . . . .

If the equilibrium state is of the saddle type, then even when the collection

{λ1, . . . , λn} is not resonant, zero is a limit point of the set

{(m,λ) − λk}
∞
|m|=2 , k = 1, . . . , n .

In such situations, when determining the coefficients of the coordinate transfor-

mation by formula (2.9.17) we run into the problem of “small denominators”.
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This is a reason why the linearizing series may not converge even provided that

there are no resonances (see Bruno [18]).

The situation becomes less difficult if we do not require that the system be

analytic, but C
∞-smooth. In this case the following statement holds

Lemma 2.4. (Borel (see Hartman)) For any formal power series R(y)

there exists a C
∞-smooth function whose formal Taylor series coincides with

R(y).

Therefore, the following theorem is intuitively understandable.

Theorem 2.15. (Sternberg) Let the system (2.9.1) be C
∞-smooth and let it

have no resonances, then there exists a C
∞-smooth change of variables which

brings (2.9.1) to linear form.

There exists also an analogue to Dulac’s Theorem 2.12

Theorem 2.16. In the C
∞-smooth case there exists a C

∞-smooth change of

variables which transforms the system (2.9.1) into

ẏ = Ay +R(y) ,

where R(y) ∈ C
∞ and its formal Taylor series coincides with the formal series

(2.9.23).

Thus, we can see that an individual C
∞-smooth system, in the neighbor-

hood of an equilibrium state, may be reduced either to the Poincaré form

ẏ = Ay

or to the Dulac form

ẏ = Ay +R(y) .

Both forms are called normal forms. It follows from Theorems 2.15 and 2.16

that the dependence of the normal forms on the collection λ = {λ1, . . . , λn}

has a discontinuous character in the Siegel region. The latter induces the

question: Can a system of differential equations be reduced to a linear form

by a finitely-smooth change of variables in a neighborhood of the structurally

stable (saddle) equilibrium state? This question was posed by Sternberg [64,65]
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who proved the existence of a number K(k), depending on the spectrum of the

matrix A, such that any C
∞-system

ẋ = Ax+ oK(x)

may be reduced to linear form by a C
k-smooth transformation. This is also true

for the C
N-smooth case provided that N ≥ K. Later, Chen [20] showed that

any C
N -smooth (N ≥ K(k;A)) system near a structurally stable equilibrium

is C
k-equivalent to

ẏ = Ay +

K(k;A)
∑

l=2

fl(y) , (2.9.24)

i.e. to a polynomial vector field. Moreover, we can assume that f(x) is a

resonant polynomial here. As far as the question of the exact estimate for the

number K is concerned it is still completely unsolved.

The above resonant-polynomial normal form (2.9.24) can be further simpli-

fied by C
k-smooth changes of variables. We will not discuss these topics further

and refer the reader to the book by Bronstein and Kopanskii [16], which con-

tains the latest achievements and relevant references in this field. Observe that

in this theory a special attention must be dedicated to the so-called “weak”

resonances. Denote by (θ1, . . . , θp) distinct values of Reλi (i = 1, . . . , n). It is

obvious that p ≤ n. The values (θ1, . . . , θp) are called the Lyapunov exponents.

We call the relation

θs = l1θ1 + · · · + lpθp = (l, θ) , where

p
∑

i=1

lp ≥ 2

a weak resonance. Observe that the notion of the weak resonance does not

employ analysis in the complex plane and, consequently, the reduction of the

linear part to the Jordan form. In contrast to the classical notion of reso-

nances being an obstacle in the linearization by polynomial transformations,

the notion of weak resonances arises in the problem of the reduction of systems

of a finite smoothness to linear form when we use wider classes of changes of

variables.

Of primary interest from the viewpoint of nonlinear dynamics are saddles.

The reason is because a saddle may have bi-asymptotical trajectories which

belong to both the stable and the unstable manifold. Such trajectories are

called homoclinic loops. In the case where an equilibrium state is a saddle-

focus, infinitely many periodic trajectories may arise from one homoclinic loop
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under certain conditions. The study of such phenomena begins with the re-

duction of the system near a saddle to a simpler form. It is obvious that the

case where the system is reducible to linear form would be ideal. However,

the study of global bifurcations requires the consideration of finite-parameter

families of systems rather then an individual system. Reduction to linear form

is difficult for the family of systems because resonances are dense in the Siegel

regions. At the same time, most resonances, with a few exceptions, do not

play an essential role in the study of homoclinic bifurcations.

Let us discuss in detail an example of a planar system which was studied

by Andronov and Leontovich. Consider a one-parameter family of systems

ẋ = λ1(µ)x+ P (x, y, µ) ,

ẏ = λ2(µ)y +Q(x, y, µ) ,

where P and Q are C
N (N ≥ 1)-smooth functions vanishing at the origin along

with their first derivatives with respect to x and y, and λ1(0) < 0 < λ2(0).

Suppose that when µ = 0 this system has a separatrix loop, see Fig. 2.9.1.

Assume also that the saddle index ν = −λ1(µ)/λ2(µ) differs from 1 when

µ = 0, i.e. the so-called saddle value σ is non-zero:

σ(0) = λ1(0) + λ2(0) 6= 0 .

Fig. 2.9.1. A homoclinic loop to a saddle on the plane.
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Andronov and Leontovich showed that under these conditions at most one

periodic trajectory can arise from the separatrix loop. The condition

σ(0) = λ1(0) + λ2(0) = 0

leads to the appearance of an infinite set of resonances

λ1(0) = (p+ 1)λ1(0) + pλ2(0), λ2(0) = qλ1(0) + (q + 1)λ2(0),

where p and q are positive integers.

The problem of a number of periodic trajectories arising from the homo-

clinic loop in the case σ(0) = 0 in a finite-parameter family was studied by

Leontovich [40]. The principal difficulty here is in constructing the Dulac nor-

mal form for a finite-parameter family. At µ = 0 this is given by

ẋ = λ1(0)x+

∞∑

p=1

apx
p+1yp ,

ẏ = λ2(0)y +
∞∑

p=1

bpx
pyp+1 .

or, having excluded the time t, by

dy

dx
=
y

x

(

1 +

∞∑

p=1

cp(xy)
p

)

.

When µ 6= 0 it does not make sense to apply the theory of normal forms because

the dependence on the parameter is discontinuous on a dense set since the

saddle index ν(µ) may be rational or irrational. Nevertheless, Leontovich [40]

was able to transform the family into

dy

dx
=
y

x

[

1 +

K−1∑

p=1

cp(µ)(xy)p + (xy)KΦ(x, y, µ)

]

. (2.9.25)

The main method which she employed was that of sequentially eliminating

the non-resonant functions, i.e. such whose all terms in the formal Taylor

expansion are non-resonant. The procedure works for a C
N-smooth family

provided that N ≥ 4K + 1. The function Φ(x, y, µ) in Eq. (2.9.25) is then of

smoothness C
K .
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The concept of eliminating non-resonant functions in the right-hand side

has been effectively developed for multi-dimensional systems with homoclinic

loops to saddle and saddle-foci in the papers by Ovsyannikov and Shilnikov

[48,49].3

Consider a family X(µ) of dynamical systems which depends on parame-

ters µ. We assume that X(µ) is of C
r-class with respect to all variables and

parameters. We may present X(µ) in the form

ẋ = A1(µ)x+ f1(x, y, u, v, µ) ,

u̇ = A2(µ)u+ f2(x, y, u, v, µ) ,

ẏ = B1(µ)y + g1(x, y, u, v, µ) ,

v̇ = B2(µ)v + g2(x, y, u, v, µ) ,

(2.9.26)

where the eigenvalues of the matrix A(0)

A(0) ≡

(
A1(0) 0

0 A2(0)

)

lie to the left of the imaginary axis in the complex plane and those of the

matrix B(0)

B(0) ≡

(
B1(0) 0

0 B2(0)

)

lie to the right of the imaginary axis.

We assume also that the real parts of the eigenvalues (λ1, . . . , λm1
) of the

matrix A1(0) are equal, i.e.

Reλ1 = · · · = Reλm1
= λ < 0 ,

and that the real parts of the eigenvalues (γ1, . . . , γn1
) of the matrix B1(0) are

also equal i.e.

Re γ1 = · · · = Re γn1
= γ > 0 .

Regarding the eigenvalues of the matrices A2(0) and B2(0) we assume that the

real parts of the eigenvalues of A2(0) are strictly smaller than λ, and those of

B2(0) are strictly larger than γ. In this case the coordinates x and y are leading

stable and unstable, respectively, and the coordinates u and v are non-leading.

3The same approach was applied near a saddle periodic orbit by Gonchenko and Shilnikov
[27]; for other applications see the papers by Afraimovich and by Lerman and Umanskii in
Methods of the Qualitative Theory of Differential Equations, edited by Leontovich, Gorky
State University, Gorky, 1984.
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Theorem 2.17. (Ovsyannikov-Shilnikov) For all small µ system (2.9.26)

is transformed locally to

ẋ = A1(µ)x+ f11(x, y, v, µ)x+ f12(x, u, y, v, µ)u ,

u̇ = A2(µ)u+ f21(x, y, v, µ)x+ f22(x, u, y, v, µ)u ,

ẏ = B1(µ)y + g11(x, u, y, µ)y + g12(x, u, y, v, µ)v ,

v̇ = B2(µ)v + g21(x, u, y, µ)y + f22(x, u, y, v, µ)v ,

(2.9.27)

where

fij |(x,u,y,v)=0 = 0 gij |(x,u,y,v)=0 = 0

f1j |(y,v)=0 = 0 g1j |(x,u)=0 = 0

fi1|x=0 = 0 gi1|y=0 = 0 (i, j = 1, 2) .

(2.9.28)

Since we will frequently use this theorem while studying homoclinic bifur-

cations, its complete proof is given in Appendix A. The smoothness of the coor-

dinate transformation and the functions fij , gij is defined as follows: It is C
r−1

with respect to (x, u, y, v) and the first derivatives with respect to (x, u, y, v)

are C
r−2 with respect to (x, u, y, v, µ). If r = ∞, then the transformation is

C
∞ with respect to (x, y, u, v) (or even analytical in the real analytical case).

Nevertheless, even when r = ∞ the smoothness of the transformation with re-

spect to the parameters µ is, generically, only finite: It grows unboundedly as

µ0 → 0 (where ‖µ‖ ≤ µ0 is the range of parameter values under consideration).

Let us consider next the case where some eigenvalues of the matrix A in

(2.9.1) lie on the imaginary axis. It is obvious that if there is one zero eigenvalue

λ1 = 0, then there exists an infinite set of resonances of the type:

λ1 = mλ1 , m ≥ 2 . (2.9.29)

In the case of a pair of purely imaginary eigenvalues λ1,2 = ±iω, ω 6= 0, there

is also an infinite set of resonances of the type:

λ1 = (s1 + 1)λ1 + s1λ2 ,

λ2 = s2λ1 + (s2 + 1)λ2 ,
(2.9.30)

where s1 and s2 are positive integers.

Here, the theory of normal forms is especially valuable since these reso-

nances determine conditions of the stability and as a result the types of local

bifurcations of equilibrium states in the critical cases.
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Since the equilibria under consideration are now structurally unstable, it

is very natural not to restrict the consideration by studying a concrete system

but by including the latter in a finite-parameter q-dimensional family

ẋ = Ax+ f(x) + h(x, µ) , (2.9.31)

where µ = (µ1, . . . , µq); the functions f(x) and h(x, µ) are sufficiently smooth

and

f(0) = f ′(0) = 0 , h(x, 0) ≡ 0 .

Assume that the eigenvalues (λ1, . . . , λp) of the matrix A lie on the imaginary

axis in the complex plane. The assumption is not burdensome since in this

case the general family may be reduced to system (2.9.31) by virtue of the

center manifold theorem (see Chap. 5). Let us now consider the following

(p+ q)-dimensional system in the triangular form

ẋ = Ax+ f(x) + h(x, µ) ,

µ̇ = 0 .
(2.9.32)

This system has a fixed point O(0, 0) with Jacobian given by

Ã =

(
A h′µ(0, 0)

0 0

)

.

The eigenvalues of the matrix Ã are λ1, . . . λp and γ1 = · · · = γq = 0. Sys-

tem (2.9.32) has resonances of the type (2.9.29), (2.9.30) as well as the following

resonances:

λk = λk + (l, γ) , (2.9.33)

λk = (m,λ) + (l, γ) , (2.9.34)

γj = (l, γ) , (2.9.35)

where (l, γ) =
q∑

j=1

ljγj and
q∑

j=1

lj ≥ 2. System (2.9.32) may be reduced to the

normal form by the change of variables

y = x+ ϕ(x, µ)

µ = µ
(2.9.36)

which leaves the second equation in (2.9.32) unchanged. Thus, we do not need

to consider the resonances of the type (2.9.35). In an analogy with Lemma 2.3

system (2.9.32) may be transformed into

ẏ = Ay +R0(µ) +R1(µ)y +RN (y, µ) + oN (y, µ) , (2.9.37)
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where R1(µ) is a polynomial of degree not higher than (N − 1), R1(0) = 0 and

RN (y, µ) =

|m|≤N
∑

(m,λ)=λk

bmk(µ)ymek , (2.9.38)

where bmk(µ) are certain polynomials of degree not exceeding (N − |m|).

If the matrix A is non-degenerate, then R0(µ) ≡ 0. Otherwise, when among

the eigenvalues (λ1, . . . , λp) there is λk = 0, R0(µ) is a polynomial of degree

N such that R0(0) = 0. The appearance of the term R0(µ) in (2.9.37) is due

to the existence of resonances of the kind

0 = λk = (l, γ) .

The family

ẏ = Ay +R0(µ) +R1(µ)y +

|m|≤N
∑

(m,λ)=λk

bmk(µ)ymek (2.9.39)

is called a truncated or shortened normal form. In many cases one may try

to restrict the consideration of the behavior of trajectories in a small fixed

neighborhood of an equilibrium state, as well as the study of the bifurcation

unfolding for small values of the control parameters by the investigation of the

truncated normal form for a suitable choice of N and q. Of course, the infor-

mation obtained from the analysis of the truncated system must be justified

before it is applied to the original family. Following this scheme we will carry

out the study of principal local bifurcations of equilibrium states in the second

part of this book.
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STRUCTURALLY STABLE

PERIODIC TRAJECTORIES OF

DYNAMICAL SYSTEMS

Let us consider an autonomous system of differential equations in R
n+1,

(n ≥ 1)

ẋ = X(x) ,

where x = (x1, . . . , xn, xn+1), X ∈ C
r (r ≥ 1). The subject of this chapter

is periodic trajectories, i.e. non-stationary, periodic solutions of the form x =

ϕ(t), where

ϕ(t) ≡ ϕ(t+ τ)

for some τ 6= 0. Observe that ϕ(t) ∈ C
r+1. The periodic motion is associated

in the phase space with a smooth closed curve, called a limit cycle, a periodic

trajectory, or a periodic orbit. By definition, any point on a periodic trajectory

returns to the initial position over the interval of time equal exactly to τ . The

same occurs at 2τ , 3τ and so on. The smallest of such return times is called

the period.

The periodic motion is one of the most important objects of nonlinear dy-

namics. There are at least two reasons for this. Firstly, a stable periodic trajec-

tory is the mathematical image of such physical phenomena as self-oscillations.

Secondly, saddle periodic trajectories are the key components of strange at-

tractors which dynamical chaos is associated with.

In contrast to equilibrium states, searching for periodic motions in phase

space is presently an art, particularly, in the phase space of high-dimensional

systems. So, for example, the number of equilibrium states in a system with a

111
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polynomial right-hand side can be estimated exactly, but the estimation of the

number of periodic trajectories of even just a planar system is the subject of

the famous Hilbert’s 16-th problem which is still unsolved. One exception is,

perhaps, nearly integrable two-dimensional systems for which the problem of

finding the periodic trajectories is reduced to that of finding the zeros of some

special integrals which can be explicitly calculated in certain specific cases.

In this chapter we will examine the behavior of trajectories near a struc-

turally stable periodic trajectory. The main idea of the study is based on

constructing the Poincaré return map.

3.1. A Poincaré map. A fixed point. Multipliers

Assume that a system of differential equations in R
n+1 (n ≥ 1)

ẋ = X(x) , (3.1.1)

where x = (x1, . . . , xn, xn+1), X ∈ C
r (r ≥ 1) possesses a periodic trajectory

L.

Let us choose a pointM∗ on L and translate the origin toM∗; see Fig. 3.1.1.

Without loss of generality we can assume that the last component of the ve-

locity vector at the point M∗ is non-zero, i.e.

Xn+1(0) 6= 0 . (3.1.2)

This can be always achieved by a reordering of the coordinates, because

nowhere on the periodic trajectory is the velocity vector equal to zero. Condi-

tion (3.1.2) allows us to choose a small cross-section S on the plane xn+1 = 0

so that M∗ ∈ S. By construction, all trajectories of the system (3.1.1) near

the periodic trajectory L flow through the cross-section S transversely.

It follows from the theorem on continuous dependence on initial conditions

that a trajectory starting from a point M ∈ S sufficiently close to M ∗, returns

to S at some point M̄ over a time interval t(M) close to the period of the

periodic trajectory L. Thus a map T : M 7→ M̄ , called the Poincaré map, can

be defined along such trajectories.

Let x = ϕ(t, x0) be the trajectory which passes through the point M(x0) ∈

S at t = 0. The return time t(x0) from M to M̄ can be found from the equation

ϕn+1(t, x0) = 0 . (3.1.3)
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Fig. 3.1.1. A cross-section S is chosen to be transverse to a periodic trajectory L as well as
to the trajectories close to L.

Since the periodic trajectory L passes through the origin, this equation has a

solution t = τ for x0 = 0, where τ is the period of the periodic trajectory. By

virtue of (3.1.2) we may apply the implicit function theorem to Eq. (3.1.3),

whence the return time t(x0) is uniquely defined. Moreover, the function t(x0)

has the same smoothness as the original system.

The map T may be written in the following form

x̄k = ϕk(t(x), x)

or as

x̄ = f(x) , (3.1.4)

where x is an n-dimensional vector of the coordinates on the cross-section S,

f(x) ∈ C
r.

If, at t = 0, we let a trajectory flow out from the point M̄ on S in backward

time, then it must return to S at the point M over the time interval t(M).

Thus, the map T−1, the inverse of the Poincaré map, is also defined on the

cross-section S. Because the property of smooth dependence of the return time

on the initial point persists in backward time, we can assert that the inverse
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map T−1 also belongs to the class C
r. This implies that the Poincaré map is

a C
r-smooth diffeomorphism.

If we write down

x = f−1(f(x)) ,

then after differentiating we obtain

[f−1(f(x))]′ · f ′(x) = I ,

where I is the identity matrix. Thus,

det
∣
∣
∣
df(x)

dx

∣
∣
∣ 6= 0

for small x.

A trajectory of system (3.1.1) which passes through an arbitrary point M

on S intersects S consequently at the points (. . . ,M−1,M0 ≡M,M1, . . . , ). By

construction, the points {Mj} are the images of the point M under the action

of the Poincaré map: Mj ≡ T jM . The sequence {Mj} is called a trajectory of

the point M with respect to the map T. It is obvious that the behavior of the

trajectories of the original system (3.1.1) close to the periodic trajectory L is

completely determined by the behavior of the trajectories of the map T close

to a fixed point M∗ = L ∩ S (the point M∗ is called the fixed point because

TM∗ = M∗). So, for example, a trajectory of system (3.1.1) tends towards the

periodic trajectory L as t → +∞, if and only if the corresponding trajectory

of the map T converges to the fixed point M ∗ as j → +∞.

In a neighborhood of the fixed point at the origin the map T may be written

in the form

x̄ = Ax+ g(x) , (3.1.5)

where

A ≡
df

dx

∣
∣
∣
x=0

is a non-singular (n× n)-matrix, g(0) = g′(0) = 0.

Before we examine the nonlinear map (3.1.5), it is useful to examine the

behavior of the trajectories of the linearized map

x̄ = Ax . (3.1.6)

We will see below that just like the characteristic exponents of an equilib-

rium state, the key role in determining the dynamics of a Poincaré map near
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a fixed point belongs to the eigenvalues of the matrix A. These eigenvalues

are called the multipliers of the fixed point or the multipliers of the associated

periodic trajectory.

It is not hard to see that the multipliers are not changed by a smooth trans-

formation of variables. Indeed, if we make the following change of coordinates

x = By + ψ(y) ,

where det B 6= 0, ψ(0) = 0 and ψ′(0) = 0, so that it does not move the origin,

then in the new coordinates the map (3.1.5) becomes

Bȳ + ψ(ȳ) = ABy +Aψ(y) + g(By + ψ(y))

or

ȳ = B−1ABy + · · · ,

where the ellipsis denotes nonlinear terms. Because the matrix B−1AB is

similar to the matrix A, they have the same eigenvalues.

It is also obvious that the multipliers of the Poincaré map depend neither

on the choice of the point M∗ on L nor on the particular choice of S with

respect to the periodic trajectory. Since the flight time from one transverse

cross-section to another depends smoothly on the initial point, the map of

one cross-section onto another cross-section along trajectories of the system is

a C
r-diffeomorphism, and, therefore, the change of the cross-section may be

simply considered as a change of coordinates.

In the following sections we will examine the behavior of the trajecto-

ries of dynamical systems near structurally stable (rough) periodic trajectories,

i.e. those which have no multipliers equal to 1 in absolute value. We shall be-

gin with the study of structurally stable fixed points of the Poincaré map. We

remark here that the theory of fixed points amounts to a partial, though not

absolute, repetition of the theory of equilibrium states. We therefore pursue

our study by following the same scheme as in Chap. 2: the linear case followed

by the nonlinear case and, by the correspondence between nonlinear and linear

maps.

3.2. Non-degenerate linear one- and two-dimensional
maps

In the present and the consequent sections we will study linear maps. We are

interested in the linearization of the Poincaré map near a periodic trajectory,
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in other words in a linear map with non-singular Jacobian matrix

x̄ = Ax , det A 6= 0 .

Let us start with a linear map of dimension one. It is written in the form

x̄ = ρx , (3.2.1)

where ρ 6= 0, x ∈ R
1.

It is easy to see that the fixed point at the origin O is stable when |ρ| < 1.

The iterations xj of a point x0 are given by the formula

xj = ρjx0 ,

where

lim
j→+∞

xj = 0

if |ρ| < 1.

On the other hand, the fixed point is unstable when |ρ| > 1.

The behavior of the iterations of points in the one-dimensional case is con-

veniently interpreted by means of a Lamerey diagram which is constructed as

follows. For the map

x̄ = f(x)

the graph of the function f(x) and the bisectrix1 x̄ = x are drawn in the plane

(x, x̄). Trajectories are represented as polygonal lines: let {xj} be a trajectory;

each point with coordinates (xj , xj+1) lies on the graph f(x) while each point

(xj , xj) lies on the bisectrix x̄ = x. Each point (xj , xj) is connected vertically

with the subsequent point (xj , xj+1), which in turn is connected horizontally

with the subsequent point (xj+1, xj+1) and so on. This process is iterated

repeatedly, as shown in the four typical Lamerey diagrams in Figs. 3.2.1 to

3.2.4.

When the function f(x) increases monotonically, then the construction ob-

tained is called a Lamerey stair (Figs. 3.2.1 and 3.2.2). When f(x) decreases

monotonically the construction is called a Lamerey spiral, see Figs. 3.2.3 and

3.2.4.

1The 45◦ line.
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Fig. 3.2.1. A Lamerey stair. The origin is a stable fixed point: all points in its neighborhood
converge to O.

Fig. 3.2.2. A Lamerey stair where the origin is an unstable fixed point.
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Fig. 3.2.3. An example of a Lamerey spiral; a trajectory starting from x0 looks like a
clockwise-right-angled spiral.

Fig. 3.2.4. An example of an “unstable” Lamerey spiral. A trajectory {xi} diverges from
the fixed point at the origin.
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In the degenerate case where ρ = 1, all points are fixed. When ρ = −1

all points, except for the origin O, are periodic with period equal to 2, i.e. the

fixed points of the map T 2 defined by:

¯̄x = x (¯̄x = −(x̄) ⇐ x̄ = −x) .

Let us now consider a two-dimensional Poincaré map
(
ū1

ū2

)

=

(

a11 a12

a21 a22

) (
u1

u2

)

. (3.2.2)

When both eigenvalues of the matrix A are real and different, a non-

degenerate linear change of coordinates brings the Poincaré map to the form

x̄ = ρ1x , ȳ = ρ2y . (3.2.3)

The iterations of an initial point (x0, y0) are given by

xj = ρj1 x0 , yj = ρj2 y0 . (3.2.4)

There are four cases to be considered:

(1) |ρi| < 1 (i = 1, 2). In this case the fixed point at the origin O is

exponentially stable and is called a stable node. Let us assume |ρ1| > |ρ2|,

then all trajectories, except for those which lie on the non-leading (strongly

stable) axis y, tend to O tangentially to the leading axis x as j → +∞. The

behavior of the trajectories in a neighborhood of a stable node is shown in

Figs. 3.2.5 and 3.2.6.

(2) |ρi| > 1 (i = 1, 2). This case is reduced to the previous one if we

consider the inverse map T−1. The fixed point is called an unstable node.

(3) |ρ1| < 1 and |ρ2| > 1. A fixed point with multipliers of this type is

called a saddle. It is seen from (3.2.4) that both x and y axes are invariant

with respect to the map (3.2.3). Points on the x-axis tend to O as j → +∞,

whereas points on the y-axis tend to O as j → −∞. For this reason, the

x-axis and the y-axis are called the stable subspace and the unstable subspace

respectively of the saddle O. All other trajectories pass close but away from

the saddle. Their loci depend upon the signs of the multipliers; four possible

variants are presented in Figs. 3.2.7a–3.2.7d.

(4) Complex-conjugate multipliers ρ1,2 = ρe±iω. In this case the Poincaré

map may be written in the form

x̄ = ρ(x cosω − y sinω) ,

ȳ = ρ(y cosω + x sinω) ,
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12

Fig. 3.2.5. A stable node (+) with positive multipliers 0 < ρ2 < ρ1 < 1. A trajectory {T iM}
of the point M enters the origin tangentially to the leading direction x.

121 2

Fig. 3.2.6. A stable node “−” with the negative leading multiplier ρ1; therefore, the x-
coordinate changes its sign after each iteration.
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(a)

Fig. 3.2.7(a). A saddle (+,+). The y-axis coincides with the unstable direction, the x-axis
with the stable one.

(b)

Fig. 3.2.7(b). A saddle (+,−). The sign of the y-coordinate of the trajectory {T iM} changes
after each iteration.
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(c)

Fig. 3.2.7(c). A saddle (−, +). The “jumping” direction is here the x-axis because the
corresponding multiplier ρ1 is negative.

(d)

Fig. 3.2.7(d). A saddle (−,−). The trajectory of the initial point M runs away from the
origin along the hyperbolas located in 1st and 3rd quadrants.
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Fig. 3.2.8. A stable focus.

or in polar coordinates (r, ϕ), in the form

r̄ = ρ r ,

ϕ̄ = ϕ+ ω .
(3.2.5)

The j-th iteration of the point (r0, ϕ0) is given by

rj = ρj r0 ,

ϕj = ϕ0 + ω j .

When ρ < 1, the point O is called a stable focus. In this case, all trajectories

lie on logarithmic spirals winding into the origin as shown in Fig. 3.2.8.

When ρ > 1, the fixed point O is called an unstable focus. In this case, all

trajectories diverge from any neighborhood of the point O as j → +∞.

In the degenerate case where ρ = 1, we note from (3.2.5) that r̄ = r, i.e. any

circle with center at the origin O is invariant with respect to the map. In its

restriction to an invariant circle, the map has the form

ϕ̄ = ϕ+ ω (mod 2π) .
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Fig. 3.2.9. An example of the behavior of the trajectories of a degenerate map. The entire
x-axis consists of fixed points.

If ω is commensurable with 2π, i.e. ω = 2πM/N for some integers M and N ,

then all points are periodic with period N as

ϕN = ϕ+N ω = ϕ+ 2πM = ϕ (mod 2π) .

Thus, all points are the fixed point of the N -th iterate of the map T . This

implies that TN is the identity map.

If ω is not commensurable with 2π, then the trajectory of any point ϕ0 is

non-periodic. Moreover, one can show that the set of the points

{ϕj}
j=+∞
j=−∞

is dense on any circle.

Figure 3.2.9 illustrates one more degenerate case: ρ1 = 1, |ρ2| < 1. Here,

all points on the x-axis are fixed points. Any straight-line x = constant is

invariant with respect to the map. The trajectories on each straight-line tend

to the corresponding fixed point.
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3.3. Fixed points of high-dimensional linear maps

Let us consider an n-dimensional map

x̄ = Ax , A ∈ R
n . (3.3.1)

As in our previous discussion of linear systems of differential equations, let us

choose the coordinates such that the matrix A is represented in the real Jordan

form:

A = A0 + ∆A , (3.3.2)

where A0 is the block-diagonal matrix

A0 =







A1 0
A2

. . .

0 An






. (3.3.3)

The block

Ai = (ρ) , (3.3.4)

corresponds to each real eigenvalue (multiplier) ρ of the matrix A. The block

Ai = ρ

(
cosω − sinω
sinω cosω

)

(3.3.5)

corresponds to each pair of complex-conjugate multipliers ρe±iω. The matrix

∆A is non-zero only when the matrix A has multiple eigenvalues. In this case

a basis may be chosen in R
n such that

‖∆A‖ ≤ ε (3.3.6)

for an infinitesimally small constant ε > 0 (see Sec. 2.3).

It is evident that

‖A0‖ ≤ ρ′ ,

where ρ′ is the maximum of the absolute values of all eigenvalues of the matrix

A. Therefore

‖A‖ ≤ ρ′ + ε . (3.3.7)

A trajectory of map (3.3.1) is given by the equation

xj = Aj x0 . (3.3.8)
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When all eigenvalues of the matrix A lie strictly inside the unit circle, it follows

from (3.3.7) that

‖xj‖ ≤ ‖A‖j‖x0‖ ≤ (ρ′ + ε)j ‖x0‖ for j ≥ 0 , (3.3.9)

i.e. all trajectories converge exponentially to the fixed point at the origin as

j → +∞.

A transition to an arbitrary basis alters the estimate (3.3.9) so that some

constant, generally speaking greater than 1 (see formulas (2.3.17) and (2.3.18)

in Sec. 2.3), appears in the right-hand side.

As in the case of a stable equilibrium state, we may introduce the notions

of leading and non-leading multipliers of a stable fixed point.

Let us arrange the multipliers in order of decreasing absolute value, and let

the first m multipliers be of equal absolute value, i.e.

|ρ1| = · · · = |ρm| = ρ′ , |ρi| < ρ′ < 1 for i ≥ m+ 1 .

Denote by EL the m-dimensional eigen-subspace of the matrix A which

corresponds to multipliers (ρ1, . . . , ρm), and by Ess the (n − m)-dimensional

eigen-subspace which corresponds to multipliers (ρm+1, . . . , ρn). The subspace

EL is called the leading invariant subspace and Ess is called the non-leading,

or strongly stable, invariant subspace.

Each vector x ∈ R
n is uniquely represented in the form

x = u+ v ,

where u ∈ EL and v ∈ Ess. In coordinate system (u, v) the map (3.3.1) may

be written as follows

ū = ALu ,

v̄ = Assv ,

where spectr AL = {ρ1, . . . , ρm} and spectr Ass = {ρm+1, . . . , ρn}. A trajec-

tory of the map is given by the formula

uj = AjLu0 ,

vj = Ajssv0 .
(3.3.10)

As in (3.3.7) we have

‖uj‖ ≥ (ρ′ − ε)j ‖u0‖ ,

‖vj‖ ≤ (|ρm+1| + ε)j ‖v0‖ ,
(3.3.11)
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where ε can be made arbitrarily small by an appropriate choice of bases for

EL and Ess. Hence we obtain the following inequality

‖vj‖ · ‖u0‖
ν ≤ ‖v0‖ · ‖uj‖

ν , (3.3.12)

for some constant ν > 1.

Thus, all trajectories for which u0 6= 0 (i.e. outside of Ess) tend to O

tangentially to the subspace EL as j → +∞. Moreover, any such trajectory

converges to O not faster than (ρ′−ε)j , whereas the trajectories in Ess converge

to O faster than (|ρm+1| + ε)j , where the constant ε > 0 may be chosen

arbitrarily small.

As regards the behavior of trajectories in the leading coordinates u we can

point out three major classes of stable fixed points:

(1) In the case m = 1, i.e. when ρ1 is real and |ρi| < ρ1 (i = 2, . . . , n), the

leading subspace is a straight line. When ρ1 > 0 all trajectories outside

of Ess converge to O along a certain direction, either from u > 0 or from

u < 0, as shown in Fig. 3.2.5. Such a fixed point is called a stable node

(+).

(2) When m = 1 and ρ1 < 0 all trajectories except those in Ess converge

to O along the u-axis but after each successive iteration the sign of the

u-coordinate changes as shown in Fig. 3.2.6. Such a fixed point is called

a stable node (−).

(3) When m = 2 and ρ1,2 = ρ′ e±iω, ω /∈ {0, π}, the fixed point is called a

stable focus. The leading subspace of the fixed point is two-dimensional

and all trajectories outside of Ess approach O along spirals tangential to

the plane u.

The case of a completely unstable fixed point where the absolute values of

all of its multipliers ρi are greater than 1, is reduced to the previous case via

its inverse map (as the eigenvalues of the matrix A−1 are equal exactly to ρ−1
i ).

Therefore, an estimate

‖xj‖ ≤ ‖A−1‖j‖x0‖ ≤ (ρ′ − ε)j ‖x0‖ for j ≤ 0 , (3.3.13)

analogous to (3.3.9), is valid, where ρ′ is the smallest absolute value of the

multipliers ρi, (i = 1, . . . , n). All trajectories tend exponentially to O as

j → −∞.
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As in the case of stable fixed points, we may now define leading and non-

leading invariant subspaces and select three principal classes of completely

unstable fixed points: an unstable node (+), an unstable node (−) and an

unstable focus according to the signs of the multipliers.

When some multipliers of the fixed point lie strictly inside the unit cycle

|ρi| < 1 (i = 1, . . . , k) and all others lie outside of it: |ρj | > 1 (j = k+1, . . . , n),

the fixed point is called a saddle fixed point. A linear non-degenerate change

of coordinates transforms the map into the form

ū = A−u ,

v̄ = A+v ,
(3.3.14)

where spectr A− = {ρ1, . . . , ρk}, spectr A+ = {ρk+1, . . . , ρn}, u ∈ R
k, v ∈

R
n−k. For u and v we have estimates analogous to (3.3.9) and (3.3.13), re-

spectively. This means that the trajectories from the stable invariant subspace

Es : v = 0 and the unstable invariant subspace Eu : u = 0 tend exponentially

to the saddle point O as j → +∞ and j → −∞, respectively. All other

trajectories escape from a small neighborhood of O.

Thus, in the stable subspace Es the saddle is a stable fixed point and in the

unstable subspace Eu it is a completely unstable fixed point. Furthermore, in

Es and Eu we may select stable and unstable leading and non-leading manifolds

EsL, EuL, Ess and Euu. We will call the direct sum EsE = Es⊕EuL the extended

stable invariant subspace and EuE = Eu ⊕ EsL the extended unstable invariant

subspace. The invariant subspace EL = EuE ∩ EsE is called the leading saddle

invariant subspace.

When the point O is a node in both Es and Eu, O is called a saddle. When

O is a focus in at least one of the subspaces Es or Eu, it is called a saddle-focus.

3.4. Topological classification of fixed points

We saw in Chap. 2 that near a structurally stable equilibrium state a system of

differential equations is topologically equivalent to its linearization. A similar

statement pertains to structurally stable fixed points. This allows us to present

a complete classification of systems of differential equations near a structurally

stable periodic trajectory.

In this context an appropriate analog of topological equivalence is the no-

tion of topological conjugacy.
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Definition 3.1. Two diffeomorphisms T1 and T2 defined in regions D1 and

D2, respectively, are said to be topologically conjugate in the regions U1 ⊆ D1

and U2 ⊆ D2 if there exists a homeomorphism η : U1 → U2 which transforms

trajectories (semi-trajectories, intervals of trajectories) of the first diffeomor-

phism onto trajectories (semi-trajectories, intervals of trajectories) of the sec-

ond diffeomorphism.

In other words, for any point x ∈ D1 the following equality holds (see

Fig. 3.4.1).

η(T1(x)) = T2(η(x)) . (3.4.1)

Theorem 3.1. (Grobman Hartman) Let O be a structurally stable fixed

point of a diffeomorphism T. Then there exist neighborhoods U1 and U2 of

the point O where the diffeomorphism T and its linear part are topologically

conjugate.

In the structurally unstable (non-rough) case an analogous statement does

not hold. It is easy to show that when the matrix A of a linear map

x̄ = Ax (3.4.2)

Fig. 3.4.1. Graphical representation of the homeomorphism η(T1(x)) = T2(η(x)) realizing
the topological conjugacy between two maps T1 and T2 defined in subregions U1 and U2,
respectively.
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has some multipliers equal to 1 in absolute value, then one can add a nonlinear

term g(x) such that the map

x̄ = Ax+ g(x) (3.4.3)

is not topologically conjugate to its linear part (3.4.2). For example, the one-

dimensional map

x̄ = x+ x2

has only one fixed point O (see Fig. 3.4.2), whereas all points on the bisectrix

are fixed points of the associated linearized map

x̄ = x .

Consider another example: the map

x̄ = −x+ x3 ,

Fig. 3.4.2. A Lamerey stair. The graph of the function f(x) = x + x2 is tangent to the
bisectrix at the fixed point of the saddle-node type.
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Fig. 3.4.3. A Lamerey spiral of the map x̄ = −x + x3. Outside of the origin the derivative
of the map is less than 1 in absolute value: the fixed point is stable.

possessing the stable fixed pointO (see Fig. 3.4.3) is not topologically conjugate

to its linear part

x̄ = −x ,

for which all points (apart from O) are periodic trajectories of period 2.

For our next example let us examine a linear map possessing a fixed point

with a pair of complex-conjugate multipliers e±iω

x̄ = x cosω − y sinω ,

ȳ = x sinω + y cosω .
(3.4.4)

All trajectories lie on invariant circles centered at the point O(0, 0) (see

Sec. 3.2). This map is not conjugate to the map

x̄ = x cosω − y sinω − x(x2 + y2) cosω ,

ȳ = x sinω + y cosω − y(x2 + y2) cosω
(3.4.5)

whose trajectories tend to O along spirals (the analogous example of an equi-

librium state is given in Sec. 2.5).
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It follows from Theorem 3.1 that when all multipliers of the fixed point

O of the diffeomorphism T are less than 1 in absolute value, then all forward

trajectories tend to O. When all multipliers lie outside of the unit circle,

the backward trajectory of a point from a small neighborhood of the point

O tends to the fixed point. Forward iterations of the map T force all tra-

jectories (excluding the fixed point) to escape from a neighborhood of the

fixed point.

In the saddle case where there are multipliers both inside and outside of

the unit circle, the fixed point has (locally) a stable invariant manifold W s
loc

and an unstable invariant manifold W u
loc which are the images of the invariant

subspaces Es and Eu of the associated linearized system by the homeomorphism

η which establishes the topological conjugacy. Therefore, the forward semi-

trajectory of any point in W s
loc lies entirely in W s

loc and tends to the saddle

point O. On the other hand, given any point in W u
loc its backward semi-

trajectory lies entirely in W u
loc and tends to O. The dimension of the stable

manifold is equal to the number of the multipliers inside the unit circle and the

dimension of the unstable manifold is equal to the number of multipliers outside

of the unit circle. Trajectories of the points which do not lie in W s
loc ∪W

u
loc

diverge from any neighborhood of the saddle.

It is obvious that if one diffeomorphism near a saddle fixed point is topo-

logically conjugate to another diffeomorphism near another fixed point, then

the dimensions of the stable (unstable) manifolds of both saddle points must

be equal (for generality, in the case of a stable fixed point we can assume that

Wu = {∅} and, therefore dim W u = 0; for a completely unstable point assume

that W s = {∅} and dim W s = 0). However, in contrast to the case of struc-

turally stable equilibrium states, the dimensions of the stable and the unstable

manifolds are not the only invariants of the topological conjugacy near the

fixed points.

In order to find new invariants we notice that the Grobman–Hartman the-

orem may be generalized as follows

In a neighborhood of the origin a linear non-singular map which has no

multipliers on the unit circle, is topologically conjugate to any, suffi-

ciently close map.

This implies in particular that any two close, linear maps are topologically

conjugate. It follows that for two arbitrary matrices A0 and A1 the maps

x̄ = A0x and x̄ = A1x
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are topologically conjugate if we can construct a family of the matrices A(s)

depending continuously on the parameter s ∈ [0, 1] such that A(0) = A0 and

A(1) = A1, provided that all matrices A(s) are non-singular and have no

eigenvalues on the unit circle.

It is not hard to verify that such a family exists if and only if both matrices

A0 and A1 have the same number of multipliers both inside and outside of the

unit circle and the same values δs and δu, where δs = sign
k∏

i=1

ρi as well as

δu = sign
n∏

i=k+1

ρi, where (ρ1, . . . , ρk) are the multipliers inside the unit circle,

and (ρk+1, . . . , ρn) are the multipliers which lie outside of the unit circle. The

values δs and δu remain unchanged while A0 is changed continuously to A1

because the product of the multipliers can change its sign only when at least

one multiplier vanishes, which is only possible for degenerate maps.

Thus, when some fixed points have the same topological type, i.e. the same

set of four numbers (k, δs, n − k, δu), then they are topologically conjugate,

i.e. there exists a homeomorphism establishing topological conjugacy among

the diffeomorphisms defined near these fixed points. In particular, near a fixed

point any diffeomorphism is topologically conjugate to a map

x̄ = Asx , ȳ = Auy , (3.4.6)

where As and Au are, respectively, the (k×k)-matrix and the (n−k)×(n−k)-

matrices:

As =








1/2 0
1/2

. . .

0 δs/2







, Au =







2 0
2

. . .

0 2δu






.

We should emphasize that maps of the kind (3.4.6) with different values

of δs cannot be topologically conjugate since the restriction x̄ = Asx of the

map (3.4.6) to the stable invariant subspace y = 0 preserves the orientation in

R
k provided that δs = 1, but does not preserve it if δs = −1. This assertion

applies to δu as well. In conclusion we come to the following theorem.

Theorem 3.2. Two structurally stable fixed points are topologically conjugate

if and only if they are of the same topological type.
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Thus, the number of topological types of structurally stable fixed points

of n-dimensional maps exceeds the number of topological types of structurally

stable equilibrium states of differential equations in R
n. So, a two-dimensional

diffeomorphism may have two types of stable and unstable fixed points and

four types of saddle fixed points. For example, the two linear maps

{

x̄ = x/2

ȳ = y/2
and

{

x̄ = x/2

ȳ = −y/2

have the fixed points of node type but the first point is orientable whereas the

second is non-orientable.

(Note: a fixed point possessing a pair of complex-conjugate multipliers has

also the topological type of orientable node.)

Observe next that the maps

{

x̄ = 2x

ȳ = 2y
and

{

x̄ = 2x

ȳ = −2y

have, respectively, an orientable and a non-orientable unstable topological node

at the origin.

Examples of topological saddles (δs = (+), δu = (+)) and (δs = (−), δu =

(−)) are given, respectively, by:

{

x̄ = x/2

ȳ = 2y
and

{

x̄ = −x/2

ȳ = −2y

Examples of topological saddles (+,−) and (−,+) are given, respectively,

by
{

x̄ = x/2

ȳ = −2y
and

{

x̄ = −x/2

ȳ = 2y

It is clear that in the case δs > 0 the stable invariant manifold (here, the

x-axis) of the saddle point is subdivided by the point O into the two parts,

namely, the rays x > 0 and x < 0, each of which is invariant with respect to

the map. In the case δs < 0 these rays are no longer separately invariant in

the sense that the map takes one onto the other. Analogously, the value δu
determines the structure of the unstable manifold of the saddle point O.

We must emphasize that the Poincaré map always preserves orientation

in R
n, i.e. the product of all multipliers of a periodic trajectory is positive.
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This implies that the values δs and δu of the fixed point of the Poincaré map

must have the same sign. Nevertheless, restricted to an invariant (stable or

unstable) manifold, the Poincaré map may not continue to preserve orientation

(for example, when both δs and δu are negative). Thus, the study of fixed

points of non-orientable maps makes the sense.

We showed in Sec. 3.1 that the values of the multipliers of a fixed point of the

Poincaré map (and, consequently, its topological type) are independent of the

choice of the cross-section, i.e. we can always correctly define the topological

type (k, δs, n − k, δu) of a periodic trajectory. In order to complete our

classification we refer to the following simple statement.

Lemma 3.1. Let a system X1 of differential equations have a periodic trajec-

tory L1 and a system X2 have a periodic trajectory L2. Then, the system X1

in a neighborhood of the trajectory L1 is topologically equivalent to the system

X2 in a neighborhood of the trajectory L2 if and only if the respective Poincaré

maps are topologically conjugate near the corresponding fixed points (regardless

of the choice of cross-sections)

From this lemma and from Theorem 3.2 we have the following theorem.

Theorem 3.3. Two structurally stable periodic trajectories are locally topo-

logically equivalent if and only if they have the same topological type.

3.5. Properties of nonlinear maps near a stable fixed
point

In the previous section we formally have presented a complete description of

dynamical systems near a structurally stable periodic trajectory. However,

such a topological classification of periodic trajectories, as well as equilibrium

states, is too crude. For example, the assertion concerning the equivalence of a

node and a focus seems to be rather strange from a practical point of view. We

will consider below more subtle (and more significant) features of structurally

stable fixed points.

Suppose the map

x̄ = Ax+ h(x) , (3.5.1)

where

h(0) = 0 , h′(0) = 0 , (3.5.2)
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has a stable fixed point at the origin. This means that the absolute values of

all multipliers ρi (i = 1, . . . , n) of the matrix A are strictly less than 1. It is

not hard to verify that all trajectories beginning from a small neighborhood of

the origin tend exponentially to O. Indeed, if we choose the Jordan basis, we

can verify that the estimate (3.3.9) for the norm of the matrix A is fulfilled;

namely,

‖A‖ ≤ ρ′ + ε ,

where ρ′ = max
i=1,...,n

|ρi| < 1. From the relation

h(x) = h(0) + x

∫ 1

0

h′(sx)ds

we have

‖h(x)‖ ≤ ‖x‖ max
‖y‖≤‖x‖

‖h′(y)‖ .

Hence

‖h(x)‖ ≤ ε‖x‖ , (3.5.3)

where ε > 0 can be chosen arbitrarily small since x is assumed to be small.

Consequently, for map (3.5.1) we obtain

‖x̄‖ ≤ ‖A‖ ‖x‖ + ‖h(x)‖ ≤ (ρ′ + 2ε)‖x‖ ,

or, equivalently for the j-th iteration of an initial point x0

‖xj‖ ≤ (ρ′ + 2ε)j‖x0‖ (3.5.4)

where xj → 0 as j → +∞ since ρ′ < 1 and since ε can be made arbitrarily

small.

Let us now reorder the eigenvalues of the matrix A so that

|ρ1| = · · · = |ρm| = ρ′ , |ρi| < ρ′ for i = m+ 1, . . . , n .

The matrix A can be then represented in the form

A =

(

A1 0

0 A2

)

,

where spectrA1 = {ρ1, . . . , ρm} and spectrA2 = {ρm+1, . . . , ρn}. The map

(3.5.1) now takes the form

ū = A1u+ f(u, v) ,

v̄ = A2v + g(u, v) ,
(3.5.5)
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where u = (u1, . . . , um) and v = (v1, . . . , vn−m) are the projections of x onto

the leading and the non-leading subspaces of the matrix A, the functions f ,

g ∈ C
r, and

f(0) = 0 , g(0) = 0 , f ′(0) = 0 , g′(0) = 0 . (3.5.6)

In Chap. 5 we will prove the following theorem

Theorem 3.4. (On the non-leading manifold) In a neighborhood U of

the point O there exists a unique (n−m)-dimensional C
r-smooth non-leading

(strongly stable) invariant manifold W ss
loc of the form

u = ϕ(v)

where

ϕ(0) = ϕ′
v(0) = 0 . (3.5.7)

The following result follows from Theorem 3.4.

Theorem 3.5. For any point x0 that does not lie in W ss
loc the associated tra-

jectory {xj}j≥0 tends to O along the leading direction v = 0, and

‖xj‖ ≥ C (ρ′ − ε)j dist (x0, W
ss
loc) , (3.5.8)

where C is some positive constant and ε can be made arbitrarily small by

choosing suitably small x0.

Proof. Firstly, let us straighten the manifold W ss
loc by the following change

of variables

w = u− ϕ(v) . (3.5.9)

In the new variables the equation of W ss
loc is w = 0. The invariance of the

manifold implies that w̄ = 0 when w = 0. Since the function ϕ(v) contains

no linear terms (see (3.5.7)), the transformation (3.5.9) does not change the

linear part of the map. As a result, in the new variables map (3.5.5) becomes

w̄ = (A1 + f̃(w, v)) w (3.5.10)

v̄ = A2v + g(w + ϕ(v), v) , (3.5.11)

where

f̃(0, 0) = 0 . (3.5.12)



138 Chapter 3. Structurally Stable Periodic Trajectories

In the Jordan basis (see Sec. 3.3), we have for the norm of the matrix A1

‖A−1
1 ‖−1 ≥ ρ′ − ε/2 .

By (3.5.10) and (3.5.12) this implies that

‖w̄‖ ≥ (ρ′ − ε) ‖w‖ (3.5.13)

provided that ‖w, v‖ is sufficiently small. As we have shown already, when

the norm of the initial point ‖w0, v0‖ is sufficiently small, the norm ‖wj , vj‖

is also small for all j ≥ 0. Therefore, inequality (3.5.13) is valid for any pair

(wj , wj+1 = w̄j). Hence, we obtain the estimate

‖wj‖ ≥ (ρ′ − ε)j‖w0‖

i.e. the inequality (3.5.8) is proven.

Let us now verify that when an initial point does not belong to W ss
loc, its

trajectory tends to O along the leading subspace v = 0. When w 6= 0 let

us consider the value z = ‖v‖/‖w‖. We seek to show that zj → 0 along the

trajectories (wj , vj)j≥0 of the map (3.5.10)–(3.5.11).

For ‖w̄‖ we have the estimate (3.5.13). Similarly, from (3.5.11) one obtains

‖v̄‖ ≤ (|ρm+1| + ε) ‖v‖ + ‖w‖ max ‖f ′
u‖ ,

where the maximum is taken over a neighborhood of O of diameter equal to

‖w, v‖. By (3.5.13), it follows that

zj+1 ≤ (|ρm+1| + ε)‖vj‖/(ρ
′ − ε)‖wj‖

+max ‖f ′
u‖/(ρ

′ − ε) ≡ µzj + κj , (3.5.14)

where µ = (|ρm+1| + ε)/(ρ′ − ε) < 1 and

κj → 0 as j → +∞ . (3.5.15)

From (3.5.14) we obtain

µ−(j+1)zj+1 ≤ µ−jzj + µ−(j+1)κj ,

µ−(j+1)zj+1 ≤ z0 +

j
∑

i=0

µ−(i+1)κi ,

zj ≤ z0µ
j +

j−1
∑

i=0

µj−(i+1)κi .
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Since µ < 1, the first summand decays to zero as j → ∞. Hence, in order

to prove that zj → 0 we need to show that the sum

Ij =

j−1
∑

i=0

µj−(i+1)κi → 0 .

This expression readily holds if we let κj → 0. Let us choose a natural number

J and break the sum into two parts:

Ij =
J−1∑

i=0

µj−(i+1)κi +

j−1
∑

i=J

µj−(i+1)κi .

Observe that

Ij ≤ µj−J
J−1∑

i=0

κi +

(
j−1
∑

i=J

µj−(i+1)

)

max
i≤J

κi

≤ µj−J
J−1∑

i=0

κi + (1 − µ)−1 max
i≥J

κi . (3.5.16)

By virtue of (3.5.15) the second term in (3.5.16) can be made arbitrarily

small by increasing J . By choosing J sufficiently large we may make the first

term in (3.5.16) arbitrarily small too and, therefore, Ij arbitrary small if let

j → +∞.

Thus, when w0 6= 0, ‖vj‖/‖wj‖ → 0, i.e. any trajectory which does not lie

in W ss
loc converges to the leading manifold as j → +∞. Thus, we have proven

Theorem 3.5

The map (3.5.10)–(3.5.11) on the non-leading manifold w = 0 is written in

the form

v̄ = A2 v + g(ϕ(v), v) . (3.5.17)

On this manifold the point O is a stable fixed point with the multipliers

(ρm+1, . . . , ρn). The results obtained above can be applied to this mapping.

In particular, the following exponential estimate analogous to (3.5.4) holds:

‖vj‖ ≤ C (|ρm+1| + ε)j ‖v0‖ , (3.5.18)

i.e. any trajectory from W ss
loc tends to O exceedingly fast. Since Theorems 3.4

and 3.5 hold for the map (3.5.17), it follows that almost all trajectories in W ss
loc
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tends to O with the exponential rate equal asymptotically |ρm+1|. Those par-

ticular trajectories which tend to O faster, form a C
r-smooth manifold W sss

loc

tangential at O to the eigen-subspace of the matrix A which corresponds to

the multipliers whose absolute values are less than |ρm+1|. For the restriction

of the map to W sss
loc , the theorem on the non-leading manifold can also be ap-

plied, and so on. We again obtain a hierarchy of non-leading manifolds: W ss
loc,

W sss
loc , W ssss

loc , . . . , composed of trajectories with higher and higher velocities of

convergence to the fixed point.

Just like the linear case, we can select three main types of stable fixed

points which depend on the behavior of the map in the leading coordinates: a

node (+), a node (−) and a focus.

The point O is called a node when m = 1, i.e. when the leading multiplier

ρ1 is unique and real:

1 > |ρ1| > |ρi| (i = 2, . . . , n) . (3.5.19)

Moreover, the point is called a node (+) when 0 < ρ1 < 1, and it is called a

node (−) when −1 < ρ1 < 0.

The point O is called a focus when m = 2 and the leading multipliers are

complex:

1 > |ρ1| = |ρ2| > |ρi| (i = 3, . . . , n) . (3.5.20)

In the case of the node, the (n− 1)-dimensional non-leading manifold par-

titions a neighborhood of the fixed point O into two parts, namely, w > 0 and

w < 0. Here, Eq. (3.5.10) for the leading coordinate w can be written in the

form

w̄ = ρ1w + o(w) . (3.5.21)

One can see that when ρ1 > 0 each part is invariant with respect to the

map. The trajectories which do not lie in W ss
loc tend monotonically to O strictly

along one of two directions, either from the region w > 0, or from the opposite

side w < 0.

When ρ1 < 0 the parts cycle under the action of the map, i.e. the sign of

the leading coordinate changes with every iteration.

In the case of the focus, the non-leading manifold is (n − 2)-dimensional

and it no longer partitions a neighborhood of the point O. Having introduced

ρ1,2 = ρe±iω, Eq. (3.5.10) for the leading coordinates becomes

w̄1 = ρ(cosω + · · · ) w1 − ρ(sinω + · · · ) w2 ,

w̄2 = ρ(sinω + · · · ) w1 + ρ(cosω + · · · ) w2 ,
(3.5.22)
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or in polar coordinates

r̄ = (ρ+ · · · ) r (3.5.23)

ϕ̄ = ϕ+ ω + · · · , (3.5.24)

where the ellipsis denotes the terms of a higher order. It follows from (3.5.23)

and (3.5.24) that all trajectories which do not belong to W ss
loc must spiral

towards to O (tangentially to the leading plane v = 0).

The case where |ρi| > 1, (i = 1, . . . , n) is reduced to that discussed above

by considering the inverse map. In this case a trajectory is estimated by

‖xj‖ ≤

(

min
i=1,...,n

ρi − 2ε

)j

‖x0‖ for j ≤ 0 . (3.5.25)

The associated fixed point is exponentially completely unstable. The exis-

tence of the smooth non-leading manifold W uu
loc can be established in the same

way as for W ss
loc of the stable fixed point but assuming on this occasion that

j → −∞. Depending on the behavior of the trajectories in the leading coordi-

nates there exist fixed points of the following types: node (+), node (−) and a

focus.

We conclude this section with a theorem on the leading invariant manifold

(see its proof in Chap. 5.)

Theorem 3.6. (On the leading invariant manifold) A stable fixed point O

has an m-dimensional C
min(r,rL)-smooth invariant manifold WL

loc (not unique

in general) which is tangent at the point O to the subspace v = 0; here

rL =

[
ln ρm+1

ln ρ1

]

≥ 1 , (3.5.26)

where [x] denotes the largest integer strictly less than x, and m is the number

of the leading multipliers.

3.6. Saddle fixed points. Invariant manifolds

Let us consider next a map T possessing a structurally stable fixed point O

of saddle type whose first k multipliers lie inside the unit circle and whose

remaining (n − k) multipliers lie outside of the unit circle, i.e. |ρi| < 1 (i =

1, . . . , k), |ρj | > 1, (j = k + 1, . . . , n), where k 6= 0, n. For convenience, let us
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denote the multipliers inside the unit circle by (λ1, . . . , λk), and those outside

by (γ1, . . . , γn−k). We will also assume that the multipliers are ordered in the

following manner

|λk| ≤ · · · ≤ |λ2| ≤ |λ1| < 1 < |γ1| ≤ |γ2| ≤ · · · ≤ |γn−k| .

A linear non-degenerate change of variables near the point O transforms the

map T to the form

ū = A−u+ f(u, v) ,

v̄ = A+v + g(u, v) ,
(3.6.1)

where u ∈ R
k and v ∈ R

n−k, Spectrum A− = {λ1, . . . , λk} and Spectrum

A+ = {γ1, . . . , γn−k}; f, g are C
r-smooth (r ≥ 1) functions which vanish at

the origin along with their first derivatives.

The study of the map T near a saddle fixed point resembles that of a system

of differential equations near a saddle equilibrium point. It can be reduced to

the problem of the existence of a stable and an unstable invariant manifolds

of the point O. We examine this problem in detail below. Poincaré proved

the existence of analytical invariant manifolds for analytical maps. Later, the

smooth case was considered by Hadamard [31] who proved the existence of

invariant manifolds satisfying a Lipschitz condition.

Theorem 3.7. (Hadamard’s theorem) The saddle fixed point O has two

invariant manifolds: a stable manifold W s
loc : v = ψ∗(u) and an unstable man-

ifold Wu
loc : u = ϕ∗(v), where ψ∗(u) and ϕ∗(v) satisfy the following Lipschitz

conditions:

‖ψ∗(u2) − ψ∗(u1)‖ ≤ N‖u2 − u1‖ , (3.6.2)

‖ϕ∗(v2) − ϕ∗(v1)‖ ≤ L‖v2 − v1‖ , (3.6.3)

for some constants N > 0 and L > 0.

Proof. We prove only the existence of W u
loc as the inverse map T−1 can also

be represented in the form (3.6.1) with the only difference that the variables u

and v exchange roles. Therefore, having proven that the map T has an invariant

manifold W u
loc of the form u = ϕ∗(v), by repeating the same arguments for the

map T−1 we can prove that there exists an invariant manifold of the form

v = ψ∗(u), i.e. the desired manifold W s
loc.
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Let us select a small δ > 0 and surround the point O by a neighborhood

D1 ⊗D2 in R
n, where D1 and D2 are spheres of diameter equal to δ in R

k and

R
n−k, respectively. Choose an arbitrary surface W of the form u = ϕ(v) such

that

‖ϕ‖ ≤ δ (3.6.4)

‖ϕ′‖ ≤ L (3.6.5)

for some L > 0. We will show below that when δ is sufficiently small then

the intersection T (W) ∩ (D1 ⊗ D2) is a surface of the same form ū = ϕ̃(v̄)

where ϕ̃ satisfies conditions (3.6.4)–(3.6.5) with the same constant L. This

allows us to consider a sequence of surfaces {Wj : u = ϕj(v)}
j=∞
j=0 which are

the sequential images of the initial surface W under the map T : ϕj = T jϕ.

We will show further that this sequence converges uniformly to some surface

u = ϕ∗(v) satisfying a Lipschitz condition. Moreover ϕ∗ does not depend on

the initial function ϕ. By construction, ϕ∗ = ϕ̃∗, i.e. its graph is invariant with

respect to the map T . Thus, the surface u = ϕ∗(v) is the desired invariant

manifold W u
loc: T (Wu

loc) ∩ (D1 ⊗D2) = Wu
loc.

Step 1. Let us choose an arbitrary surface W of the form u = ϕ(v) which

satisfies conditions (3.6.4) and (3.6.5) for some L. By substituting u = ϕ(v)

into (3.6.1) we obtain a parametric representation

ū = A− ϕ(v) + f(ϕ(v), v) , (3.6.6)

v̄ = A+ v + g(ϕ(v), v) , (3.6.7)

for the image of the surface W under the map T , where v can take arbitrary

values in D2.

Let us now show that for any v̄ whose norm does not exceed δ the value ū

is uniquely defined by (3.6.6) and (3.6.7). To do this we rewrite (3.6.7) in the

form

v = (A+)−1(v̄ − g(ϕ(v), v)) . (3.6.8)

When δ is sufficiently small the norm ‖∂(g, f)/∂(u, v)‖ is also small. It follows

that2 ∥
∥
∥
∥

dg(ϕ(v), v)

dv

∥
∥
∥
∥
≤ ‖g′u‖◦ · ‖ϕ

′‖◦ + ‖g′v‖◦

2Here ‖ · ‖◦ = sup ‖ · ‖.
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is small and, therefore, by virtue of the implicit function theorem, v is uniquely

expressed in terms of v̄ from (3.6.8). It should also be noted that ‖v‖ also does

not exceed δ. Indeed, it follows from (3.6.8) that

‖v‖ ≤ ‖(A+)−1‖
(
‖v̄‖ + ‖g′u‖◦ · ‖ϕ(v)‖◦ + ‖g′v‖◦‖v‖

)

whence

‖v‖ ≤ ‖(A+)−1‖
(‖v̄‖ + ‖g′u‖◦ · ‖ϕ(v)‖◦)

1 − ‖(A+)−1‖ ‖g′v‖◦
.

Thus, if ‖v̄‖ ≤ δ, then ‖v‖ ≤ δ because ‖(A+)−1‖ < 1, ‖ϕ(v)‖◦ ≤ δ and

‖g′(u,v)‖◦ is small.

So, by expressing v in terms of v̄ from (3.6.8) and by substituting the

resulting expression into (3.6.6), we determine that for each v̄ such that ‖v̄‖ ≤

δ, there exists a uniquely defined ū such that the point (ū, v̄) is the image of

some point (u, v) ∈ W. Let us denote this ū by ū = ϕ̃(v̄).

Step 2. Let us show that the surface TW: ū = ϕ̃(v̄) satisfies conditions

(3.6.4) and (3.6.5). In other words we will show that TW lies entirely in the

δ-neighborhood (D1 ⊗D2) of the point O, and that the norm of the derivative

of the function ϕ̃ does not exceed L. It follows from (3.6.4) and (3.6.6) that

‖ū‖ ≤ ‖A−‖ ‖ϕ(v)‖ + ‖f ′
u‖◦ · ‖ϕ(v)‖ + ‖f ′

v‖◦ · ‖u‖

≤ (‖A−‖ + ‖f ′u‖◦ + ‖f ′v‖◦) δ .

It follows that

‖ϕ̃(v̄)‖ ≡ ‖ū‖ ≤ δ

as ‖A−‖ < 1 and the norm ‖f ′
(u,v)‖◦ is small; i.e. condition (3.6.4) holds for ϕ̃

indeed.

Furthermore, from (3.6.6) and (3.6.7) we have

dū

dv
= A−ϕ′ + f ′u(ϕ(v), v)ϕ′ + f ′v(ϕ(v), v) ,

dv̄

dv
= A+ + g′u(ϕ(v), v)ϕ′ + g′v(ϕ(v), v)

whence

ϕ̃′(v̄) ≡
dū

dv̄
= (A−ϕ′ + f ′u(ϕ(v), v)ϕ′ + f ′v(ϕ(v), v))·

· [A+ + g′u(ϕ(v), v)ϕ′ + g′v(ϕ(v), v)]−1 .
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Finally

ϕ̃′(v̄) = A−ϕ′(v)(A+)−1 + · · · ,

where the ellipsis denotes the terms of order ‖(f, g)′(u,v)‖◦ which tend to zero

as δ → 0. It is easy to see that since ‖A−‖ < 1 and ‖(A+)−1‖ < 1, then

‖ϕ̃′‖◦ ≤ L provided ‖ϕ′‖◦ ≤ L and δ is sufficiently small.

Step 3. We have shown that the map T takes any surface W satisfying

conditions (3.6.4) and (3.6.5), onto a surface satisfying the same conditions.

Hence, all iterations of the surface W are defined under the action of the map T .

Let us now show that the sequence of these iterations Wj : u = ϕj(v) converges

uniformly to some surface W∗ : u = ϕ∗(v). Since Wj+1 = T (Wj) ∩ (D1 ⊗D2),

it follows from continuity that W∗ = T (W∗) ∩ (D1 ⊗D2), i.e. this surface is

invariant with respect to the map T .

In order to prove this, we will show that there exists K < 1 such that

sup
v̄∈D2

‖ϕj+2(v̄) − ϕj+1(v̄)‖ ≤ K sup
v∈D2

‖ϕj+1(v) − ϕj(v)‖ . (3.6.9)

Let us choose any v̄ ∈ D2 and consider a pair of points M̄1(ϕj+1(v̄), v̄) and

M̄2(ϕj+2(v̄), v̄). By construction, each point M̄i has a pre-imageMi on the sur-

face u = ϕj+i−1(v). Assume M1(u1 = ϕj(v1), v1) and M2(u2 = ϕj+1(v2), v2).

Because M̄1 = TM1 and M̄2 = TM2, we have from (3.6.1)

ū1 = A−u1 + f(u1, v1) , ū2 = A−u2 + f(u2, v2) ,

v̄ = A+v1 + g(u1, v1) , v̄ = A+v2 + g(u2, v2) .

Hence it follows that

‖ū2 − ū1‖ ≤ (‖(A−‖ + ‖f ′u‖◦) ‖u2 − u1‖ + ‖f ′v‖◦ ‖v2 − v1‖ (3.6.10)

and

‖v2 − v1‖ ≤ ‖(A+)−1‖(‖g′u‖◦ ‖u2 − u1‖ + ‖g′v‖◦ ‖v2 − v1‖)

whence

‖v2 − v1‖ ≤
‖(A+)−1‖ ‖g′u‖◦‖u2 − u1‖

1 − ‖(A+)−1‖ ‖g′v‖◦
. (3.6.11)

For ‖u2 − u1‖ = ‖ϕj+1(v2) − ϕj(v1)‖ we have the following estimate

‖ϕj+1(v2) − ϕj(v1)‖ ≤ ‖ϕj+1(v2) − ϕj+1(v1)‖ + ‖ϕj+1(v1) − ϕj(v1)‖ .
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The first term in this sum is estimated by

‖ϕj+1(v2) − ϕj+1(v1)‖ ≤ ‖ϕ′
j+1‖◦‖v2 − v1‖ ≤ L‖v2 − v1‖

and the second by

‖ϕj+1(v1) − ϕj(v1)‖ ≤ ρ ,

where ρ = sup
v∈D2

‖ϕj+1(v) − ϕj(v)‖. Thus, we obtain

‖u2 − u1‖ ≤ ρ+ L‖v2 − v1‖ . (3.6.12)

It follows from (3.6.11) that

‖v2 − v1‖ ≤
ρ‖(A+)−1‖ ‖g′u‖◦

1 − ‖(A+)−1‖(‖g′v‖◦ + L‖g′u‖◦))

which, after substitution into (3.6.10) with (3.6.12), gives

‖ū2 − ū1‖ ≤ ρ(‖A−‖ + · · · )

where the ellipsis denotes terms of the order ‖(f, g)′(u,v)‖◦. Since ‖A−‖ < 1,

we have

‖ū2 − ū1‖ = ‖ϕj+2(v̄) − ϕj+1(v̄)‖ ≤ K sup ‖ϕj+1(v) − ϕj(v)‖

for some K < 1 which does not depend on v̄ (provided that ‖v̄‖ ≤ δ). If we

take the supremum in the left-hand side of this inequality with respect to all

v̄, then we obtain the desired inequality (3.6.9).

From (3.6.9) we obtain

‖ϕj+2(v) − ϕj+1(v)‖ ≤ Kj sup ‖ϕ2(v) − ϕ1(v)‖ ,

i.e. the series
∞∑

j=1

(ϕj+1(v) − ϕj(v))

is majorized by a geometrical progression with the coefficient K < 1, and,

therefore, converges uniformly. Since the partial sums of this series are (ϕj+1(v)

− ϕ1(v)), its uniform convergence implies the uniform convergence of the se-

quence {ϕj} to some limit function ϕ∗.

Step 4. Let us denote the graph u = ϕ∗(v) of the function ϕ∗ by Wu
loc.

By construction, this graph is invariant with respect to the map T . Note that
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as ϕ∗(v) is the uniform limit of a sequence of continuous functions, it is also

continuous. Generally speaking, the smoothness of the function ϕ∗ does not

follow from our arguments (a limit of a series of smooth functions may be

non-smooth). Nevertheless, we remark that the derivatives of all functions ϕj
are bounded by the same constant L:

‖ϕ′
j(v)‖ ≤ L .

It follows from the inequality

‖ϕj(v1) − ϕj(v2)‖ ≤ ‖ϕ′
j‖◦‖v1 − v2‖

that all functions ϕj satisfy a Lipschitz condition

‖ϕj(v1) − ϕj(v2)‖ ≤ L‖v1 − v2‖

for any (v1, v2) in D2. If we take a limit of this inequality as j → ∞, we obtain

‖ϕ∗(v1) − ϕ∗(v2)‖ ≤ L‖v1 − v2‖ .

Thus, we have established the existence of the invariant manifold W u
loc

satisfying a Lipschitz condition. It should be noted that one can choose the

initial surface W such that it passes through the point O. It is obvious then

that all iterations of the surface W also contain the point O, and hence, the

limit surface W u
loc also contains O.

Before we prove the smoothness of the invariant manifolds, let us examine

the behavior of the map in its restriction to W u
loc and W s

loc. The restriction of

the map to W s
loc is given by the formula

ū = A−u+ f(u, ψ∗(u)) . (3.6.13)

Hence it follows from (3.6.2) that

‖ū‖ ≤ ‖A−‖ ‖u‖ + ‖f ′
u‖ ‖u‖ +N ‖f ′

v‖ ‖u‖ ≤
(
‖A−‖ + ‖f ′u‖ +N‖f ′v‖

)
‖u‖ .

Thus, since ‖A−‖ < 1 and since the norm ‖f ′
u‖ is small, the iterations of any

point on W s
loc converge exponentially to the point O under the action of the

map T .

By the symmetry, an analogous result may be obtained for the map (3.6.1)

in its restriction to W u
loc:

v̄ = A+v + g(ϕ∗(v), v) , (3.6.14)
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namely, for any point v̄ on W u
loc there exists a uniquely defined image v = T−1v̄

which iterations under the map T−1 tend uniformly and exponentially to the

point O.

Theorem 3.8. The invariant manifolds W s
loc and Wu

loc belong to the C
r-class

of smoothness and at the point O they are tangent respectively to the stable

eigen-subspace v = 0 and the unstable eigen-subspace u = 0, i.e.

ϕ∗ ′
v (0) = 0 , ψ∗ ′

u (0) = 0 .

Proof. As above we will only prove that part of this theorem which con-

cerns Wu
loc. Smoothness of the manifold W s

loc follows from the symmetry of

the problem. The invariance of the manifold W u
loc implies that if some point

M(u, v) belongs to W u
loc, i.e. u = ϕ∗(v) and if its image M̄(ū, v̄) remains in a

δ-neighborhood of the point O, then the point M̄ also belongs to W u
loc, i.e. its

coordinates satisfy ū = ϕ∗(v̄).

From (3.6.1) we have

A−ϕ∗(v) + f(ϕ∗(v), v) = ϕ∗(A+v + g(ϕ∗(v), v)) . (3.6.15)

By formal differentiation of this identity we determine that if the function ϕ∗

is differentiable, its derivative η∗ ≡ dϕ∗/dv satisfies the identity

A−η∗(v) + f ′u(ϕ
∗(v), v)η∗(v) + f ′v(ϕ

∗(v), v)

= η∗(v̄)
[
I + (g′u(ϕ

∗(v), v)η∗(v) + g′v(ϕ
∗(v), v))(A+)−1

]
A+ , (3.6.16)

where I is the identity (n−k)× (n−k)-matrix, and the value of v̄ being given

by formula (3.6.14).

We show below that there exists a continuous function η∗(v) satisfying

(3.6.16) such that η∗(0) = 0, and that this function is the derivative of ϕ∗(v),

thereby establishing C1-smoothness of the manifold W u
loc. Later, by induction,

we prove that W u
loc is Cr-smooth.

Step 1. Formula (3.6.16) implies that the graph η = η∗(v) of the derivative

of the function defining the invariant manifold is itself an invariant manifold

of the map T ∗: (v, η) 7→ (v̄, η̄), where v̄ is given by Eq. (3.6.14) and η̄ is given

by the following equation

η̄ =
[
A−η(A+)−1 + (f ′u(ϕ

∗(v), v)η + f ′
v(ϕ

∗(v), v))(A+)−1)]

×
[
I + (g′u(ϕ

∗(v), v)η + g′v(ϕ
∗(v), v))(A+)−1

]−1
. (3.6.17)
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The map T ∗ can be represented schematically in the form

η̄ = A−η(A+)−1 + F (v, η) ,

v̄ = A+v +G(v) ,
(3.6.18)

where F and G are certain continuous functions

F (0, 0) = 0 , G(0) = 0 . (3.6.19)

Moreover, F depends smoothly on η and

F ′
η(0, 0) = 0 . (3.6.20)

The function G satisfies a Lipschitz condition with a constant ε which may

be made infinitesimally small by decreasing the size of the δ-neighborhood of

the point O:

‖G(v2) −G(v1)‖ ≡ ‖g(ϕ∗(v2), v2) − g(ϕ∗(v1), v1)‖

≤ ‖g′u‖◦ ‖ϕ
∗(v2) − ϕ∗(v1)‖ + ‖g′v‖◦ ‖v2 − v1‖

≤ (‖g′u‖◦ L+ ‖g′v‖◦) ‖v2 − v1‖ ≤ ε‖v2 − v1‖ (3.6.21)

(see (3.6.14), (3.6.3)).

The point (v = 0, η = 0) is a fixed point of map (3.6.18). The existence of

an invariant manifold η = η∗(v) of the map T ∗ which passes through this point

can easily be proven by repeating the arguments used in proving the existence

of the invariant manifold of the map (3.6.1). Indeed, by using the fact that

‖A−‖ < 1 and ‖(A+)−1‖ < 1, and also the relations (3.6.19)–(3.6.21), one can

directly verify that by choosing an arbitrary continuous surface of the form

η = η1(v) such that ‖η1(v)‖ ≤ L, the image of this surface under the map T ∗

is a surface of the same type. One may therefore consider the sequence of the

surfaces {η = ηj(v)} obtained from the initial one by successive iterations of

the map T ∗. It may be verified that this sequence satisfies an inequality of

the kind (3.6.9) from which it follows that it converges to a continuous surface

η = η∗(v) for which

‖η∗(v)‖ ≤ L . (3.6.22)

By construction, this surface is invariant with respect to the map T ∗, i.e.

(3.6.16) is satisfied.3

3Here, in contrast to the map (3.6.1), in order to prove inequality (3.6.9) which is essential
for the convergence of successive approximations, the functions ηj are no longer required to
be smooth and to have the bounded derivatives. The reason is that the map T ∗ is a triangular
map, and the second equation in (3.6.18) does not depend on the variable η.



150 Chapter 3. Structurally Stable Periodic Trajectories

Step 2. We have established the existence of a continuous bounded solution

η∗ of the functional equation (3.6.18) which is thereby a formal derivative of the

function ϕ∗. Let us now show that η∗ is really the derivative of ϕ∗. Consider

the value

z(v) = lim
‖∆v‖→0

‖ϕ∗(v + ∆v) − ϕ∗(v) − η∗(v)‖∆v‖‖

‖∆v‖
. (3.6.23)

By the definition of the derivative, η∗ ≡ dϕ∗/dv if and only if z(v) ≡ 0.

Let us prove this identity. To begin let us note that the value of z is bounded:

by virtue of (3.6.3) and (3.6.22)

‖ϕ∗(v + ∆v) − ϕ∗(v) − η∗(v)∆v‖ ≤ 2L‖∆v‖ . (3.6.24)

Let us determine the relation between the values of z(v) and z(v̄), where v̄

is given by (3.6.14). From (3.6.14) we have

∆v̄ =
(
A+ + g′v(ϕ

∗(v), v) + g′u(ϕ
∗(v), v)η∗(v)

)
∆v

+g′u(ϕ
∗(v), v)(∆ϕ− η∗(v)∆v) + o(∆v) , (3.6.25)

where ∆ϕ ≡ ϕ∗(v + ∆v) − ϕ∗(v).

From (3.6.25) and (3.6.16) we obtain

η∗(v̄)∆v̄ =
(
A− + f ′u (ϕ∗(v), v)

)
η∗(v)∆v + f ′v(ϕ

∗(v), v)∆v

+η∗(v̄)g′u(ϕ
∗(v), v) (∆ϕ− η∗(v)∆v) + o(∆v) . (3.6.26)

From (3.6.15) we find

ϕ∗(v̄ + ∆v̄) − ϕ∗(v̄) =
(
A− + f ′u(ϕ

∗(v), v)
)
∆ϕ+ f ′v(ϕ

∗(v), v)∆v + o(∆v) .

Now it follows that

∆ϕ̄− η∗(v̄)∆v̄

= (A− + f ′u(ϕ
∗(v), v) − η∗(v̄)f ′u(ϕ

∗(v), v))(∆ϕ− η∗(v)∆v) + o(∆v)

whence

‖∆ϕ̄− η∗(v̄)∆v̄‖ ≤ (‖A−‖ + · · · )‖∆ϕ− η∗(v)∆v‖ + o(∆v) , (3.6.27)

where the ellipsis denotes terms of order ‖(f, g)′(u,v)‖.
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From (3.6.24) and (3.6.25) we have the following estimate for ‖∆v‖:

‖∆v‖ ≤ (‖(A+)−1‖ + · · · )‖∆v̄‖ .

From there and (3.6.27), and by definition of the function z, we obtain

z(v̄) ≤ (‖A−‖ ‖(A+)−1‖ + · · · ) z(v) . (3.6.28)

It was already noted that for any point v̄ which does not exceed δ in the

norm, there exists a pre-image v such that ‖v‖ ≤ δ. Therefore, for any point v0

the infinite sequence {vj} is defined such that vj = v̄j+1. By virtue of (3.6.28)

z(v0) ≤
(
‖A−‖ ‖(A+)−1‖ + · · ·

)j
z(vj) ,

and since z(vj) is bounded and ‖A−‖ < 1, ‖(A+)−1‖ < 1, it follows that

z(v0) = 0. As v0 was chosen arbitrarily, it follows that z(v) ≡ 0, i.e. the

smoothness of the function ϕ∗ is established.

It should be noted that the statement concerning the existence of the invari-

ant manifold {η = η∗(v)} of the map (3.6.18) is, generally speaking, satisfied

only for sufficiently small v : ‖v‖ ≤ δ1, δ1 > 0. We have disregarded the fact

that the value δ1 may be less than δ, which is the diameter of the neighbor-

hood of the origin in which the function ϕ∗ is defined. Nevertheless, one can

show that the function ϕ∗ is a smooth function for all v in a δ-neighborhood

of the origin. To do this we first note that since the backward iterations of any

point v̄ in W u
loc in a δ-neighborhood of the origin converge uniformly to the

point O, the image of the δ1-neighborhood of the origin on W u
loc will cover the

δ-neighborhood after a number of forward iterations of the map T . Thus it is

implied that because the map T is smooth and because in the δ1-neighborhood

of the point O the manifold W u
loc is also smooth, W u

loc is smooth inside the orig-

inal δ-neighborhood.

Step 3. We have established that the map T has a smooth invariant mani-

fold of the form u = ϕ∗(v). Moreover, the graph of the derivative η∗ = dϕ∗/dv

is itself an invariant manifold of the map T ∗ given by formulae (3.6.17) and

(3.6.18). If the smoothness of the right-hand side of the map T is greater than

one, then the right-hand side of the map T ∗ belongs to the C
1-class (because

it is expressed in terms of ϕ∗ and g). As the fixed point (v = 0, η = 0) of

the map T ∗ is a saddle point, all the arguments used for the map T can be

repeated, leading to the conclusion that the invariant manifold η = η∗(v) of
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the map T ∗ is smooth and consequently that the function ϕ∗ belongs to the

C
2-class.4

Thus, when the smoothness of the right-hand side of the map T is greater

than two, the right-hand side of the map T ∗ is then already C
2-smooth. There-

fore, by virtue of the previous arguments the function η∗ is of C
2-class, and

the function ϕ∗ is of C
3-class, respectively, and so on. By induction we arrive

at the existence of a C
r-smooth invariant manifold W u

loc.

End of the proof.

As in the case of equilibrium states, the invariant manifolds W s
loc and Wu

loc

can be locally straightened by a change of variables:

ξ = u− ϕ∗(v) ,

η = v − ψ∗(u) .

In the new variables the invariant manifolds take the form

W s
loc : η = 0 , and W u

loc : ξ = 0 .

The invariance of the manifolds implies that η̄ = 0 when η = 0 and ξ̄ = 0 when

ξ = 0. In terms of the variables ξ and η, the original system recasts in the

form

η̄ = (A− + h1(ξ, η))ξ ,

ξ̄ = (A+ + h2(ξ, η))η ,
(3.6.29)

where hi ∈ C
r−1 and

hi(0, 0) = 0 , i = 1, 2 . (3.6.30)

In a small neighborhood of the saddle the functions h1,2 are small in norm

and as long as a trajectory remains in a neighborhood of the saddle, the

inequalities

‖ξ̄‖ ≤ (|λ1| + ε)‖ξ‖

and

‖η̄‖ ≥ (|γ1| − ε)‖η‖

4With the only difference being that the linear part of the map T ∗ is not block-diagonal,

whence dη∗

dv
(0) 6= 0, in general.
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hold in the Jordan basis. Hence, we obtain

‖ξj‖ ≤ (|λ1| + ε)j‖ξ0‖ for j ≥ 0 (3.6.31)

‖ηj‖ ≤ (|γ1| − ε)|j|‖η0‖ for j ≤ 0 (3.6.32)

(see the proof of the analogous formulae (3.5.4) and (3.5.25) in the previous

section). Thus, a trajectory that lies in neither W s
loc nor in Wu

loc, leaves a

neighborhood of the saddle as j → ±∞. Moreover, the number of iterations

needed for a forward trajectory to escape from the neighborhood of the saddle

is of the order ln ‖η0‖, and that for a backward trajectory is of the order ln ‖ξ0‖.

The map (3.6.1) on the stable manifold W s
loc : v = ψ∗(u) is given by

ū = A−u+ f(u, ψ∗(u)) . (3.6.33)

On W s
loc the point O is a stable fixed point. In general, this point is ei-

ther a node (provided that only one coordinate is leading), or a focus (when

there are two leading coordinates corresponding to a pair of complex-conjugate

multipliers).

The map (3.6.1) on W u
loc is given by

v̄ = A+v + g(ϕ∗(v), v) . (3.6.34)

Here, the point O is a completely unstable fixed point and in the generic case,

it is either a node or a focus.

We can now identify nine main types of saddle fixed points depending on

the behavior of trajectories in the leading coordinates:

(1) a saddle (+,+): a node (+) on both W s
loc and Wu

loc;

(2) a saddle (−,−): a node (−) on both W s
loc and Wu

loc;

(3) a saddle (+,−): a node (+) on W s
loc and a node (−) on W u

loc;

(4) a saddle (−,+): a node (−) on W s
loc and a node (+) on W u

loc;

(5) a saddle-focus (2, 1+): a focus on W s
loc and a node (+) on W u

loc;

(6) a saddle-focus (2, 1−): a focus on W s
loc and a node (−) on W u

loc;

(7) a saddle-focus (1+, 2): a node (+) on W s
loc and a focus on W u

loc;

(8) a saddle-focus (1−, 2): a node (−) on W s
loc and a focus on W u

loc;

(9) a saddle-focus (2,2): a focus on both W s
loc and Wu

loc.
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Theorems 3.4 and 3.5 are valid for systems (3.6.33) and (3.6.34). This im-

plies that in W s
loc and Wu

loc there exists a non-leading stable invariant subman-

ifold W ss
loc, a leading stable invariant submanifold W sL

loc , a non-leading unstable

invariant submanifoldW uu
loc , and a leading unstable invariant submanifoldW uL

loc .

We further select an extra three smooth invariant manifolds of a saddle fixed

point. Introduce the notations:

rsL =

[

ln λ̂

ln |λ1|

]

, (3.6.35)

ruL =

[
ln γ̂

ln |γ1|

]

, (3.6.36)

where λ̂ and γ̂ respectively are the absolute values of non-leading stable and
unstable multipliers nearest to the unit circle; [x] denotes the largest integer

strictly less than x.

Theorem 3.9. In a neighborhood of a structurally stable fixed point of the

saddle type of a C
r-smooth map there exists the following invariant manifolds:

1. a C
min (r,ruL)-smooth extended stable manifold W sE

loc which contains W s
loc,

and which is tangent at the point O to the extended stable eigen-subspace

of the linearized system and transverse to W uu
loc ;

2. a C
min (r,rsL)-smooth extended unstable manifold W uE

loc which contains

Wu
loc and which is tangent at O to the extended unstable eigen-subspace

of the linearized system and transverse to W ss
loc;

3. a C
min (r,rsL,ruL)-smooth leading saddle manifold WL

loc = WuE
loc ∩W sE

loc .

See the proof in the Chap. 5. We note that, generally speaking, the manifold

W sE
loc is not unique but any two such manifolds are tangent to each other

everywhere on W s
loc. Analogously, any two manifolds W uE

loc are tangent to each

other on W u
loc.

3.7. The boundary-value problem near a saddle fixed
point

Let us consider the map T of class C
r (r ≥ 1)

ū = A−u+ f(u, v) ,

v̄ = A+v + g(u, v) ,
(3.7.1)
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where u ∈ R
m1 and v ∈ R

m2 . Let O(0, 0) be a saddle fixed point of the map T ,

i.e. spectrA− = {λ1, . . . , λm1
} lies strictly inside and spectrA+ = {γ1, . . . , γm2

}

lies outside of the unit circle. Assume that the functions f and g vanish at the

origin along with their first derivatives.

Just like in the case of a saddle equilibrium state which we have examined

in Sec. 2.8, exponential instability near a saddle fixed point is a typical feature

of the trajectories of the map (3.7.1). Therefore, in this case, instead of the

initial-value problem it is quite reasonable to solve the boundary-value problem

which can be formalized in the following way:

For any u0 and v1, and for an arbitrary k > 0 find a trajectory

{(u0, v0), (u1, v1), . . . , (uk, vk)}

of the map (3.7.1) in a neighborhood of the point O(0, 0) such that

u0 ≡ u0 , vk ≡ v1 , (3.7.2)

where we assume that ‖u0‖ ≤ ε and ‖v1‖ ≤ ε for some sufficiently small ε > 0.

A trajectory {(uj , vj)}
k
j=0 of the map (3.7.1) is given by

uj+1 = A−uj + f(uj , vj) ,

vj+1 = A+vj + g(uj , vj) .
(3.7.3)

In the linear case a solution of the boundary-value problem is trivially

found:

uj = (A−)ju0 , vj = (A+)−(k−j)v1 . (3.7.4)

Since ‖(A−)j‖ and ‖(A+)−(k−j)‖ are bounded for all 0 ≤ j ≤ k, the solution

of the linear problem is stable with respect to perturbations of the initial

conditions u0 and v1. The validity of this statement in the nonlinear case is

established by the following theorem.

Theorem 3.10. For sufficiently small ε > 0 and u0, v1 such that ‖u0‖ ≤ ε

and ‖v1‖ ≤ ε, a solution of the boundary-value problem (3.7.2) for the map

(3.7.1) exists for any positive integer k. The solution is unique and depends

continuously on (u0, v1).

Proof. We shall seek for the solution

{(u0, v0), (u1, v1), . . . , (uk, vk)}
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of the boundary-value problem (3.7.2) and (3.7.3) as a solution of the following

system of equations (see the analogous integral equations for the boundary-

value problem near a saddle equilibrium state in Sec. 2.8)

uj = (A−)ju0 +

j−1
∑

s=0

(A−)j−s−1f(us, vs) ,

vj = (A+)−(k−j)v1 −
k−1∑

s=j

(A+)−(s+1−j)g(us, vs)

(3.7.5)

with respect to the variables {(uj , vj)} (j = 0, 1, . . . , k). Observe that this

system is derived directly from the relations (3.7.3); namely we have for uj :

uj = A−uj−1 + f(uj−1, vj−1)

= (A−)2uj−2 +A−f(uj−2, vj−2) + f(uj−1, vj−1)

· · · = (A−)ju0 + (A−)j−1f(u0, v0) + · · · + f(uj−1, vj−1)

and for vj :

vj = (A+)−1 vj+1 − (A+)−1 g(uj , vj)

= (A+)−2vj+2 − (A+)−2g(uj+1, vj+1) − (A+)−1g(uj , vj)

· · · = (A+)j−kvk − (A+)j−kg(uk−1, vk−1) − · · · − (A+)−1g(uj , vj) .

It is evident that u0 ≡ u0 and vk ≡ v1 for any solution (3.7.4). Thus, the

sequence {(u0, v0), (u1, v1), . . . , (uk, vk)} is a solution of the boundary value

problem if and only if it satisfies (3.7.5).

Let us construct a solution of the system (3.7.5) by the method of successive

approximations. The first approximation is chosen as solution (3.7.4) of the

linear boundary-value problem. Successive approximations will be calculated

according to the formula

u
(n+1)
j = (A−)ju0 +

j−1
∑

s=0

(A−)j−s−1 f
(

u(n)
s , v(n)

s

)

,

v
(n+1)
j = (A+)j−kv1 −

k−1∑

s=j

(A+)j−s−1 g
(

u(n)
s , v(n)

s

)

,

(j = 0, 1, . . . , k) .

(3.7.6)
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Let us now show that the resulting sequence converges uniformly to some

limit vector

z∗0 =
{
(u∗i , v

∗
i )
}i=k

i=0
.

We first prove that

‖u
(n)
j ‖ ≤ 2ε , ‖v

(n)
j ‖ ≤ 2ε (3.7.7)

for all n and 0 ≤ j ≤ k.

When n = 1 it follows directly from the fact that ‖u0‖ ≤ ε, ‖v1‖ ≤ ε and

also from the inequalities

‖(A−)j‖ ≤ λj , ‖(A+)j−k‖ ≤ γj−k , (3.7.8)

where 0 < λ < 1 and γ > 1 are such numbers that spectrA− lies strictly inside

the circle of diameter λ, and spectrA+ lies outside the circle of diameter γ.

We will prove inequality (3.7.7) for all n by induction. Since both functions

f and g vanish at the point O along with their first derivatives, the inequalities5

∥
∥
∥
∥

∂(f, g)

∂(u, v)

∥
∥
∥
∥
≤ δ , ‖f, g‖ ≤ δ‖u, v‖ (3.7.9)

are satisfied, where δ may be made arbitrarily small by decreasing the size of

the neighborhood of the point O. Choose ε sufficiently small so that for any u

and v in the 2ε-neighborhood of the saddle the inequality

2δmax

(
1

1 − λ
,

1

1 − γ−1

)

≤ 1 (3.7.10)

holds. From (3.7.6), (3.7.8) and (3.7.9) we obtain

‖u
(n+1)
j ‖ ≤ λj‖u0‖ + δ

j−1
∑

s=0

λj−s−1‖u(n)
s , v(n)

s ‖

‖v
(n+1)
j ‖ ≤ γj−k‖v1‖ + δ

k−1∑

s=j

γj−s−1‖u(n)
s , v(n)

s ‖

from which it follows that

‖u
(n+1)
j , v

(n+1)
j ‖ ≤ ε+ δ max

(
1

1 − λ
,

1

1 − γ−1

)

max
0≤s≤j

‖u(n)
s , v(n)

s ‖ .

5Hereafter ‖u, v‖ denotes max{‖u‖, ‖v‖}.
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By virtue of (3.7.10) we have that if ‖u
(n)
s , v

(n)
s ‖ ≤ 2ε, then ‖u

(n+1)
j , v

(n+1)
j ‖

≤ 2ε, which implies that the inequalities (3.7.7) hold for all n.

We prove now that

max
0≤j≤k

‖u
(n+1)
j − u

(n)
j , v

(n+1)
j − v

(n)
j ‖

≤
1

2
max

0≤s≤k
‖u(n)

s − u(n−1)
s , v(n)

s − v(n−1)
s ‖ . (3.7.11)

Since the variables
(

u
(n)
j , v

(n)
j

)

lie in the 2ε-neighborhood of the saddle for

all n, it follows that the estimates (3.7.9) are valid for values f
(

u
(n)
j , v

(n)
j

)

and

g
(

u
(n)
j , v

(n)
j

)

. Now, from (3.7.6) and (3.7.10) we obtain

‖u
(n+1)
j − u

(n)
j ‖

≤

j−1
∑

s=0

λj−s−1‖f
(

u(n)
s , v(n)

s

)

− f
(

u(n−1)
s , v(n−1)

s

)

‖

≤
δ

1 − λ
max
0≤s≤j

‖u(n)
s − u(n−1)

s , v(n)
s − v(n−1)

s ‖

≤
1

2
max
0≤s≤j

‖u(n)
s − u(n−1)

s , v(n)
s − v(n−1)

s ‖ .

An analogous estimate applies to ‖v
(n+1)
j − v

(n)
j ‖.

It follows from (3.7.11) that the norms of the differences ‖u
(n+1)
j − u

(n)
j ‖

and ‖v
(n+1)
j − v

(n)
j ‖ decay in a geometric progression. Therefore, the series

∞∑

n=1

(

u
(n+1)
j − u

(n)
j , v

(n+1)
j − v

(n)
j

)

(3.7.12)

converges uniformly with respect to j as well as to u0, v1 and k in view of the

obvious relation

(

u
(p)
j , v

(p)
j

)

=
(

u
(1)
j , v

(1)
j

)

+

p−1
∑

n=1

(

u
(n+1)
j − u

(n)
j , v

(n+1)
j − v

(n)
j

)

.

The sequence
(

u
(n)
j , v

(n)
j

)

converges to some vector {(u∗j , v
∗
j )}

k
i=0 as n → ∞,

which is a solution of the system (3.7.5) as well as a solution of the boundary-
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value problem. Since the convergence of the successive approximations is uni-

form, the solution (u∗j , v
∗
j ) depends continuously on u0 and v1.

To prove the uniqueness of the solution, suppose that the system (3.7.5)

has one more solution {(u∗∗j , v
∗∗
j )}ki=0. Then, in the same manner as in the

proof of inequality (3.7.11), one may show that

‖u∗∗j − u∗j , v
∗∗
j − v∗j ‖ ≤

1

2
max

0≤s≤k
‖u∗∗s − u∗s, v

∗∗
s − v∗s‖

for all j ∈ {0, . . . , k}. Hence the identities u∗∗j ≡ u∗j and v∗∗j ≡ v∗j hold. End

of the proof.

By analogy with the proof of the smoothness of solutions of the boundary-

value problem near a saddle equilibrium state presented in Sec. 2.8, it is pos-

sible to show that the solution of the boundary-value problem (3.7.2) and

(3.7.3) near the saddle fixed point depends C
r-smoothly on the initial con-

dition (u0, v1). The derivatives with respect to u0 and v1 are determined as

solutions (unique) of the boundary-values problems obtained by a formal dif-

ferentiation of the relations (3.7.2) and (3.7.3). Hence, the derivatives ∂u∗
j/∂u

0

and ∂v∗j /∂u
0 are solutions of the following system

Uj+1 = A−Uj + f ′u
(
u∗j , v

∗
j

)
Uj + f ′v

(
u∗j , v

∗
j

)
Vj ,

Vj+1 = A+Vj + g′u
(
u∗j , v

∗
j

)
Uj + g′v

(
u∗j , v

∗
j

)
Vj ,

(j = 0, . . . , k) ,

(3.7.13)

with the boundary conditions

U0 = Im1
, Vk = 0 , (3.7.14)

where Uj ≡ ∂u∗j/∂u
0 and Vj ≡ ∂v∗j /∂u

0.

Just as we have found the solution of the boundary-value problem (3.7.2),

(3.7.3) as a solution of the system (3.7.5), we will find a solution of the

boundary-value problem (3.7.13), (3.7.14) as a solution of the system

Uj = (A−)j +

j−1
∑

s=0

(A−)j−s−1(f ′u(u
∗
s, v

∗
s )Us + f ′v(u

∗
s, v

∗
s )Vs)

Vj = −
k−1∑

s=j

(A+)j−s−1(g′u(u
∗
s, v

∗
s )Us + g′v(u

∗
s, v

∗
s )Vs) .

(3.7.15)
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The convergence of successive approximations may be proven in the same man-

ner as in Theorem 3.10, i.e. it may be shown that the norms of ‖U
(n+1)
j −U

(n)
j ‖

and ‖V
(n+1)
j − V

(n)
j ‖ decrease in a geometric progression.

The derivatives ∂u∗j/∂v1 and ∂v∗j /∂v1 are also found as solutions of the

system (3.7.13) but with other boundary conditions:

Vk = Im2
, and U0 = 0 . (3.7.16)

The method of the boundary-value problem enables us to establish a very

important geometrical result concerning the properties of the saddle map,

called λ-lemma. For convenience, let us make a C
r-smooth change of coor-

dinates which straightens the stable and the unstable manifolds in some ε-

neighborhood Dε of the saddle fixed point (see Sec. 3.6). In terms of the new

coordinates, the functions f , g in (3.7.1) vanish at the origin along with their

first derivatives. Moreover, everywhere in Dε

f(0, v) ≡ 0 , g(u, 0) ≡ 0 . (3.7.17)

Thus, the equation ofW s
loc becomes v = 0 and the equation ofW u

loc becomes

u = 0.

In the neighborhood Dε we consider an arbitrary m2-dimensional C
r-

smooth surface H0 : u = h0(v) which intersects W s
loc transversally at some

point M .

Let us examine the sequence of the points {M,T (M), . . . , T k(M), . . .}

which converges to O as k → +∞. The m2-dimensional surfaces T k(H0)

pass through the corresponding points of this sequence. Let us denote by Hk

a connected component of T k(H0) ∩Dε containing the point T k(M).

Lemma 3.2. (λ-lemma) For all sufficiently large k the surface Hk is repre-

sented in the form u = hk(v), where the functions hk tend uniformly to zero,

along with all their derivatives, as k → +∞ (see Fig. 3.7.1).6

Proof. Transversality of the surface H0 with respect to the surface W s
loc :

v = 0 at the point M(h0(0), 0) implies that ‖h′0(0)‖ is bounded. Therefore,

the norm ‖h′0(v)‖ is bounded for all sufficiently small v. Let us consider the

surface Hk and choose an arbitrary point (uk, vk) on it. By construction, there

always exists a point (u0, v0) on H0 such that T k(u0, v0) = (uk, vk).

6In other words, the sequence Hk converges to W u
loc

in the Cr-topology.
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Fig. 3.7.1. A geometrical interpretation of the λ-lemma. With each successive iteration the
graph of the surface u = hk(v) becomes flatter and flatter while approaching the unstable
manifold W u along the stable manifold W s.

By virtue of Theorem 3.10 the map T k : (u0, v0) 7→ (uk, vk) can be written

for any positive k in the implicit form

uk = ξk(u0, vk) , v0 = ηk(u0, vk) , (3.7.18)

where ξk and ηk are C
r-smooth functions. Below we show that as k → +∞,

the norms of the functions ξk, ηk as well as the norms of their derivatives up

to order r tend uniformly to zero.

Substituting u0 = h0(v0) into (3.7.18) gives that the points (uk, vk) ∈ Hk

and (u0, v0) ∈ H0 are linked by the relations

uk = ξk(h0(v0), vk) , v0 = ηk(h0(v0), vk) . (3.7.19)

We have already noted that ηk along with all their derivatives up to order

r converges to zero as k → +∞, whereas ‖h′0‖ remains bounded for small v0.

Hence, by virtue of the implicit function theorem, for sufficiently large k and

any vk whose norm does not exceed ε, the second equation in (3.7.19) can be

uniquely resolved with respect to v0 : v0 = ϕk(vk), where the function ϕk tends

uniformly to zero along with all the derivatives up to order r as k → +∞.
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The equation of the surface Hk can now be recast in the explicit form uk =

ξk(h0(ϕk(vk)), vk), what gives the lemma because the norms of the functions

ξk and ϕk converge uniformly to 0 as k → +∞.

Thus, the proof of the λ-lemma is reduced to verifying that the norms ‖ξk‖

and ‖ηk‖ tend to 0 along with the norms of their derivatives. Let us prove

this.

Lemma 3.3. In the coordinate system where the stable and the unstable man-

ifold are straightened, the norms of the functions ‖ξk‖ and ‖ηk‖ tend uniformly

to zero as k → ∞.

Proof. Consider the system (3.7.5) which yields the solution of the

boundary-value problem for the map T . We have uk ≡ ξk(u0, vk) and v0 ≡

ηk(u0, vk). We will show that solutions of system (3.7.5) satisfy the inequalities

‖uj‖ ≤ Kλ̄j , ‖vj‖ ≤ Kγ̄j−k (3.7.20)

for some K and for some λ̄ < 1, γ̄ > 1. From the proof of Theorem 3.10

one can see that the solution of system (3.7.5) is found as the limit of the

successive approximations
(

u
(n)
j , v

(n)
j

)

, which are calculated by formula (3.7.6).

It is therefore sufficient to check that inequalities (3.7.20) hold for all steps of

successive approximations with the same values of k, λ̄, γ̄.

For the first approximation

(

u
(1)
j = (A−)ju0 , v

(1)
j = (A+)−(k−j)v1

)

the validity of (3.7.20) follows from (3.7.8) provided that we choose K > ε and

λ̄ > λ, γ̄ < γ. Now let us show that if (3.7.20) holds for the n-th approximation,

then it holds for the (n + 1)-th approximation as well. Observe first that it

follows from (3.7.17) and (3.7.9) that the functions f and g satisfy the following

estimates

‖f(u, v)‖ ≤ ‖f(0, v)‖ +

(

sup
‖u,v‖≤ε

‖f ′u‖

)

‖u‖ ≡ δ‖u‖ (3.7.21)

and

‖g(u, v)‖ ≤ ‖g(u, 0)‖ +

(

sup
‖u,v‖≤ε

‖g′v‖

)

‖v‖ ≡ δ‖v‖ . (3.7.22)
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Now from (3.7.7), (3.7.9) and (3.7.21), (3.7.22) we obtain

‖u
(n+1)
j ‖ ≤ λjε+ δ

j−1
∑

s=0

λj−s−1‖u(n)
s ‖ ,

‖v
(n+1)
j ‖ ≤ γj−kε+ δ

k−1∑

s=j

γj−s−1‖v(n)
s ‖ .

Hence, if
(

u
(n)
s , v

(n)
s

)

satisfies (3.7.20), then for u
(n+1)
j , v

(n+1)
j we have

‖u
(n+1)
j ‖ ≤ λjε+ δ

j−1
∑

s=0

λj−s−1Kλ
s
≤ λ

j
(

ε+
δK

λ− λ

)

,

‖v
(n+1)
j ‖ ≤ γj−kε+ δ

k−1∑

s=j

γj−s−1Kγs−k ≤ γj−k
(

ε+
δK

γ − γ

)

.

The inequalities (3.7.20) hold for
(

u
(n+1)
j , v

(n+1)
j

)

provided that

K >

(

ε+ δKmax

(
1

λ− λ
,

1

γ − γ

))

.

Since δ may be made arbitrarily small for sufficiently small ε, such a constantK

exists. Thus, one can select K, λ and γ such that the inequalities (3.7.20) hold

for all approximations, and, consequently, for the solution of the boundary-

value problem itself.

For the functions ξk and ηk we found

‖ξk‖ ≤ Kλ
k
, ‖ηk‖ ≤ Kγ −k ,

i.e. the norms of these functions tend uniformly and exponentially to zero as

k → +∞. End of the proof.

Lemma 3.4. The norms of the derivatives ∂(ξk, ηk)/∂(u0, vk) tend uniformly

to zero as k → ∞.

Proof. Let us consider the derivatives ∂ξk/∂u0 and ∂ηk/∂u0. They are

found from the solutions of the boundary-value problem (3.7.13), (3.7.14):

∂ξk/∂u0 ≡ Uk, ∂ηk/∂u0 ≡ Vk. Before we show that both Uk(u0, vk) and
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V0(u0, vk) tend to zero as k → +∞, we will prove that all Uj and Vj are

bounded by a constant which depends neither on k nor on j.

The values Uj and Vj are found from the system (3.7.15) as a limit of the

successive approximations

U
(n+1)
j = (A−)j +

j−1
∑

s=0

(A−)j−s−1
(
f ′u
(
u∗s, v

∗
s

)
U (n)
s + f ′v

(
u∗s, v

∗
s

)
V (n)
s

)
,

V
(n+1)
j = −

k−1∑

s=j

(A+)j−s−1
(
g′u
(
u∗s, v

∗
s

)
U (n)
s + g′v

(
u∗s, v

∗
s

)
V (n)
s

)
,

(3.7.23)

where u∗s and v∗s are the solutions of the boundary-value problem (3.7.2) and

(3.7.3). We will prove that Uj and Vj are uniformly bounded if we show that all

of the successive approximations U
(n)
j , V

(n)
j are bounded by a constant which

is independent of k, j and n. In order to verify this let us suppose that for

all j

‖U
(n)
j , V

(n)
j ‖ ≤ 2 . (3.7.24)

It follows from (3.7.23), (3.7.9) and (3.7.10) that

‖U
(n+1)
j ‖ ≤ λj +

j−1
∑

s=0

λj−s−1
(
‖f ′u(us, vs)‖ ‖U

(n)
s ‖ + ‖f ′v(us, vs)‖ ‖V

(n)
s ‖

)

≤ 1 + 2δ

j−1
∑

s=0

λj−s−1 ≤ 1 + 2δ/(1 − λ) ≤ 2 ,

‖V
(n+1)
j ‖ ≤

k−1∑

s=j

γj−s−1
(
‖g′u(us, vs)‖U

(n)
s ‖ + ‖g′v(us, vs)‖ ‖V

(n)
s ‖

)

≤ 2δ

k−1∑

s=j

γj−s−1 ≤ 2δ/(γ − 1) ≤ 1 .

which proves the claim.

Let us now show that Uk tends to zero as k → +∞. Since Uj satisfies

(3.7.15), we obtain

‖Uj‖ ≤ λj +

j−1
∑

s=0

λj−s−1
(
δ‖Us‖ + ‖f ′1v(u

∗
s, v

∗
s )‖ ‖Vs‖

)
. (3.7.25)
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As f(0, v) ≡ 0, it follows that f ′
v(0, v) ≡ 0, and therefore f ′

v(u, v) → 0 as

u→ 0. Thus, by virtue of (3.7.20), f ′
v(u

∗
s, v

∗
s ) → 0 as s→ +∞. Now, since Vs

remains bounded for all s, (3.7.25) gives

‖Uj‖ ≤ λj +

j−1
∑

s=0

λj−s−1(δ‖Us‖ + ρs) , (3.7.26)

where ρs is some sequence of positive numbers which converges to zero as

s→ +∞. Let us consider the sequence Zj defined by the recurrent formula

Zj = λj +

j−1
∑

s=0

λj−s−1(δZs + ρs) . (3.7.27)

It follows by induction from (3.7.26) that ‖Uk‖ ≤ Zk. Therefore, to prove that

∂ξk/∂u0 ≡ Uk → 0, it is sufficient to show that Zk → 0.

To prove this we first note that from (3.7.27)

Zj+1 − λZj = δZj + ρj (3.7.28)

whence

Zj+1 = (λ+ δ)Zj + ρj . (3.7.29)

Since δ may be chosen sufficiently small, we have λ+ δ < 1. Now, the conver-

gence of Zj to zero is proven in the same way as it was done for the sequence

(3.5.14) (taking into account that ρj → 0). Thus, Uk = ∂ξk

∂u0
tends to zero as

k → +∞. The remaining derivatives ∂ξk/∂vk, ∂ηk/∂u0, and ∂ηk/∂vk may be

shown to tend to zero as k → +∞ in a similar fashion.

Lemma 3.5. The norms of the first r derivatives of the functions ξk and ηk
tend uniformly to zero as k → ∞.

Proof. Introduce the notations

U ij(p,q) ≡
∂iuj
∂up0∂v

q
k

, V ij(p,q) ≡
∂ivj

∂up0∂v
q
k

,

where p + q = i ≤ r. The values U ij and V ij may be found by the succes-

sive approximations method as solutions of the system obtained from (3.7.5)
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by differentiating p-times with respect to u0, and differentiating q-times with

respect to vk:

U ij =

j−1
∑

s=0

(A−)j−s−1
(

f ′u(us, vs)U
i
s + f ′v(us, vs)V

i
s

+ Pi
(
us, vs, . . . , U

i−1
s , V i−1

s

))

,

V ij = −
k−1∑

s=j

(A+)j−s−1
(

g′u(us, vs)U
i
s + g′v(us, vs)V

i
s

+Qi
(
us, vs, . . . , U

i−1
s , V i−1

s

))

,

(3.7.30)

where Pi and Qi are certain polynomials of the variables
(
U1
s , V

1
s , . . . , U

i−1
s ,

V i−1
s

)
and of the derivatives of the functions f and g computed at u = us and

v = vs.

For example, for the derivatives

(

U2
j(2,0), V

2
j(2,0)

)

≡

(
∂2uj
∂u2

0

,
∂2vj
∂u2

0

)

we have

U2
j(2,0) =

j−1
∑

s=0

(A−)j−s−1
(

f ′u(us, vs)Us(2,0) + f ′v(us, vs)Vs(2,0)

+ f ′′uu(us, vs)(Us(1,0))
2 + 2f ′′uv(us, vs)Us(1,0)Vs(1,0)

+ f ′′vv(us, vs)(Vs(1,0))
2
)

and

V 2
j(2,0) = −

k−1∑

s=j

(A+)j−s−1
(

g′u(us, vs)Us(2,0) + g′v(us, vs)Vs(2,0)

+ g′′uu(us, vs)(Us(1,0))
2 + 2g′′uv(us, vs)Us(1,0)Vs(1,0)

+ g′′vv(us, vs)(Vs(1,0))
2
)

.
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In the manner previously employed for the first derivatives, one can show

that the derivatives U ij and V ij of any higher order i are bounded by some

constant which depends neither on j nor on k (but it may depend on the order

i of the derivative).

In order to verify that the norm ‖U ik‖ → 0 as k → +∞, we show that the

norms ‖U ij‖ are bounded by a sequence which is independent of k and which

tends to zero as j → ∞. We have already proven this statement for i = 1. We

show by induction that it is valid for all i.

Let us assume that ‖U ij‖ → 0 as j → ∞ for all i less than some i0. Consider

Eq. (3.7.30) for U i0j . Those terms in Pi0 which contain at least one of the values

U is (i < i0) tend to zero as s→ +∞ by virtue of our inductive hypothesis. The

remaining terms are products of certain values V i
s with certain derivatives of

f(us, vs) with respect to the variable vs. Since all V is are bounded uniformly

and the derivatives of f(us, vs) with respect to vs tends uniformly to zero

as us → 0 (because f(0, v) ≡ 0), it follows that all these terms, as well as

f(us, vs)V
i
s , tend to zero as s→ +∞.

Thus, in complete analogy with the discussion concerning the first deriva-

tive, we obtain the estimate

‖U ij‖ ≤ λj +

j−1
∑

s=0

λj−s−1
(
δ‖U is‖ + ρis

)
,

where ρis is a sequence of positive numbers which converges to zero as s→ +∞.

Hence, similarly to estimate (3.7.26) for U 1
j , we obtain that the values U ij are

majorized by some sequence Z ij which does not depend on k and which tends

to zero as j → +∞. Thus, we may conclude now that all derivatives of ξk tend

to zero as k → +∞.

For the values V ij we obtain the estimate

‖V ij ‖ ≤
k−1∑

s=j

γj−s−1
(
δ‖V is ‖ + σik−s

)
,

where σik−s → 0 as (k − s) → +∞. Repeating the same arguments employed

for U ij we can show that ‖V ik−j‖ → 0 as (k − j) → +∞. Assuming j = k, we

found that all derivatives of ηk tend to zero as k → +∞.

End of the proof.
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3.8. Behavior of linear maps near saddle fixed points.
Examples

In this section we will study some geometrical properties of the linear saddle

maps. For suitable choice of coordinates a linear map T with a structurally

stable fixed point O of the saddle type can be written in the form

x̄ = AsLx ,

ȳ = AuLy

ū = Assu ,

v̄ = Auuv ,
(3.8.1)

where the absolute values of the eigenvalues of the matrix AsL are equal to λ,

0 < λ < 1, while those of the matrix Ass are less than λ. The eigenvalues of

the matrix AuL are equal in absolute value to γ, γ > 1 and those of matrix

Auu are greater in absolute value than γ. Then, the equation of the stable

invariant manifold W s is (y = 0, v = 0) and the equation of the non-leading

(strongly) stable manifold W ss is (x = 0, y = 0, v = 0). The equation of the

unstable manifold W u is (x = 0, u = 0), and the equation of thxe non-leading

(strongly) unstable manifold W uu is (x = 0, u = 0, y = 0).

Let us choose two points on the stable and the unstable manifolds:

M+(x+, u+, 0, 0) ∈W s/O, and M−(0, 0, y−, v−) ∈Wu/O and surround them

by some small rectangular neighborhoods

Π+ =
{
‖x− x+‖ ≤ ε0, ‖u− u+‖ ≤ ε0, ‖y‖ ≤ ε0, ‖v‖ ≤ ε0

}

Π− =
{
‖x‖ ≤ ε1, ‖u‖ ≤ ε1, ‖y − y−‖ ≤ ε1, ‖v − v−‖ ≤ ε1

}

such that T (Π+) ∩ Π+ = ∅ and T (Π−) ∩ Π− = ∅. We assume also that

the leading eigenvalues of the saddle fixed point O are simple, i.e. there is

only one leading eigenvalue if it is real. Otherwise, there is a pair of leading

eigenvalues if they are complex-conjugate. This implies that in the first case

the vector x (or y) is one-dimensional, and AsL (or AuL) is a scalar. In the

case where the leading eigenvalues are complex-conjugate, the vector x or y is

two-dimensional, and the matrix AsL or AuL has the form

AsL = λ

(
cosϕ − sinϕ

sinϕ cosϕ

)

and AuL = γ

(
cosψ − sinψ

sinψ cosψ

)

,

where 0 < λ < 1, γ > 1, (ϕ,ψ) /∈ {0, π}.

We consider the following question: are there any points in Π+ whose

trajectories reach Π−? What is the set of such points in Π− and what is the

set of their images in Π+?
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We first consider the case where a saddle fixed point possesses leading

eigenvalues only. It was established in Sec. 3.6 that there are nine main types

of such saddle maps: four two-dimensional saddle points (all eigenvalues are

real); four three-dimensional: two saddle-foci (2,1) and two saddle-foci (1,2)

and one four-dimensional case: a saddle-focus (2,2).

Let us begin with two-dimensional maps. There may be four different (in

the sense of topological conjugacy) situations depending on the signs of the

eigenvalues of the saddle. The map may take one of the following forms:

(1) x̄ = λx ,

(2) x̄ = −λx ,

(3) x̄ = λx ,

(4) x̄ = −λx ,

ȳ = γy ;

ȳ = γy ;

ȳ = −γy ;

ȳ = −γy .

Without loss of generality we can assume that ‖x+‖ > 0, ‖y−‖ > 0.

For case (1) the map T forces the point (x+, 0) to jump to the point

(λx+, 0), then to (λ2x+, 0) and so on. Since 0 < λ < 1, the points T k(M+) =

(λkx+, 0) converge monotonically to the saddle O. Meanwhile, the map T ex-

pands the rectangle Π+ by factor γ along the y-coordinate and compresses by

factor λ along the x-coordinate. It is obvious that one can choose a large k̄

(k̄ → +∞ as ε0, ε1 → 0) such that for all k ≥ k̄ the following conditions hold

T k(Π+) ∩ Π− 6= ∅ ,
(
γk̄ξ0 > y− + ε1 , λk̄(x+ + ε0) < ε1

)
,

see Fig. 3.8.1.7

Denote σ1
k = T k(Π+) ∩ Π−, where k ≥ k̄. In the case under consideration,

σ1
k is a strip on Π− which is defined by the conditions

σ1
k =

{
(x, y): |x− λkx+| ≤ λkε0, |y − y−| ≤ ε1

}
.

As k → +∞ the strips σ1
k accumulate monotonically to the interval W u ∩

Π− = {(x, y) : x = 0, |y − y−| ≤ ε1}. For any sufficiently large k the map

T k : Π+ → Π− is defined. Its domain is the strip σ0
k = T−k(Π−) ∩ Π+ on Π+

defined by the conditions

σ0
k =

{
(x, y): |x− x+| ≤ ε0, |y − γ−ky−| ≤ γ−kε1

}
.

7In the nonlinear case, the existence of such k̄ follows from the λ-lemma.
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Fig. 3.8.1. The map T near a saddle fixed point. The initial rectangle Π+ is expanded along
the unstable direction y and compressed along the stable direction x. The range of the map
T ′ : Π+ → Π− is composed of the strips σ1

k
lying in the intersection between the images

T kΠ+ and the rectangle Π−.

As k → +∞ the strips σ0
k accumulate monotonically to the interval W s ∩

Π+ = {(x, y): |x− x+| ≤ ε0, y = 0} (see Fig. 3.8.2). The location of the strips

σ0
k and σ1

k is shown in Fig. 3.8.3(a).

For case (2) the point O is a node (−) onW s. Hence, the rectangles T k(Π+)

and T k+1(Π+) are located on the opposite sides of the W u. Thus, as k → +∞

the strips σ1
k converge to the interval W u ∩Π− from the right for even k (from

the side of positive values of x), and from the left for odd k. The location of

the strips σ0
k and σ1

k is shown in Fig. 3.8.3(b).

For case (3) the “jumping direction” is the y-axis which is the unstable

manifold W u. The strips σ0
k accumulate to the interval W s ∩ Π+ from both

sides as shown in Fig. 3.8.3(c).
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Fig. 3.8.2. The inverse map T−1 near the saddle. The rectangle Π− is expanded along
the stable direction x and compressed along the unstable direction y under the action of
the inverse map T−1. The strips σ0

k
form the domain of definition of the map

T ′ : Π+ → Π−.

For case (4) the point O is a stable node (−) on W s and an unsta-

ble node (−) on W u. Therefore, the strips σ0
k converge to W s ∩ Π+ from

both sides. The strips σ1
k converge to W u ∩ Π− from both sides as well, see

Fig. 3.8.3(d).

Let us now consider the cases where the leading eigenvalues comprise a

complex-conjugate pair.

In the three-dimensional case where the point O is a saddle-focus (2,1), the

linear map can be written in the form

x̄1 = λ(cosϕ · x1 − sinϕ · x2) ,

x̄2 = λ(sinϕ · x1 + cosϕ · x2) ,

ȳ = γy ,

(3.8.2)

where λ1,2 = λe±iϕ and γ are the eigenvalues of the saddle O, ϕ /∈ {0, π},

0 < λ < 1, |γ| > 1. To be specific, let us consider the case of positive γ. The
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(a)

(b)

Fig. 3.8.3. The Poincaré map near saddle fixed points of different types. See captions to
Figs. 3.8.1 and 3.8.2. (a) Near a saddle (+, +), (b) near a saddle (−, +). The even and odd
iterations of Π+ lie on the opposite sides from the unstable manifold y(x), (c) near a saddle
(−, +), (d) near a saddle (−,−).



3.8. Behavior of linear maps near saddle fixed points 173

(c)

(d)

Fig. 3.8.3. (Continued)
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map T k takes the form

x̄1 = λk(cos(kϕ) · x1 − sin(kϕ) · x2) ,

x̄2 = λk(sin(kϕ) · x1 + cos(kϕ) · x2) ,

ȳ = γky .

(3.8.3)

Let us choose an arbitrary point M+(x+
1 , x

+
2 , 0) on W s\O. By rotating the

coordinate frame on the plane (x1, x2) one may always ensure that x+
2 = 0,

whereas formulae (3.8.2) and (3.8.3) remain unchanged. It follows from (3.8.3)

that the domain σ0 of the map T ′ : Π+ → Π− consists of a countable union of

non-intersecting three-dimensional “plates”

σ0
k =

{
(x1, x2, y): |x− x+

1 | ≤ ε0, |x2| ≤ ε0, |y − γ−ky−| ≤ γ−kε1
}

(k ≤ k̄) which converge to the square W s ∩ Π+ as k → +∞. In order to

describe the range σ1 of the map T ′ : Π+ → Π−, let us introduce the polar

coordinates (r, θ) such that x1 = r cos θ, x2 = r sin θ. The map (3.8.3) takes

the form

r̄ = λkr , θ̄ = θ + kϕ , ȳ = γky .

It follows that T k(Π+) is a parallelepiped of height 2γkε0. Its base on W s

is a square with the side 2ε0λ
k, centered at the point M+

k = (rk = λkx+
1 , θk =

kϕ). We remark that all points M+
k lie on the logarithmic spiral r̄ = x+

1 λ
θ̄/ϕ.

Thus, σ1 is the union of a countable number of three-dimensional vertical

parallelepipeds σ1
k lying inside “the roulette” R−

{(
|x+

1 | − ε0
)
λθ̄/ϕ ≤ r̄ ≤

(
|x+

1 | + ε0
)
λθ̄/ϕ, |ȳ − y−| ≤ ε1

}
,

which winds onto the segment

Wu ∩ Π− = {x1 = x2 = 0, |y − y−| ≤ ε1}

of the Wu-axis, see Fig. 3.8.4. The strip σ1
k ⊂ R− has a diameter of order ε0λ

k

along the coordinates (x1, x2), and σ1
k is separated from σ1

k+1 by an angle of

order ϕ in the angular coordinate θ.

In the case where the fixed point is a saddle-focus (1,2) the map T can be

written in the form

x̄ = λx ,

ȳ1 = γ(cosψ · y1 − sinψ · y2) ,

ȳ2 = γ(sinψ · y1 + cosψ · y2) ,
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1

Fig. 3.8.4. The geometry of the Poincaré map near a saddle-focus (2,1+).

where |λ| < 1 and γ > 1, ψ 6= {0, π}. For definiteness, let us consider the case

where 0 < λ < 1. The map T−k : Π− → Π+ has the following form

ȳ2 = γ−k(cos(kψ) · ȳ2 − sin(kψ) · ȳ1) ,

ȳ1 = γ−k(sin(kψ) · y2 + cos(kψ) · ȳ1) ,

x̄ = λ−k · x̄ .

This formula is analogous to (3.8.3). Thus, by symmetry if we choose the

points M+ ∈ W s\O and M−(0, 0, y−2 ) ∈ Wu\O, and their neighborhoods

Π+ and Π−, the range of the map T ′ : Π+ → Π− consists of a countable

union of non-intersecting three-dimensional plates σ1
k converging to the square
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Fig. 3.8.5. The Poincaré map near a saddle-focus (1+,2). This is the inverse to the map in
Fig. 3.8.4.

Wu ∩ Π−. The domain of the map T ′ : Π+ → Π− is the union of a countable

set of three-dimensional horizontal parallelepipeds σ0
k lying within the roulette

R+ (see Fig. 3.8.5)

{(
|y−2 | − ε1

)
· γ−θ/ψ ≤ r ≤

(
|y−2 | + ε1

)
· γ−θ/ψ, |x− x+| ≤ ε0

}
,

which winds onto the segment

W s ∩ Π+ =
{
|x− x+| ≤ ε0, y1 = y2 = 0

}
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of the W s-axis. The strip σ0
k has a diameter of order ε1 · γ

−k along the coor-

dinates (y1, y2). Moreover, σ0
k and σ0

k+1 are separated by an angle of order ψ

in the angular coordinate θ.

Let us consider next the case where the fixed point O is a saddle-focus

(2,2). The corresponding linear map T can be written as

x̄1 = λ(cosϕ · x1 − sinϕ · x2) ,

x̄2 = λ(sinϕ · x1 + cosϕ · x2) ,

ȳ1 = γ(cosψ · y1 − sinψ · y2) ,

ȳ2 = γ(sinψ · y1 + cosψ · y2) ,

(3.8.4)

where ϕ, ψ /∈ {0, π}, 0 < λ < 1 < γ. We choose two arbitrary points

M+(x+
1 , x

+
2 , 0, 0) ∈ W s\O and M−(0, 0, y−1 , y

−
2 ) ∈ Wu\O. Without affecting

formulae (3.8.4) we can always ensure that x+
1 = 0 and y−1 = 0 by the or-

thogonal rotation of the coordinate frames on the planes (x1, x2) and (y1, y2).

Introducing the polar coordinates (r, θ) in the plane (x1, x2) and (ρ, α) in the

plane (y1, y2), map (3.8.4) recasts in the following simple form:

r̄ = λr , θ̄ = θ + ϕ , ρ̄ = γρ , ᾱ = α+ ψ .

Hence the map T k takes the form

r̄ = λkr , θ̄ = θ + kϕ , ρ̄ = γkρ , ᾱ = α+ kψ . (3.8.5)

Since 0 < λ < 1 < γ, it follows from (3.8.5) for sufficiently large k that

γkε0 > y−2 + ε1 and λk(x+
1 + ε0) < ε1, and hence T k(Π+) ∩ Π− 6= ∅. The

four-dimensional strips σ1
k ≡ T k(Π+) ∩ Π− converge to the two-dimensional

square

Wu ∩ Π− =
{
0, 0, |y1| ≤ ε1, |y2 − y−2 | ≤ ε1

}

as k → +∞. In the plane W s : (x1, x2, 0, 0) the points M+
k ≡ T k(M+) =

(λkx+
1 , kϕ) lie on the logarithmic spiral r̄ = x+

1 · λθ̄/ϕ. Thus, the range σ1

of the map T ′ : Π+ → Π− is a union of a countable number of the strips σ1
k

located inside the roulette R− (Fig. 3.8.6)

{(
|x+

1 | − ε0) · λ
θ̄/ϕ ≤ r̄ ≤ (|x+

1 | + ε0) · λ
θ̄/ϕ, |ȳ1| ≤ ε1, |ȳ2 − y−2 | ≤ ε1

}
,

which winds towards the two-dimensional square W u ∩ Π−. Along the vari-

ables (x1, x2) the strip σ1
k has a diameter of order ε0λ

k, and along the angular

coordinate θ the strips σ1
k and σ1

k+1 are separated by an angle of order ϕ.
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Fig. 3.8.6. The Poincaré map near a saddle-focus in R4. The original three-dimensional
parallepiped Π+ is transformed into a “roulette” within the parallepiped Π− by the map T .
The image of the parallepiped Π+ under the inverse map T−1 has the same shape.

Let us now find the domain σ0 of the map T ′ : Π+ → Π−. The map

T−k : Π− → Π+ can be written in the polar coordinates (r, θ, ρ, α) as

r = λ−kr̄ , θ = θ̄ − kϕ , ρ = γ−kρ̄ , α = ᾱ− kψ . (3.8.6)

Because 0 < λ < 1, γ > 1, the domain σ0 consists of a countable number

of four-dimensional strips σ0
k lying inside the roulette R+ (see Fig. 3.8.6)
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{(
|y−2 | − ε1

)
· γ−α/ψ ≤ ρ ≤

(
|y−2 | + ε1

)
· γ−α/ψ ,

|x1 − x+
1 | ≤ ε0, |x2| ≤ ε0,

}

which winds towards the two-dimensional square W s ∩ Π+. As k → +∞ the

four-dimensional strips σ0
k converge to the square W s ∩Π+; in the coordinates

(y1, y2) the strip σ0
k has a diameter ∼ ε1γ

−k, and in the angular coordinate α

the angle between adjacent strips σ0
k and σ0

k+1 is of order ψ.

We consider now the situation when the saddle fixed point has non-leading

directions. Let us find the domain and the range of the map T ′ : Π+ → Π− for

the three-dimensional cases. There are two cases to consider:

1. W s is two-dimensional and W u is one-dimensional;

2. W s is one-dimensional and W u is two-dimensional.

In the first case the linear map T is written as

x̄ = λx , ū = λ2u , ȳ = γy ,

where λ and γ are assumed for more definiteness to be positive, and where

0 < |λ2| < λ. Since M+ 6∈ W ss, it follows that x+ 6= 0 and therefore we can

let x+ > 0. The map T−k : Π− → Π+ is defined by

x = λ−kx̄ , u = λ−k2 ū , y = γ−kȳ ,

where (x, u, y) ∈ Π+ and (x̄, ū, ȳ) ∈ Π−. One observes that for sufficiently

large k such that λ−kε1 > x+ + ε0 and |λ2|
−kε1 > |u+| + ε0, the strips σ0

k ≡

T−k(Π−) ∩ Π+ are given by

σ0
k =

{(
x, u, y

)
: |x− x+| ≤ ε0, |u− u+| ≤ ε0, |y − γ−ky−| ≤ γ−kε1

}
,

i.e. they comprise certain three-dimensional plates of thickness 2γ−kε1 which

converge to the square W s ∩ Π+ as k → +∞, see Fig. 3.8.7.

The map T k is written in the form

x̄ = λkx , ū = λk2u , ȳ = γky .

The strips σ1
k ≡ T k(Π+) ∩ Π− are given by

σ1
k =

{
(x̄, ū, ȳ): |x̄− λkx+| ≤ λkε0, |ū− λk2u

+| ≤ λk2ε0, |ȳ − y−| ≤ ε1
}
.
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Fig. 3.8.7. The Poincaré map in a neighborhood of a saddle in R3. The images of the
points lying in the intersection of the two-dimensional stable manifold W s with the three-
dimensional area Π+ compose the edge of a wedge. The part of Π+ above W s is transformed
into the wedge itself. The closer the dashed area of Π+ is to W s the thinner and closer to
W u is its image inside Π−.

It follows that, first, as k → +∞ the strips σ1
k converge to the segment

Wu ∩ Π− = {x = 0, u = 0, |y − y−| ≤ ε1}

and that they have the shape of vertical “bars” located inside a three-

dimensional wedge

{
x̄ > 0 , C2x̄

α ≤ ū ≤ C1x̄
α , |ȳ − y−| ≤ ε1 , α = ln |λ2|/ lnλ ,

C1,2 = (u+ ± ε0)/(x
+ ∓ ε)−α

}
.

This wedge adjoins to the segment

Wu ∩ Π− = {x = 0, u = 0, |y − y−| ≤ ε1} .
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Since α > 1 and C1,2 6= ∞, the wedge is tangent to the extended unstable

subspace Eu ⊗EsL : {u = 0} at the points of W u ∩Π− as shown in Fig. 3.8.7.

In the case where W s is one-dimensional and W u is two-dimensional, the

map T can be written as

x̄ = λx , ȳ = γy , v̄ = γ2v ,

where |γ2| > |γ|. This case is reduced to the previous one if we consider the

inverse map T−1. If we select the points M+ ∈ W s and M− ∈ Wu/Wuu

and select their neighborhoods Π+ and Π− respectively, then the range of the

map T ′ : Π+ → Π− consists of a countable union of non-intersecting three-

dimensional plates σ1
k converging to the square W u ∩ Π−. At the same time,

the domain of the map is a union of a countable number of three-dimensional

horizontal bars σ0
k within the wedge

{
y > 0 , C̃2y

α < v < C̃1y
α , |x− x+| ≤ ε0

}

where α = ln |γ2|/ ln |γ|. At the point of

W s ∩ Π+ = {y = 0, v = 0, |x− x+| ≤ ε0}

this wedge is tangent the extended stable subspace Es ⊕ EuL : {v = 0}, see

Fig. 3.8.8.

Let us now proceed by considering the general linear case, i.e. that of map

(3.8.1), when 1 > ‖AsL‖ = λ > ‖Ass‖ and 1 < ‖AuL‖ = γ < ‖(Auu)−1‖−1.

We assume that neither the points M+ nor M− lie in the non-leading invariant

manifolds of the saddle O, i.e. M+ ∈ W s\W ss and M− ∈ Wu\Wuu. This

condition implies that ‖x+‖ 6= 0 and ‖y−‖ 6= 0. Without loss of generality we

may assume that x+ > 0 and y− > 0. One can easily show that the projections

of the multi-dimensional strips σ0
k and σ1

k onto the leading directions (x, y) will

be similar to the ones considered above. As far as the non-leading directions are

concerned, the following relations hold: if (x, u, y, v) ∈ σ0
k, then ‖v‖/‖y‖ → 0

as k → +∞, and if (x̄, ū, ū, v̄) ∈ σ1
k, then ‖ū‖/‖x̄‖ → 0 as k → +∞.

3.9. Geometrical properties of nonlinear saddle maps

The results of the previous section have a primarily illustrative character. It is,

therefore, important that the geometrical structures considered in the linear

case persist for generic nonlinear maps.
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Fig. 3.8.8. The map near saddle of other topological type, i.e. with a one-dimensional stable
manifold W s and a two-dimensional unstable manifold W u. This situation may be regarded
as inverse to the map in Fig. 3.8.7.

Near a saddle fixed point a nonlinear map T can be written in the form

x̄ = AsLx+ f1(x, u, y, v) ,

ū = Assu+ f2(x, u, y, v) ,

ȳ = AuLy + g1(x, u, y, v) ,

v̄ = Auuv + g2(x, u, y, v) ,

(3.9.1)

where x and y are the leading coordinates, and u and v are the non-leading

coordinates. The absolute values of the eigenvalues of the matrix AsL are
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equal to λ (0 < λ < 1), those of the matrix Ass are less than λ, those of the

matrix AuL are equal to γ (γ > 1) and those of the matrix Auu are greater

than γ. The functions f and g along with their first derivatives vanish at

the origin. We suppose that in some sufficiently small neighborhood U of the

saddle point O the invariant stable and unstable manifolds are straightened,

i.e. f(0, 0, y, v) ≡ 0 and g(x, u, 0, 0) ≡ 0. The equation of the manifold W s
loc is

then (y = 0, v = 0) and that of W u
loc is (x = 0, u = 0).

We assume that the stable and unstable leading multipliers of the saddle

fixed pointO are simple (namely, a real leading eigenvalue, or a pair of complex-

conjugate leading eigenvalues).

Let M+(x+, u+, 0, 0) and M−(0, 0, y−, v−) be arbitrary points on the sta-

ble and unstable manifolds of the saddle such that neither point lies in the

corresponding non-leading manifolds. Let Π+ and Π− be sufficiently small

rectangular neighborhoods of M+ and M− respectively:

Π+ = {‖x− x+‖ ≤ ε0, ‖u− u+‖ ≤ ε0, ‖y‖ ≤ ε0, ‖v‖ ≤ ε0}

Π− = {‖x‖ ≤ ε1, ‖u‖ ≤ ε1, ‖y − y−‖ ≤ ε1, ‖v − v−‖ ≤ ε1}

such that T (Π+) ∩ Π+ = ∅ and T (Π−) ∩ Π− = ∅.

What can we say about the map T ′ : Π+ → Π− in this case? It is not

hard to show that just like in the linear case there exists a countable set of

“strips” σ0
k = T−k(Π−)∩Π+ and σ1

k = T k(Π+)∩Π− converging, respectively,

to W s
loc ∩ Π+ and Wu

loc ∩ Π− as k → +∞, and for these strips T k(σ0
k) ≡ σ1

k.

Indeed, it follows from the existence of the solution of the boundary-value

problem (see Sec. 3.7) that

(xk, uk) = {ξ1k(x0, u0, yk, vk), ξ2k(x0, u0, yk, vk)} , (3.9.2)

(y0, v0) = {η1
k(x0, u0, yk, vk), η2

k(x0, u0, yk, vk)} , (3.9.3)

where ‖ξk‖ → 0 and ‖ηk‖ → 0 as k → +∞ (Lemma 3.3). Therefore, for k

sufficiently large (i.e. such that the inequalities ‖ξk‖ ≤ ε1 and ‖ηk‖ ≤ ε0 are

satisfied) the strips σ0
k and σ1

k are defined by the following conditions:

— σ0
k is the set of all points on Π+ whose coordinates (x0, u0, y0, v0) satisfy

(3.9.3) with ‖yk − y−‖ ≤ ε1, ‖vk − v−‖ ≤ ε1;

— σ1
k is the set of all points on Π− whose coordinates (xk, uk, yk, vk) satisfy

(3.9.2) with ‖x0 − x+‖ ≤ ε0 and ‖u0 − u+‖ ≤ ε0.
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Note that since T (Π+) ∩ Π+ = ∅, T (Π−) ∩ Π− = ∅, and since the map-

ping T is a diffeomorphism, the strips σjk (j = 0, 1) have no intersections for

different k.

In order to describe the geometrical properties of the domain ∪σ0
k and the

range ∪σ1
k of the map T ′ : Π+ → Π− in the nonlinear case, we need some

additional estimates on the solutions (3.9.2) and (3.9.3) of the boundary-value

problem. This can be achieved in the following way. Let us introduce the

coordinates (x, u, y, v) such that the following conditions hold for the system

(3.9.1):

fi = fi1(x, y, v)x+ fi2(x, u, y, v)u

gi = gi1(x, u, y)y + gi2(x, u, y, v)v

f1j |y=0,v=0 ≡ 0, g1j |x=0,u=0 ≡ 0 ,

fi1|x=0 ≡ 0, gi1|y=0 ≡ 0 (i, j = 1, 2) .

(3.9.4)

The existence of such C
r−1-coordinates (r ≥ 2) is the result of Theorem 3.22

(the proof repeats the proof of Theorem 2.20 in Appendix A). In these coordi-

nates the non-leading invariant manifolds are also straightened: The equation

of W ss
loc is (y = 0 v = 0x = 0), and that of W uu

loc is (x = 0u = 0 y = 0).

Moreover, the equations for the leading coordinates are linear on both W s

and Wu. Note also that all terms of the kind x · p(y, v) are eliminated in the

right-hand sides of equations for x̄ and ū and the terms of the kind y · q(x, u)

are eliminated in the right-hand sides of equations for ȳ and v̄.

Lemma 3.6. If identities (3.9.4) hold and if the leading eigenvalues are simple

(real or complex), then

ξ1k = (AsL)kx0 + o(λk), η1
k = (AuL)−kyk + o(γ−k) , (3.9.5)

ξ2k = o(λk), η2
k = o(γ−k) . (3.9.6)

where the terms o(λk) and o(γ−k) are C
r−1-smooth and all their derivatives

are also of order, respectively, o(λk) and o(γ−k).

The proof is in Appendix B.

It is immediately seen from Lemma 3.6 that the geometrical structure of

the sets of strips σ0
k and σ1

k is, in essence, the same as in the linear case. Indeed,

estimates (3.9.6) imply that the strips lie within wedges along the non-leading

coordinates (because contraction and expansion in the non-leading coordinates
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are asymptotically much stronger than that in the leading coordinates). Esti-

mates (3.9.5) imply that in the leading coordinates the geometrical structure is

determined mainly by the linear terms of the map T : the strips belong to the

roulettes if the leading multipliers are complex; if the stable or unstable lead-

ing multiplier is real, then the corresponding strips accumulate, respectively,

to Wu
loc or W s

loc from one side if the multiplier is positive and from the both

sides if it is negative.

Note that we derive here this picture based on Lemma 3.6 which is valid

only for maps of class C
r with r ≥ 2. To prove that the same geometry persists

in the C
1-case, one may use the modified boundary-value problem introduced

in Sec. 5.2.

We must note that Lemma 3.6 may not hold unless one performs the pre-

liminary reduction of the map T to the special form where the functions f and

g satisfy condition (3.9.4). Let us show this on the following example.

Consider a three-dimensional map T0 of the following form

x̄ = λx, ū = λ2u+ xy, ȳ = γy ,

where 0 < λ2 < λ < 1 < γ. Here O(0, 0, 0) is a saddle fixed point. The

equation of the two-dimensional stable invariant manifold W s is y = 0, and

that of the one-dimensional unstable invariant manifold W u is x = u = 0. The

equation of the non-leading stable invariant manifold W ss ∈W s is y = x = 0.

The boundary-value problem for the map T0 reads: Given the initial data

(x0, u0, yk) and given k, find (xk, uk, y0) such that T k0 (x0, u0, y0) = (xk, uk, yk).

We can recast the system in the form

xj = λjx0 ,

uj = λj2u0 +

j−1
∑

s=0

λj−s−1
2 · λsx0 · γ

s−kyk ,

yj = γj−kyk ,

(j = 0, 1, . . . , k) .

(3.9.7)

From (3.9.7) we see that xk = λkx0 and y0 = γ−kyk. Yet

uk = λk2u0 +
k−1∑

s=0

λk−s−1
2 · λsx0 · γ

s−kyk

= λk2u0 + λk−1
2 γ−kx0yk

k−1∑

s=0

(λγ

λ2

)s

.
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Since

δ =
λγ

λ2
> 1 ,

the coefficient
k−1∑

s=0

(λγ

λ2

)s

=
δk − 1

δ − 1
∼

λk−1

λk−1
2

γk−1 .

We see that if x0yk 6= 0, then uk ∼ λk for sufficiently large k. Thus, although

λ2 < λ, the velocity of the convergence in both the leading and the non-leading

coordinates is the same, in contrast to Lemma 3.6.

3.10. Normal coordinates in a neighborhood of a
periodic trajectory

In the following sections we will focus on an approach for studying periodic

trajectories which is based on the reduction to a system of non-autonomous

periodic equations whose dimension is one less than the dimension of the orig-

inal system. We shall also examine the problem of constructing a Poincaré

map, and of calculating the multipliers of a periodic trajectory.

Let us consider an (n+ 1)-dimensional C
r-smooth (r ≥ 1) system of differ-

ential equations

ẋ = X(x) , (3.10.1)

which has a periodic trajectory L: x = ϕ(t) of period τ .

Theorem 3.11. There exists a C
r-smooth coordinate transformation and

rescaling of time such that in a small neighborhood of a periodic trajectory

L the system takes the form

ẏ = A(θ)y + F (θ, y) ,

θ̇ = 1 ,
(3.10.2)

where y ∈ R
n, θ ∈ S

1. Here, A(θ) is a C
r-smooth (n × n)-matrix of period τ

with respect to θ. The C
r-smooth function F is also periodic with respect to θ

and has period τ . Moreover,

F (θ, 0) = 0, F ′
θ(θ, 0) = 0 . (3.10.3)
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Remark. The rescaling of time is equivalent to multiplication of the right-

hand side by a scalar function. Thus, without the rescaling, the system in

normal coordinates is written as

ẏ = A(θ)y + F̃ (θ, y) ,

θ̇ = 1 + b(θ, y) ,
(3.10.4)

where

F̃ (θ, 0) = 0, F̃ ′
y(θ, 0) = 0, b(θ, 0) = 0 .

Proof of the theorem. The original system may be reduced to the form

(3.10.2) in the following way. At each point Mθ(x = ϕ(θ)) we choose (n + 1)

linearly independent vectors (N0(θ), N1(θ), . . . , Nn(θ)), where N0(θ) ≡ ϕ′(θ) =

X(ϕ(θ)) is the velocity vector which is tangent to the periodic trajectory L at

Mθ. Assume that Ni(θ) (i = 1, . . . , n) are smooth functions of θ. Let Mθ be

the space spanned on (N1(θ), . . . , Nn(θ)), i.e. the space Mθ is transverse to L.

Let us denote the coordinates in the space Mθ with the basis (N1(θ), . . . ,

Nn(θ)) by (y1, . . . , yn). If a point M ∈ Mθ has coordinates the (y1, . . . , yn),

then the vector connecting the points Mθ and M (see Fig. 3.10.1) is given by

MθM = y1N1(θ) + · · · + ynNn(θ) .

Thus, the original coordinates x of the point M are given by the formula

x = ϕ(θ) + y1N1(θ) + · · · + ynNn(θ) (3.10.5)

or by

x1 = ϕ1(θ) + y1N11(θ) + · · · + ynNn,1(θ) ,

x2 = ϕ2(θ) + y1N12(θ) + · · · + ynNn,2(θ) ,

...
...

...

xn+1 = ϕn+1(θ) + y1N1,n+1(θ) + · · · + ynNn,n+1(θ) ,

(3.10.6)

where Nij is the j-th component of the vector Ni, and ϕj is the j-th coordinate

of the point M on the periodic trajectory L.

Formula (3.10.5) can be viewed as a smooth change of variables (θ, y1, . . . ,

yn) ↔ (x1, . . . , xn+1). In order to show that this is really a good change of
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Fig. 3.10.1. The normal coordinates near a periodic trajectory. The vectors Ni(θ) in the
cross-section S are orthogonal to the velocity vector N0.

variables, one must check the non-singularity of the Jacobian matrix J . The

value of vector y for the points on L is equal to zero, i.e. (y1, y2, . . . , yn) =

(0, 0, . . . , 0), and since we are concerned with a small neighborhood of the

periodic trajectory, it is sufficient to verify that J does not vanish at y = 0.

From (3.10.6) we obtain

J(θ, y) = det




















ϕ
′

1 (θ) +

n∑

i=1

yiN
′

i1 (θ) N11 (θ) · · · Nn,1 (θ)

ϕ
′

2 (θ) +
n∑

i=1

yiN
′

i2 (θ) N12 (θ) · · · Nn,2 (θ)

...
...

. . .
...

ϕ
′

n+1 (θ) +
n∑

i=1

yiN
′

i,n+1 (θ) N1,n+1 (θ) · · · Nn,n+1 (θ)




















.
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Upon substituting y = 0 the Jacobian matrix becomes

J(θ, 0) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ϕ
′

1 (θ) N11 (θ) · · · Nn,1 (θ)

ϕ
′

2 (θ) N12 (θ) · · · Nn,2 (θ)

...
...

. . .
...

ϕ
′

n+1 (θ) N1,n+1 (θ) · · · Nn,n+1 (θ]

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

The first column of J(θ, 0) is composed of the components of the vector N0(θ);

the remaining columns are the components of the vectors Ni(θ). By construc-

tion, these vectors must be linearly independent for all θ’s, i.e. the Jacobian

matrix J(θ, 0) is non-singular.

Let us write system (3.10.1) in the new variables. Substitution of (3.10.5)

into (3.10.1) gives

(X(ϕ(θ)) + y1N
′
1(θ) + · · · + ynN

′
n(θ)) θ̇ + ẏ1N1(θ) + · · ·

+ ẏnNn(θ) = X(ϕ(θ) + y1N1(θ) + · · · + ynNn(θ)) .
(3.10.7)

It follows directly from (3.10.7) that θ̇ = 1 and ẏ = 0 at y = 0. Thus, the

system takes the form (3.10.4).

Reduction to the form (3.10.2) can be achieved by changing the time vari-

able as follows:

dt =
dt̃

1 + b(θ, y)
. (3.10.8)

The missing point in this proof is a method for constructing a family of suf-

ficiently smooth vectors (N1(θ), . . . , Nn(θ)) which along with the vector N0(θ)

comprise a linearly-independent system. Instead of describing this algorithm

we present another proof which is based on an approach we will use further.

Choose a small cross-section S through L. Let y = (y1, . . . , yn) be the coor-

dinates on S. Let X (x, t) be the time t shift of a point x along the correspond-

ing trajectory of system (3.10.1). For each point x in a small neighborhood of

L there is a uniquely defined t(x) ≥ 0 such that y = X (−t(x), x) is the first

point of the intersection of the backward trajectory of the point x and S. By

definition t(x) ≤ t̄(y) where t̄(y) is the Poincaré return time. We may rescale

time so that this return time is constant for all small y: t̄(y) ≡ τ . To do this

we define a new time t̃ as

dt̃ =

(

1 + α(y)ξ

(
t(x)

t̄(y)

))

dt , (3.10.9)
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where y ≡ X (−t(x), x) is constant along the segment of the trajectory of

the point x between two its sequential intersections with the cross-section S.

The value of y jumps when x crosses S. To make the transformation (3.10.9)

continuous we choose the function ξ identically equal to zero when its argument

is close to 0 or to 1 (this corresponds to the situation where t(x) is close to

0 or to t̄(y), i.e. to the moments of intersection of the trajectory of x with

S). Apart from these values, ξ must be a smooth non-zero function. The

existence of such functions ξ is a standard fact. Moreover, we may require

that
∫ 1

0
ξ(s)ds = 1.

Thus, we have a smooth transformation of time provided that α is suffi-

ciently small. A new return time is found as

∫ t̄(y)

0

dt̃

dt
dt = t̄(y) + α(y)

∫ t̄(y)

0

ξ

(
t

t̄(y)

)

dt = t̄(y)(1 + α(y)) . (3.10.10)

Hence, if we let α(y) = τ
t̄(y) − 1, we find that the new return time is constant

indeed. Observe that t̄(y) was close to τ for small y, whence α(y) is small and,

therefore, the factor in (3.10.9) is non-zero. Thus, formula (3.10.9) does give

a good rescaling of time.

Let

ȳ = By + F0(y), (3.10.11)

be the Poincaré map T : S → S, where F0(0) = 0 and F ′
0(0) = 0. By definition,

T (y) = X (τ, y) . (3.10.12)

As we mentioned earlier, the product of the eigenvalues of the matrix B

(equiv. of the multipliers of L) is positive. Therefore, one can prove that there

is a family of non-singular matrices Ã(θ) (0 ≤ θ ≤ τ) such that Ã(0) = I,

Ã(τ) = B, Ã′(0) = Ã′(τ) = 0 and Ã(θ) depends C
r+1-smoothly on θ (we leave

this quite standard fact without proof).

Consider a family of diffeomorphisms Yθ : y0 7→ yθ (0 ≤ θ ≤ τ)

yθ = Ã(θ)y0 + η(θ)F0(y0) , (3.10.13)

where η(θ) is a C
r+1-smooth scalar function which is equal identically to zero

in a small neighborhood of θ = 0, and is equal identically to 1 in a small

neighborhood of θ = τ (this also implies that η′(θ) ≡ 0 for values of θ close

to 0, and to τ). We assume, as well, that Ã′(θ) = 0 for θ close to 0 and to
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τ . Thus, Yθ is an identity map at all θ close to zero and it coincides with the

Poincaré map T at all θ close to τ .

Since F ′
0(0) = 0 and Ã(θ) is non-degenerate for all θ, the map (3.10.13) is

invertible, i.e.

y0 = Ã−1(θ)yθ + F1(θ, yθ) , (3.10.14)

where F1(0, 0) = 0, F ′
1y(θ, 0) = 0 and F ′

1θ ≡ 0 for all θ close to 0 and τ .

Let us make a coordinate transformation (θ, y1, . . . , yn) → (x1, . . . , xn+1)

by the following rule

x = X (θ, Y −1
θ (y)) . (3.10.15)

In other words, we identify the time θ shift of the point y0 ∈ S along the

trajectories of system (3.10.1) and the time θ shift of y0 which is given by

(3.10.13). When θ is close to 0, Eq. (3.10.15) reads as

x = X (θ, y) , (3.10.16)

and when θ is close to τ , it reads as

x = X (θ, T−1(y)) . (3.10.17)

By definition (3.10.12), formula (3.10.17) coincides with

x = X (θ − τ, y) .

Comparing the latter with (3.10.16) we get that the C
r-smooth transformation

of coordinates (3.10.15) is τ -periodic.

The evolution of the new y-coordinates is given by (3.10.13), where θ̇ = 1.

From (3.10.14) we have

ẏ = Ã′(θ)y0 + η′(θ)F0(y0)

= Ã′(θ)Ã(θ)−1y + Ã′(θ)F1(θ, y) + η′(θ)F0(Ã(θ)−1y + F1(θ, y)) .

(3.10.18)

Denoting

A(θ) = Ã′(θ)A(θ)−1

F (θ, y) = Ã′(θ)F1(θ, y) + η′(θ)F0(Ã(θ)−1y + F1(θ, y))
(3.10.19)

this completes the proof.
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The coordinates in which the representation (3.10.2) is valid are called

normal coordinates. In the normal coordinates, y = 0 is the equation of the

periodic trajectory L. The phase θ parametrizes the point on L. Observe that

the normal coordinates are not unique: A different base Ni(θ) (i = 1, . . . , n)

gives a different coordinate transformation. Nevertheless, the advantage of our

construction is that it increases the smoothness of the system in the normal

coordinates. Namely, the following statement holds:

Lemma 3.7. All derivatives of the right-hand side of (3.10.2) with respect to

y are C
r-smooth functions of θ at y = 0.

Proof. It is immediately seen from (3.10.13) that all the derivatives

dky0
dyk

θ

∣
∣
∣
∣
y0=0

(k = 1, . . . , r) are C
r+1-smooth functions of θ. According to (3.10.13),

it means that all derivatives of F1 with respect to yθ at yθ = 0 are also C
r+1-

smooth functions of θ. Now, the lemma follows from (3.10.19).

Observe that our construction does not work in the case where the system

is analytic (the functions ξ, η cannot be analytic because they are identically

zero on some intervals). To resolve the analytic case, one may first make a

C
∞-smooth transformation by formula (3.10.15), then take C

∞-vectors Ñi(θ)

as images of the basis vectors in the y-space by (3.10.15). Since the system of

the vectors {N0(θ), Ñ1(θ), . . . , Ñn(θ)} is linearly independent, for a sufficiently

close analytical approximation (N1(θ), . . . , Nn(θ)) the condition of linear inde-

pendence will not be destroyed. Now, after we have found the linear indepen-

dent system of vectors {N0(θ), N1(θ), . . . , Nn(θ)} which depend analytically on

θ, the sought coordinate transformation is given by (3.10.6) and (3.10.8).

Note that once knowing the solution L : {x = ϕ(t)} explicitly, one can

find the system of the normal vectors (N1(θ), . . . , Nn(θ)), and hence find the

coordinate transformation that gives the right-hand side of (3.10.2) explicitly

too.

The form (3.10.2) is very convenient as any plane θ = const. is the cross-

section and the return time of any point on the cross-section is always the same

and is equal to τ . Let us choose the plane S : θ = 0 as such a cross-section and

determine the Poincaré map S → S. For trajectories starting from S, we have

θ = t from the second equation in (3.10.2), and hence the problem is reduced

to integrating the system

ẏ = A(t) y + F (t, y) . (3.10.20)
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The solution of this equation subject to the initial condition y0 may be

determined in the form of a series in powers of y0 with time-dependent coef-

ficients, by applying the method of successive approximations. For the first

approximation we choose a solution of the linearized system

ẏ(1) = A(t) y(1) . (3.10.21)

The m-th approximation is given by

ẏ(m) = A(t) y(m) + F (t, y(m−1)) . (3.10.22)

Let Φ(t) be the fundamental matrix of solutions of the system (3.10.21), i.e. the

solution of system (3.10.21) has the form

y(1) (t) = Φ(t) y0 .

Then, the solution of system (3.10.22) is given by the formula

y(m) (t) = Φ(t)

(

y0 +

∫ t

0

Φ−1(s)F (s, y(m−1)(s)) ds

)

. (3.10.23)

It is seen from (3.10.23) that each successive approximation differs from the

previous one by terms of higher orders; namely

y(m)(t) − y(m−1)(t) = Φ(t)

∫ t

0

Φ−1(s)(F (s, y(m−1)(s)) − F (s, y(m−2)(s))) ds

whence

‖y(m) − y(m−1)‖ ∼ ‖F ′‖ ‖y(m−1) − y(m−2)‖ = o(‖y(m−1) − y(m−2)‖)

(because F ′ = 0 at y = 0). By using formula (3.10.23) one can find terms of

any order in the Taylor expansion of the solution of system (3.10.20). Plugging

t = τ (the period) into the resulting expansion, one obtains the Taylor expan-

sion of the Poincaré map.

We note also that the Poincaré map is represented in the form

ȳ = Φ(τ) y + Ψ(y) , (3.10.24)

where the function Ψ(y) vanishes together with its first derivatives when y = 0.

The linear part of the Poincaré map has the form

ȳ = Φ(τ) y .
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whence the multipliers (ρ1, . . . , ρn) of the periodic trajectory L can be found

as the eigenvalues of the matrix Φ(τ). Thus, when the periodic solution {x =

ϕ(t)} and the fundamental matrix Φ(t) of the linear system

ẏ = A(t) y , (3.10.25)

are known, then there exists a standard procedure for constructing the Poincaré

map and for computing the multipliers of the periodic trajectory.

3.11. The variational equations

The problem of the stability of a periodic trajectory does not differ essentially

from the corresponding problem for equilibrium states. In both cases the

stability conditions are determined by the equations of the first approximation,

i.e. by the associated linearized system for an equilibrium state, or the so-called

variational equation for a periodic trajectory .

Let x = ϕ(t) be a periodic solution of period τ of an (n + 1)-dimensional

autonomous system

ẋ = X(x) . (3.11.1)

Introduce a new variable ξ such that

x = ξ + ϕ(t) .

In terms of the new variable the system takes the following form

ξ̇ = D(t)ξ + · · · ,

where

D(t) =
∂X

∂x

∣
∣
∣
∣
x=ϕ(t)

and the ellipsis denotes terms of a higher order with respect to ξ. Observe that

this change of variables reduced an (n+1)-dimensional autonomous system to

an (n+ 1)-dimensional non-autonomous system.

The linear periodic system

ξ̇ = D(t)ξ (3.11.2)

is called a variational equation. Obviously, if ξ(t) is a solution of (3.11.2), then

ξ(t+ τ) is also a solution. Indeed, after the shift of time t→ t+ τ we obtain

dξ(t+ τ)

d(t+ τ)
= D(t+ τ)ξ(t+ τ) ,
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and, consequently,
dξ(t+ τ)

dt
= D(t)ξ(t+ τ) .

The general solution of (3.11.2) is

ξ(t) = Ψ(t)ξ(0) (3.11.3)

where Ψ(t) is the fundamental matrix, whose columns Ψ(i)(t) (i = 1, . . . , n+1)

are the solutions of (3.11.2) which start at t = 0 with basis vectors. Since

Ψ(i)(t + τ) is a solution as well, it follows from (3.11.3) that Ψ(i)(t + τ) =

Ψ(t)Ψ(i)(τ), or

Ψ(t+ τ) = Ψ(t)Ψ(τ) . (3.11.4)

The equation

|Ψ(τ) − ρI| = 0 (3.11.5)

is called a characteristic equation. The roots (ρ1, . . . , ρn+1) of (3.11.5) are

called the characteristic roots or Floquet multipliers.

The characteristic equation is invariant with respect to any change of vari-

ables

η = Q(t)ξ , (3.11.6)

where the matrix Q(t) is non-singular for all t, depends smoothly on time and

is periodic of period τ . Indeed, after this change of variables system (3.11.2)

remains linear periodic system. Denote its fundamental matrix as Ψ̃(t); i.e. the

general solution is η(t) = Ψ̃(t)η(0). By (3.11.3), (3.11.6) we have Ψ̃(t) =

Q(t)Ψ(t)Q(0)−1. Thus, by virtue of τ -periodicity of Q(t), the matrix Ψ̃(τ) is

similar to Ψ(τ):

Ψ̃(τ) = Q(0)Ψ(τ)Q(0)−1 .

Thus,

|Ψ̃(τ)−ρI| = |Q(0)Ψ(τ)Q(0)−1−ρI| = |Q(0)(Ψ(τ)−ρI)Q(0)−1| = |Ψ(τ)−ρI|

which proves the claim.

It follows that the Floquet multipliers of a periodic trajectory do not depend

on the specific choice of coordinates x. Indeed, let y = h(x) be a diffeomor-

phism transforming the system (3.11.1) into ẏ = Y (y) in some small neighbor-

hood of the periodic trajectory L. In the new variables the equation of L is

y = h(ϕ(t)) = ψ(t). The variational equation for ψ(t), which is now given by

η̇ =
∂Y

∂y

∣
∣
∣
∣
y=ψ(t)

η ,
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is obtained from (3.11.2) by the change of variables (3.11.6) with Q(t) =

h′(ϕ(t)). Hence, the characteristic equation and the characteristic roots re-

main unchanged indeed.

In particular, in the normal coordinates, when the system has the form

(3.10.4), the linearization in a neighborhood of the periodic solution (y = 0,

θ = tmod τ) gives the following variational equation

ξ̇ =

(

A(t) 0

b′y(t, 0) 0

)

ξ .

It is easy to see that the fundamental matrix of this system has the form
(

Φ(t) 0

β(t) 1

)

,

where Φ(t) is the fundamental matrix of the system

η̇ = A(t)η ,

with Φ(0) = I. Hence, the characteristic equation can be represented in the

form

|Φ(τ) − ρI|(ρ− 1) = 0 .

On the other hand, we showed in the previous section that multipliers of the

Poincaré map near L are the roots of the equation |Φ(τ)− ρI| = 0. Therefore,

the Floquet multipliers (ρ1, . . . , ρn) coincide with the multipliers of the fixed

point of the Poincaré map and the last Floquet multiplier ρn+1 is always trivial:

ρn+1 = 1.

The existence of the trivial characteristic root is a peculiarity of the vari-

ational equations near a periodic trajectory of an autonomous system. Since

x = ϕ(t) is a solution, i.e. since

ϕ̇(t) = X(ϕ(t)) ,

we obtain by differentiating with respect to t

dϕ̇(t)

dt
=
∂X(ϕ(t))

∂x
ϕ̇(t) .

This implies that ξ(t) = ϕ̇(t) is a solution of the variational equation (3.11.2).

Thus, by (3.11.3), ϕ̇(t) = Ψ(t)ϕ̇(0). Since ϕ(t) is a periodic function of pe-

riod τ , it follows that ϕ̇(0) = Ψ(τ)ϕ̇(0). This means that ϕ̇(0) is always the
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eigenvector of Ψ(τ) and the corresponding characteristic root (ρn+1) is always

equal to 1. This observation is due to Poincaré.

Let us introduce the values

λk =
ln ρk
τ

=
1

τ
[ln |ρk| + i(argρk + 2πmk)] ,

k = 1, . . . , n+ 1
(3.11.7)

which are called the characteristic exponents. Observe from (3.11.7) that λk is

defined modulo i2πmk/τ , wheremk is an integer. However, (Reλ1, . . . ,Reλn+1)

are uniquely defined. They are called the Lyapunov exponents of the periodic

trajectory x = ϕ(t).

These quantities have sense for any linear periodic system of type (3.11.2).

Recall that in case the variational equation is obtained from an autonomous

system there is always a trivial characteristic root, hence one Lyapunov expo-

nent is always zero in this case.

The columns of the fundamental matrix satisfy (3.11.2), i.e. d
dtΨ(t) =

D(t)Ψ(t). Hence,
d

dt
det Ψ(t) = trD(t) · det Ψ(t)

which gives the Wronsky formula

det Ψ(t) = e

∫
t

0
trD(s)ds

.

At t = τ we obtain

ρ1ρ2 · · · ρn+1 = e

∫
τ

0
trD(s)ds

, (3.11.8)

where (ρ1, . . . , ρn+1) are the characteristic roots. It is clear that all ρ1, . . . , ρn+1

are different from zero and that Ψ(τ) is non-singular.

When the linear system (3.11.2) is obtained from the autonomous system

(3.11.1) this formula reads as

ρ1ρ2 · · · ρn = e

∫
τ

0
divX|x=ϕ(s)ds , (3.11.9)

or

λ1 + · · · + λn =
1

τ

∫ τ

0

divX|x=ϕ(s)ds . (3.11.10)

Note that in the general case, finding the fundamental matrix of the vari-

ational equation or its characteristic roots in the explicit form is not possi-

ble. The two-dimensional case is the only exception. In this case the formula
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(3.11.10) gives the single non-trivial Lyapunov characteristic exponent as

λ =
1

τ

∫ τ

0

[
∂X1(ϕ1(t), ϕ2(t))

∂x1
+
∂X2(ϕ1(t), ϕ2(t))

∂x2

]

dt .

Let ξ(k)(0) be an eigenvector of Ψ(τ) corresponding to a multiplier ρk. The

solution starting with ξ(k)(0) is ξ(k)(t) = Ψ(t)ξ(k)(0). Since Ψ(τ)ξ(k)(0) =

ρkξ
(k)(0), it follows from (3.11.4) that

ξ(k)(t+ τ) = ρkξ
(k)(t)

for all t. It follows that the function

φk(t) = e−λktξ(k)(t)

is τ -periodic: since eλkτ = ρk, we have

φk(t+ τ) = e−λk(t+τ)ξ(k)(t+ τ) = e−λkte−λkτρkξ
(k)(t) = φk(t) .

Therefore,

ξ(k)(t) = φk(t)e
λkt , (3.11.11)

where φk(t) is a periodic function.

A more general statement also holds, known as Floquet theorem [24]:

the fundamental matrix Ψ of a linear time periodic system satisfies

Ψ(t) = Φ(t)eΛt (3.11.12)

where Φ(t) is a τ -periodic matrix and Λ is a constant matrix whose eigenvalues

are the characteristic exponents (λ1, . . . , λn+1).

For a proof note that by (3.11.4) the matrix Φ(t) = Ψ(t)e−Λt is τ -periodic

if

Ψ(τ) = eΛτ , (3.11.13)

i.e. if τΛ is a logarithm of Ψ(τ). The existence of a logarithm of a non-singular

matrix is a well-known fact. For example, if all (ρ1, ρ2, . . . , ρn+1) are different,

then Φ(t) is similar to a diagonal matrix:

Ψ(τ) = P







ρ1 0

. . .

0 ρn+1






P−1 ,
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and the matrix Λ is simply

Λ = P







λ1 0

. . .

0 λn+1






P−1 .

It follows immediately from (3.11.12) that the periodic change of variables

ξ = Φ(t)y brings the system (3.11.2) to the autonomous form

ẏ = Λy .

Note that Eq. (3.11.13) defines, in general, a complex-valued matrix Λ,

even if Ψ(τ) is real. Thus, the matrix Φ(t) is complex and a real τ -periodic

transformation which brings the system to the autonomous form does not

always exists. Nevertheless, the following theorem is valid.

Theorem 3.12. (Lyapunov) There exists a change of variables of the form

ξ = Φ̃(t)y, where Φ̃(t) is a real periodic matrix of period 2τ, which transforms

system (3.11.3) into

ẏ = Λ̃y ,

where Λ̃ is a real constant matrix whose eigenvalues satisfy e2τλ̃k = ρ2
k.

It is seen that Re λ̃k = Reλk where λk are the characteristic exponents of

(3.11.2). Thus,

• If all of the Lyapunov exponents are negative, then the solution ξ = 0 of

the linear system (3.11.2) is exponentially stable as t→ +∞;

• If there is at least one positive Lyapunov exponent, then the trivial so-

lution is unstable.

For a proof of the Lyapunov theorem, let us denote as U the eigenspace

of the matrix Ψ(τ) corresponding to all real negative ρk and denote as V the

eigenspace corresponding to the rest of eigenvalues of Ψ(τ). So, ξ = (u, v)

where u ∈ U , v ∈ V . For the linear transformation

σ : (u, v) 7→ (−u, v) (3.11.14)

the matrix Ã = σΨ(τ) = Ψ(τ)σ does not have real negative eigenvalues. By

construction, its eigenvalues ρ̃k satisfy ρ̃2
k = ρ2

k. The matrix Ã is similar to a

matrix in the real Jordan form:

Ã = P (A◦ + ∆A)P−1
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where

A
◦
kk = ρ̃k if ρ̃k is real

(

A◦
kk A◦

k,k+1

A◦
k+1,k A◦

k+1,k+1

)

=

(

1 1

−i i

)(

reiφ 0

0 re−iφ

)(

1 1

−i i

)−1

=

(

r cos φ −r sin φ

r sin φ r cos φ

)

if (ρ̃k = re
iφ

, ρ̃k+1 = re
−iφ),

(3.11.15)

all the other entries of A◦ are zero; the only non-zero entries in ∆A may be

(∆A)k,k+1 = 1 if ρ̃k = ρ̃k+1 are real multiple eigenvalues
and

(∆A)k,k+2 = 1 if ρ̃k = ρ̃k+2 are complex multiple eigenvalues.
(3.11.16)

One can check that the real logarithm of Ã is given by the following formula:

ln Ã = P ln(A◦ + ∆A)P−1 = P [lnA◦ + ln(I + (A◦)−1∆A)]P−1

= P

[

lnA◦ +
∞∑

s=1

(−1)s

s
(A◦)−s(∆A)s

]

P−1 ,
(3.11.17)

where

(lnA◦)kk = ln ρ̃k if ρ̃k is real,
(

(lnA◦)kk (lnA◦)k,k+1

(lnA◦)k+1,k (lnA◦)k+1,k+1

)

=

(

ln r −φ

φ ln r

)

if ρ̃k = ρ̃∗k+1 = reiφ .

(3.11.18)

The formula (3.11.18) gives a real-valued matrix lnA◦ because all real ρ̃k
are positive by construction; the matrix (A◦)−1 exists because all ρk are non-

zero by (3.11.8); the series in (3.11.17) is convergent because (∆A)s ≡ 0 for

sufficiently large s. The expansion for ln(A◦+∆A) in (3.11.17) is a calque of the

Taylor expansion for a scalar logarithm: the scalar arithmetic is applied here

because the matrices lnA◦, A◦ and ∆A commute, i.e. A◦ · lnA◦ = lnA◦ · A◦,

A◦ ·∆A = ∆A ·A◦, ∆A · lnA◦ = lnA◦ ·∆A (see (3.11.15), (3.11.16),(3.11.18)).

Let us now take

Λ̃ =
1

τ
ln Ã ,

so

Ψ(τ) = σeΛ̃τ .
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If follows that the matrix Φ̃(t) = Ψ(t)e−Λ̃t satisfies

Φ̃(t+ τ) = Φ̃(t)σ (3.11.19)

(see (3.11.4)). In particular, Φ̃(t) is 2τ -periodic. By construction, the general

solution (3.11.3) of (3.11.2) is written as

ξ(t) = Φ̃(t)eΛ̃tξ(0)

which means that, indeed, the transformation y = Φ̃(t)−1ξ brings the system

to the linear autonomous form.

Remark. If it is seen from (3.11.19) that there is no real negative Floquet

multipliers, then the reduction to the real autonomous form is done by a pe-

riodic transformation of period τ . In case real negative multipliers exist, the

involution σ is not identical; in this case we will call the functions satisfying

(3.11.19) τ -antiperiodic.

Theorem 3.12 holds for any real linear system with time-periodic coeffi-

cients. In particular, applying the theorem to the linear part of y-equation of

either (3.10.4) or (3.10.2) we get that the normal coordinates can be introduced

in such a way that the system near a periodic orbit is written as

ẏ = Λy + F (θ, y) ,

θ̇ = 1 + b(θ, y) ;
(3.11.20)

or, after rescaling the time, as

ẏ = Λy + F (θ, y) ,

θ̇ = 1 .
(3.11.21)

Here, the right-hand sides satisfy the τ -(anti)periodicity conditions

F (θ + τ, σy) = σF (θ, y) ,

b(θ + τ, σy) = b(θ, y) ,
(3.11.22)

where σ is the involution (3.11.14) changing sign of some of the variables y —

those which correspond to the real negative multipliers.

3.12. Stability of periodic trajectories. Saddle
periodic trajectories

It is well known that Lyapunov solved the problem of stability of a periodic

trajectory of the system

ẋ = F (x, t) , (3.12.1)
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where x = (x1, . . . , xn), and where F is a periodic function with respect to the

time variable t. He gave the following definition.

Definition 3.2. A solution x = ϕ(t) of system (3.12.1) is called stable (in the

sense of Lyapunov) if given arbitrary small ε > 0 there exists δ such that if

‖x0−ϕ(t0)‖ ≤ δ, then ‖x(t)−ϕ(t)‖ ≤ ε for all t ≥ t0, where x(t) is the solution

with the initial condition x0.

Let system (3.12.1) have a periodic solution x = ϕ(t) of period τ being

either equal to the period of the function F (x, t) or being divisible by it. Let us

denote by (λ1, . . . , λn) the characteristic exponents of the associated variational

equation

ξ̇ = F ′
x(ϕ(t), t)ξ .

Theorem 3.13. (Lyapunov) Let Reλi < 0 (i = 1, . . . , n). Then the solution

x = ϕ(t) is stable. Moreover, it is exponentially stable, i.e. any solution with

initial conditions close to ϕ(t0) at t = t0 tends to ϕ(t) exponentially as t →

+∞.

Lyapunov proved this theorem for the case where the system (3.12.1) has

an analytic right-hand side, though it also holds when the function F is only

of C
1-smoothness with respect to x and continuous with respect to t.

In a small neighborhood of x = ϕ(t) system (3.12.1) can be brought to the

form (see Sec. 3.11)

ẏ = Λy +G(y, t) , (3.12.2)

where Λ is a constant matrix such that the real parts of its eigenvalues are

the Lyapunov exponents (Reλ1, . . . ,Reλn). The function G(y, t) is periodic of

period τ or 2τ with respect to t. Moreover, G(0, t) ≡ 0, G′
y(0, t) ≡ 0. It follows

that ‖G′
y‖ is uniformly bounded by a small constant for all t and for all small

y. After reducing the system to the form (3.12.2) the proof of Theorem 3.13

repeats the proof of the theorem on the validity of the linearization near a

stable equilibrium state (Theorem 2.4).

Let us now consider an (n+ 1)-dimensional autonomous system

ẋ = X(x) (3.12.3)

having a periodic solution x = ϕ(t) of period τ . We have learned in Sec. 3.11

that one of the characteristic exponents of the variational equation of (3.12.3)
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is always equal to zero. Therefore, from the point of view of Lyapunov stabil-

ity this situation corresponds to the critical case. Nevertheless, the following

theorem is valid.

Theorem 3.14. (Andronov-Vitt) If all n non-trivial characteristic expo-

nents of a periodic solution of the system (3.12.3) have negative real parts, the

periodic solution is stable in the sense of Lyapunov.

This theorem justifies the linearization but only for a very weak form of

stability. The problem is as follows. Let L be the corresponding periodic tra-

jectory: L = {x : x = ϕ(θ), 0 ≤ θ ≤ τ)}. Then for any two neighboring points

on L, the associated solutions of (3.12.3) cannot approach asymptotically each

other as t → +∞. It is easily seen when the system is written in the normal

coordinates near L. Recall that in the normal coordinates (y, θ) near L where

‖y‖ measures the distance to L and θ ∈ S
1 is the angular variable, the system

recasts in the form (3.11.20) where ‖F ′
y‖ is uniformly bounded by a small con-

stant for all t and for all small y. The real parts of the eigenvalues of Λ are the

non-trivial Lyapunov exponents of L. Like in the Lyapunov Theorem 3.13, if

all the eigenvalues have negative real parts, then

‖y(t)‖ < ‖y0‖e
−λ t (3.12.4)

where λ > 0. At the same time, since b(θ, 0) ≡ 0, we have θ̇ = 1 + O(y) =

1 +O(e−λt). Therefore,

θ(t) = θ0 + t+ ψ(t; θ0, y0) (3.12.5)

where ψ(t) has a finite limit as t → +∞. Obviously, ψ vanishes at y = 0.

Thus, at y = 0, the solutions with different values of initial phase θ0 stay at a

finite distance from each other for all times.

In the original coordinates x, the periodic trajectory L corresponds to a

family of periodic solutions x = ϕ(t+ θ0) parametrized by the initial phase θ0.

Under the assumption that all non-trivial characteristic exponents lie in the

open left half plane, Lyapunov posed the question: for which initial conditions

x(0) = x0 does the solution x(t) approach ϕ(t+ θ0) in the limit t→ +∞? He

showed that the locus of such initial points is a surface Sθ0 passing through

the point ϕ(θ0). This implies that a small neighborhood of the stable periodic

trajectory L is foliated into a family of the surfaces {Sθ : 0 ≤ θ ≤ τ}, called

the Lyapunov surfaces. Observe, that in normal coordinates the equation of

the Lyapunov surfaces is given by Sθ0 = {θ + ψ(+∞; θ, y0) = θ0}.
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Finally, we come to the following theorem (see formulae (3.12.4), (3.12.5))

Theorem 3.15. (On the asymptotical phase) Let all non-trivial characteristic

exponents of a periodic trajectory L lie to the left of the imaginary axis. Then,

given sufficiently small ε there exists δ such that if ‖x0−ϕ(θ0)‖ < δ, then there

exists ψ, |ψ| < ε such that the solution x(t), x(0) = x0, satisfies the inequality

‖x(t) − ϕ(t+ θ0 + ψ)‖ < Ke−λ t ,

where K and λ are positive constants.

We refer the reader to a detailed proof of this theorem in the book by

Codington and Levinson.

Another important concept, introduced by Poincaré, is the notion of orbital

stability.

Definition 3.3. A periodic trajectory L is orbitally stable as t → +∞ (t →

−∞) if given any ε > 0 there exists δ such that any semi-trajectory x(t),

0 ≤ t < +∞ (−∞ < t ≤ 0), such that ‖x(0) − ϕ(θ0)‖ < δ for some θ0, lies in

the ε-neighborhood of L.

We say that the periodic trajectory L is asymptotically orbitally stable as

t→ +∞ if

lim
t→+∞

dist(x(t), L) = 0 .

where

dist(x, L) = inf
0≤θ≤τ

‖x− ϕ(θ)‖ .

Theorem 3.16. If all multipliers of the periodic trajectory L lie inside the

unit circle, then L is orbitally stable as t → +∞, and satisfies the following

estimate

dist(x(t), L) ≤ Ke−λt ,

where K and λ are positive constants.

This theorem follows directly from the theorem on the stability of the fixed

point of the Poincaré map and the theorem on the continuous dependence of

the solution on the initial conditions (or it immediately follows from (3.12.4))

because the multipliers of L lie inside the unit circle if and only if the non-

trivial characteristic exponents of L lie to the left of the imaginary axis (see

Sec. 3.11).
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The case where all the multipliers of the periodic trajectory L are outside of

the unit circle is reduced to the above case by means of reversion t→ −t. All

trajectories in a small neighborhood of such an unstable periodic trajectory

leave the neighborhood as t increases. The time, over which a trajectory

escapes from the neighborhood, depends on the position of the initial point

of the trajectory with respect to L, the closer the point is to the periodic

trajectory the larger the escaping time is. Such unstable periodic trajectories

are called completely unstable or repelling.

Let us consider next the case where some multipliers of L, (ρ1, . . . , ρk) lie

inside and the rest (ρk+1, . . . , ρn) lie outside of the unit circle.

In a neighborhood of the periodic trajectory L of period τ the system is

written in the form (3.10.2). Dividing the first equation of (3.10.2) by the

second we obtain the non-autonomous system with the periodic right-hand

side
dy

dθ
= A(θ)y + F (y, θ) , (3.12.6)

where F (0, θ) ≡ 0, F ′
y(0, θ) ≡ 0. Just like in Sec. 3.10 we can integrate (3.12.6)

with the initial data (y0, 0) and find a solution y = y(θ; y0) which is C
r-smooth

with respect to both arguments. If we let θ = τ , we obtain the Poincaré map

ȳ = Φ(τ)y + Ψ(y) , (3.12.7)

where Ψ(0) = 0, and Ψ′(0) = 0. The roots of the equation |Φ(τ)− ρI| = 0 are

the multipliers (ρ1, . . . , ρn) of L.

It follows from Hadamard’s theorem (see Sec. 3.6) that two smooth invari-

ant manifolds, stable W s
loc(O) and unstable W u

loc(O), pass through the point

O at the origin. These manifolds are tangent, respectively, to the stable k-

dimensional subspace and the (n − k)-dimensional unstable subspace of the

associated linearized map ȳ = Φy at the point O which we denote as Es and

as Eu. Let y = (y1, y2) where y1 ∈ R
k and y2 ∈ R

n−k. Let y2 = Csy1 be the

equation of Es, and let y1 = Cuy2 be the equation of Eu, where Cs and Cu

are some matrices.8 Thus, the equation of W s
loc(O) is given by

y2 = ψ(y1), where
∂ψ(0)

∂y1
= Cs ,

8To obtain the equations of the stable and unstable manifolds of the saddle periodic
trajectory L there is no necessity to reduce the Poincaré map to the special form (3.6.1),
i.e. we do not assume that the linear part of the Poincaré map decouples into two equations.
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and the equation of W u
loc(O) is given by

y1 = φ(y2), where
∂φ(0)

∂y2
= Cu.

Both ψ and φ are C
r-smooth functions. The condition of invariance of W s

loc(O)

with respect to the Poincaré map reads as follows. If we choose the point

(y0
1 , ψ(y0

1)) ∈ W s
loc(O) to be an initial point at θ = 0 and from this point we

begin a trajectory, then at θ = τ this trajectory returns on the cross-section at

a point of W s
loc(O). The set of all forward trajectories starting from W s

loc(O)

is a (k + 1)-dimensional invariant surface which is the local stable manifold

W s
loc(L) of the saddle periodic trajectory L. The equation of W s

loc(L) is given

by

y(θ) = (y1(θ; y
0
1 , ψ(y0

1)), y2(θ; y
0
1 , ψ(y1)

0)) . (3.12.8)

In a similar manner we can define the invariant unstable manifold W u
loc(L) of

dimension (n− k + 1). Its equation is given by

y(θ) = (y1(θ;φ(y0
2), y0

2), y2(θ;φ(y0
2), y0

2)) . (3.12.9)

Observe that W s
loc(L) and W u

loc(L) have the same smoothness as W s
loc(O)

and Wu
loc(O). The subindex loc here means that both manifolds are defined

in D
n × S

1, where D
n : {y, ‖y‖ < ε} is a disk of some sufficiently small

radius ε.

Let us pause to consider the three-dimensional examples, i.e. when n = 2

in (3.12.3) and the Poincaré map is two-dimensional.

1. Let 0 < ρ1 < 1 and ρ2 > 1. The saddle fixed point O breaks the stable

and the unstable manifolds into two components each, such that

W s
loc(O) = Γ1 ∪O ∪ Γ2

and

Wu
loc(O) = Γ3 ∪O ∪ Γ4 .

Moreover, each Γi, (i=1,. . . ,4) is invariant, i.e. it is taken into itself by the

Poincaré map. Hence, W s
loc(L) and W u

loc(L) are smooth two-dimensional

surfaces which are homeomorphic to a cylinder, see Fig. 3.12.1. Observe

that the three-dimensional system (3.12.2) near the periodic trajectory

L may then be reduced to the following form (see Sec. 3.11)
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Fig. 3.12.1. A saddle periodic trajectory with two-dimensional stable W s and unstable
W u manifolds which are homeomorphic to a cylinder.

ẏ1 = λ1y1 + f1(y1, y2, θ) ,

ẏ2 = λ2y2 + f2(y1, y2, θ) ,

θ̇ = 1 ,

(3.12.10)

where λ1,2 =
ln ρ1,2

τ .

2. Let |ρ1| < 1 and |ρ2| > 1, moreover, ρ1 < 0 and ρ2 < 0. In this case the

Poincaré map takes Γ1 into Γ2, and Γ2 into Γ1. The manifold W s
loc(L)

will be then diffeomorphic to a two-dimensional Möbius band. The same

is true for W u
loc(L), see Fig. 3.12.2. In this case L is a middle line of the

Möbius band.

Thus, we can see that in the three-dimensional case saddle periodic tra-

jectories may be of two different topological types because there is no homeo-

morphism between cylinders and Möbius bands. An analogous situation holds

in the high-dimensional case. If sign (ρ1 × · · · × ρk) = 1, which implies also

that sign (ρk+1 × · · · × ρn) = 1, then W s
loc(L) is homeomorphic to the multi-

dimensional cylinder D
k × S

1, and Wu
loc(L) is homeomorphic to D

n−k × S
1.
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Fig. 3.12.2. A saddle periodic trajectory with two-dimensional stable W s and unstable W u

manifolds which are homeomorphic to a Möbius band.

If sign (ρ1 ×· · ·× ρk) = −1 and sign (ρk+1 ×· · ·× ρn) = −1, then W s
loc(L) and

Wu
loc(L) are non-orientable manifolds of the type of multi-dimensional Möbius

bands (i.e. they are represented as a fiber bundle of D
k and, respectively,

D
n−k by S

1). Similarly to the classification of structurally stable fixed points,

we can distinguish structurally stable periodic trajectories by introducing the

invariants δs = sign
k∏

i=1

ρi and δu = sign
n∏

i=k+1

ρi.

Up to now we have been talking about the local manifolds of periodic

trajectories. However, we can define these manifolds globally. Let x = X(t;x0)

denote the trajectory with initial condition x0.

Definition 3.4. The stable manifold of the periodic trajectory L is the set

W s
L = {x ∈ R

n| X(t;x) → L as t→ +∞} .

The unstable manifold W u
L is defined in a similar way with the difference that

t→ −∞.

By that definition, for any point x ∈ W s(L) there is a moment of time at

which the trajectory of x enters a small neighborhood of L, so some time shift

of x belongs to the local stable manifold. Thus,

W s(L) =
⋃

t∗≤0

W s
L(t∗) ,

where

W s
L(t∗) = {x ∈ R

n| x = X(t∗;x∗) for some x∗ ∈W s
loc(L)} .

Since W s
L(t∗) is a smooth image of W s

Lloc
by X(t∗; ·), it follows that W s

L is a

smooth image of either a cylinder R
k × S

1 or a Möbius band.
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The same holds true for W u(L):

Wu(L) =
⋃

t∗≥0

Wu
L(t∗) ,

where

Wu
L(t∗) = {x ∈ R

n| x = X(t∗;x∗), for some x ∈W u
loc(L)} .

3.13. Smooth equivalence and resonances

The problem of reduction of a nonlinear diffeomorphism to a linear form in

a neighborhood of a fixed point is essentially identical to the corresponding

problem in the case of vector fields (see Sec. 2.9). The major obstacle in both

situations is the resonances. However, in contrast to the resonances of vector

fields the resonances of diffeomorphisms have a multiplicative character.

Consider an n-dimensional diffeomorphism

x̄ = Ax+ f(x) , (3.13.1)

where f(0) = 0, f ′(0) = 0. Let us denote by (ρ1, . . . , ρn) the eigenvalues of the

matrix A. Then, a resonance is defined by the relation

ρk = ρm , (3.13.2)

where ρm = (ρm1
1 ρm2

2 · · · ρmn
n ), mk (k = 1, . . . , n) are some non-negative inte-

gers such that |m| =
n∑

k=1

mk ≥ 2. The number |m| is called the order of the

resonance.

Lemma 3.8. Let the function f(x) ∈ C
N and let there be no resonances of

the order |m| ≤ N . Then, the change of variables

y = x+ ϕ2(x) + · · · + ϕN (x) , (3.13.3)

where ϕl (l = 2, . . . , N) is a homogeneous polynomial of degree l, transforms

diffeomorphism (3.13.1) into

ȳ = Ay + oN (y), (3.13.4)

where oN (y) vanishes at the origin along with its derivatives up to order N .
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It is obvious that the changes of variables above and below, are local,

namely they are valid only in some small neighborhood of a fixed point of

diffeomorphism (3.13.1)

Lemma 3.8 is well known and it is valid even when A has multiple eigen-

values. Here, we will discuss only the case of simple eigenvalues (the extension

onto the general case is made in the same way as in Lemma 2.2). The matrix

A can then be represented in the form

A =








ρ1 0
ρ2

. . .

0 ρn







.

Let us recast the function f(x) into the following form

f(x) = f2(x) + f3(x) + · · · + fN (x) + oN (x) ,

where fl(x) (l = 2, . . . , N) are homogeneous polynomials of degree l. We have

fl(x) =
∑

k

∑

l1+···+ln=l

dk,l1···lnx
l1
1 · · ·xlnn ek ,

where ek = (0, . . . , 0, 1
︸ ︷︷ ︸

k

, 0, . . . , 0) is the k-th basis vector; i.e. fl(x) is a sum of

monomials dklx
lek. By the change of variables (3.13.3) we obtain

ȳ = x̄+

N∑

l=2

ϕl(x̄)

= Ax+

N∑

l=2

fl(x) +

N∑

l=2

ϕl



Ax+

N∑

j=2

fj(x)



+ · · ·

= Ay −
N∑

l=2

Aϕl(x) +
N∑

l=2

fl(x) +
N∑

l=2

ϕl



Ax+
N∑

j=2

fj(x)



+ · · · ,

(3.13.5)

where the ellipsis denotes the terms of degree higher thanN (observe that other

summands above also contain the terms of degree (N + 1) and higher). The

process of eliminating the redundant terms begins with the quadratic terms.

In order to find ϕ2(x) we write the following equation

−Aϕ2(x) + f2(x) + ϕ2(Ax) = 0 . (3.13.6)
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By representing ϕ2(x) in the form

ϕ2(x) =
∑

k

∑

m1+···+mn=2

ckmx
mek, xm = xm1

1 · · ·xmn
n

we obtain the following equation for the unknown coefficients ckm

(−ρk + ρm) ckm + dkm = 0 , (3.13.7)

where m = 2 and k = (1, . . . , n). Since there are no resonances, we find

ckm =
dkm

ρk − ρm
. (3.13.8)

In order to obtain ϕ3(x) we write the following equation

−Aϕ3(x) + ϕ3(Ax) + f3(x) + {ϕ2(Ax+ f2(x))} = 0 ,

where “{}” denotes the cubic terms. Since we have already found ϕ2(x), we

have the following equation for the unknown coefficients of ϕ3(x):

(−ρk + ρm)ckm + d̃km = 0 . (3.13.9)

Here, d̃km = dkm + d′km, where d′km is the coefficient of xm in the k-th com-

ponent of the vector polynomial ϕ2(Ax+ f2(x)). By repeating this procedure

we eliminate all terms up to degree N .

In the case where there are resonances of the form ρk = ρm one cannot

kill the monomials of the type d̃kmx
mek. For this case we have the following

well-known lemma.

Lemma 3.9. Let f(x) ∈ C
N . Then, the change of variables

y = x+ ϕ(x) ,

where ϕ(x) is a polynomial such that ϕ(0) = 0, ϕ′(0) = 0, transforms the

diffeomorphism (3.13.1) into the form

x̄ = Ax+RN (x) + oN (x) , (3.13.10)

where

RN (x) =

|m|≤N
∑

ρm=ρk

bkmx
mek . (3.13.11)
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Now, let the function f(x) be analytic. By taking the limit N → ∞ we

reduce the original diffeomorphism either to a linear form or to the following

form

ȳ = Ay +R(y) , (3.13.12)

where

R(y) =
∑

ρm=ρk

bkmy
mek . (3.13.13)

However, the change of variables

y = x+ ϕ2(x) + · · · + ϕm(x) + · · · (3.13.14)

is, in general, merely a formal series, as well as the right-hand side of (3.13.13).

For diffeomorphisms we have a theorem analogous to the Poincaré-Dulac

theorem for vector fields (see Sec. 2.9).

Theorem 3.17. Let |ρi| < 1 (|ρi| > 1), i = 1, . . . , n. Then there exists an

analytic change of variables which transforms diffeomorphism (3.13.1) into

ȳ = Ay +R(y) , (3.13.15)

where R(y) is a polynomial composed of resonant monomials. In the absence

of resonances R(y) ≡ 0.

The situation when the fixed point 0 is of the saddle type, i.e. its multipliers

lie both inside and outside of the unit circle, is much more complicated. The

reason is that even when the collection {ρ1, ρ2, . . . , ρn} is not resonant, the

zero point is a limit point for the set

{ρm − ρk}
∞
m=2, k = 1, . . . , n (3.13.16)

Here, the problem of convergence of normalizing series (3.13.14) becomes much

more uncertain because of the “small denominators” appearing in (3.13.8). It

is established in the works of Siegel and Bruno that in the saddle case both

possibilities are realized: changes of variables in the form of the series may

converge and diverge as well.

The situation becomes more definite in the C
∞-smooth case.

Theorem 3.18. (Sternberg) A C
∞-smooth change of variables reduces the

n-dimensional diffeomorphism

x̄ = Ax+ f(x) ,

into a linear form if the function f(x) ∈ C
∞ and if there are no resonances.
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In the case where there are resonances the following theorem is valid.

Theorem 3.19. If f ∈ C
∞, then a C

∞-smooth change of variables transforms

diffeomorphism (3.13.1) into

ȳ = Ay +R(y) , (3.13.17)

where R(y) is a C
∞-smooth function whose formal Taylor series is comprised

of resonant monomials.

It follows from these two theorems that the dependence of the normal forms

on the collection ρ = {ρ1, . . . , ρn} has a discontinuous character.

Just like in the case of vector fields we may pose a question concerning the

reduction of diffeomorphisms to a linear form by changes of variables of only

finite smoothness.

Theorem 3.20. (Belitskii) Let f ∈ C
N+1 and let q be the number of differ-

ent in absolute values multipliers (ρ1, . . . , ρn). Assume also that there are no

resonances of orders less than or equal to N . Then, there exists a C
[ N

q
]-smooth

change of variables which transforms system (3.13.1) into the linear form.

It follows from this theorem that a nonlinear diffeomorphism can be trans-

formed into the linear form by a C
r-smooth change of variables provided that

there are no resonances of order |m| ≤ N , where N ≥ r n.

Theorem 3.21. (Belitskii) Let f ∈ C
2, |ρk| 6= 1 (k = 1, . . . , n) and assume

the following conditions hold

|ρi| 6= |ρj | |ρk|, |ρi| < 1 < |ρk| , (3.13.18)

where {i, j, k} ∈ (1, . . . , n). Then system (3.13.1) may be transformed into

linear form by a C
1-smooth change of variables.

Conclusion 1. When |ρi| < 1 (i = 1, . . . , n) and when f ∈ C
2, diffeomor-

phism (3.13.1) can be transformed into the linear form by a C
1-smooth change

of variables.

Conclusion 2. If n = 2, |ρ1| < 1 and |ρ2| > 1, and f ∈ C
2, then the two-

dimensional diffeomorphism can be reduced to a linear form by a C
1-smooth

change of variables.



214 Chapter 3. Structurally Stable Periodic Trajectories

From the viewpoint of dynamics the problem of the reduction of a nonlinear

diffeomorphism to a linear form in a neighborhood of a saddle fixed point does

not seem to be very significant on its own. Of course, all necessary information

about the behavior of trajectories near a saddle can be derived by means of

standard methods discussed in this chapter. However, if we are interested in

global (far away from the saddle) features of the behavior of trajectories, then

the situation becomes more intriguing.

For example, the description of the trajectories in a neighborhood of a ho-

moclinic Poincaré trajectory9 (i.e. a trajectory bi-asymptotic to a saddle fixed

point as t→ ±∞) requires the description of the properties of the trajectories

staying for a long time near a saddle fixed point. Of course, such description

can be easily done when the diffeomorphism is reduced to a linear form, and

such reduction in the C
∞-smooth case was used by Smale in his study of the

homoclinic. However, this approach does not always work; for instance, in the

Hamiltonian case there always exist resonances.

Moreover, in order to study bifurcations of homoclinic trajectories one must

imbed the diffeomorphism under consideration into a finite-parameter family.

Therefore, the local reduction to a suitable form must depend continuously on

parameters.

Let us consider a finite-parameter family of diffeomorphisms Xµ. We as-

sume that Xµ ∈ C
r (r ≥ 2) with respect to all variables and parameters, and

that it is represented in the form

x̄ = A1(µ)x+ f1(x, y, u, v, µ) ,

ū = A2(µ)u+ f2(x, y, u, v, µ) ,

ȳ = B1(µ)y + g1(x, y, u, v, µ) ,

v̄ = B2(µ)v + g2(x, y, u, v, µ) ,

(3.13.19)

where fi(x, y, u, v, µ) and gi(x, y, u, v, µ) (i = 1, 2) vanish at the origin along

with their first derivatives with respect to the variables (x, y, u, v) for suffi-

ciently small µ.

We assume also that the eigenvalues of the matrix

A(0) =

(

A1(0) 0

0 A2(0)

)

9Poincaré was the first to discover the existence of such trajectories in problems of Hamil-
tonian dynamics.
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lie strictly inside the unit circle, and that the eigenvalues of the matrix

B(0) =

(

B1(0) 0

0 B2(0)

)

lie outside of the unit circle. Assume also that the eigenvalues (ρ1, . . . , ρm1
) of

the matrix A1(0) satisfy the conditions |ρi| = ρ < 1 (i = 1, . . . ,m1), and the

eigenvalues (γ1, . . . , γp1) of the matrix B1(0) satisfy |γi| = γ > 1 (i = 1, . . . , p1).

With regard to the eigenvalues (ρm1+1, . . . , ρm) of the matrix A2(0) and the

eigenvalues (γp1+1, . . . , γp) of the matrix B2(0) we will assume that

|ρi| < ρ, i = m1 + 1, . . . ,m

|γi| > γ, i = p1 + 1, . . . , p .
(3.13.20)

Hence, the fixed point O is of the saddle type, the x and y coordinates are,

respectively, the leading stable and the leading unstable coordinates.

Theorem 3.22. Under the above assumptions there exists a C
r−1-smooth

change of variables which transforms the family (3.13.19) into

x̄ = A1(µ)x+ f11x+ f12u ,

ū = A2(µ)u+ f21x+ f22u ,

ȳ = B1(µ)y + g11y + g12v ,

v̄ = B2(µ)v + g21x+ g22v ,

(3.13.21)

where fij(x, y, u, v, µ) and gij(x, y, u, v, µ) (i, j = 1, 2) are C
r−1-functions which

vanish at the origin and satisfy

f1j(x, u, 0, 0, µ) ≡ 0, fi1(0, u, y, v, µ) ≡ 0 ,

g1j(0, 0, y, v, µ) ≡ 0, gi1(x, u, 0, v, µ) ≡ 0 .

The smoothness with respect to parameters is the same as in Theorem 2.20.

Note that reduction to the form (3.13.21) proved to be sufficient to the study

of main homoclinic bifurcations (see Gonchenko & Shilnikov and Gonchenko

et al. [1996]) via estimates of the type we obtained in Lemma 3.6.

Observe also that the basic idea of the proof of this theorem is to get rid of

some “non-resonant functions”. The proof itself repeats completely the proof

of Theorem 2.20 in the case of vector field in the Appendix A.
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In the case where the eigenvalues of the matrix A of diffeomorphism (3.13.1)

lie on the unit circle there are always a finite number of resonances, namely:

ρk = ρmk , m ≥ 2 (3.13.22)

when ρk = 1; and

ρk = ρ2m+1
k , m ≥ 1 (3.13.23)

when ρk = −1; and

ρk = ρk (ρkρk+1)
m, m ≥ 1 (3.13.24)

if ρk, k+1 = e±iϕ, where ϕ 6= 0.

The theory of normal forms is especially valuable here. This is, first of

all, related to the problem of stability in the critical cases, as well as to the

study of the associated bifurcation phenomena. In the latter case it is natural

to consider not only the diffeomorphism itself but a sufficiently close smooth

finite-parameter family. It is clear that the reduction of the family to the

simplest form is the primary problem.

Assume now that only the eigenvalues (ρ1, . . . , ρp) lie on the unit circle. If

p < n, then it is convenient to use the theorem on the center manifold (see

Chap. 5) which allows the n-dimensional original family to be reduced to a

p-dimensional finite-parameter family of the form

x̄ = Ax+ g(x) + h(x, ε) , (3.13.25)

where the eigenvalues of the matrix A are (ρ1, . . . , ρp), ε = (ε1, . . . , εq), and

where g(x) and h(x, ε) are sufficiently smooth functions. Moreover,

g(0) = 0, g′(0) = 0, h(x, 0) ≡ 0, h′x(x, 0) ≡ 0 .

Let us now consider a (p + q)-dimensional diffeomorphism in the triangular

form

x̄ = Ax+ g(x) + h(x, ε) ,

ε̄ = ε .
(3.13.26)

This diffeomorphism has a fixed point O(0, 0) with the Jacobian matrix

Ã =

(

A h′ε(0, 0)

0 I

)

,
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where I is the identity matrix. The eigenvalues of Ã are ρ1, . . . , ρp and γ1 =

· · · = γq = 1, In this case, besides the resonances of the type

ρk = ρm ,

where

ρm = ρm1
1 · · · ρmp

p ,

p
∑

i=1

mi ≥ 2 ,

which exist when ε = 0, there are also the following resonances:

ρk = ρkγ
l , (3.13.27)

ρk = ρmγl , (3.13.28)

γk = γl , (3.13.29)

where

γl = γl11 · · · γlqq ,

q
∑

j=1

lj ≥ 2 .

The reduction of system (3.13.26) to normal form can be achieved via the

change of variables

y = x+ ϕ(x, ε)

ε = ε
(3.13.30)

which leaves the second equation in (3.13.26) unchanged (the latter means that

we do not need to consider the resonances of the kind (3.13.29)). Similar to

the case in Lemma 3.9, the original family may be transformed into

ȳ = Ay +R0(ε) +R1(ε)y +RN (y, ε) + oN (y, ε) , (3.13.31)

where R1(ε) is a polynomial of degree not higher than N − 1, R1(0) = 0 and

RN (y, ε) =

|m|≤N
∑

ρk=ρm

bkm(ε)ymek , (3.13.32)

where bkm(ε) are certain polynomials of degree not exceeding (N−|m|). More-

over, R0(ε) ≡ 0 if, among the eigenvalues (ρ1, . . . , ρp), there is none equal to

one. Otherwise, R0(ε) is a polynomial of degree not higher than N , and
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R0(0) = 0. The appearance of the term R0(ε) in (3.13.31) is due to the exis-

tence of resonances of the kind

ρk = γl . (3.13.33)

In many cases, to describe the behavior of the trajectories in a small fixed

neighborhood of the fixed point O, as well as to construct the bifurcation

diagram, it is sufficient to restrict our considerations to the finite normal form

ȳ = Ay +R0(ε) +R1(ε)y +RN (y, ε) (3.13.34)

for some suitable choice of N and p. Just like the case of vector field, the in-

formation extracted from the analysis of the truncated normal form (3.13.34)

must be substantiated before it can be applied to the original family of dif-

feomorphisms. This is the method used in our study of the main cases of

bifurcations of periodic trajectories in the second part of this book.

3.14. Autonomous normal forms

In this section we discuss a different kind of normal forms near a periodic

trajectory. We saw in Sec. 3.11 that a linear non-autonomous system, periodic

in time, can always be recast in an autonomous form by a periodic coordinate

transformation. Here we extend this result and show that by a formal change

of variables all non-autonomous terms in an arbitrary non-linear system can

be reduced to an autonomous form near a periodic trajectory.

Consider a C
r-smooth system in normal coordinates

{

ẏ = A(θ)y + F (θ, y)

θ̇ = 1
(3.14.1)

near a periodic trajectory {y = 0} of period τ (so we assume A and F to be

τ -periodic in θ). For the sake of simplicity we consider the case where y is a

vector of complex variables (y ∈ Cn). The difficulties in the case where y is

real can be overcome in the same manner as in Lemma 2.2.

Let {e1, . . . , en} be the Jordan base in Cn relative to the matrix of the

linear part of the Poincaré map of system (3.14.1) and let {y1, . . . , yn} be the

coordinates in this basis. We have shown in Sec. 3.11 that the system may be
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reduced to

ẏk = λkyk + δkyk+1 +
∑

2≤|m|≤r

Fkm(θ)ym + o(‖y‖r)

(k = 1, . . . , n)

(3.14.2)

where λk are the (non-trivial) characteristic exponents, the coefficients δk are

either 0 or 1; moreover, δk may be non-zero only in the case λk = λk+1. The

functions Fkm are τ -periodic in θ, and it follows from Lemma 3.7 that they

are C
r-smooth with respect to θ. Recall that the characteristic exponents are

defined in terms of the multipliers of the periodic trajectory:

λk =
1

τ
ln ρk (3.14.3)

where ρ1, . . . , ρn are the multipliers. In the previous section we introduced the

notion of a resonant relation

ρm1
1 · · · · · ρmn

n = ρk ,

(where m1, . . . ,mn are non-negative integers) which we can recast as

m1λ1 + · · · +mnλn = λk +
2πi

τ
mn+1 , (3.14.4)

where mn+1 is also an integer, and may possibly be negative.

Theorem 3.23. There is an integer S defined by the values of the multipliers

ρ1, . . . , ρn only, such that for any finite r there exists a local transformation of

coordinates y, (Sτ)-periodic in θ, which makes all coefficients Fkm in (3.14.2)

independent of θ.10 Moreover, if the monomial ymek is non-resonant for some

k, then Fkm ≡ 0 in the new coordinates.

Proof. Let us make a sequence of coordinate transformations of the form

ynew
k = yk + fkm(θ)ym , (3.14.5)

each of which will make a coefficient of (ynew)mek independent of θ; here ek =

(0, . . . , 0, 1
︸ ︷︷ ︸

k

, 0, . . . , 0) is the k-th basis vector. Such a transformation does not

10Note that the terms o(‖y‖r) will remain non-autonomous.
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change the coefficients of the monomials ym
′

ek′ of orders lower than the order

of ymek (in the sense of Lemma 2.2; see (2.9.18)). Therefore, increasing (in

the above sense) multiindex (k,m) in (3.14.5) will finally give us the theorem.

Equating the coefficients of ym in the identity

d

dt
ynew
k =

d

dt
[yk + fkm(θ)ym]

we obtain

F new
km (θ) = F old

km(θ) + (f ′
km(θ) + fkm(θ)[(m,λ) − λk]) .

We may consider the last expression as a differential equation on fkm. Its

solution is given by

fkm(θ) = e−γkmθ

(

C +

∫ θ

0

eγkmt{F new
km (t) − F old

km(t)}dt

)

(3.14.6)

where

γkm = (m,λ) − λk .

One can see that if the monomial ym is non-resonant (i.e. γkm 6= 2πi jτ ), then

the constant C in (3.14.6) may be taken such that fkm is a τ -periodic function

of θ with F new
km ≡ 0. Indeed, the condition of periodicity of fkm is

fkm(θ + τ) = fkm(θ) ,

or, when F new
km = 0, we have

(eγkmτ − 1)C = eγkmτ

∫ θ

0

eγkmtFkm(t)dt−

∫ θ+τ

0

eγkmtFkm(t)dt

=

∫ θ

0

eγkm(t+τ)Fkm(t+ τ)dt−

∫ θ+τ

0

eγkmtFkm(t)dt

= −

∫ τ

0

eγkmtFkm(t)dt

(here we used the τ -periodicity of Fkm(t)). If γkm 6= 2πi jτ , then the coefficient

of C is non-zero, and the required C is immediately found.

For the resonant case we have two possibilities: γkm = 0 and γkm 6= 0. If

γkm = 0 (mn+1 = 0 in terms of (3.14.4)), Eq. (3.14.6) takes the form

fkm(θ) = C +

∫ θ

0

{F new
km (t) − F old

km(t)}dt . (3.14.7)
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One can see immediately that F new
km = const. = 1

τ

∫ τ

0
F old
km(t)dt gives the τ -

periodic function fkm. Thus, we could reduce the system to the autonomous

normal form by a τ -periodic transformation, if the values γkm vanished for all

resonant monomials.

Although this is not the case in general, we will however prove that this can

be achieved if we consider the system as (Sτ)-periodic with some integer S ≥ 1.

The idea is that the characteristic exponents λk are not defined uniquely by

expression (3.14.3) because the logarithm is not a single-valued function. In

fact, we may write

λk =
1

τ
ln ρk + 2πi

jk
τ

where jk are arbitrary integers (if ρk = ρk+1, chose jk+1 = jk to obtain

λk+1 = λk). If we consider the system as (Sτ)-periodic, we have

λnew
k =

1

Sτ
ln(ρSk ) + 2πi

jk
Sτ

= λold
k + 2πi

jk
Sτ

. (3.14.8)

We will prove now that there exist integers S and j1, . . . , jn such that in all

resonant relations the imaginary part11 will vanish simultaneously, when one

proceed to the new λk defined by formula (3.14.8) (the theorem then follow

immediately from the above discussion).

The resonant relation (3.14.4) is a particular case of the relation

m1λ1 + · · · +mnλn +mn+1iω = 0 (3.14.9)

where ω = 2π/τ . It can be regarded as a linear equation in the variables

(m1, . . . ,mn+1) with the given coefficients (λ1, . . . , λn, iω). This equation

can have only a finite number of linearly independent integer-valued solu-

tions which we denote by (m
(1)
1 , . . . ,m

(1)
n+1), . . . , (m

(q)
1 , . . . ,m

(q)
n+1) (q ≤ n).

Any other integer-valued solution can be expressed by a linear combination

m = σ1m
(1) + · · ·+σqm

(q) with some coefficients σ. We must change the char-

acteristic exponents λ1, . . . , λn so that in all resonant monomials the value

mn+1 is equal to zero simultaneously. Since any solution of (3.14.9) is a linear

combination of a finite number of basic solutions m(1), . . . ,m(q), it is sufficient

to satisfy m
(1)
n+1 = 0, . . . ,m

(q)
n+1 = 0.

11This is 2πi
τ

mn+1 in (3.14.4).
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We have
m

(1)
1 λ1 + · · · +m(1)

n λn +m
(1)
n+1iω = 0 ,

...
...

...

m
(q)
1 λ1 + · · · +m(q)

n λn +m
(q)
n+1iω = 0 ,

Let us consider this as a linear homogeneous system on (λ1, . . . , λn, iω) with

the integer coefficients m
(α)
β . It is well known that if a linear homogeneous

system with integer coefficients has a non-trivial solution, it necessarily has

an integer-valued non-trivial solution as well. Therefore, there exist integers

j1, . . . , jn and S such that

m
(1)
1 j1 + · · · +m(1)

n jn +m
(1)
n+1S = 0 ,

...
...

...

m
(q)
1 j1 + · · · +m(q)

n jn +m
(q)
n+1S = 0 .

(3.14.10)

Substituting the integer solutions j1, . . . , jn and S of (3.14.10) into the formula

(3.14.8) we obtain a set of new characteristic exponents such that

m
(1)
1 λnew1 + · · · +m(1)

n λnew
n = 0 ,

...
...

...

m
(q)
1 λnew

1 + · · · +m(q)
n λnew

n = 0 .

This implies that in terms of these newly defined λ1, . . . , λn, for the case

where the system is considered as (Sτ)-periodic with S calculated from

(3.14.10), the value γkm equals to zero for all resonant monomials. This com-

pletes the proof of the theorem.

The general meaning of this result is that the behavior of solutions which

remain in a small neighborhood of a periodic trajectory very much resembles

the behavior of the solutions in a small neighborhood of an equilibrium state

of an autonomous system. More precisely, if we reduce a system in the normal

coordinates to the autonomous form up to the terms of some order r, then the

trajectories in a sufficiently small ε-neighborhood of a periodic trajectory will

be close to the trajectories of the truncated autonomous system for a very long

period of time (of order, say, 1
εr ). However, we must be cautious because as r

increases, the coordinate transformation which we have constructed may not
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converge (since it is a special case of a formal normal form transformation),

and in general, the behavior of the original and truncated autonomous systems

over the infinite time interval will be rather different.

Finally, we remark that it follows from the proof of the above theorem that

in the important special case where all the characteristic exponents λk are zero

(i.e. all the multipliers are equal to 1) the autonomous normal form has the

same period τ as the original system (because the quantity γkm ≡ (m,λ)− λk
is zero for all resonant monomials).

3.15. The principle of contraction mappings. Saddle
maps

In this section we give a simple criterion for the existence of fixed points which

is based on the principle of the contraction mappings. This criterion, when

applied to the Poincaré map, gives conditions which guarantee the existence of

periodic trajectories. The principle of the contraction mappings is a rather gen-

eral mathematical result and its applicability is not restricted to the problem

of establishing the existence of periodic trajectories. In the following chapters

we will use an infinite-dimensional version of this principle (on the space of

continuous functions) while proving theorems on invariant manifolds.

Definition 3.5. The map T : D → D of a closed set D ⊆ R
n is called a

contraction mapping, or simply a contraction, if there exists a constant K < 1

such that for any two points M1 and M2 in D the distance between their images

T (M1) and T (M2) does not exceed the distance between the points M1 and M2

multiplied by K:

‖TM1 − TM2‖ ≤ K‖M1 −M2‖ (3.15.1)

Theorem 3.24. (Banach principle of contraction mappings) A contrac-

tion mapping T has a unique fixed point M ∗ in D. Moreover, the trajectory

T iM of any point M ∈ D tends exponentially to M ∗ as i→ ∞.

Proof. Let us choose an arbitrary point M ∈ D. Since TD ⊆ D, the

trajectory {T iM}∞i=0 of the point M lies entirely in D. It follows from (3.15.1)

that for any i

‖T i+1M − T iM‖ ≤ Ki‖TM −M‖ .
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Therefore, for any m and j, we have

‖Tm+jM − TmM‖ ≤

j−1
∑

i=0

‖Tm+i+1M − Tm+iM‖

≤

(
j−1
∑

i=0

Km+i

)

‖TM −M‖ ≤
Km

1 −K
‖TM −M‖ .

Hence, the sequence of the points {T iM}∞i=0 is a fundamental (or Cauchy)

sequence, i.e. for any ε > 0 one can find an m such that the inequality

‖Tm+jM − TmM‖ ≤ ε is satisfied for any j. In our case,

m >
1

| lnK|
·

∣
∣
∣
∣
ln

ε(1 −K)

‖TM −M‖

∣
∣
∣
∣
.

Since any fundamental sequence converges,12 there exists a limit M∗ =

lim
i→∞

T iM . Since the mapping T is continuous (it follows from (3.15.1)) we

have that

TM∗ = T lim
i→∞

T iM = lim
i→∞

T i+1M = M∗ ,

i.e. M∗ is a fixed point of T .

If T possesses another fixed point M ∗∗, then

‖M∗ −M∗∗‖ = ‖TM∗ − TM∗∗‖ ≤ K‖M∗ −M∗∗‖

whence ‖M∗ −M∗∗‖ = 0, i.e. M∗ = M∗∗. Thus, the mapping T has a unique

fixed point M∗.

We have shown that the trajectory of any point M tends exponentially to

some fixed point of the mapping T . Since this point is unique, trajectories

starting from all points in D tend exponentially to M ∗.

Theorem 3.25. Let the mapping T : D → D depend continuously on some

parameter µ, and let the mappings Tµ be contracting with the same constant

K in (3.15.1) for all µ, then the fixed point M ∗
µ depends continuously on µ.

Proof. Let M∗
µ and M∗

µ+∆µ be fixed points of the mappings Tµ and Tµ+∆µ,

respectively. By definition

TµM
∗
µ = M∗

µ

12The space Rn is complete.
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and

Tµ+∆µM
∗
µ+∆µ = M∗

µ+∆µ .

Hence

‖M∗
µ −M∗

µ+∆µ‖ = ‖TµM
∗
µ − Tµ+∆µM

∗
µ+∆µ‖

≤ ‖TµM
∗
µ − Tµ+∆µM

∗
µ‖ + ‖Tµ+∆µM

∗
µ − Tµ+∆µM

∗
µ+∆µ‖

≤ ‖TµM
∗
µ − Tµ+∆µM

∗
µ‖ +K‖M∗

µ −M∗
µ+∆µ‖ ,

whence

‖M∗
µ −M∗

µ+∆µ‖ ≤
1

1 −K
‖TµM

∗
µ − Tµ+∆µM

∗
µ‖ .

Since Tµ depends continuously on µ, the right-hand side of this last inequality

tends to zero as ∆µ → 0, and, therefore, M ∗
µ+∆µ → M∗

µ as ∆µ → 0. End of

the proof.

The following criterion on the existence of fixed points of smooth mappings

follows immediately from the Banach principle.

Theorem 3.26. Let a mapping x̄ = F (x) be defined on a closed convex set

D ⊆ R
n such that

F (D) ⊆ D (3.15.2)

‖F ′‖ ≤ K < 1 . (3.15.3)

Then, F (x) has a unique fixed point x∗ ∈ D such that all trajectories of F

converge to x∗.

Proof. In order to prove this theorem it is sufficient to verify that F is a

contraction mapping. Select two points x1 and x2 in D, and examine their

images x̄1 and x̄2 under F . Since D is a convex set, the interval I = {x1 +

s(x2 − x1)}s∈[0,1] connecting the points x1 and x2 lies entirely in D. Consider

the function ϕ(s) = F (x1 + s(x2 − x1)). This function maps I into D so that

ϕ(0) = x̄1, ϕ(1) = x̄2. Since

ϕ(1) = ϕ(0) +

∫ 1

0

ϕ′(s)ds ,

we have

x̄2 = x̄1 +

∫ 1

0

F ′(x1 + s(x2 − x1))(x2 − x1)ds
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and

‖x̄2 − x̄1‖ ≤

∫ 1

0

‖F ′‖ds · ‖x2 − x1‖ .

Hence,

‖x̄2 − x̄1‖ ≤ K‖x2 − x1‖

i.e. F is a contraction mapping and it follows from Theorem 3.24 that it has

a unique fixed point in D.

Remark. Here, we have re-proved the well-known inequality

‖F (x2) − F (x1)‖ ≤

(

sup
D

‖F ′‖

)

· ‖x2 − x1‖ , (3.15.4)

where x1 and x2 are arbitrary points in a convex set D, and F is a smooth

function. We will frequently use this estimate. We remark that, generally

speaking, it is not satisfied for non-convex sets.

When the function F depends continuously on some parameter µ, x∗ also

depends continuously on µ by virtue of Theorem 3.25. If the dependence of F

on µ is smooth, then the following theorem holds.

Theorem 3.27. Let the function F of Theorem 3.15.3 depend C
r-smoothly

on x ∈ D and on a parameter µ. Then, the fixed point x∗ also depends C
r-

smoothly on µ.

Proof. Let us compute the first derivative dx∗/dµ. Since x∗ is a fixed point,

x∗ = F (x∗, µ) .

Consider an increment ∆µ of µ. The corresponding increment ∆x∗ of x∗

is given by

∆x∗ = F ′
x∆x

∗ + F ′
µ∆µ+ o(‖∆x∗‖) + o(‖∆µ‖) ,

i.e.

(I − F ′
x)∆x

∗ = F ′
µ∆µ+ o(‖∆x∗‖) + o(‖∆µ‖) ,

where I is the identity matrix. Since ‖F ′
x‖ ≤ K < 1, it follows that (I − F ′

x)

is invertible. Therefore,

∆x∗ = (I − F ′
x)

−1F ′
µ∆µ+ o(‖∆x∗‖) + o(‖∆µ‖) ,
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i.e. x∗ depends smoothly on µ, and

dx∗µ
dµ

= (I − F ′
x)

−1F ′
µ

∣
∣
∣
∣
x=x∗(µ)

. (3.15.5)

We can now show that x∗ depends C
r-smoothly on µ. To do this it is

sufficient to differentiate (3.15.5) (r−1) times in accordance with the following

rule:
d

dµ
=

∂

∂µ
+

(
∂

∂x

)

·
dx∗

dµ
=

∂

∂µ
+

(
∂

∂x

)

· [(I − F ′
x)

−1F ′
µ] .

End of the proof.

Theorem 3.26 yields a sufficient condition for the existence of a stable fixed

point. In order to obtain a sufficient condition for the existence of a completely

unstable fixed point we simply require that formulae (3.15.2) and (3.15.3) hold

for the inverse mapping F−1.

For saddle fixed points the problem is that close to such a point it is im-

possible to select a region which would be mapped onto itself by F . Similarly,

there is no region that is mapped into itself by F−1. This is readily seen in

the following example:

x̄ = λx, ȳ = γy, 0 < λ < 1 < γ . (3.15.6)

In order to overcome this difficulty we consider the map in the so-called cross

form.

Definition 3.6. Let D1 and D2 be certain sets, and let P : D1 × D2 → D1,

Q : D1 × D2 → D2 be certain functions, and let T be a mapping defined on

certain subset of the direct product D1⊗D2. We shall say that P and Q define

the mapping T in cross form when the point (x̄, ȳ) ∈ D1 ⊗D2 is the image of

the point (x, y) ∈ D1 ⊗D2 under the mapping T if and only if

x̄ = P (x, ȳ) ,

y = Q(x, ȳ) .
(3.15.7)

The map T× defined by formulae (3.15.7) is called the cross-map. By

construction, T×(D1 ⊗D2) ⊆ D1 ⊗D2.

In the forward form the map T is given by formulae

x̄ = F (x, y) ,

ȳ = G(x, y) .
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It follows from (3.15.7) that

F (x, y) = P (x,G(x, y)) ,

y = Q(x,G(x, y)) ,

whence

F ′
xdx+ F ′

ydy = (P ′
x + P ′

yG
′
x)dx+ P ′

yG
′
ydy ,

dy = (Q′
x +Q′

yG
′
x)dx+Q′

yG
′
ydy .

Here, the derivatives of the functions F and G are taken with respect to (x, y),

and those of P and Q are taken with respect to (x, ȳ). Equaling the coefficients

of dy and dx, we obtain

G′
y = (Q′

y)
−1 ,

G′
x = −(Q′

y)
−1Q′

x ,

F ′
y = P ′

y(Q
′
y)

−1 ,

F ′
x = P ′

x − P ′
y(Q

′
y)

−1Q′
x

(3.15.8)

and

Q′
y = (G′

y)
−1 ,

Q′
x = −(G′

y)
−1G′

x ,

P ′
y = F ′

y(G
′
y)

−1 ,

P ′
x = F ′

x − F ′
y(G

′
y)

−1G′
x .

(3.15.9)

Observe that a smooth forward map does not always correspond to a

smooth cross-map. In the case where (Q′
y)

−1 is not defined, the smoothness of

the map T may be violated, or the map T may not even be a one-to-one map.

However, the results below remain valid for such map.

Definition 3.7. The map T defined in the cross form (3.15.7) by the smooth

functions P and Q on the direct product of the closed convex sets D1 and D2

(D1 ⊆ R
n, D2 ⊆ R

m) is called a saddle map if:

‖P ′
x‖◦ < 1, ‖Q′

y‖◦ < 1 ,

‖P ′
y‖◦‖Q

′
x‖◦ < (1 − ‖P ′

x‖◦)(1 − ‖Q′
y‖◦) ,

(3.15.10)

where ‖ · ‖◦ = sup
(x,y)∈D1×D2

‖ · ‖.
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Example: The cross-map corresponding to the map (3.15.6) is trivially

computed:

x̄ = λx, y = γ−1ȳ .

Since 0 ≤ λ < 1 and γ−1 < 1, we can assign the subsets D1 and D2 to be the

intervals [−ε, ε] of the x and y axes respectively. The region D1 ⊗D2 is now

mapped into itself under the action of the mapping T×. Here, we have P ′
x = λ,

P ′
y = 0, Q′

x = 0, Q′
y = γ−1. Therefore, since max{λ, γ−1} < 1, it follows that

the conditions (3.15.10) hold, i.e. this map is of the saddle type. Analogously,

an arbitrary linear map

x̄ = A−x, y = (A+)−1ȳ

such that the Spec A− lies strictly inside the unit circle and Spec A+ lies

strictly outside of it, is also of the saddle type. Here max{‖A−‖, ‖(A+)−1‖} <

1, and D1 and D2 can be chosen to be certain balls in the x-space and the

y-space, respectively.

When the mapping T is written in the forward form, conditions (3.15.10)

are no longer symmetric.

Statement 3.1. In order that condition (3.15.10) holds it is sufficient that:

‖F ′
x‖◦ < 1, ‖(G′

y)
−1‖◦ < 1 ,

‖F ′
y(G

′
y)

−1‖◦ · ‖G
′
x‖◦ < (1 − ‖F ′

x‖◦) · (1 − ‖(G′
y)

−1‖◦) .
(3.15.11)

To prove this statement note that (3.15.10) follows from (3.15.9) if

‖(G′
y)

−1‖◦ < 1

and
‖F ′

y(G
′
y)

−1‖◦‖G
′
x‖◦‖(G

′
y)

−1‖◦

≤ (1 − ‖F ′
x‖◦ − ‖F ′

y(G
′
y)

−1‖◦‖G
′
x‖◦) · (1 − ‖(G′

y)
−1‖◦) .

Observe now that these inequalities follow from conditions (3.15.11).

The first two inequalities in conditions (3.15.11) mean that the mapping

T is expanding along the y-variables and contracting along the x-variables. If

the derivatives F ′
y and G′

x were equal to zero as in the linear map considered

previously, then it would be sufficient for the map to be of the saddle type.

The last inequality in (3.15.11) simply means that the distortion induced by

F ′
y and G′

x is not essential.
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Theorem 3.28. A saddle map T has a unique fixed point in D1 ×D2.

Proof. First of all observe that the fixed points of the forward map T and

those of the cross-map T× coincide. Therefore, we need only to show that T×

is a contraction mapping and invoke Theorem 3.24.

Let us introduce in D1 ×D2 the distance given by

ρ((x1, y1), (x2, y2)) = ‖x2 − x1‖ + L‖y2 − y1‖ , (3.15.12)

where the constant L is chosen such that

‖P ′
y‖◦

1 − ‖Q′
y‖◦

< L <
1 − ‖P ′

x‖◦
‖Q′

x‖◦
. (3.15.13)

To verify that the map T× is a contraction mapping we note that by virtue

of (3.15.4)

‖P (x2, ȳ2) − P (x1, ȳ1)‖ ≤ ‖P ′
x‖◦‖x2 − x1‖ + ‖P ′

y‖◦‖ȳ2 − ȳ1‖ ,

and

‖Q(x2, ȳ2) −Q(x1, ȳ1)‖ ≤ ‖Q′
x‖◦‖x2 − x1‖ + ‖Q′

y‖◦‖ȳ2 − ȳ1‖

or

‖x̄2 − x̄1‖ ≤ ‖P ′
x‖◦‖x2 − x1‖ + ‖P ′

y‖◦‖ȳ2 − ȳ1‖ ,

and

‖y2 − y1‖ ≤ ‖Q′
x‖◦‖x2 − x1‖ + ‖Q′

y‖◦‖ȳ2 − ȳ1‖ ,

whence

‖x̄2 − x̄1‖ + L‖y2 − y1‖

≤ (‖P ′
x‖◦ + L‖Q′

x‖◦)‖x2 − x1‖ + (‖P ′
y‖◦ + L‖Q′

y‖◦)‖ȳ2 − ȳ1‖

≤ K(‖x2 − x1‖ + L‖ȳ2 − ȳ1‖) ,

where

K = max{‖P ′
x‖◦ + L‖Q′

x‖◦, L
−1‖P ′

y‖◦ + ‖Q′
y‖◦} .

By virtue of (3.15.13), K < 1, hence it follows that T× is a contraction

mapping. End of the proof.

One can show that the obtained fixed point is of the saddle type. In fact,

Theorem 4.2 from the next chapter can be applied here (both to the map T
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and to its inverse T−1), so one can show that the fixed point of the saddle

map has a smooth stable and unstable manifolds in the form y = ψ(x) and

x = ϕ(y), where the functions ψ(x) and ϕ(y) are defined everywhere on D1

and D2 respectively.

Let us now discuss the abstract version of Banach principle. It is obvious,

that Theorem 3.24 remains valid if D is a closed subset of any Banach space X.

Recall, that a linear space X is called Banach space if it is complete; i.e. any

fundamental sequence {xi}
∞
i=1 of elements of X converges: if for any ε there

exists m such that ‖xn+m − xm‖ ≤ ε for all n ≥ 0, then for some x∗ ∈ X

lim
i→∞

xi = x∗ .

The distance between points of X is defined as

dist(x1, x2) = ‖x1 − x2‖

where the norm ‖ · ‖ is an arbitrary non-negative function X → R such that

‖x1 + x2‖ ≤ ‖x1‖ + ‖x2‖

‖λx‖ = |λ| · ‖x‖ for any scalar λ

‖x‖ > 0 at x 6= 0 .

The Euclidean space Rn is an example of the Banach space. Another

important example is the space H of continuous functions x(t)|t∈[0,τ ] (where

x ∈ Rn) with the norm

‖x(t)‖◦ = sup
t∈[0,τ ]

‖x(t)‖

(we denote ‖ · ‖◦ the norm in H to distinguish with the norm in Rn). The

space H is complete because Rn is complete. Thus, Theorem 3.24 is valid for

any contracting operator which maps H → H.

For example, the proof of Theorem 2.9 on the existence of the unique

solution of a boundary-value problem near a saddle consists, essentially, of

verifying that the right-hand side of the integral equation (2.8.4) defines a

contracting operator on the closed ε-ball Dε : ‖x(t)‖◦ ≤ ε in H (here x(t) ≡

(u(t), v(t))).

Analogously Theorem 3.10 (the existence of the solution of a boundary-

value problem near a saddle fixed point) is proved by applying the Banach
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principle to an operator acting on an ε-ball in the Banach space of sequences

x = {(u0, v0), (u1, v1), . . . , (uk, vk)} with the norm

‖x‖◦ = max
i=0,...,k

‖ui, vi‖ .

The Hadamard theorem (Theorem 3.9) applies the Banach principle to the

operator ϕ 7→ ϕ̃ defined on the Banach space of continuous functions u = ϕ(v),

where v belongs to the δ-neighborhood of zero in Rn−k and u ∈ Rk, with the

norm

‖ϕ‖◦ = sup
‖v‖≤δ

‖ϕ(v)‖ . (3.15.14)

In fact, the operator under consideration is well-defined (see Step 1 of the

proof of the theorem) on a subset D of the Banach space, which consists of

smooth functions ϕ satisfying (3.6.4), (3.6.5). It is not a closed subset (the

sequence of smooth functions may converge in the norm (3.15.14) to a non-

smooth function). Therefore, the Theorem 3.24 does not guarantee that the

fixed point ϕ∗ belongs to D, but ϕ∗ lies in the closure of D: in the space of

continuous functions satisfying the Lipschitz condition (3.6.3) (the smoothness

of ϕ∗ was proven later, by additional arguments).

Theorems 3.25 and 3.27 concerning the dependence of the fixed point x∗ on

parameters also remain valid when x and µ become elements of abstract Banach

spaces X and M , respectively. To clarify the statement of Theorem 3.27, we

recall the definitions.

For a map f : Y → X (where Y and X are Banach spaces) the derivative

f ′(y) at the point y ∈ Y is a (uniquely defined) linear operator f ′(y) : ∆y ∈

Y 7→ ∆x ≡ f ′(y)∆y ∈ X such that

lim sup
‖∆y‖→0

‖f(y + ∆y) − f(y) − f ′(y)∆y‖

‖∆y‖
= 0 .

The map f is smooth on a subset D of Y if f ′(y) depends continuously on y

and is uniformly bounded for all y ∈ D in the sense of the usual norm of linear

operator:

‖A‖ = sup
‖∆y‖=1

‖A∆y‖ .

With this norm the space of bounded linear operators Y → X is a Banach

space itself. The derivative f ′(y) depends on the point y ∈ Y , therefore the

second derivative may be considered, which is a linear operator Y → (Y →
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X), and so on: the r-th derivative is an inductively defined linear operator

Y → (Y → (. . . (Y
︸ ︷︷ ︸

r

→ X) . . .).

Obviously, the r-th derivative f (r) can be considered to be a symmetric

polylinear operator Y r → X such that

f(y + ∆y) = f(y) + f ′(y)∆y + · · · +
1

r!
f (r)(y)(∆y)r + o(‖∆y‖r) .

The function f is C
r-smooth on D ⊆ Y if for each k ≤ r the k-th derivative

f (k)(y) depends continuously on y and is uniformly bounded as an operator

Y k → X; i.e.

sup
y∈D,‖∆y1‖=···=‖∆yk‖=1

‖f (k)(y)∆y1 · · · · · ∆yk‖X

is finite.

For example, for any C
r-smooth function g defined on Rn, the operator

x(t) 7→ g(x(t)) acting on the space H of the continuous functions x(t)t∈[0,τ ] is

C
r-smooth. A bounded linear operator is C

r-smooth for any r. The superposi-

tion of smooth operators is an operator of the same smoothness. In particular,

the operator H → H which maps a continuous function x(t)t∈[0,τ ] into

x̄(t) =

∫ t

0

ψ(s)g(x(s), s)ds

is C
r-smooth for any continuous function ψ and any function g which is C

r-

smooth with respect to x and depends continuously on s. The smoothness of

operators of this sort will be used in chapter 5 in proving the smoothness of

invariant manifolds based on Theorem 3.27.



Chapter 4

INVARIANT TORI

Invariant tori appear in nonlinear dynamics in the study of periodically forced

self-oscillating systems, and of the interaction of several self-oscillating systems.

We restrict ourselves here to the first case, i.e. to non-autonomous systems of

the following form

ẋ = X(x) + µp(x, t) , (4.0.1)

where x ∈ R
n, and p(x, t) is a periodic function of period 2π in t. As for

ẋ = X(x) (4.0.2)

we assume that (4.0.2) possesses a structurally stable periodic trajectory L of

period τ . The phase space of (4.0.1) is the space R
n×S

1, where S
1 is a circle of

length 2π. In principle, (4.0.1) may be recast into the form of an autonomous

system

ẋ = X(x) + µp(x, θ) ,

θ̇ = 1 ,
(4.0.3)

in R
n+1, where θ is a cyclic variable defined in modulo 2π. A particularity

of (4.0.1), and consequently, of (4.0.3) is that when µ = 0 (the first equation

of (4.0.3) is then decoupled from the second one) both systems possess a two-

dimensional invariant torus T
2
0 : L× S

1. We will show that there also exists a

smooth invariant torus T
2
µ close to T

2
0 for all µ sufficiently small. To do this

we will use a criterion on the existence of stable tori suggested by Afraimovich

and L. Shilnikov [2, 3] which is called an annulus principle. Moreover, the

annulus principle is also applicable in the case of many cyclic variables. This

235



236 Chapter 4. Invariant Tori

allows us to apply it to a non-autonomous system forced by a quasi-periodical

external force.

Our next step is to study the behavior of trajectories on the two-dimensional

invariant torus T
2
µ. In this case, the problem may be reduced to an orientable

Poincaré map of a circle. The main results of the theory of such maps were

obtained in pioneering works of Poincaré and Denjoy. In Sec. 4.4 we will

present principal elements of this theory because it gives a mathematically

correct explanation of some problems on the synchronization of oscillations.

4.1. Non-autonomous systems

An n-dimensional non-autonomous periodic system is formally written in the

form

ẋ = F (x, t) , (4.1.1)

where F (x, t+2π) = F (x, t). It is assumed that the conditions of the existence

and the uniqueness of a solution holds in R
n×R

1, or inD×R
1, whereD is some

subregion of R
n. We assume that for any initial conditions (x0, t0) the solution

can be continued onto the interval [t0, t0 + 2π]. Many problems of nonlinear

dynamics related to the investigation of periodically forced oscillations lead to

the study of such systems. For example, the van der Pol equation

ẍ+ µ(x2 − 1)ẋ+ ω2
0x = A sinωt ,

the Düffing equation

ẍ+ hẋ+ αx+ βx3 = A sinωt ,

etc.

Generally speaking we can enlarge system (4.1.1) up to an autonomous

system by introducing a new cyclic variable θ such that θ̇ = 1. But to do this

it is necessary that both variables x and θ have an equal status, i.e. the function

F (x, θ) must be C
r-smooth (r ≥ 1) with respect to all of its arguments. The

feature of non-autonomous systems is that F is assumed to be only continuous

with respect to t.

In principle, the study of (4.1.1) is reduced to the study of a diffeomorphism

whose smoothness is equal to the smoothness of F with respect to x; of course,

all derivatives of F with respect to x are assumed to be continuous functions of

t. The construction is as follows: by virtue of the periodicity of F with respect

to t, the trajectories of the points (x, t) and (x, t + 2πm) are identical, where

m ∈ Z. Hence, we obtain the associated diffeomorphism by mapping the plane
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Fig. 4.1.1. Geometrical illustration of the construction of a diffeomorphism along trajectories
of a 2π periodic non-autonomous system. The points of intersection of a trajectory of the
non-autonomous system with a planar cross-section over every 2π period in time comprise
the trajectory of the diffeomorphism.

t = 0 into the plane t = 2π along the solutions of system (4.1.1) as shown in

Fig. 4.1.1.

Let ϕ(t, x) be a solution of system (4.1.1) which passes through the point x

at t = 0. Then, the diffeomorphism under consideration is written in the form

x̄ = f(x) , (4.1.2)

where f(x) = ϕ(2π, x).

The possibility of such reduction is one of the features of non-autonomous

systems.1 Note that the existence of such a global cross-section in the phase

space of autonomous systems is not true in general.

1We remark that the study of systems with a piece-wise continuous right-hand side F (x, t)
having a finite number of discontinuity points on period can also be reduced to such a
diffeomorphism.
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It is evident then that in the phase space R
n × S

1 (or D × S
1) a periodic

trajectory passing k times through the cross-section t = 0, corresponds to a

k-periodic orbit (x0, . . . , xk−1) of the diffeomorphism.

Let us recall the definition of a periodic point of a diffeomorphism. A point

x0 is said to be a periodic point of period k if x0 is a fixed point for the map

x̄ = fk(x) and is not such a fixed point for x̄ = f p(x), for p < k. The points

xp along with x0 are also periodic points, where xp = fp(x0), p = 1, . . . , k− 1.

It is clear that xp+1 = f(xp), and x0 = f(xk−1). Each point xp corresponds to

a solution ϕp(t) (p = 0, . . . , k − 1) of period 2πk. Any two such solutions are

identical up to a shift in the phase divisible by 2π:

ϕp(t) = ϕ0(t+ 2πp) ,

In order to establish the existence of a fixed point the following criterion is

useful. Let D be a closed, bounded region homeomorphic to a standard ball

{x: ‖x‖ ≤ 1}. Then, D is said to be a ball as well.

Theorem 4.1. (Brauer’s criterion) Let T be a continuous mapping of a

ball D into itself, i.e. TD ⊂ D. Then, T has, at least, one fixed point.

Brauer’s criterion is usually applied in the following situation. Let all in-

tegral curves of a system, which is defined in the region D × R
1 enter this

region on the boundary D × R1. Then the associated diffeomorphism satisfies

Theorem 4.1 and, consequently, the system itself has, at least, one periodic

trajectory.

Let us now return to the problem on periodically forced systems. In this

case, the study of (4.0.1) is reduced to that of a family of diffeomorphisms in

the form

x̄ = f(x, µ) , (4.1.3)

where f is represented as

f(x, µ) = f0(x) + µf1(x, µ) . (4.1.4)

Observe that at µ = 0 the diffeomorphism (4.1.3) is the shift map over 2π

along the trajectories of the autonomous system (4.0.2), or, equivalently, is a

mapping from θ = 0 to θ = 2π defined along the solutions of the system

ẋ = X(x) ,

θ̇ = 1 .
(4.1.5)
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Fig. 4.1.2. An invariant torus T2
0 of the extended system (4.1.5) at µ = 0 is represented as

a direct product L0 × S1.

Under the above assumption, the system (4.0.2) has a periodic solution L of

period τ , the equation of which is x = ϕ(t). Hence, system (4.0.3) will have “a

straight-edged” invariant torus T
2
0 with a base defined by {L : x = ϕ(θ1), 0 ≤

θ1 ≤ τ}, as shown in Fig. 4.1.2. Therefore, diffeomorphism (4.1.3) has an

invariant smooth closed curve L0 at µ = 0. We will show below that if L0 is

a stable solution of (4.0.2), then for all µ sufficiently small, system (4.0.3) will

possess a smooth invariant torus T
2
µ close to T

2
0, see Fig. 4.1.3. This follows

from the fact that for all sufficiently small µ, diffeomorphism (4.1.3) will have

a smooth invariant closed curve Lµ.

Consider now the system

ẋ = X(x, t) , (4.1.6)

where we assume that X(x, t) is a quasi-periodic function of t. This means

that

X(x, t) =

+∞∑

k1=−∞

· · ·
+∞∑

km+1=−∞

ak1···km+1
(x)ei(k1Ω1+···+km+1Ωm+1)t , (4.1.7)
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Fig. 4.1.3. A smooth invariant torus T2
µ of the perturbed system.

where k = (k1, . . . , km+1) is a vector composed of integers, and Ω = (Ω1, . . . ,

Ωm+1) is a vector of real numbers. We also assume that Ω1, . . . ,Ωm+1 comprise

a basis of frequencies, i.e.

(k,Ω) = k1Ω1 + · · · + km+1Ωm+1 6= 0 (4.1.8)

for any k 6= 0. Observe that under the condition that X(x, t) ∈ C
r (µ ≥ 1) it

can be represented in the form:

X(x, t) = X(x, θ1, . . . , θm+1) , (4.1.9)

where the function X(x, θ1, . . . , θm+1) ∈ C
r is periodic of period 2π with re-

spect to each argument θj = Ωjt. Hence, system (4.1.6) may be recast as an

autonomous system

ẋ = X(x, θ) ,

θ̇ = Ω ,
(4.1.10)
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where θ = (θ1, . . . , θm+1). The phase space of (4.1.10) is R
n×T

m+1. Further-

more, the study of system (4.1.10) may be reduced to that of the map

x̄ = f(x, θ) ,

θ̄ = θ + ω (mod 2π) ,
(4.1.11)

if we choose the cross-section θm+1 = 0. Here, θ = (θ1, . . . , θm), ω = (ω1, . . . ,

ωm), where ωj = 2πΩj/Ωm+1 (j = 1, . . . ,m). The phase space of the diffeo-

morphism (4.1.11) is R
n × T

m. While studying (4.1.11) it is convenient to

represent T
m as an m-dimensional cube

{

(θ1, . . . , θm)
∣
∣
∣ 0 ≤ θj ≤ 2π , j = (1, . . . ,m)

}

such that the points of the opposite edges of the cube are identified, i.e.

(θ1, . . . , θj−1, 0, θj+1, . . . , θm) ≡ (θ1, . . . , θj−1, 2π, θj+1, . . . , θm) .

Since the second group of equations in (4.1.11) is independent of x, the

map

θ̄ = θ + ω (mod 2π) , (4.1.12)

is defined on T
m and is a diffeomorphism. This map, due to the assumed

conditions (4.1.8) on Ω, has neither fixed points nor invariant tori of a smaller

dimension. In other words, T
m is a minimal set. Thus, the simplest objects

which appear in the first stage of the study of the coupled map (4.1.11) are

the m-dimensional invariant tori of the form x = h(θ) which correspond to

quasi-periodic solutions with the basis of frequencies (ω1, . . . , ωm).

In Sec. 4.2 we will present a rather convenient criterion for the existence of

an invariant torus for a sufficiently wide class of diffeomorphisms.

Remark. We have seen that a non-autonomous system with a periodic or

a quasiperiodic dependence on time admits a natural extension up to an au-

tonomous system of a higher dimension, where the increase in the dimension

is equal to the number of independent frequencies. In the general case this ex-

tension, however, is not true for systems having an arbitrary time dependence.

Furthermore, the straight-forward increasing of the dimension of the phase

space in this case is not useful because the behavior of trajectories as t→ +∞

must be studied on a non-compact phase space. Otherwise, the wandering set

is empty. Therefore, the study of non-autonomous systems with a general time

dependence call for a principally new approach. Such an approach for a class

of two-dimensional non-autonomous systems has been developed by Lerman

and L. Shilnikov [41].
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4.2. Theorem on the existence of an invariant torus.
The annulus principle

Let us consider a diffeomorphism T :

x̄ = f(x, θ) ,

θ̄ = θ + g0(x, θ) = g(x, θ) (mod 2π) ,
(4.2.1)

where x ∈ R
n, θ ∈ T

m, n ≥ 1, m ≥ 1, and the smooth functions f and g are

2π-periodic with respect to θ.

Let K be an annulus defined by

K =
{

(x, θ)
∣
∣
∣ ‖x‖ ≤ δ, θ ∈ T

m
}

,

Introduce the following notation: for a vector-valued or matrix-valued function

ϕ(x, θ)

‖ϕ‖◦ = sup
(x,θ)∈K

‖ϕ(x, θ)‖ ,

where ‖ · ‖ is the standard Euclidean norm.

Assumption 4.1. The map

x̄ = f(x, θ)

is a contraction for any fixed θ, i.e.
∥
∥
∥
∥

∂f

∂x

∥
∥
∥
∥
◦

< 1 . (4.2.2)

Assumption 4.2. The map

θ̄ = θ + g0(x, θ), (mod 2π) (4.2.3)

is a diffeomorphism for any fixed x. This implies in particular that

1 ≤

∥
∥
∥
∥
∥

(
∂g

∂θ

)−1
∥
∥
∥
∥
∥
◦

≤ C <∞ . (4.2.4)

Theorem 4.2. (Annulus principle) Under the above assumptions, if

1 −

∥
∥
∥
∥
∥

(
∂g

∂θ

)−1
∥
∥
∥
∥
∥
◦

·

∥
∥
∥
∥

∂f

∂x

∥
∥
∥
∥
◦

> 2

√
√
√
√

∥
∥
∥
∥
∥

(
∂g

∂θ

)−1
∥
∥
∥
∥
∥
◦

·

∥
∥
∥
∥

∂g

∂x

∥
∥
∥
∥
◦

·

∥
∥
∥
∥
∥

∂f

∂θ

(
∂g

∂θ

)−1
∥
∥
∥
∥
∥
◦

,

(4.2.5)
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then the diffeomorphism (4.2.1) possesses an m-dimensional invariant torus in

K which contains all ω-limit points of all positive semi-trajectories in K. The

torus is defined by the graph x = h∗(θ) where h∗ is a C
1-smooth 2π-periodic

function.

Proof. Due to Assumption 4.2 we can rewrite (4.2.1) in the cross-form

x̄ = F (x, θ̄) ,

θ = G(x, θ̄), (mod 2π) .
(4.2.6)

Observe that

F (x, θ̄) ≡ f(x,G(x, θ̄)) ,

θ̄ ≡ g(x,G(x, θ̄)) .
(4.2.7)

It follows from this formula that the following estimates hold for the derivatives

of F and G:

∥
∥
∥
∥

∂F

∂x

∥
∥
∥
∥
◦

≤

∥
∥
∥
∥

∂f

∂x

∥
∥
∥
∥
◦

+

∥
∥
∥
∥

∂g

∂x

∥
∥
∥
∥
◦

·

∥
∥
∥
∥
∥

∂f

∂θ

(
∂g

∂θ

)−1
∥
∥
∥
∥
∥
◦

,

∥
∥
∥
∥

∂F

∂θ̄

∥
∥
∥
∥
◦

=

∥
∥
∥
∥
∥

∂f

∂θ

(
∂g

∂θ

)−1
∥
∥
∥
∥
∥
◦

,

∥
∥
∥
∥

∂G

∂x

∥
∥
∥
∥
◦

≤

∥
∥
∥
∥

∂g

∂x

∥
∥
∥
∥
◦

·

∥
∥
∥
∥
∥

(
∂g

∂θ

)−1
∥
∥
∥
∥
∥
◦

,

∥
∥
∥
∥

∂G

∂θ̄

∥
∥
∥
∥
◦

=

∥
∥
∥
∥
∥

(
∂g

∂θ

)−1
∥
∥
∥
∥
∥
◦

.

(4.2.8)

One can check that the following inequality follows from these estimates,

and from (4.2.5):

√∥
∥
∥
∥

∂F

∂x

∥
∥
∥
∥
◦

·

∥
∥
∥
∥

∂G

∂θ̄

∥
∥
∥
∥
◦

+

√∥
∥
∥
∥

∂F

∂θ̄

∥
∥
∥
∥
◦

·

∥
∥
∥
∥

∂G

∂x

∥
∥
∥
∥
◦

< 1 . (4.2.9)

In particular
∥
∥
∥
∥

∂F

∂x

∥
∥
∥
∥
◦

·

∥
∥
∥
∥

∂G

∂θ̄

∥
∥
∥
∥
◦

< 1 .



244 Chapter 4. Invariant Tori

According to Assumption 4.2, for each fixed x the map θ = G(x, θ̄) is a dif-

feomorphism of the torus T
m onto itself, and hence it cannot be a contraction

mapping. Therefore, the maximum of the norm of its Jacobian matrix is nec-

essarily greater than 1: ∥
∥
∥
∥

∂G

∂θ̄

∥
∥
∥
∥
◦

≥ 1 .

This implies, in turn, that ∥
∥
∥
∥

∂F

∂x

∥
∥
∥
∥
◦

< 1 .

We can now see that (4.2.9) implies the following inequality

∥
∥
∥
∥

∂F

∂x

∥
∥
∥
∥
◦

+

√∥
∥
∥
∥

∂F

∂θ̄

∥
∥
∥
∥
◦

·

∥
∥
∥
∥

∂G

∂x

∥
∥
∥
∥
◦

< 1 . (4.2.10)

Denote

L =

√
∥
∥
∥
∥

∂F

∂θ̄

∥
∥
∥
∥
◦

(∥
∥
∥
∥

∂G

∂x

∥
∥
∥
∥
◦

)−1

(4.2.11)

(in the special case where ∂G
∂x ≡ 0 we simply choose a sufficiently large number

for L). It follows immediately from (4.2.9) that

L

∥
∥
∥
∥

∂G

∂x

∥
∥
∥
∥
◦

< 1 , (4.2.12)

sup
(x,θ̄)

{∥
∥
∥
∥

∂F

∂x

∥
∥
∥
∥
·

∥
∥
∥
∥

∂G

∂θ̄

∥
∥
∥
∥

}

≤

(

1 − L

∥
∥
∥
∥

∂G

∂x

∥
∥
∥
∥
◦

)(

1 −
1

L

∥
∥
∥
∥

∂F

∂θ̄

∥
∥
∥
∥
◦

)

, (4.2.13)

sup
(x,θ̄)

{∥
∥
∥
∥

∂F

∂x

∥
∥
∥
∥
·

∥
∥
∥
∥

∂G

∂θ̄

∥
∥
∥
∥

}

<

(

1 − L

∥
∥
∥
∥

∂G

∂x

∥
∥
∥
∥
◦

)2

, (4.2.14)

and from (4.2.10) we have

∥
∥
∥
∥

∂F

∂x

∥
∥
∥
∥
◦

< 1 − L

∥
∥
∥
∥

∂G

∂x

∥
∥
∥
∥
◦

. (4.2.15)

The rest of the proof is based only upon these inequalities. Let us denote

by H(L) the space of vector-functions x = h(θ) with the graph in K: ‖h‖ ≤ η0,

where h satisfies a Lipschitz condition:

‖h(θ + ∆θ) − h(θ)‖ ≤ L‖∆θ‖ . (4.2.16)
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Let us endow H(L) by the usual norm

dist(h1, h2) = ‖h1 − h2‖ = sup
θ

‖h1(θ) − h2(θ)‖ .

It is well known that H(L) is closed in the Banach space of bounded continuous

functions h(θ).

Lemma 4.10. Provided (4.2.12) and (4.2.13) are satisfied, the map T induces

the operator T : H(L) → H(L) (i.e. the image of the graph of a Lipschitz

function x = h(θ) by the map T is the graph of a function x̄ = h̃(θ̄) that

satisfies a Lipschitz condition with the same constant L).

Indeed, let h ∈ H(L). We must prove, first, that the image T{x = h(θ)}

is a surface of the kind x̄ = h̃(θ̄) for some single-valued function h̃. In other

words, we must show that for any θ̄ there exists a unique x̄ (which would give

h̃(θ̄)) such that (x̄, θ̄) = T (h(θ), θ) for some θ. This is equivalent (see 4.2.6) to

the existence, for any θ̄, of a unique solution of the following equation on θ:

θ = G(h(θ), θ̄) . (4.2.17)

We can consider this equality for each fixed θ̄ as an equation of a fixed

point of the map

θ 7→ G(h(θ), θ̄) (4.2.18)

of a torus into itself. The existence and uniqueness of the sought fixed point will

follow from the Banach principle if we can prove that this map is a contraction.

This is, however, an easy consequence of conditions (4.2.12) and (4.2.16): for

fixed θ̄, for any ∆θ, we have

‖∆x‖ ≡ ‖h(θ + ∆θ) − h(θ)‖ ≤ L‖∆θ‖

and

G(x+ ∆x, θ̄) −G(x, θ̄) =

(∫ 1

0

∂G

∂x
(x+ s∆x, θ̄)ds

)

∆x ,

whence

‖G(h(θ + ∆θ, θ̄) −G(h(θ), θ̄)‖ ≤ L

∥
∥
∥
∥

∂G

∂x

∥
∥
∥
∥
◦

‖∆θ‖ .

It follows from (4.2.12) that the map under consideration is a contraction

indeed.
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Thus, for any θ̄ there exists a unique θ for which the equality (4.2.17) holds.

Since the fixed point of a contracting map depends continuously on a parameter

(θ̄ in our case), it follows that the value of θ also depends continuously on θ̄.

By substituting the value of θ into the first equality in (4.2.6) we obtain a

function h̃ = T̃ h in the form

x̄ ≡ h̃(θ̄) = F (h(θ(θ̄)), θ̄) . (4.2.19)

We see that h̃ is continuous. Let us show next that h̃ satisfies a Lipschitz

condition. Obviously, it is sufficient to prove that at each θ̄, we have

lim sup
∆θ̄→0

‖∆x̄‖

‖∆θ̄‖
≤ L . (4.2.20)

In order to prove this we note that according to (4.2.6)

∆x̄ = Fx∆x+ Fθ̄∆θ̄ ,

∆θ = Gx∆x+Gθ̄∆θ̄ ,
(4.2.21)

where we denote

Fx =

∫ 1

0

∂F

∂x
(x+ s∆x, θ̄ + s∆θ̄)ds ,

etc. We assume here that the points (x, θ) and (x + ∆x, θ + ∆θ) belong to

{x = h(θ)} (hence the points (x̄, θ̄) and (x̄+∆x̄, θ̄+∆θ̄) belong to {x̄ = h̃(θ̄)}).

Therefore, ‖∆x‖ ≤ L‖∆θ‖. Substituting this into (4.2.21) gives

‖∆x̄‖ ≤ L

{
1

L
‖Fθ̄‖ +

‖Fx‖ · ‖Gθ̄‖

1 − L‖Gx‖

}

‖∆θ̄‖ .

In the limit we have

lim sup
∆θ̄→0

‖∆x̄‖

‖∆θ̄‖
≤ L







1

L

∥
∥
∥
∥

∂F

∂θ̄

∥
∥
∥
∥

+

∥
∥
∥
∥

∂F

∂x

∥
∥
∥
∥
·

∥
∥
∥
∥

∂G

∂θ̄

∥
∥
∥
∥

1 − L

∥
∥
∥
∥

∂G

∂x

∥
∥
∥
∥







. (4.2.22)

Thus, by virtue of (4.2.13), the function h̃ does satisfy a Lipschitz condition.

This completes the proof.

We have defined the operator T : H(L) → H(L). Let us show now that T

is contracting. Since H(L) is a closed subset of a Banach space, the Banach
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principle will guarantee the existence of a unique fixed point h∗ for the operator

T̃ on H(L). We would have h̃∗ = h∗ which means, by definition of T̃ , that

the image of the surface {x = h∗θ} by the map T is the same surface; i.e. this

surface is the sought invariant manifold (to finish the proof we will also need

to establish the smoothness of h∗).

Let h1 and h2 be two elements of H(L) and h̃1, h̃2 are their images by

T̃ . Fix any θ̄ and take the points (x̄1, θ̄) and (x̄2, θ̄) at which the surface of

constant θ̄ intersects the surfaces {x̄ = h̃1(θ̄)} and {x̄ = h̃2(θ̄)}, respectively.

Since these surfaces are, by definition, the images of the surfaces {x = h1(θ)}

and {x = h2(θ)} by the map T , there exist points (x1 = h1(θ1), θ1) and

(x2 = h2(θ2), θ2) such that T (x1, θ1) = (x̄1, θ̄) and T (x2, θ2) = (x̄2, θ̄). By

(4.2.6)
{

x̄1 = F (h1(θ1), θ̄) ,

θ1 = G(h1(θ1), θ̄) ,

{

x̄2 = F (h2(θ2), θ̄) ,

θ2 = G(h2(θ2), θ̄) ,

which gives

‖θ1 − θ2‖ ≤

∥
∥
∥
∥

∂G

∂x

∥
∥
∥
∥
◦

‖h1(θ1) − h2(θ2)‖

‖x̄1 − x̄2‖ ≤

∥
∥
∥
∥

∂F

∂x

∥
∥
∥
∥
◦

‖h1(θ1) − h2(θ2)‖ .

(4.2.23)

Using Lipschitz condition (4.2.16) we have

‖h1(θ1) − h2(θ2)‖ ≤ ‖h1(θ1) − h1(θ2)‖ + ‖h1(θ2) − h2(θ2)‖

≤ L‖θ1 − θ2‖ + dist(h1, h2) .

Thus, inequalities (4.2.23) can be written in the form

‖θ1 − θ2‖ ≤

∥
∥
∥
∥

∂G

∂x

∥
∥
∥
∥
◦

(L‖θ1 − θ2‖ + dist(h1, h2)) ,

and

‖x̄1 − x̄2‖ ≤

∥
∥
∥
∥

∂F

∂x

∥
∥
∥
∥
◦

(L‖θ1 − θ2‖ + dist(h1, h2)) ,

or

‖θ1 − θ2‖ ≤

∥
∥
∥
∥

∂G

∂x

∥
∥
∥
∥
◦

(

1 −

∥
∥
∥
∥

∂G

∂x

∥
∥
∥
∥
◦

L

)−1

· dist(h1, h2)
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and, finally,

∥
∥
∥h̃1(θ̄) − h̃2(θ̄)

∥
∥
∥ ≡ ‖x̄1 − x̄2‖ ≤







∥
∥
∥
∥

∂F

∂x

∥
∥
∥
∥
◦

1 −

∥
∥
∥
∥

∂G

∂x

∥
∥
∥
∥
◦

L







· dist(h1, h2) .

Since θ̄ is chosen arbitrary, the above inequality means, by definition, that

dist(h̃1, h̃2) ≤







∥
∥
∥
∥

∂F

∂x

∥
∥
∥
∥
◦

1 −

∥
∥
∥
∥

∂G

∂x

∥
∥
∥
∥
◦

L







· dist(h1, h2)

so, by virtue of (4.2.15), the map T̃ is indeed a contraction.

We have proven the existence and uniqueness of a Lipschitz invariant

manifold M∗ : {x = h∗(θ)}. Since the fixed point of a contraction opera-

tor is the limit of the a sequence of successive approximations starting from

any initial guess, it follows that h∗ = lim T̃ kh0 for any Lipschitz function h0;

or, what is the same, the forward image of any Lipschitz surface {x = h0(θ)}

by the map T converges to the invariant manifold M ∗. This implies the claim

of the theorem that the forward iterations of any point of K have their limit

set on M∗.

Let us now prove the smoothness of M ∗. The invariance of the manifold

{x = h∗(θ)} means, according to (4.2.6), that for any θ̄

h∗(θ̄) = F (h∗(θ), θ̄) , (4.2.24)

where the value of θ is defined implicitly by the equation

θ = G(h∗(θ), θ̄) . (4.2.25)

The last equation defines the map T−1 on the invariant manifold. The same

arguments as in Lemma 4.10 shows that θ is a well-defined single-valued con-

tinuous function of θ̄.

It follows from a formal differentiation of (4.2.24) and (4.2.25) that the

derivative η∗ = dh∗

dθ (if it exists) must satisfy the equation

η∗(θ̄) =
∂F

∂θ̄
+
∂F

∂x
· η∗(θ) ·

(

I −
∂G

∂x
· η∗(θ)

)−1

·
∂G

∂θ̄
, (4.2.26)
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where all derivatives on the right-hand side are computed at (x = h∗(θ), θ̄)

and θ is defined by (4.2.25) as a function of θ̄. Let us prove that a continuous

function η∗ which satisfies this equality exists. Consider the space H ′(L) of

bounded (‖η‖◦ ≤ L) continuous functions x = η(θ). It is a closed subset of a

Banach space of continuous functions with the norm

‖η1 − η2‖ = dist(η1, η2) = sup
θ

‖η1(θ) − η2(θ)‖ .

Consider the map η 7→ η̃ defined on H ′(L):

η̃(θ̄) =
∂F

∂θ̄
+
∂F

∂x
· η(θ) ·

(

I −
∂G

∂x
· η(θ)

)−1

·
∂G

∂θ̄
. (4.2.27)

This formula gives a rule for calculating η̃ when the function η is given: for

an arbitrary θ̄ find θ by formula (4.2.25) and substitute the result into the

right-hand side of (4.2.27).

We will prove that the map given by (4.2.27) takesH ′(L) into itself and that

it is contracting — this implies the existence and uniqueness of the solution

η∗ of (4.2.26). The continuity of η̃ is obvious so we only need to check that it

is bounded by L provided η is bounded by the same constant. Since
∥
∥
∥
∥

∂G

∂x
· η

∥
∥
∥
∥
≤

∥
∥
∥
∥

∂G

∂x

∥
∥
∥
∥
◦

L < 1

(see (4.2.12)), we may write

(

I −
∂G

∂x
· η

)−1

=

+∞∑

k=0

(
∂G

∂x
· η

)k

whence
∥
∥
∥
∥
∥

(

I −
∂G

∂x
· η

)−1
∥
∥
∥
∥
∥
≤

+∞∑

k=0

∥
∥
∥
∥

∂G

∂x
· η

∥
∥
∥
∥

k

≤
+∞∑

k=0

(

L

∥
∥
∥
∥

∂G

∂x

∥
∥
∥
∥
◦

)k

=
1

1 − L

∥
∥
∥
∥

∂G

∂x

∥
∥
∥
∥
◦

.

Using this estimate we obtain from (4.2.27)

‖η̃‖ ≤

∥
∥
∥
∥

∂F

∂θ̄

∥
∥
∥
∥
◦

+

∥
∥
∥
∥

∂F

∂x

∥
∥
∥
∥
· L ·

∥
∥
∥
∥

∂G

∂θ̄

∥
∥
∥
∥

1 − L

∥
∥
∥
∥

∂G

∂x

∥
∥
∥
∥
◦

.
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By virtue of (4.2.13) this gives

‖η̃‖ ≤ L

i.e. η̃ ∈ H ′(L) provided η ∈ H ′(L).

To prove the contraction, note that for any η1 and η2 from H ′(L)

η̃2(θ̄) − η̃1(θ̄) =
∂F

∂x
·

(

I − η2(θ) ·
∂G

∂x

)−1

× (η2(θ) − η1(θ)) ·

(

I −
∂G

∂x
· η1(θ)

)−1

·
∂G

∂θ̄
. (4.2.28)

To derive this formula we use

η

(

I −
∂G

∂x
· η

)−1

= η + η ·
∂G

∂x
· η + · · · =

(

I − η ·
∂G

∂x

)−1

η (4.2.29)

whence

η2

(

I −
∂G

∂x
· η2

)−1

− η1

(

I −
∂G

∂x
· η1

)−1

=

(

I − η2 ·
∂G

∂x

)−1

η2 − η1

(

I −
∂G

∂x
· η1

)−1

.

Then we apply the identity

(

I − η2 ·
∂G

∂x

)−1

η2 − η1

(

I −
∂G

∂x
· η1

)−1

=

(

I − η2 ·
∂G

∂x

)−1

(η2 − η1)

(

I −
∂G

∂x
· η1

)−1

.

This can be verified by multiplying (I − η2 ·
∂G
∂x ) on the left and (I − ∂G

∂x · η1)

on the right.

It follows from (4.2.28) that

dist(η̃2, η̃1) ≤

sup

(∥
∥
∥
∥

∂F

∂x

∥
∥
∥
∥
·

∥
∥
∥
∥

∂G

∂θ̄

∥
∥
∥
∥

)

(

1 − L

∥
∥
∥
∥

∂G

∂x

∥
∥
∥
∥
◦

)2 · dist(η2, η1) ,

which implies a contraction by virtue of (4.2.14).
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We have proven the existence of the formal derivative η∗ defined uniquely

in (4.2.26). Let us now show that η∗(θ) ≡ dh∗

dθ indeed. This is the same as

proving that the following quantity vanishes identically:

z(θ) = lim sup
∆θ→0

‖h∗(θ + ∆θ) − h∗(θ) − η∗(θ)∆θ‖

‖∆θ‖
. (4.2.30)

Observe that the function z is uniformly bounded (because η∗ is bounded and

h∗ satisfies a Lipschitz condition).

Let us evaluate z(θ̄) in terms of z(θ). First, we prove that

h∗(θ̄ + ∆θ̄) − h∗(θ̄)

=
∂F

∂x
· (h∗(θ + ∆θ) − h∗(θ)) +

∂F

∂θ̄
∆θ̄ + o(∆θ̄) + o(∆θ) (4.2.31)

where ∆θ satisfies

∆θ =
∂G

∂x
(h∗(θ + ∆θ) − h∗(θ)) +

∂G

∂θ̄
∆θ̄ + o(∆θ̄) + o(∆θ) (4.2.32)

by virtue of (4.2.25); observe that h∗ satisfies a Lipschitz condition. In partic-

ular,

lim sup
∆θ̄→0

‖∆θ‖

‖∆θ̄‖
≤

∥
∥
∥
∥

∂G

∂θ̄

∥
∥
∥
∥

1 − L

∥
∥
∥
∥

∂G

∂x

∥
∥
∥
∥
◦

. (4.2.33)

Let us rewrite (4.2.32) as

∆θ =

(

I −
∂G

∂x
η∗(θ)

)−1 [
∂G

∂x
(h∗(θ + ∆θ) − h∗(θ) − η∗(θ)∆θ) +

∂G

∂θ̄
∆θ̄

]

+ o(∆θ̄) + o(∆θ) .

Now, using (4.2.26) we may write

h∗(θ̄ + ∆θ̄) − h∗(θ̄) − η∗(θ̄)∆θ̄ =
∂F

∂x
·

(

I + η∗(θ)

(

I −
∂G

∂x
η∗(θ)

)−1
∂G

∂x

)

· (h∗(θ+ ∆θ)−h∗(θ)− η∗(θ)∆θ)+o(∆θ̄) ,

or (see (4.2.29))

h∗(θ̄ + ∆θ̄) − h∗(θ̄) − η∗(θ̄)∆θ̄

=
∂F

∂x
·

(

I − η∗(θ)
∂G

∂x

)−1

(h∗(θ + ∆θ) − h∗(θ) − η∗(θ)∆θ) + o(∆θ̄) .
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Hence, by (4.2.30) and (4.2.33) it follows that:

z(θ̄) ≤

sup
(x,θ̄)

{∥
∥
∥
∥

∂F

∂x

∥
∥
∥
∥
·

∥
∥
∥
∥

∂G

∂θ̄

∥
∥
∥
∥

}

(

1 − L

∥
∥
∥
∥

∂G

∂x

∥
∥
∥
∥
◦

)2 z(θ) . (4.2.34)

The coefficient in front of z(θ) in this formula is strictly less than 1. Recall

that θ is uniquely defined by θ̄ for any point on the invariant manifold M ∗,

i.e. we may consider the infinite backward orbit of any point on M ∗ and it

will stay on M∗. But if the value of z is non-zero at some point, it would

grow unboundedly with the backward iterations in view of (4.2.34). Since this

contradicts the uniform boundedness of z(θ), this function must be identically

zero everywhere on M∗. This implies the smoothness of the invariant manifold

and completes the proof.

A careful examination of the proof shows that we did not use the condition

that θ is an angular variable in an essential way (we needed this only in the very

beginning when we derive formulas (4.2.9) and (4.2.10) from the assumptions

of the theorem). Our arguments work in the general context as well, and to

avoid further repetition we simply state the result as follows.

Theorem 4.3. Let X and Y be some convex closed subsets of some Banach

spaces. Suppose a map T is defined in the cross-form on X × Y :

x̄ = F (x, ȳ) ,

y = G(x, ȳ) ,
(4.2.35)

which means that two points (x, y) and (x̄, ȳ) from X × Y are related by the

map T if and only if (4.2.35) holds. Let F and G be smooth functions satisfying

the following two conditions

√

sup
(x,ȳ)∈X×Y

{∥
∥
∥
∥

∂F

∂x

∥
∥
∥
∥
·

∥
∥
∥
∥

∂G

∂θ̄

∥
∥
∥
∥

}

+

√∥
∥
∥
∥

∂F

∂θ̄

∥
∥
∥
∥
◦

∥
∥
∥
∥

∂G

∂x

∥
∥
∥
∥
◦

< 1 (4.2.36)

and
∥
∥
∥
∥

∂F

∂x

∥
∥
∥
∥
◦

+

√∥
∥
∥
∥

∂F

∂θ̄

∥
∥
∥
∥
◦

∥
∥
∥
∥

∂G

∂x

∥
∥
∥
∥
◦

< 1 . (4.2.37)

Then the map T has an invariant C
1-smooth manifold M∗ which contains the

ω-limit points of any forward orbit of T.
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Note that, in principle, the map T is not supposed to be single-valued: it is

not forbidden to have several different pairs (x̄, ȳ) corresponding to the same

(x, y) in (4.2.35). So a point in X × Y may have more than one orbit, and the

theorem establishes that for all of them the ω-limit set is included in M ∗.

Neither do we need the condition that (x̄, ȳ) depends smoothly on (x, y).

Nevertheless, as it follows from the proof above that the inverse map T−1 is

single-valued and smooth on M∗: it is implicitly defined by the equation

y = G(h∗(y), ȳ) , (4.2.38)

where x = h∗(y) is the equation of M∗.

The derivative η∗ of h∗ satisfies the relation

η∗(ȳ) =
∂F

∂ȳ
+
∂F

∂x
· η∗(y) ·

(

I −
∂G

∂x
· η∗(y)

)−1

·
∂G

∂ȳ
(4.2.39)

(simply rewrite formulas (4.2.24) and (4.2.26)). We see that the derivative η∗

is a function whose graph is an invariant manifold of the map written in the

cross-form:

η̄ = F(η, ȳ) ,

y = G(ȳ) ,
(4.2.40)

where G is given implicitly by (4.2.38) and F is given by the right-hand side

of (4.2.39). We may apply Theorem 4.3 to this map (observe that ∂G
∂η ≡ 0) to

obtain the following:

if

sup

{∥
∥
∥
∥

∂F

∂η

∥
∥
∥
∥
·

∥
∥
∥
∥

∂G

∂ȳ

∥
∥
∥
∥

}

< 1 (4.2.41)

and

sup

{∥
∥
∥
∥

∂F

∂η

∥
∥
∥
∥

}

< 1 , (4.2.42)

then the invariant manifold η = η∗(y) is unique and smooth. This implies that

the derivative η∗ is a smooth function of y, and hence, h∗ ∈ C2 in this case.

Let us rewrite the above conditions for C
2-smoothness of M∗ in terms of

the original functions F and G. First, note that the formulae for F involve

the first derivatives of F and G; therefore to have F smooth we need F and G

to be at least C
2. Concerning the derivative ∂F

∂η , recall that we have already
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made analogous estimates (in slightly different notations; see (4.2.28)); so to

avoid repetition we simply give the result:

∥
∥
∥
∥

∂F

∂η

∥
∥
∥
∥
≤

∥
∥
∥
∥

∂F

∂x

∥
∥
∥
∥
·

∥
∥
∥
∥

∂G

∂ȳ

∥
∥
∥
∥

(

1 − L

∥
∥
∥
∥

∂G

∂x

∥
∥
∥
∥
◦

)2 .

Here L is the Lipschitz constant — the upper bound for the norm of the

derivative η∗. By construction (see (4.2.11)),

L =

√
∥
∥
∥
∥

∂F

∂θ̄

∥
∥
∥
∥
◦

(∥
∥
∥
∥

∂G

∂x

∥
∥
∥
∥
◦

)−1

.

Thus,

∥
∥
∥
∥

∂F

∂η

∥
∥
∥
∥
≤

∥
∥
∥
∥

∂F

∂x

∥
∥
∥
∥
·

∥
∥
∥
∥

∂G

∂ȳ

∥
∥
∥
∥



1 −

√∥
∥
∥
∥

∂G

∂x

∥
∥
∥
∥
◦

∥
∥
∥
∥

∂F

∂θ̄

∥
∥
∥
∥
◦





2 . (4.2.43)

For the derivative ∂G
∂ȳ we obtain the following estimate directly from (4.2.38):

∥
∥
∥
∥

∂G

∂ȳ

∥
∥
∥
∥
≤

∥
∥
∥
∥

∂G

∂ȳ

∥
∥
∥
∥



1 −

√∥
∥
∥
∥

∂G

∂x

∥
∥
∥
∥
◦

∥
∥
∥
∥

∂F

∂θ̄

∥
∥
∥
∥
◦





2 . (4.2.44)

Substituting these two inequalities into (4.2.41) we obtain the following addi-

tional sufficient condition for C
2-smoothness ofM∗ (condition (4.2.42) does not

introduce new restrictions in comparison with the conditions of Theorem 4.3):

sup

{∥
∥
∥
∥

∂F

∂x

∥
∥
∥
∥
·

∥
∥
∥
∥

∂G

∂ȳ

∥
∥
∥
∥

2
}



1 −

√∥
∥
∥
∥

∂G

∂x

∥
∥
∥
∥
◦

∥
∥
∥
∥

∂F

∂θ̄

∥
∥
∥
∥
◦





3 < 1 .
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or

3

√
√
√
√sup

{∥
∥
∥
∥

∂F

∂x

∥
∥
∥
∥
·

∥
∥
∥
∥

∂G

∂ȳ

∥
∥
∥
∥

2
}

+

√∥
∥
∥
∥

∂G

∂x

∥
∥
∥
∥
◦

∥
∥
∥
∥

∂F

∂ȳ

∥
∥
∥
∥
◦

< 1 . (4.2.45)

One may repeat the above procedure to derive sufficient conditions for

C
3-smoothness (by plugging (4.2.43) and (4.2.44) into (4.2.45)), etc. By in-

duction, we arrive at the following theorem.

Theorem 4.4. Let the functions F and G in Theorem 4.3 be C
r-smooth

(r ≥ 1), and assume that they satisfy the additional condition

q+1

√

sup
(x,ȳ)∈X×Y

{∥
∥
∥
∥

∂F

∂x

∥
∥
∥
∥
·

∥
∥
∥
∥

∂G

∂ȳ

∥
∥
∥
∥

q}

+

√∥
∥
∥
∥

∂F

∂ȳ

∥
∥
∥
∥
◦

∥
∥
∥
∥

∂G

∂x

∥
∥
∥
∥
◦

< 1 (4.2.46)

for some integer q ≤ r. In this case the invariant manifold M ∗ is at least

C
q-smooth.

We have formulated the theorem in terms of the cross-map and do not

need the smoothness of the map T itself. Moreover, an examination of the

proof shows that the theorem holds true even if we also allow the functions F

and G (which define the cross-map) to have singularities on a finite number of

surfaces {y = const} (or on a finite number of smooth surfaces transverse to

any surface x = h(y) with ‖h′(y)‖ ≤ L) provided that

• the derivatives ∂F
∂x ,

∂G
∂x ,

∂F
∂ȳ , as well as all the derivatives ∂kF

∂ȳk (k ≤ q),

are continuous everywhere on X × Y ;

• on the surfaces of singularity

lim

∥
∥
∥
∥

∂p0+k0F

∂xk0∂ȳp0

∥
∥
∥
∥
·

∥
∥
∥
∥

∂p1+k1G

∂xk1∂ȳp1

∥
∥
∥
∥
· · · · ·

∥
∥
∥
∥

∂ps+ksG

∂xks∂ȳps

∥
∥
∥
∥

= 0

for any integers p0 ≥ 0, p1 ≥ 1, . . . , ps ≥ 1 and k0 ≥ 1, k1 ≥ 0, . . . , ks ≥ 0

such that k0 + · · · + ks ≤ s ≤ q and p0 + · · · + ps ≤ q.

Returning to the annulus principle, Theorem 4.4 gives the following result

(see estimates (4.2.7)–(4.2.8) relating the derivatives of the cross-map and of

the initial map).
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Theorem 4.5. Let the map (4.2.1) be a C
r (r ≥ 2)-smooth diffeomorphism

satisfying assumptions 4.1, 4.2 and

q+1

√
√
√
√

(∥
∥
∥
∥

∂f

∂x

∥
∥
∥
∥
◦

+

∥
∥
∥
∥

∂g

∂x

∥
∥
∥
∥
◦

∥
∥
∥
∥
∥

∂f

∂θ

(
∂g

∂θ

)−1
∥
∥
∥
∥
∥
◦

)

·

∥
∥
∥
∥
∥

(
∂g

∂θ

)−1
∥
∥
∥
∥
∥

q

◦

+

√
√
√
√

∥
∥
∥
∥
∥

(
∂g

∂θ

)−1
∥
∥
∥
∥
∥
◦

∥
∥
∥
∥

∂g

∂x

∥
∥
∥
∥
◦

∥
∥
∥
∥
∥

∂f

∂θ

(
∂g

∂θ

)−1
∥
∥
∥
∥
∥
◦

< 1 ,

(4.2.47)

where 2 ≤ q ≤ r. Then the invariant torus given by Theorem 4.2 (condition

(4.2.47) implies the assumption of that theorem) is at least C
q-smooth.

In the following section we will focus our attention on the case where the

dimension m of the second equation in (4.2.1) is equal to one. Here, we only

make some remarks concerning the higher-dimensional case. By assumptions,

the map (4.2.3) (corresponding to the frozen x) is a diffeomorphism. We may

include it into the following family

θ̄ = θ + εg(x, θ) . (4.2.48)

We obtain the original map when ε = 1, and the identity map when ε = 0.

This means that (4.2.3) is homotopic to the identity. However, amongst all

diffeomorphisms of the tori there are some which are non-homotopic to the

identity.

Let us regard the torus T
m as a unit cube

{

θ
∣
∣
∣ 0 ≤ θj ≤ 1 , (j = 1, . . . ,m)

}

with the identified points

(θ1, . . . , θj−1, 0, θj+1, . . . , θm) ≡ (θ1, . . . , θj−1, 1, θj+1, . . . , θm) .

An example of a diffeomorphism of a torus which is non-homotopic to the

identity, is given by

θ̄ = Aθ (mod 1) , (4.2.49)

where A is an integer matrix (other than the identity matrix) with det |A| =

±1. An example of such a diffeomorphism is the map

θ̄ =

(
2 1
1 1

)

θ (mod 1) ,

which is illustrated in Fig. 4.2.1.
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Fig. 4.2.1. An example of the action of a diffeomorphism of a torus which is non-homotopic
to identity.

The map (4.2.49) is called an algebraic automorphism of a torus. In this

case, for a diffeomorphism in the form

x̄ = f(x, θ) ,

θ̄ = Aθ + g0(x, θ) = g(x, θ) (mod 1) ,
(4.2.50)

where f and g are periodic functions of period 1 with respect to θ, the annulus

principle is valid if in the ring K the following conditions are satisfied:

(1) The map

x̄ = f(x, θ)

is contracting for ‖x‖ ≤ r0, and

(2) The map

θ̄ = Aθ + g0(x, θ) = g(x, θ) (mod 1) ,

is a diffeomorphism of a torus, and

(3) The map (4.2.50) satisfies conditions (4.2.5) or, for more smoothness,

condition (4.2.47).
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The proof of this statement is an exact copy of the proof of Theorem 4.2

or 4.5.

The map (4.2.50) when restricted on the torus T
m : x = h(θ) can be written

in the form

θ̄ = Aθ + g0(h(θ), θ) (mod 1) . (4.2.51)

We postpone the bifurcational application of the general annulus principle

to the second part of this book. We remark here that for the case m = 1 and

A = −1, (4.2.51) is a non-orientable circle map of the form

θ̄ = −θ + g0(θ) (mod 1) , (4.2.52)

which is the Poincaré map for certain flows on a Klein bottle.

4.3. Theorem on persistence of an invariant torus

Consider the family of systems

ẋ = X(x) + p(x, θ, µ) ,

θ̇ = 1 ,
(4.3.1)

where X and p are C
r (r ≥ 1)-smooth functions and p is 2π-periodic in θ; we

will, therefore, identify θ and θ + 2π.

We assume that p vanishes at µ = 0 and that the corresponding autonomous

system

ẋ = X(x) , (4.3.2)

has a stable periodic trajectory L of period τ .

Theorem 4.6. Under the above assumptions system (4.3.1) has a C
r-smooth

two-dimensional invariant torus for all sufficiently small µ.

Proof. Let us introduce the normal coordinates (y, θ0) (see (3.11.20)) in-

stead of the x-coordinate in a small neighborhood of L. In the new variables

the family takes the form

ẏ = Λy + F0(θ0, y) + F1(θ0, y, θ, µ) ,

θ̇0 = Ω0 + b0(θ0, y) + b1(θ0, y, θ, µ) ,

θ̇ = 1 .

(4.3.3)
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where

F0(θ0, 0) = 0, F ′
0y(θ0, 0) = 0, b0(θ0, 0) = 0 , (4.3.4)

and Ω0 = 2π/τ .

The functions in the right-hand side of (4.3.3) are periodic of period 2π

with respect to θ, and either of period 2π with respect to θ0 or (see (3.11.22))

they are antiperiodic:2

F (θ0 + 2π, σy, θ, µ) = σF (θ, y, θ, µ)

b(θ0 + 2π, σy, θ, µ) = b(θ, y, θ, µ)
(4.3.5)

where σ is an involution changing sign of some of the variables y; in the periodic

case, σ is the identity map. By construction (see Sec.3.11), the points (y, θ0)

and (σy, θ0 + 2π) correspond to the same point x.

Let us consider the diffeomorphism of the cross-section θ = 0 defined by the

time 2π shift by the trajectories of the system (we identify θ = 0 and θ = 2π).

By continuous dependence on the parameter, this map is C
r-close, at small

µ, to the time 2π map of the autonomous system (4.3.2) (this corresponds to

F1 = 0 and b1 = 0 in (4.3.3)). Thus, the map has the form

ȳ = f(y, θ0, µ) = e2πΛy + f0(y, θ0) + f1(y, θ0, µ) ,

θ̄0 = g(y, θ, µ) = θ0 + ω0 + g0(y, θ, µ) ,
(4.3.6)

where the right-hand sides are either periodic or antiperiodic in θ0, and ω0 =

2πΩ0. Moreover, (see (4.3.4))

f0(0, θ0) = 0, f ′0y(0, θ0) = 0, f1(y, θ0, 0) = 0 ,

g0(0, θ0) = 0, g1(y, θ0, 0) = 0 .
(4.3.7)

Let us now verify the conditions of the annulus principle (see the previous

section). For a moment, we will not consider θ0 as an angular variable but we

assume that θ0 ∈ (−∞,+∞); obviously, the conclusion of Theorem 4.2 on the

existence of an invariant curve y = h(θ0) will not change.

First, we must find δ such that the strip ‖y‖ ≤ δ is mapped into itself. Note

that by (4.3.6), ‖f ′
0y‖ is small within such a strip for any sufficiently small δ.

Thus, at µ = 0, we have from (4.3.6), (4.3.7) that

‖ȳ‖ ≤ (‖e2πΛ‖ + ε)‖y‖

2We denote F = F0 + F1 and b = b0 + b1.
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where εmay be taken arbitrarily small provided that δ is small. By assumption,

the periodic trajectory L : {y = 0} is stable; i.e. all the eigenvalues of the

matrix Λ lie strictly to the left of the imaginary axis (see Sec. 3.12). Hence,

‖e2πΛ‖ < 1 and we have that at µ = 0 the strip K : ‖y‖ ≤ δ is mapped

into itself at any sufficiently small δ. By continuity, the same holds true at all

sufficiently small µ.

Now, we must check the fulfillment of inequalities (4.2.2), (4.2.4), (4.2.5)

and (4.2.47) (at q = r) in K. Since these are strict inequalities, and we

consider the case of small µ and δ, it is sufficient to check these conditions

only at y = 0, µ = 0. We have

∥
∥
∥
∥

∂f

∂y

∥
∥
∥
∥
y=0,µ=0

= ‖e2πΛ‖ < 1,

(
∂g

∂θ0

)−1

y=0,µ=0

= 1,
∂f

∂θ0

∣
∣
∣
∣
y=0,µ=0

= 0

and the fulfillment of the conditions of Theorems 4.2 and 4.5 follows

immediately.

Thus, we established the existence, for all sufficiently small µ, a unique

attractive invariant C
r-smooth curve y = h(θ0, µ). By now θ0 ∈ (−∞,+∞).

Since the right-hand side of (4.3.6) is (anti)periodic, it follows that y = σh(θ0+

2π, µ) is also an invariant curve of this map. By uniqueness, we get

σh(θ0 + 2π, µ) = h(θ0, µ) . (4.3.8)

Recall, that by construction, the points (y, θ0) and (σy, θ0 +2π) must be iden-

tified because they correspond to the same point in the original x-coordinates.

Thus, relation (4.3.8) shows that the invariant curve y = h(θ0, µ) is homeo-

morphic to a circle.

We have found a stable invariant circle for the time 2π map of the cross-

section θ = 0 (mod 2π) of system (4.3.1). The union of the trajectories

starting on this circle is a two-dimensional stable invariant torus. End of the

proof.

Remark. It is easy to check that our proof is applied, without changes, to

the case where the function p(x, θ, µ) in (4.3.1) depends only continuously on

θ. In this case, the invariant torus is C
r-smooth in the intersection with any

cross-section θ = const.

In the same way one may consider the general case where the autonomous

system (4.3.2) has an arbitrary structurally stable periodic orbit, with m mul-

tipliers inside the unit circle and n multipliers outside the unit circle. The
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system (4.3.1) near L is written in the form (4.3.3) in normal coordinates,

where the matrix Λ now has m eigenvalues strictly to the left of the imaginary

axis and n eigenvalues strictly to the right of it. Let y = (u, v) where u ∈ R
m

be the projection onto the stable eigenspace of Λ and v ∈ R
n be the projection

onto the unstable eigenspace. At µ = 0 the system is written as

u̇ = Λsu+ o(u, v), v̇ = Λuv + o(u, v) ,

θ̇0 = Ω0 +O(u, v), θ̇ = 1

where the spectrum of Λs lies strictly to the left of the imaginary axis and the

spectrum of Λu lies strictly to the right of it. The time 2π map {θ = 0} →

{θ = 2π} is written, at µ = 0, as

ū = e2πΛs

u+ o(u, v) ,

v̄ = e2πΛu

v + o(u, v) ,

θ̄0 = θ0 + ω0 +O(u, v) .

At small u and v, it is easy to see that the conditions of Theorem 4.4 are

fulfilled for this map (one should consider x = u and y = (v, θ0) in (4.2.46)) and

for the inverse to this map (in this case one should put x = v and y = (u, θ0) in

(4.2.46)). By continuity, this holds true for all small µ. Thus, we established

the existence of two smooth invariant manifolds at all small µ: a manifold

Mu
µ : u = hu(v, θ0, µ) which attracts all forward iterations of the map, and a

repelling manifold M s
µ : v = hs(u, θ0, µ) which attracts all backward iterations.

The trajectories which stay in a small neighborhood of L for all forward and

backward iterations of the map, belong to the invariant circle Lµ = Mu
µ ∩Ms

µ.

By construction, the ω-limit set of any point in M s
µ and the α-limit set of any

point in Mu
µ belongs to Lµ. Returning from the map on the cross-section to

the original system we arrive at the following result.

Theorem 4.7. If the periodic orbit L of the autonomous system (4.3.2) is

saddle with m multipliers inside the unite circle and n multipliers outside the

unit circle, then for all sufficiently small µ system (4.3.1) has a C
r-smooth

saddle two-dimensional invariant torus with (m + 2)-dimensional stable and

(n+ 2)-dimensional unstable invariant manifolds.

The existence of invariant manifolds in Theorem 4.4 is established by the

Banach principle of contraction mappings. Therefore, it follows that the
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invariant circle Lµ depends continuously on µ.3 At µ = 0 it is given by the

equation y = 0; hence the diffeomorphism on Lµ has the form (see (4.3.6)):

θ̄0 = θ0 + ω0 + g∗(θ0, µ) mod 2π ,

where g∗(θ0, µ) ≡ g0(h(θ0, µ), θ0, µ) vanishes at µ = 0.

We see that the study of non-autonomous perturbation in a neighborhood

of a structurally stable periodic trajectory is reduced to the study of a diffeo-

morphism of a circle. We will review the theory of such diffeomorphisms in

the next section.

Consider now the family of systems

ẋ = X(x) + p(x, θ, µ) ,

θ̇ = Ω ,
(4.3.9)

where θ = (θ1, . . . , θk) is k-dimensional, and p is a C
r-smooth 2π-periodic

function with respect to each θj ; the vector Ω = (Ω1, . . . ,Ωk) is comprised of

linearly independent frequencies.

Assume that the autonomous system at µ = 0

ẋ = X(x) (4.3.10)

has a structurally stable equilibrium state O. Near the point O, the Poincaré

map of the cross-section θk = 0 mod 2π into itself is written as

x̄ = e2πAx+ o(x) + . . . ,

θ̄j = θj + ωi (mod 2π) (j = 1, . . . , k − 1)

where ωj = 2π
Ωj

Ωk
; the matrix A is the linearization matrix of (4.3.10) at O;

the ellipsis denotes the terms which vanish at µ = 0.

Applying the annulus principle we can prove that for all sufficiently small µ

the system (4.3.9) has a k-dimensional invariant torus T
k close to x = 0. Obvi-

ously, the stability of the torus is determined by the stability of the equilibrium

state with respect to the autonomous system (4.3.10).

The torus has the form x = h(θ, µ) (where h = 0 at µ = 0). Hence, the

motion on the torus is described by the second equation in (4.3.9) alone and

is represented as a quasi-periodic motion with the frequency basis Ω.

3When the right-hand sides are smooth with respect to µ, the invariant curve depends
smoothly on µ as well; for a proof it is sufficient to include µ among y-coordinates of
Theorem 4.4.
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Let us now assume that the system (4.3.10) has a structurally stable peri-

odic orbit L of period 2π
Ω0

. In this case, at µ = 0 the system (4.3.9) possesses a

(k+1)-dimensional invariant torus T
k+1
0 = L×T

k. This torus is a minimal set

if the frequencies Ω0,Ω1, . . . ,Ωk form a basis. Otherwise, the torus is foliated

into a family of k-dimensional tori.

In a similar manner to Theorem 4.6, we can construct the Poincaré map

of the cross-section θk = 0 (mod 2π) into itself along the trajectories near

the torus T
k+1
0 . Applying the annulus principle we can prove that this map

possesses a C
r-smooth invariant torus T

k
µ for all sufficiently small µ. Hence,

the system (4.3.9) possesses a (k + 1)-dimensional C
r-smooth invariant torus

T
k+1
µ .

The map on T
k
µ has the form

θ̄0 = θ0 + ω0 + g∗(θ0, . . . , θk−1, µ) ,

θ̄1 = θ1 + ω1 ,

...
...

...

θ̄k−1 = θk−1 + ωk−1 ,

(4.3.11)

where each equation is taken in modulo 2π, and ωj = 2π
Ωj

Ωk
, (j = 0, . . . , k−1).

Suppose there is an additional small parameter α such that the first equa-

tion in (4.3.11) is represented in the form

θ̄0 = θ0 + ω0 + g∗0(θ0, µ) + g∗1(θ0, θ1, . . . , θk−1, µ, α), mod 2π , (4.3.12)

where g∗1 = 0 at α = 0. By assumption, at α = 0, (4.3.12) is a diffeomorphism

of a circle

θ̄ = θ0 + ω0 + g∗0(θ, µ) (mod 2π) . (4.3.13)

We assume that there exists an interval µ ∈ [µ1, µ2] where (4.3.13) has only

structurally stable periodic points (see Sec. 4.4). Then applying the annulus

principle we can also prove that for all α sufficiently small each stable periodic

trajectory of (4.3.13) corresponds to a stable (k − 1) dimensional torus of the

diffeomorphism (4.3.11).

Let us now rewrite (4.3.9) as a non-autonomous quasi-periodic system

ẋ = X(x) + p(x,Ω1t, . . . ,Ωkt, µ) ,

with the frequency basis (Ω1, . . . ,Ωk). As we saw, a stable equilibrium state

of system (4.3.10) corresponds here to a stable quasi-periodic solution with
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the same basis of frequencies, for all small µ. A stable periodic orbit L of

(4.3.10) corresponds to a stable quasi-periodic “tube” in R
n × R

k which is

homeomorphic4 to an infinite (k + 1)-dimensional cylinder.

If the function p is represented as

p(x,Ω1t, . . . ,Ωkt, µ) = p0(x,Ωkt, µ) + p1(x,Ω1t, . . . ,Ωkt, µ, α)

where p1 vanishes at α = 0 and our assumption on the map (4.3.13) holds,

then on this tube there exists a stable quasi-periodic solution with the same

frequency basis (Ω1, . . . ,Ωk). In general, however, we cannot exclude the case

where the structure of trajectories on the tube is much less trivial.

4.4. Basics of the theory of circle diffeomorphisms.
Synchronization problems

An orientable circle diffeomorphism is written in the form

θ̄ = θ + g(θ) (mod 2π) , (4.4.1)

where g(θ) is a periodic function of θ with period 2π. Equation (4.4.1) may be

rewritten in the form

θ̄ = θ + τ + g0(θ) (mod 2π) , (4.4.2)

where g0(θ) is also a periodic function with zero mean value.

When g0(θ) ≡ 0 the situation is rather simple. In this case

θ̄ = θ + τ (mod 2π) , (4.4.3)

and, therefore, this diffeomorphism is a rotation over an angle τ . It is easy to

see that if τ is commensurable to 2π, i.e. τ = 2πp/q, then all points on the

circle are periodic of period q. In the case where τ is not commensurable to

2π there are no periodic points, and the trajectory of any point on the circle

is everywhere dense on S
1. In the latter case, the circle is a minimal set.

In the general case the question on the dynamics of (4.4.1) is answered by

the Poincaré–Denjoy theory.

We can regard (4.4.1) not as a circle map but as the map R
1 → R

1. In the

given context this map is called a lifting, and R
1 is called a covering of S

1. Let

4And also equimorphic. An equimorphism is a uniformly continuous homeomorphism.
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{θj}
∞
j=0 be a positive semi-trajectory of an initial point θ0. Poincaré showed

that there exists

ω = lim
j→∞

θj
2πj

,

and that this limit ω does not depend on the choice of the initial point θ0. The

value ω is called the Poincaré rotation number.

Theorem 4.8. (Poincaré) If the rotation number ω is rational, then the set

of non-wandering points consists of periodic points, all having the same period.

If ω is irrational, then the non-wandering set contains no periodic points.

We note that Poincaré proved this statement when (4.4.1) is a

homeomorphism.

Our next question is concerned with the structure of the non-wandering set

when the rotation number is irrational.

Theorem 4.9. (Poincaré) Let (4.4.1) be a homeomorphism with an irra-

tional rotation number. Then the minimal sets of (4.4.1) may be either S
1, or

a finite or infinite union of minimal sets whose structures are analogous to a

Cantor discontinuum.

Theorem 4.10. (Denjoy)5 If (4.4.1) is a C
r (r ≥ 2)-smooth diffeomorphism

and the rotation number is irrational, then (4.4.1) is topologically conjugate to

the map

θ̄ = θ + ω (mod 2π) . (4.4.4)

It follows from Denjoy’s theorem that in this case the entire circle is a

minimal set. When (4.4.1) is only C
1-smooth, Denjoy constructed examples

where the non-wandering set is a minimal set with a structure analogous to a

Cantor discontinuum. This is the reason why we have given a special attention

earlier to the necessity of proving, at least, the C
2-smoothness of the invariant

curves.

Let us consider next a one-parameter family of diffeomorphisms

θ̄ = θ + g(θ, µ) (mod 2π) , (4.4.5)

which depends continuously on a parameter µ. It is evident that a rotation

number ω(µ) is defined for each µ.

5Denjoy proved this statement under condition that g′(θ) has a bounded variation. This
is true when g(θ) ∈ C

2.
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Theorem 4.11. The rotation number ω(µ) is a continuous function of the

parameter µ.

Poincaré, and later, Krylov and Bogolyubov, certainly knew of this result,

the proof of which was given in an explicit form by Maier. In this connection

we must note the following result obtained by Hermann [34]: if the family

depends smoothly on µ and if

g′µ(θ, µ) > 0

for all θ ∈ S
1 and for µ from some interval ∆, then ω(µ) is a strictly monotonic

function of each µ ∈ ∆ at which ω(µ) is irrational.

Let us denote by B the space of all diffeomorphisms of the form (4.4.5) and

let us introduce the distance between any two such diffeomorphisms as follows.

Let T1 be

θ̄ = θ + g1(θ, µ) (mod 2π) ,

and let T2 be

θ̄ = θ + g2(θ, µ) (mod 2π) .

Then

dist(T1, T2) = max
θ

{

|g1(θ) − g2(θ)| + |g′1(θ) − g′2(θ)|
}

.

Theorem 4.12. (Maier) The diffeomorphisms whose periodic points are

structurally stable are everywhere dense in B.

It follows from this theorem that any neighborhood in B of a diffeomor-

phism with an irrational Poincaré rotation number contains a diffeomorphism

with a rational rotation number. On the other hand, if the diffeomorphism

(4.4.1) possesses a structurally stable periodic trajectory, it is preserved under

sufficiently small smooth perturbations of the original system. Hence it follows

that nearby diffeomorphisms will have equal rotation numbers. In the case of a

one-parameter family of diffeomorphisms this implies that there exists a maxi-

mal interval [µ−, µ+] such that for the values µ from the interval, the function

ω(µ) is a constant one that takes rational values.

Under condition (4.4.6) de Melo and Pugh [46], in addition to Hermann’s

result, showed that ω(µ) is a monotonic function for values of µ to the right

of µ− as well as to the left of µ+.
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Fig. 4.4.1. A sketch of “the devil staircase”.

It should be also noted that for every typical family of diffeomorphisms of

a circle (without specifying the precise meaning here) for each µ within the

interval of monotonicity of ω(µ) the pre-image of a rational rotation number

p/q is an interval [µ−
p/q, µ

+
p/q], where µ−

p/q 6= µ+
p/q, and the pre-image of an

irrational rotation number is a point. Due to this feature the graph of the

function ω(µ) is usually referred as a “devil staircase”.

The case when ω(µ) is a monotonic function is sketched in Fig. 4.4.1. This

function is constant on intervals where it takes rational values, and the pre-

images of the irrational values of ω form a nowhere dense set, with possibly a

non-zero Lebesgue measure.

We noticed earlier that the aim of most synchronization problems is the

detection of regions in the parameter space where there are stable periodic os-

cillations. We can now see that there is a countable set of such synchronization

regions in general. But, this does not imply that all of them are observable.

This fact is well known if the problem under consideration admits a quasi-linear

modeling. For example, in the case of the sine-like van der Pol generator under

the action of a small external periodic force, the associated model is described

by the equation

ẍ+ ε(x2 − 1)ẋ+ ω2
0x = µA sinωt ,
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where 0 < µ � 1. A careful analysis reveals that only resonances of the kind

(1 : 1); (1 : 2); (1 : 3); (2 : 3) are easily observed. Using an averaging method,

it can be shown that the other synchronization intervals have a size of order

e−1/µ. The ratios of observable resonances in strongly nonlinear systems may

be different. Numerous experiments in the study of the problem on the onset

of turbulence have confirmed this fact.

So, only a finite number of visible synchronization regions may be detected

(we do not discuss the clearance of experimental observations). The rest of the

parameter regions where a two-dimensional invariant torus exists is usually

interpreted, or associated with regions of modulation and beatings. Using the

language of the theory of dynamical systems the modulation regimes can be

translated either as a stable torus with an aperiodic trajectory on it, or with

a stable periodic trajectory of a rather large period.6 It is not superfluous to

recall that systems with aperiodic trajectory behavior on a torus, in general,

do not form a region in the parameter space.

Here we run into the case where the mathematical interpretation of the

problem of synchronization differs in essence from that which is broadly used

in nonlinear dynamics. The reason is that our traditional qualitative analysis

employed the notion of irrational numbers which is a purely mathematical

abstraction. To summarize we remark that the above observation is not the

only example where the mathematical formalization of a problem based on the

notion of irrational numbers does not agree with that suggested by common

sense which lies beneath any empirical means or computer experiments.7

6Bogolubov and Mitropolsii had suggested that both situations be characterized as a
multi-frequent regime.

7A similar situation arises when studying numerically an autonomous system under the
action of a quasi-periodic external force, where the notion of a basis of independent frequen-
cies plays a primary role.



Chapter 5

CENTER MANIFOLD. LOCAL CASE

Many physical systems can be realistically modeled by a system of ODEs.

Usually, these models depend on a finite number of controlling parameters. As

the parameters vary one can explain not only known behaviors exhibited by

the model but can also predict new phenomena, if there are any. In most cases

a comparison of the model’s prediction with the real phenomenon requires

both qualitative and quantitative (sufficiently close) correspondence. In the

high-dimensional setting, one can encounter certain difficulties here both of

mathematical and of numerical nature, although there are some special cases

where well-developed methods exist.

Consider a family of dynamical systems

ẋ = X(x, µ) , (5.0.1)

where x ∈ R
n, µ = (µ1, . . . , µp), X is a C

r-smooth function with respect to all

of its arguments and defined in some region D×U , where D ⊆ R
n and U ⊆ R

p.

Here, x is a vector of phase variables and µ is a vector of parameters. Let us

assume that (5.0.1) has an exponentially stable equilibrium state O0(x = x0)

at µ = µ0. This implies that the roots of the characteristic equation

det |A0 − λI| = 0

of the associated linearized system

ξ̇ = A0ξ ,

lie to the left of the imaginary axis, where

A0 =
∂X(x0, µ

0)

∂x
.
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As det |A0| 6= 0, by virtue of the implicit function theorem there exists a

small δ > 0 such that for |µ − µ0| < δ, system (5.0.1) has an equilibrium

state Oµ(x = x(µ)) close to O0. Moreover, Oµ is also stable for all small

|µ− µ0| < δ0 ≤ δ because the roots of the characteristic equation

det |A(µ) − λI| = 0 ,

are continuous functions of µ, where

A(µ) =
∂X(x(µ), µ)

∂x
.

Let us arbitrarily choose µ1 which satisfies the condition |µ1 − µ0| < δ0.

Repeating the above reasoning, we can find a new neighborhood |µ− µ1| < δ1
where system (5.0.1) will have a stable equilibrium state Oµ, and so forth. As

a result we can construct a maximal open set G in the parameter space, which

is called the stability region of Oµ. This procedure for constructing the stabili-

ty region resembles the construction of a Riemannian surface of an analytical

function by means of Weierstrass’s method. It may turn out that the stability

region possesses a branched structure.

The boundary Γ of the stability region G corresponds to the case where

some characteristic exponents of the equilibrium state Oµ, say λ1, . . . , λm, lie

on the imaginary axis, whereas the rest of the eigenvalues λm+1, . . . , λn will

still reside in the open left-half plane. Thus, near the bifurcating equilibrium

state for some fixed parameter value on the boundary Γ, the system takes the

form

ẏ = Ay + f(x, y) ,

ẋ = Bx+ g(x, y) ,
(5.0.2)

where x ∈ R
m, y ∈ R

n−m, spectrA = {λm+1, . . . , λn} such that Reλj < 0

(j = m+1, . . . , n), spectrB = {λ1, . . . , λm} such that Reλi = 0 (i = 1, . . . ,m),

and f and g are C
r-smooth functions which vanish at the origin along with

their first derivatives.

Now, in order to describe how the trajectories behave near Oµ we cannot

rely only on the analysis of the linearized system but must account for the

nonlinear terms as well. Such cases were called critical by Lyapunov who had

derived a number of stability conditions for an equilibrium state in critical

cases.
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The modern approach for studying critical cases is restricted not only to

the problem of stability. It also includes finding out what causes an equilibrium

state to lose its stability and what happens beyond the stability boundary Γ.

To answer these questions, the system under consideration must depend on

some parameter µ:

ẏ = Ay + f(x, y, µ) ,

ẋ = Bx+ g(x, y, µ) ,
(5.0.3)

where µ takes the values near some critical parameter value µ∗ (below we will

assume that µ∗ = 0). All of the above problems constitute the main issue of

the theory of local bifurcations. The basic results of this theory is the center

manifold theorem credited to Pliss [52] and Kelley [37].

Theorem 5.1. (On center manifold) Let f, g ∈ C
r in (5.0.3), where 1 ≤

r <∞. Then, there exists a neighborhood U of the equilibrium state O such that

for all µ sufficiently small it contains a C
r-smooth1 invariant center manifold

WC which is given by

y = ψ(x, µ) , (5.0.4)

where

ψ(0, 0) = 0 ,
∂ψ

∂x
(0, 0) = 0 .

All trajectories which stay in U for all times belong to the center manifold.

The existence of a center manifold allows the problems related to the critical

cases to be reduced to the study of an m-dimensional system

ẋ = Bx+ g(x, ψ(x, µ), µ) . (5.0.5)

Its dimension is equal to the number of characteristic exponents on the imag-

inary axis at the critical moment, regardless of the dimension of the original

system (dim = n) which can be unboundedly large. Since the standard theory

studies mainly bifurcations corresponding to m = 1, 2, 3, or m = 4, the re-

duction of an arbitrarily high-dimensional system (5.0.5) to a low-dimensional

system (5.1.3) represents a tremendous advantage.

1We remark that if f, g ∈ C
∞, then the smoothness of the center manifold W C may be

arbitrarily large in a sufficiently small neighborhood U of the equilibrium state O. However,
the larger the smoothness of W C that we desire, the smaller the neighborhood U , and in
principle, even if the original family has infinite smoothness, a C

∞ center manifold may not
exist.
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We stress again that a center invariant manifold possesses only a finite

smoothness, so even when the original systems were analytic, the associated

reduced system would nevertheless lose the analytic structure. Therefore, sub-

tle results on analytic low-dimensional systems cannot be immediately applied

to the study of critical cases. The non-uniqueness of the center manifold must

also be mentioned as a possible complication.

A logical scheme of the center manifold theory is discussed in Sec. 5.1

(the proofs are presented in Sec. 5.4). Our study will also involve another

geometrical object — the strong stable invariant foliation. Its existence allows

the system to be locally reduced (by a C
r−1-change of variables) to the simplest

and the most suitable triangular form

ẏ = (A+ F (x, y, µ)) y ,

ẋ = Bx+G(x, µ) ,
(5.0.6)

where G(x, µ) ≡ g(x, ψ(x, µ), µ) and F ∈ C
r−1, F (0, 0, 0) = 0. This means

that the behavior of the “critical” variables x in a small neighborhood of the

structurally unstable equilibrium is independent of the other variables and

repeats the behavior on the center manifold. For the y-variables we have an

exponential contraction (because the spectrum of A lies strictly to the left of

the imaginary axis. Compare with Sec. 2.6).

An analogue of the center manifold theorem holds true in the general case,

i.e. when we consider an equilibrium state which has some characteristic ex-

ponents to the right of the imaginary axis as well. Therefore, in this case the

qualitative study of local bifurcations can also be reduced to a lower dimen-

sional system. Note, however, that the smooth reduction of the entire system

into a triangular form of type (5.0.6) is not always possible in this general case

(the corresponding coordinate transformation is only C
0).

The same scheme works in studying the behavior of the solutions on the

boundary of the existence of periodic trajectories but with one significant re-

striction. For the periodic trajectories, in contrast to the case of equilibrium

states, the stability or existence boundaries may be of two different types,

namely:

1. A bifurcating periodic trajectory exists when the parameter is on the

boundary;

2. A bifurcating periodic trajectory does not exist on the boundary.
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The boundaries of the second type do not exist in the case of equilibrium

states, whereas it is well known that the periodic trajectories can disappear

upon approaching a bifurcation boundary: it is accomplished by collapsing into

an equilibrium state, or by merging into a homoclinic loop, or via a more com-

plicated structure — through “a blue sky catastrophe”. We will not consider

boundaries of the second type in Part I of this book.

Once we restrict ourself to the first case, we can construct a cross-section

through the critical periodic trajectory (which now exists by assumption) and

proceed with the study of the behavior of the trajectories of an associated

Poincaré map close to the bifurcating fixed point. After that the center mani-

fold theory can be applied just as in the case of equilibrium states.

The proof of the center manifold theorem which we present in this chapter

is based on the study of some boundary-value problems (Secs. 5.2 and 5.3)

as in Sec. 2.8 for the proof of the existence and smoothness of the stable and

unstable manifolds of a saddle equilibrium state. We will develop a unified

approach for both equilibrium states and periodic trajectories. Moreover, our

proof will include all other local invariant manifold theorems throughout this

book, and the theorems on invariant foliations as well.

We note that besides dynamical applications of the invariant manifold the-

orems, these results may also be used indirectly; for example in reducing a

system near a saddle point to a special form. To do this we must select the

strongly stable and unstable manifolds of the saddle. This topic is discussed

in detail in Appendix A.

5.1. Reduction to the center manifold

Let us consider an n-dimensional system of differential equations in a small

neighborhood of a structurally unstable equilibrium state O. In particular, let

us consider the case where some of the characteristic exponents of O lie on the

imaginary axis and the rest of the characteristic exponents have negative real

parts:

Reλ1 = · · · = Reλm = 0 , Reλm+1 < 0, . . . ,Reλn < 0 .

The system may be written near O in the form

ẏ = Ay + f(x, y) ,

ẋ = Bx+ g(x, y) ,
(5.1.1)
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where x ∈ R
m, y ∈ R

n−m, spectrA = {λm+1, . . . , λn}, spectrB =

{λ1, . . . , λm}, and f and g are C
r-smooth functions which vanish at the origin

along with their first derivatives.

Let us include the system in a family which depends on some set of para

meters µ = (µ1, . . . , µp), namely,

ẏ = Ay + f(x, y, µ) ,

ẋ = Bx+ g(x, y, µ) .
(5.1.2)

Theorem 5.2. System (5.1.2), where f and g depend continuously on µ along

with all derivatives with respect to (x, y), and f(0, 0, 0) = 0, g(0, 0, 0) = 0,

(f, g)′(x,y)(0, 0, 0) = 0, has, for each small µ, an m-dimensional C
r-smooth

invariant local center manifold WC
loc : y = ψ(x, µ) (here the function ψ depends

continuously on µ along with all its derivatives with respect to x) which is

tangent at O to the x-space at µ = 0 (ψ(0, 0) = 0, ∂ψ∂x (0, 0) = 0). For each µ

the center manifold contains all trajectories that stay in a small neighborhood

of O for all times.

The proof of this theorem is given in Sec. 5.4. Note that in the case where

the right-hand side of system (5.1.2) depends smoothly on µ, the center mani-

fold depends smoothly on µ as well. In particular, if the functions f and g are

C
r with respect to (x, y, µ), then the function ψ (whose graph y = ψ(x, µ) is

WC
loc) may be taken to be C

r with respect to (x, µ). This smoothness result

follows from Theorem 5.2 if we add, formally, an equation

µ̇ = 0

to system (5.1.2). If we now consider the pair (x, µ) as a new variable x, then

the form of the augmented system is analogous to the parameterless system

(5.1.1). This mean that one may apply the center manifold theorem which

gives now a center manifold depending C
r-smoothly on the new x; i.e. it is C

r

with respect to (x, µ). This trick often allows one to eliminate any dependence

of the system on µ. Consequently, we will omit the dependence on µ where it

is not essential.

What should also be mentioned concerning the smoothness of WC is that

even if the system is C
∞, the center manifold is not necessarily C

∞. Of course,

if the original system is C
∞, it is C

r for any finite r. Therefore, in this case

one may apply the center manifold theorem with any given r which implies
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that:

If the original system is C
∞, then for any finite r there exists a neigh-

borhood Ur of the origin where WC
loc is C

r.

In principle, however, these neighborhoods may shrink to zero as r → +∞.

To see this, note that the equilibrium state O may persist when a parameter µ

varies but the characteristic exponents of O which lie on the imaginary axis at

µ = 0 may move at µ 6= 0, say, to the left. These exponents would correspond

to the leading eigenvalues of the associated linearized system. Hence, for non-

zero µ the center manifold would coincide with some leading manifold which

has only finite smoothness in general (see Chap. 2).

At µ = 0 the following sufficient condition of C
∞-smoothness can be given.

If every trajectory in the center manifold WC of a C
∞-smooth system

tends to the equilibrium state O at µ = 0, either as t → +∞ or as

t→ −∞, then the center manifold is of C
∞ smoothness.

To prove this result, let us choose a point P ∈ WC and let V be a small

piece of WC which contains P . By proposition, for any given r, one may take

V sufficiently small such that the time-t shift Vt of V along the trajectories of

the system lies in Ur for some finite t. Since the center manifold is invariant, it

follows that Vt is still a subset of the center manifold. Hence, Vt is C
r-smooth

because it lies in Ur, by definition of the neighborhood Ur. Now note that the

original V is a time (−t) shift of Vt. The shift by the trajectories of a C
∞-

system is a C
∞-map. Thus, we have that V is a C

r-surface. Summarizing:

we found that for any point P ∈ WC
loc and for any finite r there exists a

neighborhood of P where WC
loc is C

r, which means the C
∞-smoothness of WC .

As mentioned earlier, the main implication of the center manifold theorem

is that to study the local bifurcations of a structurally unstable equilibrium O

(i.e. to study the set of the trajectories which remain in a small neighborhood

of O for all times and the dependence of this set on µ) one may restrict the

system on the center manifold WC

ẋ = Bx+ g(x, ψ(x)) . (5.1.3)

There is an ambiguity here, caused by the fact that the center manifold is

not uniquely defined by the system. Therefore our notion of the reduction of a

system onto a center manifold requires some logical analysis.
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Let N be the set of all trajectories which stay in a small neighborhood of

O for all times (from −∞ to +∞).2 Suppose there exist two different center

manifolds: WC1
loc : y = ψ1(x) and WC2

loc : y = ψ2(x). It follows from the center

manifold theorem that both must contain the set N ; i.e.

N ⊆W c1
loc ∩W

c2
loc .

In other words, if for some small x the trajectory of the point (x, ψ1(x)) does

not leave a small neighborhood of O for all times, then ψ2(x) = ψ1(x); i.e. the

function ψ is uniquely defined for all x corresponding to the points of N . In

fact, the following, more general, statement holds.

Theorem 5.3. For any two center manifolds y = ψ1(x) and y = ψ2(x), at

each x0 such that (x0, y0) ∈ N for some y0, the function ψ1 coincides with ψ2

along with all of the derivatives:

dkψ1

dxk

∣
∣
∣
∣
x=x0

=
dkψ2

dxk

∣
∣
∣
∣
x=x0

, k = 0, . . . , r .

Applying this theorem to the point O (which belongs to N by definition),

we obtain the following result:

All derivatives of the function ψ whose graph determined a center man-

ifold are uniquely defined at the origin.

This means that although the center manifold is not unique, a Taylor

expansion of the reduced system is defined uniquely.

A counterpart of this result is the following smooth conjugacy theorem.

Theorem 5.4. (On smooth conjugacy) For any two local center manifolds

WC1 and WC2 there exists a C
r−1 change of variables x which maps trajecto-

ries of the reduced system

ẋ = Bx+ g(x, ψ1(x))

onto the trajectories of the other reduced system

ẋ = Bx+ g(x, ψ2(x)) .

2Unlike the case of a stable equilibrium where N = {O}, the presence of a zero, or pure
imaginary characteristic exponents may make the structure of the set N quite non-trivial.
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This theorem establishes that there is essentially no difference between

the dynamics on different center manifolds of the same system. We see that

the system on a center manifold is a sufficiently well-defined object. The

computation of the Taylor expansion of this reduced system may be done in

different ways. The invariance of the manifold y = ψ(x) means, according to

(5.1.1), that

∂ψ

∂x
(Bx+ g(x, ψ(x))) = Aψ(x) + f(x, ψ(x)) . (5.1.4)

Expanding the involved functions in a formal series in powers of x one can

consequently find all the coefficients of the Taylor expansion of ψ from this

equation (compare with Sec. 2.7). Then, the Taylor expansion of the right-

hand side of the reduced system (5.1.3) can be computed.

Another method is based on the computation of formal normal forms. Re-

call (see Sec. 2.9), that the normal form method produces an algorithm for

constructing a polynomial coordinate transformation which eliminates all non-

resonant monomials up to a given order in the Taylor expansion of the right-

hand sides of any system of ODE’s near an equilibrium state. In our case

(system (5.1.1)) any monomial xk11 · · · · ·xkm
m in the function f is non-resonant

because the resonant relation λj = k1λ1 + · · ·+ kmλm is impossible for j > m:

by assumption Reλ1 = · · · = Reλm = 0 but Reλj < 0. Analogously, any

monomial in the function g is non-resonant if it includes y-variables. Thus, one

can find a polynomial coordinate transformation which brings system (5.1.1)

to the form

ẏ = (A+ F (x, y))y + o(‖x, y‖r) ,

ẋ = Bx+G(x) + o(‖x, y‖r) ,
(5.1.5)

where F and G are some polynomials of orders (r− 1) and r, respectively, and

F (0, 0) = 0, G(0) = 0, G′(0) = 0; the o(‖x, y‖r) terms vanish at the origin

along with the derivatives up to the order r. One can extract from (5.1.4) that

when the system is brought to form (5.1.5), the center manifold is given by

y = 0 + o(‖x‖r−1) ,

whence

ẋ = Bx+G(x)

is an r-th order approximation to the system on WC
loc.

Our normal form observations are, in fact, covered by the following

reduction theorem.
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Theorem 5.5. (Reduction theorem) There exists a C
r−1-smooth transfor-

mation of coordinates (C1-close to the identity near the origin) which brings

system (5.1.1) to the form3

ẏ = (A+ F (x, y))y ,

ẋ = Bx+G(x) ,
(5.1.6)

where F ∈ C
r−1, G ∈ C

r

F (0, 0) = 0 , G(0, 0) = 0 , G′(0) = 0 .

Here the surface {y = 0} is an invariant center manifold, thus we have

straightened WC
loc, as in Chap. 2. The straightening of the center manifold

is, of course, a C
r-transformation. One order of smoothness is lost because,

in fact, much more is achieved in the theorem: the local evolution of the

x variables is now completely independent of y. Notice that although the

coordinate transformation is C
r−1-smooth, the function G is C

r-smooth: it

just coincides with the nonlinear part of the restriction (5.1.3) of the original

system on a C
r-smooth center manifold. Thus, for any trajectory of system

(5.1.6) the variables x behave like those on the center manifold, and for the

y variables there is an exponential contraction to y = 0 as t → +∞. The

last statement can be verified exactly in the same way as when we proved the

asymptotic exponential stability of equilibrium states in Chap. 2: since the

function F is small near O and since all eigenvalues of the matrix A lie strictly

to the left of the imaginary axis, it can be seen from the first equation of (5.1.6)

that
d‖y‖

dt
≤ −λ‖y‖

in a small neighborhood of O, from which the exponential contraction to y = 0

follows.

We will give the proof of the reduction theorem in Sec. 5.4. Note that

Theorem 5.4 on smooth conjugacy follows directly from Theorem 5.5, namely,

if system (5.1.6) has a center manifold other than {y = 0}, the reduced system

is still given by the same second equation of (5.1.6); i.e. when the system is

in the triangular form (5.1.6) the restrictions on any two center manifolds are

trivially conjugate. Since the coordinate transformation that brings the system

3Note the difference between (5.1.5) and this formula: the functions F and G are no
longer polynomials here.
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to this particular form is C
r−1, we have a C

r−1-conjugacy when the system is

not reduced to this form.

Let us give a geometrical interpretation of Theorem 5.5. Obviously, when

the system is in the triangular form (5.1.6), the time-t shift of any surface

{x = const} lies again in a surface of the same kind, for any t (unless the

trajectories leave a small neighborhood of O). This means that the foliation of

a small neighborhood of O by surfaces of constant x is invariant with respect

to the system (5.1.6). The coordinate change which transforms system (5.1.6)

to the initial form (5.1.1) maps the surfaces {x = constant} into surfaces of

the kind

x = ξ + η(y, ξ) , (5.1.7)

where ξ is the x-coordinate of the intersection of the surface with a center man-

ifold; the C
r−1-function η vanishes at the origin along with the first derivatives

(note that η ≡ 0 everywhere on WC).

Since the transformation which maps the surfaces {x = constant} into the

surfaces given by (5.1.7) is a diffeomorphism, it follows that Eq. (5.1.7) defines

a foliation of a small neighborhood of the origin by surfaces corresponding to

fixed ξ. This implies that for each point (x, y) there is a unique ξ such that the

surface corresponding to the given ξ passes through the point (x, y). Such a

surface is called a leaf of the foliation: for each point from a small neighborhood

of O there is one and only one leaf which contains the point. Since the leaves

are parametrized by the points on WC
loc, the center manifold is the base of the

foliation. Since the foliation {x = constant} is invariant with respect to system

(5.1.6), its image (i.e. the foliation given by (5.1.7)) is an invariant foliation

of system (5.1.1): for any t, the time-t shift of any leaf lies in a single leaf

of the same foliation unless the trajectories leave a small neighborhood of O.

After straightening the center manifold, the reduction to the triangular form

(5.1.6) is achieved by just transforming x 7→ ξ(x, y) (inverse of (5.1.7)): the

variable x is replaced by the x-coordinate of the projection of the point along

the leaves of the invariant foliation onto the center manifold. The invariance

of the foliation simply means that the evolution of the new coordinate x = ξ

is independent of y. Thus, we see that Theorem 5.5 basically establishes the

existence of a foliation of the kind (5.1.7), transverse to the center manifold

and invariant with respect to system (5.1.1). We will call it the strong stable

foliation and denote it by Fss. We will prove that the foliation is uniquely

defined at all points whose trajectories stay in a small neighborhood of O for
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all positive times. Namely,

For any two strong stable invariant foliations F ss
1 and Fss

2 , for any

point P whose trajectory stays in a small neighborhood of O for all

positive times, the leaf of Fss
1 which passes through P coincides with the

corresponding leaf of Fss
2 .

Since the function η which defines the foliation is C
r−1, the projection onto

the center manifold by the leaves of the foliation is a C
r−1 map. Moreover, for

any surface transverse to the leaves, the projection onto another transversal is

a C
r−1-diffeomorphism. In other words, F s is a C

r−1-smooth foliation.

Note that for any fixed ξ, the function η is, in fact, a C
r-smooth function

with respect to y (the proof will be given in Sec. 5.4). In other words, each leaf

of the foliation is a C
r-smooth surface. The particular value ξ = 0 corresponds

to the leaf which passes through the point O. Since O is an equilibrium state, it

is not shifted with time; therefore the leaf of the point O is mapped within itself

by the time-t shift for any t. It follows that the C
r-smooth surface x = η(y; 0)

is an invariant manifold of system (5.1.1). This manifold is tangent to the

y-axis at O; it is unique and is called a strong stable invariant manifold W ss.

When the system depends on a parameter µ continuously, the foliation F ss

depends continuously on µ (i.e. the function η in (5.1.7) is continuous in µ,

as will be proved). If the dependence on µ is smooth, the function η is C
r−1

with respect to (y; ξ, µ). Thus, the leaves of F ss depend C
r−1 smoothly on µ.

In particular, when µ varies from zero, there may exist an equilibrium state

Oµ which depends smoothly on µ. In this case, the leaf of the foliation F ss

which passes through Oµ is uniquely defined. It is an invariant manifold, and

if the position of the point Oµ is a C
k function of µ where 0 ≤ k ≤ r − 1,

then the strong stable manifold depends C
k-smoothly on µ. We remark that,

in general, this statement is no longer valid when k = r.

Let us now consider the more general case where the equilibrium state has

characteristic exponents to the right of the imaginary axis as well. Here, the

system near O takes the form

ẏ = Ay + f(x, y, z) ,

ż = Cz + h(x, y, z) ,

ẋ = Bx+ g(x, y, z) ,

(5.1.8)

where x ∈ R
m, y ∈ R

k, z ∈ R
n−m−k, the eigenvalues of the matrix A lie

to the left of the imaginary axis, the eigenvalues of the matrix B are zero or
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purely imaginary, and the eigenvalues of the matrix C lie to the right of the

imaginary axis; the C
r-functions f , h and g vanish at the origin along with

their first derivatives. The right-hand sides of the system may depend on some

parameters µ, either continuously (in this case the smooth manifolds to be

discussed below depend continuously on µ), or smoothly. In the latter case we

will include µ among the “center” variables x so the manifolds and foliations,

which we discuss below, will have the same smoothness with respect to µ as

the smoothness with respect to x.

The center manifold theory is based here on the following theorem.

Theorem 5.6. (on center stable manifold) In a small neighborhood of O

there exists an (m+k)-dimensional invariant center stable manifold W sC
loc : z =

ψsC(x, y) of class C
r, which contains O and which is tangent to the subspace

{z = 0} at O. The manifold W sC
loc contains all trajectories which stay in a small

neighborhood of O for all positive times. Though the center stable manifold

is not defined uniquely, for any two manifolds W sC
1 and W sC

2 the functions

ψsC1 and ψsC2 have the same Taylor expansion at O (and at each point whose

trajectory stays in a small neighborhood of O for all t ≥ 0).

The proof will be given in Sec. 5.4. Note that if the system is C
∞-smooth,

the center stable manifold has, in general, only finite smoothness: for any finite

r there exists a neighborhood Ur of O where W sC is C
r-smooth. Just like the

reasoning above, we can conclude that

If the system is C
∞, and if every trajectory of W sC

loc tends to O as

t→ +∞, then W sC
loc is C

∞-smooth.

The reversion of time t→ −t changes matrices A, B and C to −A, −B and

−C, respectively. Thus, the part of the spectrum of characteristic exponents

that corresponds to the z-variables is now to the left of the imaginary axis,

and the part of the spectrum that corresponds to the y-variables is now to the

right. We may apply the theorem on the center stable manifold to the system

obtained from (5.1.8) by a reversion of time and obtain the following theorem

on a center unstable manifold:

Theorem 5.7. (on center unstable manifold) In a small neighborhood of

O there exists an (n−k)-dimensional C
r-smooth invariant manifold W uC

loc : y =

ψuC(x, z) which contains O and which is tangent to the subspace {y = 0} at O.

The center unstable manifold contains all the trajectories which stay in a small
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neighborhood of O for all negative times. For any two manifolds W uC
1 and WuC

2

the functions ψuC1 and ψuC2 have the same Taylor expansion at O (and at each

point whose trajectory stays in a small neighborhood of O for all t ≤ 0). In

the case where the system is C
∞-smooth, the center unstable manifold has, in

general, only finite smoothness, but if every trajectory of W uC
loc tends to O as

t→ −∞, then W uC
loc is C

∞-smooth.

The intersection of the center stable and center unstable manifolds is a

C
r-smooth m-dimensional invariant center manifold WC

loc = W sC
loc ∩WuC

loc de-

fined by an equation of the form (y, z) = ψC(x). By construction, the center

manifold contains the set N of all trajectories which stay in a small neighbor-

hood of O for all times t ∈ (−∞,+∞). Moreover, the function ψC is uniquely

defined at all points of N along with all derivatives. In particular, the Taylor

expansion of ψC at O is defined uniquely by the system.

Restricted on the center stable manifold, system (5.1.8) takes the form

ẏ = Ay + f(x, y, ψsC(x, y)) ,

ẋ = Bx+ g(x, y, ψsC(x, y)) ,
(5.1.9)

which is similar to (5.1.1). Therefore, Theorem 5.5 is applicable, namely:

On W sC
loc there exists a C

r−1-smooth invariant foliation Fss with C
r-

smooth leaves transverse to WC ; for each point whose trajectory tends

to O as t → +∞, the corresponding leaf is uniquely defined by the

system.

On the center unstable manifold, the system is reduced to a form similar

to (5.1.1) by reversion in time. This gives us the existence of a strong unstable

invariant foliation on W uC
loc :

On WuC
loc there exists a C

r−1-smooth invariant foliation Fuu with C
r-

smooth leaves transverse to WC ; for each point whose trajectory tends

to O as t→ −∞ the corresponding leaf of Fuu is defined uniquely.

We remark that these foliations cannot be continued outside the center

stable or, respectively, center unstable manifold without loss of smoothness. In

general, invariant foliations of a small neighborhood of O which are transverse

to the center stable or center unstable manifolds are not smooth (of class C
0

only, see Shoshitashvilly [70]). This means that the projection from one center

stable manifold to another, or from one center unstable manifold to another by
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the leaves of the corresponding invariant foliation may be a non-smooth map.

Therefore, there is no smooth conjugacy (only C
0) between restrictions of the

same system onto different center stable manifolds (or onto different center

unstable manifolds).

Nevertheless, for center manifolds, Theorem 5.4 on smooth conjugacy still

holds for the general case (where there are characteristic exponents on both

sides of the imaginary axis). To prove this, note that if there are two different

center manifolds WC
1 and WC

2 , then by construction there are two pairs of

center stable and center unstable manifolds:

WC
1 = W sC

1 ∩WuC
1 and WC

2 = W sC
2 ∩WuC

2 .

The intersection WC
0 = W sC

1 ∩WuC
2 is also a center manifold (by definition).

The system on WC
0 is C

r−1-conjugate with the system on WC
1 by means of

a projection along the leaves of the strong stable foliation of W sC
1 , whereas

the system on WC
2 is C

r−1-conjugate with the system on WC
0 by means of

a projection along the leaves of the strong unstable foliation of W uC
2 . The

superposition of these two projections (from WC
2 onto WC

0 and, then, onto

WC
1 ) gives us a C

r−1-transformation which maps trajectories of the system

on WC
2 onto trajectories of the system WC

1 (this is because the foliations

along which we make projections are invariant); i.e. we have a C
r−1-conjugacy

between the systems on WC
2 and WC

1 .

Thus, in this case, when studying local bifurcations, we may also restrict

the system on a center manifold. Moreover, there is no significant difference

between the dynamics on different center manifolds of the same system.

The straightening of the center stable and the center unstable manifolds

along with the straightening of the strong stable and strong unstable invariant

foliations on these manifolds lead to the following result which is similar to

Theorem 5.5.

Theorem 5.8. By a C
r−1-smooth transformation system (5.1.8) can be locally

reduced to the form

ẏ = (A+ F (x, y, z))y ,

ż = (C +H(x, y, z))z ,

ẋ = Bx+G0(x) +G1(x, y, z)y +G2(x, y, z)z ,

(5.1.10)

where G0 is a C
r-smooth function vanishing at x = 0 along with its first

derivative, F and H are C
r−1-functions vanishing at the origin, G1,2 ∈ C

r−1

and G1 vanishes identically at z = 0 and G2 vanishes identically at y = 0.



284 Chapter 5. Center Manifold. Local Case

Here, the local center unstable manifold is given by {y = 0}, the local

center stable manifold is given by {z = 0}, and the local center manifold

is given by {y = 0, z = 0}. The strong stable foliation is composed of the

surfaces {x = constant, z = 0} and the leaves of the strong unstable foliation

are {x = constant, y = 0}.

An analogous theory may be applied to the study of structurally unstable

periodic trajectories. The study of the dynamics in a small neighborhood of

a periodic trajectory is reduced to the study of the Poincaré map on a small

cross-section; the point O of intersection of the trajectory with the cross-section

is a fixed point of the Poincaré map.

Let the system be (n+1)-dimensional, so the cross-section is n-dimensional.

Let m multipliers of the periodic trajectory lie on the unit circle, k multipliers

lie strictly inside the unit circle and the other (n−m−k) multipliers are strictly

greater than 1 in absolute value. The Poincaré map near the fixed point O is

written in the following form:

ȳ = Ay + f(x, y, z) ,

z̄ = Cz + h(x, y, z) ,

x̄ = Bx+ g(x, y, z) ,

(5.1.11)

where x ∈ R
m, y ∈ R

k, z ∈ R
n−m−k, the eigenvalues of the matrix A lie

inside the unit circle, the eigenvalues of the matrix B equal to 1 in absolute

value and the eigenvalues of the matrix C lie outside the unit circle; f , h and

g are C
r-smooth functions which vanish at the origin along with their first

derivatives. We assume that the right-hand sides of the map (along with their

derivatives) may depend continuously on some parameters µ. In this case, the

manifolds and foliations to be discussed below will depend continuously on µ

along with all derivatives. If the map depends smoothly on µ, then one can

formally consider the parameters as x-variables, adding the trivial equation

µ̄ = µ to system (5.1.11). In this case the invariant manifolds and foliations

below have the same smoothness with respect to µ as with respect to x.

The center manifold theorem may be formulated as follows.

Theorem 5.9. (On center manifold. General case) In a small neighbor-

hood of O there exist C
r-smooth invariant (m + k)-dimensional center stable

manifold W sC
loc : z = ψsC(x, y) and (n − k)-dimensional center unstable mani-

fold WuC
loc : y = ψuC(x, y), which contain O and which are tangent, respectively,

to the subspaces {z = 0} and {y = 0} at O. The manifold W sC
loc contains the
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set N+ of all points whose forward iterations by the map (5.1.11) stay in a

small neighborhood of O, and W uC
loc contains the set N− of all points whose

backward iterations never leave a small neighborhood of O. The intersection

of W sC
loc and WuC

loc is a C
r-smooth invariant m-dimensional center manifold

WC
loc : (y, z) = ψC(x) which is tangent at O to the x-space and which contains

the set N = N+ ∩ N− composed of all points whose iterations (both forward

and backward) never leave a small neighborhood of O. The Taylor expansions

of the functions ψuC , ψsC and ψC at the origin (and at each point of the sets

N−, N+ or N, respectively) are uniquely defined by the system. On the mani-

folds W sC
loc and WuC

loc there exist, respectively, strong stable and strong unstable

C
r−1-smooth invariant foliations Fss and Fuu with C

r-smooth k-dimensional

(resp. (n−m−k)-dimensional) leaves transverse to WC
loc. The leaves of Fss are

uniquely defined at each point of the set N+ and the leaves of Fuu are uniquely

defined at each point of N−. By projection along the leaves of the strong stable

and strong unstable invariant foliations, the restrictions of the same map on

different center manifolds are C
r−1-conjugate.

The proof will be given in Sec. 5.4. We remark again that if even in the

case where the system under consideration is C
∞, the invariant manifolds are,

in general, of a finite smoothness only. Nevertheless,

If the system is C
∞-smooth, and if the forward iterations of every tra-

jectory of W sC
loc tend to O, then W sC

loc ∈ C
∞;

If the backward iterations of any trajectory of W uC
loc tend to O, then

WuC
loc ∈ C

∞; and

If either the forward or backward iterations of every trajectory in WC
loc

tend to O, then WC
loc ∈ C

∞.

The straightening of the invariant manifolds and of the invariant foliations

gives us the result which is completely analogous to Theorem 5.8, namely:

Theorem 5.10. By a C
r−1-smooth transformation system (5.1.11) can be

locally reduced to the form

ȳ = (A+ F (x, y, z))y ,

z̄ = (C +H(x, y, z))z ,

x̄ = Bx+G0(x) +G1(x, y, z)y +G2(x, y, z)z ,

(5.1.12)
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where G0 is a C
r-function vanishing at x = 0 along with the first derivative,

F and H are C
r−1-functions vanishing at the origin; G1,2 ∈ C

r−1 and G1

vanishes identically at z = 0, and G2 vanishes identically at y = 0.

Here, the local center unstable manifold is given by {y = 0}, the local

center stable manifold is given by {z = 0} and the local center manifold is

given by {y = 0, z = 0}. The strong stable foliation is composed of the

surfaces {x = constant, z = 0}, and the leaves of the strong unstable foliation

are {x = constant, y = 0}.

In the particular case where there are no multipliers outside the unit circle,

one may put z = 0 identically and system (5.1.12) becomes

ȳ = (A+ F (x, y))y ,

x̄ = Bx+G(x) ,
(5.1.13)

where F ∈ C
r−1 vanishes at the origin, and G ∈ C

r vanishes at x = 0 along

with its first derivative.

5.2. A boundary-value problem

In this section we begin our proof of the center manifold theorems. The

method, which we will use, is based on a generalization of the boundary-value

problem which we have considered in Chap. 2 (see Shashkov and Turaev [52]).

Since the results will be applied to the proof of various invariant manifold

theorems beyond the center manifold theory, we will try to make the setting

sufficiently general.

Let us consider a system of differential equations

ż = Az + f(z, v, µ, t) ,

v̇ = Bv + g(z, v, µ, t) ,
(5.2.1)

where z ∈ R
n, v ∈ R

m, t is the time variable and µ is a vector of parameters.

We assume that f and g are C
r-smooth (r ≥ 1) with respect to the variables

(z, v) and that they depend continuously on (µ, t) along with all the derivatives

(a particular case of interest is when f and g are C
r-smooth with respect to all

of their arguments (z, v, µ, t)). Concerning the matrices A and B, we assume

that the following conditions hold

spectrA = {α1, . . . , αn} , spectrB = {β1, . . . , βm} ,

max
i=1,...,n

Reαi < α < β < min
j=1,...,m

Reβj ;
(5.2.2)
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i.e. there is a strip in the complex plane (the strip α ≤ Re (·) ≤ β) that

separates the spectra of A and B. It follows from (5.2.2) that in the appropriate

(Jordan) basis the following estimates hold:

∥
∥eAs

∥
∥ ≤ eαs ,

∥
∥e−Bs

∥
∥ ≤ e−βs

(5.2.3)

for s ≥ 0 (see Lemma 2.1). We also require that

∥
∥
∥
∥

∂(f, g)

∂(z, v)

∥
∥
∥
∥
< ξ (5.2.4)

for some sufficiently small constant ξ (the exact value of ξ can be obtained

from the proofs of the theorems below). We will also assume that all of the

derivatives of f and g are bounded uniformly for all z and v. The last conditions

mean that the nonlinear part essentially does not affect the behavior induced

by the specific structure of the linear part of the system (the separation of the

spectrum). To stress this property we will call the systems satisfying (5.2.1)–

(5.2.4) globally dichotomic.

Such systems appear naturally in the study of equilibrium states and peri-

odic trajectories. For example, if the spectrum of the characteristic exponents

of an equilibrium state is separated so that n characteristic exponents lie to the

left of the line Re (·) = α and the other m characteristic exponents lie to the

right of the line Re (·) = β in the complex plane, then near such an equilibrium

the system may be written locally in the form

ż = Az + f(z, v, µ) ,

v̇ = Bv + g(z, v, µ) ,
(5.2.5)

where z belongs to a small neighborhood of the origin in R
n, the variable v

belongs to a small neighborhood of the origin in R
m, and µ is some vector of

parameters. Here, the matrices A and B satisfy (5.2.2), and the functions f ,

g satisfy the following conditions

f(0, 0, 0) = 0 , g(0, 0, 0) = 0 ,
∂(f, g)

∂(z, v)

∣
∣
∣
∣
(z,v,µ)=0

= 0 . (5.2.6)

Of course, the last equality in (5.2.6) implies the fulfillment of (5.2.4) for an

arbitrarily small ξ, in a sufficiently small neighborhood of O.
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The difference between systems (5.2.1) and (5.2.5) is that the nonlinear part

of the latter remains small only near the origin, whereas for system (5.2.1) the

linear part prevails everywhere in R
n+m. A very useful trick which allows

one to proceed from the local system (5.2.5) to the global version (5.2.1) is as

follows. Consider a new system

ż = Az + f̃(z, v, µ)

v̇ = Bv + g̃(z, v, µ) ,
(5.2.7)

where the C
r-smooth functions f̃ , g̃ are given by

f̃(z, v) = f

(

zχ

(
‖(z, v)‖

ρ

)

, vχ

(
‖(z, v)‖

ρ

))

g̃(z, v) = g

(

zχ

(
‖(z, v)‖

ρ

)

, vχ

(
‖(z, v)‖

ρ

))

.

(5.2.8)

Here, ρ is a small positive value and the function χ(u) ∈ C
∞ is assumed to

have the following properties

χ(u) =

{

1, for u ≤ 1
2

0, for u ≥ 1
, and 0 ≥

dχ

du
≥ −3, 1 ≥ χ ≥ 0 (5.2.9)

(the existence of such functions is a well-known fact).

It follows from (5.2.6), (5.2.8) and (5.2.9) that, the functions f̃ and g̃ satisfy

inequality (5.2.4) for all (z, v) ∈ R
n+m and small µ. Moreover, the constant ξ

may be made arbitrarily small if ρ is sufficiently small. Thus, system (5.2.7) is

globally dichotomic and coincides with system (5.2.5) at ‖(z, v)‖ ≤ ρ/2. Hence,

the trajectories of system (5.2.7) coincide with the trajectories of (5.2.5) until

they remain in a ρ/2-neighborhood of the origin.

Near a periodic trajectory L, a system of differential equations takes the

form (see Chap. 3)

ż = Az + f(z, v, µ, t)

v̇ = Bv + g(z, v, µ, t) ,
(5.2.10)

where f and g are periodic function of t with a period equal to τ or 2τ ,

where τ is the period of L. The eigenvalues of the matrices A and B are

equal to the ratios of the logarithms of the squares of the multipliers of L to

the double period of L. Therefore, the condition (5.2.2) which separates the
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spectra of these matrices may be regarded as the separation of the multipliers:

m multipliers must be less than eατ in absolute value, and the absolute values

of the other n multipliers are greater than eβτ where τ is the period of L.

Here, the trajectory L is given by {z = 0, v = 0}, and f and g vanish at

(z, v) = 0 along with the first derivatives with respect to (z, v). Condition

(5.2.4) is fulfilled for small (z, v), so that changing (f, g) to (f̃ , g̃) by formulae

(5.2.8) results in a system of the type (5.2.1) which satisfies condition (5.2.4)

for all (z, v), and which coincides locally with system (5.2.9).

Let us now return to the general setting and consider the following

boundary-value problem for system (5.2.1)

z(0) = z0 , v(τ) = v1 , (5.2.11)

for any τ > 0, z0 and v1. Geometrically, this may be interpreted as finding a

trajectory of system (5.2.1) which starts from the surface {z = z0} and finishes

at the surface {v = v1} at the moment of time t = τ . As discussed above, if the

solution of the boundary-value problem stays in the region ‖(z, v)‖ ≤ ρ/2 for

t ∈ [0, τ ], it is simultaneously a solution of the same boundary-value problem

for the local system (5.2.5), or (5.2.10).

Theorem 5.11. The boundary-value problem (5.2.11) for system (5.2.1) has

a unique solution4

z(t) = z∗(t; z0, v1, τ, µ) , v(t) = v∗(t; z0, v1, τ, µ) (5.2.12)

for any (z0, v1, τ).

Proof. The boundary-value problem under consideration is similar to that

studied in Chap. 2 (formally speaking, Sec. 2.8 deals with the case where

α < 0 < β), and the proof follows very closely along the lines of Theorem 2.9.

The novelty here is that we will prove the convergence of the successive ap-

proximations using an unusual norm, the so-called γ-norm. Namely, let us

consider a space H of continuous functions (z(t), v(t)) defined on the segment

t ∈ [0, τ ]. Let us endow the space H with the following norm:

‖(z(t), v(t))‖γ = sup
t∈[0,τ ]

{
‖(z(t), v(t))‖e−γt

}
, (5.2.13)

4Note that the solution of boundary-value problem (5.2.11) for system (5.2.1) is not
prohibited from leaving a small neighborhood of zero. Therefore, the theorem cannot be
directly applied to the local systems (5.2.5), or (5.2.10); namely, additional estimates are
necessary to guarantee that the solution of the boundary-value problem stays bounded by a
small constant.
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where

α < γ < β . (5.2.14)

Obviously, H is a complete metric space.

Let us consider the integral operator T : H → H, which maps a function

(z(t), v(t)) onto the function (z(t), v(t)) via the following formula:

z(t) = eAtz0 +

∫ t

0

eA(t−s)f(z(s), v(s), µ, s) ds ,

v(t) = e−B(τ−t)v1 −

∫ τ

t

e−B(s−t)g(z(s), v(s), µ, s) ds .

(5.2.15)

It is easy to check that if the solution of the boundary-value problem (5.2.11)

exists, then the solution is a fixed point of the integral operator T , and vice

versa (compare with Theorem 2.9).

Obviously, the operator T is smooth (in the sense of Sec. 3.15). The

derivative of (z̄(t), v̄(t)) with respect to (z(t), v(t)) is the linear operator T ′ :

(∆z(t),∆v(t)) 7→ (∆z̄(t),∆v̄(t)) where

∆z̄(t) =

∫ t

0

eA(t−s)f ′(z,v)(z(s), v(s)) · (∆z(s),∆v(s))ds

∆v̄(t) = −

∫ τ

t

e−B(s−t)g′(z,v)(z(s), v(s)) · (∆z(s),∆v(s))ds.

(5.2.16)

According to the Banach principle (the abstract version of Theorem 3.26),

in order to show that the operator T has a unique fixed point, it is sufficient

to show that ‖T ′‖ ≤ K < 1 for any (z(s), v(s)) ∈ H.

To do this, let us plug (5.2.3), (5.2.4),(5.2.13) into (5.2.16). We get

‖∆z̄(t)‖ ≤

∫ t

0

eα(t−s)ξ‖(∆z,∆v)‖γe
γsds

‖∆v̄(t)‖ ≤

∫ τ

t

e−β(s−t)ξ‖(∆z,∆v)‖γe
γsds .

(5.2.17)

From (5.2.13), (5.2.14) and (5.2.17) we obtain

‖(∆z̄,∆v̄)‖γ = sup
t∈[0,τ ]

{max (‖∆z̄(t)‖, ‖∆v̄(t)‖) e−γt}

≤ ξmax

(
1

γ − α
,

1

β − γ

)

× ‖(∆z,∆v)‖γ .
(5.2.18)
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Choose ξ sufficiently small such that

ξmax

(
1

γ − α
,

1

β − γ

)

< 1 .

By (5.2.18), the integral operator T is contracting in the γ-norm.

Thus, according to the Banach principle of contraction mappings, start-

ing with an arbitrary initial guess (z(0)(t), v(0)(t)), the sequence of successive

approximations
(

z(n+1)(t), v(n+1)(t)
)

= T (zn(t), vn(t))

converges to a uniquely defined fixed point (z∗(t), v∗(t)) of T , which is, at the

same time, the solution of boundary-value problem (5.2.11) for system (5.2.1).

This completes the proof.

Note that the solution (z∗(t), v∗(t)) depends also on {z0, v1, τ, µ}. Since

the integral operator T given by (5.2.15) is continuous with respect to these

data, the solution depends continuously on {z0, v1, τ, µ} (as the fixed point of

a contraction operator, see Theorem 3.25). Moreover, by Theorem 3.27, since

the operator T is C
r-smooth and depends C

r-smoothly on {z0, v1}, it follows

that the solution of the boundary value problem is a C
r-smooth function of

{z0, v1}, and if the right-hand sides of the system are C
r with respect to all

variables including t and µ, then the solution depends smoothly on {t, τ, µ} as

well.

The derivatives of (z∗, v∗) with respect to z0, v1 and µ are found as fixed

points of an operator obtained by formal differentiation of (5.2.15); i.e. they are

found as the solutions of the boundary-value problems for the corresponding

variational equations with the boundary conditions obtained by formal differ-

entiation of the boundary conditions (5.2.11) (see Sec. 2.8 for more details).

For example, the solution of the boundary-value problem

Z(0) = I , V (τ) = 0 , (5.2.19)

(I is the identity matrix) for the system of variational equations

Ż = AZ + f ′
z(z

∗, v∗, µ, t)Z + f ′
v(z

∗, v∗, µ, t)V ,

V̇ = BV + g′z(z
∗, v∗, µ, t)Z + g′v(z

∗, v∗, µ, t)V ,
(5.2.20)

gives the derivative of (z∗, v∗) with respect to z0:

Z∗ =
∂z∗

∂z0
, V ∗ =

∂v∗

∂z0
.



292 Chapter 5. Center Manifold. Local Case

The solution of another boundary-value problem

Z(0) = 0 , V (τ) = I (5.2.21)

for the same system (5.2.20) gives the derivative of (z∗, v∗) with respect to v1.

If f and g are smooth with respect to the parameter µ, then the derivatives

(Z∗, V ∗) = (∂z∗/∂µ, ∂v∗/∂µ) are the solution of the boundary-value problem

Z(0) = 0 , V (τ) = 0 (5.2.22)

for the system of non-homogeneous variational equations

Ż = AZ + f ′
z(z

∗, v∗, µ, t)Z + f ′
v(z

∗, v∗, µ, t)V + f ′
µ(z

∗, v∗, µ, t) ,

V̇ = BV + g′z(z
∗, v∗, µ, t)Z + g′v(z

∗, v∗, µ, t)V + g′µ(z
∗, v∗, µ, t) .

(5.2.23)

One can immediately see that system (5.2.20) or (5.2.23) is globally dichotomic:

since the principal part of the right-hand sides is determined by the same

matrices A and B, it follows that the condition (5.2.2) on the separation of the

spectra still holds here; the residual part of the right-hand side is

F = f ′z(z
∗, v∗, µ, t)Z + f ′

v(z
∗, v∗, µ, t)V

G = g′z(z
∗, v∗, µ, t)Z + g′v(z

∗, v∗, µ, t)V ,

or

F = f ′z(z
∗, v∗, µ, t)Z + f ′

v(z
∗, v∗, µ, t)V + f ′

µ(z
∗, v∗, µ, t)

G = g′z(z
∗, v∗, µ, t)Z + g′v(z

∗, v∗, µ, t)V + g′µ(z
∗, v∗, µ, t) .

In both cases
∂(F,G)

∂(Z, V )
=
∂(f, g)

∂(z, v)
,

so condition (5.2.4) on the smallness of the derivatives is also fulfilled with the

same ξ. Thus, the existence (and uniqueness) of solutions of the boundary-

value problems (5.2.19), (5.2.21) and (5.2.22) simply follows from Theorem 5.11.

Now, by induction, one can see that the higher-order variational equations

also belong to our class of globally dichotomic systems. Therefore, for the

corresponding boundary-value problems, the existence and uniqueness of the

solutions (which are the higher-order derivatives of (z∗, v∗)) is also given by

Theorem 5.11.
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The derivatives of (z∗, v∗) with respect to time t are given directly by

system (5.2.1): because (z∗, v∗) is a solution of system (5.2.1), it follows that

∂z∗

∂t
≡ ż∗ = Az∗ + f(z∗, v∗, µ, t)

and
∂v∗

∂t
≡ v̇∗ = Bz∗ + g(z∗, v∗, µ, t) .

The higher-order derivatives involving time are obtained by a repeated use of

these identities. The derivatives with respect to τ may be calculated using the

following lemma.

Lemma 5.1. The solution (z∗, v∗) of the boundary-value problem (5.2.11)

satisfies the following identities:

∂(z∗, v∗)

∂v1

∂v∗

∂t

∣
∣
∣
∣
t=τ

+
∂(z∗, v∗)

∂τ
≡ 0 , (5.2.24)

∂(z∗, v∗)

∂τ
+
∂(z∗, v∗)

∂t
−
∂(z∗, v∗)

∂z0

∂z∗

∂t

∣
∣
∣
∣
t=0

≡ 0 . (5.2.25)

These identities allow one to express the derivatives with respect to τ in

terms of the derivatives with respect to the other variables. The proof of this

lemma is achieved as follows. Recall that the uniquely defined solution of the

boundary-value problem under consideration is the trajectory of system (5.2.1)

which intersects the surface {z = z0} at t = 0 and the surface {v = v1} at

t = τ . We denote this trajectory as (z∗(t; z0, v1, τ, µ), v∗(t; z0, v1, τ, µ)).

At the moment of time t = τ + δ the trajectory intersects the surface

{v = v∗(τ + δ; z0, v1, τ, µ)}. By definition, we can write

z∗(t; z0, v1, τ, µ) ≡ z∗(t; z0, v∗(τ + δ; z0, v1, τ, µ), τ + δ, µ) ,

v∗(t; z0, v1, τ, µ) ≡ v∗(t; z0, v∗(τ + δ; z0, v1, τ, µ), τ + δ, µ) .

Differentiation of this identity with respect to δ at δ = 0 gives (5.2.24). The

analogous identity

z∗(t; z0, v1, τ, µ) ≡ z∗(t+ δ; z∗(−δ; z0, v1, τ, µ), v1, τ + δ, µ) ,

v∗(t; z0, v1, τ, µ) ≡ v∗(t+ δ; z∗(−δ; z0, v1, τ, µ), v1, τ + δ, µ) .

implies (5.2.25).
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Our next theorem gives estimates on the derivatives of the solution of the

boundary-value problem. We use the following notation for the derivatives of

a vector-function φ = (φ1, . . . , φq) ∈ R
q with respect to a vector-argument

x = (x1, . . . , xp) ∈ R
p:

∂|s|φ

∂xs
≡

(
∂s1+···+spφ1

∂xs11 · · · ∂x
sp
p
, . . . ,

∂s1+···+spφq

∂xs11 · · · ∂x
sp
p

)

where the multi-index s = (s1, . . . , sp) consists of non-negative integers and |s|

denotes s1 + · · · + sp.

Theorem 5.12. The following estimates hold for the solution (z∗, v∗) of the

boundary-value problem (5.2.11) for system (5.2.1) (here C is a positive con-

stant independent of (z0, v1, µ, τ), but depending on the order of differentiation

k = |k1| + |k2| + |k3|).

1. If 0 < α < β, then

(a)

∥
∥
∥
∥
∥

∂|k1|+|k2|+|k3|(z∗, v∗)

∂ (z0, µ)
k1 ∂ (v1, τ)

k2 ∂tk3

∥
∥
∥
∥
∥

(b)

∥
∥
∥
∥
∥

∂|k1|+|k2|+|k3|(z∗, v∗)

∂ (z0, τ, µ)
k1 ∂ (v1)

k2 ∂(τ − t)k3

∥
∥
∥
∥
∥







≤







C
if |k1| = |k2| = 0

C e|k1|αt
if |k2| = 0

and |k1|α < β ,

C eβ(t−τ)+|k1|ατ
if |k2| 6= 0

or |k1|α > β .

(5.2.26)

2. If α < 0 < β, then

(a)

∥
∥
∥
∥
∥

∂|k1|+|k2|+|k3|(z∗, v∗)

∂ (z0)
k1 ∂ (v1, τ)

k2 ∂(t, µ)k3

∥
∥
∥
∥
∥

(b)

∥
∥
∥
∥
∥

∂|k1|+|k2|+|k3|(z∗, v∗)

∂ (z0, τ)
k1 ∂ (v1)

k2 ∂(τ − t, µ)k3

∥
∥
∥
∥
∥







≤







C
if |k1| = |k2| = 0

C eαt
if |k2| = 0

and |k1| 6= 0 ,

C eβ(t−τ) if |k1| = 0

and |k2| 6= 0 ,

C eαt+β(t−τ)
if |k1| 6= 0

and |k2| 6= 0 .

(5.2.27)
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3. If α < β < 0, then

(a)

∥
∥
∥
∥

∂|k1|+|k2|+|k3|(z∗, v∗)

∂(z0)k1∂(v1, τ, µ)k2∂tk3

∥
∥
∥
∥

(b)

∥
∥
∥
∥

∂|k1|+|k2|+|k3|(z∗, v∗)

∂(z0, τ)k1∂(v1, µ)k2∂(τ − t)k3

∥
∥
∥
∥







≤







C
if |k1| = |k2| = 0

C e|k2|β(t−τ) if |k1| = 0

and α < |k2|β ,

C eαt−|k2|βτ
if |k1| 6= 0

or α > |k2|β .

(5.2.28)

Proof. Note that the boundary-value problem (5.2.11) is symmetric with

respect to a reversion in time via the following reassignment:

t→ τ − t , α→ −β , β → −α , z → v , v → z , z0 → v1 , v1 → z0 .

(5.2.29)

Therefore, estimates 1(b), 2(b) and 3(b) follow from estimates 3(a), 2(a) and

1(a), respectively, according to the rule above and the change k1 ↔ k2.

Note also that in the cases β > α > 0 and α < β < 0 the parameter µ can

be included among the variables z or v respectively, by adding the equation

µ̇ = 0 to system (5.2.1) and the requirement µ(0) = µ (in the case β > α > 0)

or µ(τ) = µ (in the case 0 > β > α) to the boundary conditions (5.2.11).

Therefore, the derivatives involving µ have to be estimated separately only in

the case α < 0 < β.

To obtain the estimates for the derivatives with respect to time t we note

that it follows directly from (5.2.1) that

∂|k1|+|k2|+|k3|+|k4|+|k5|z∗

∂(z0)k1∂(v1)k2∂µk3∂τk4∂tk5+1
=
∂|k1|+|k2|+|k3|+|k4|+|k5|(Az∗+f(z∗, v∗, µ, t))

∂(z0)k1∂(v1)k2∂µk3∂τk4∂tk5
,

(5.2.30)

∂|k1|+|k2|+|k3|+|k4|+|k5|v∗

∂(z0)k1∂(v1)k2∂µk3∂τk4∂tk5+1
=
∂|k1|+|k2|+|k3|+|k4|+|k5|(Bv∗+g(z∗, v∗, µ, t))

∂(z0)k1∂(v1)k2∂µk3∂τk4∂tk5
.

One can see from these formulae that if the estimates of the theorem hold for

the derivatives with respect to (z0, v1, µ, τ), then an additional differentiation

with respect to t does not affect these estimates (except possibly changing the

value of the constant C).
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The derivatives with respect to τ are expressed in terms of the other deriva-

tives via relation (5.2.24). It can be seen then that a differentiation with respect

to τ at fixed t must give essentially the same estimates as a differentiation with

respect to v1.

Thus, in the case α < β < 0, or 0 < α < β, it is sufficient to prove estimates

(5.2.26) or, respectively, (5.2.28) for the derivatives ∂|k1|+|k2|(z∗,v∗)

∂(z0)k1∂(v1)k2
, and in the

case α < 0 < β < it is sufficient to prove estimates (5.2.27) for the derivatives
∂|k1|+|k2|+|k3|(z∗,v∗)

∂(z0)k1∂(v1)k2∂µk3
. In fact, the calculation of these derivatives in the case

α < β < 0 is not necessary because it can be reduced to the case 0 < α < β

by applying the time reversion by rule (5.2.29). In the two remaining cases

0 < α < β and α < 0 < β the calculations are quite similar so we will present

the proof only for the more difficult case 0 < α < β (estimates for the first

derivatives for α < 0 < β can be found in Shilnikov [67]). It remains for us to

prove that

∂|k1|+|k2|(z∗, v∗)

∂ (z0)
k1 ∂ (v1)

k2
≤







C(k) e|k1|αt
if |k2| = 0

and |k1|α < β ,

C(k) eβ(t−τ)+|k1|ατ
if |k2| 6= 0

or |k1|α > β ,

(5.2.31)

where 0 < α < β and 1 ≤ k ≡ |k1| + |k2| ≤ r. We will use induction on k,

starting with k = 1. For the first derivatives, estimates (5.2.31) take the form

∂(z∗, v∗)

∂z0
≤ C eαt

∂(z∗, v∗)

∂v1
≤ C e−β(τ−t) .

(5.2.32)

Since the first estimate is symmetric to the second with respect to the

time reversion (5.2.29), it is sufficient to prove only the first inequality in

(5.2.32).

As mentioned above, the derivative (Z∗, V ∗) ≡ ∂(z∗,v∗)
∂z0 can be found as the

unique solution of the boundary-value problem Z(0) = I, V (τ) = 0 associated

with the system of variational equations (5.2.20). The existence of this solution

is guaranteed by Theorem 5.11 (see remarks after the theorem). Moreover, it
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follows that the solution is a fixed point of the integral operator







Z̄(t)=e
At +

∫ t

0

e
A(t−s) [

f
′
z(z

∗(s), v∗(s), µ, s)Z(s)+f
′
v(z∗(s), v∗(s), µ, s)V (s)

]
ds ,

V̄ (t)=−

∫ τ

t

e
−B(s−t) [

g
′
z(z

∗(s), v∗(s), µ, s)Z(s)+g
′
v(z∗(s), v∗(s), µ, s)V (s)

]
ds

(5.2.33)

which is obtained by a formal differentiation of integral operator (5.2.15) and

which is, in fact, the integral operator of the type (5.2.15) written out for

the system of variational equations (5.2.20). The fixed point is the limit

of the iterations (Zn+1(t), V n+1(t)) = (Zn(t), V n(t)) computed by formula

(5.2.33), starting with an arbitrary initial point (Z(0)(t), V (0)(t)). There-

fore, to derive the estimate given by the first inequality in (5.2.32), it is

sufficient to prove that if this estimate holds for (Z, V ), then (Z̄, V̄ ) in sys-

tem (5.2.33) satisfies the same estimate with the same constant C (in this

case, obviously, all iterations would satisfy the same estimate, as well as their

limits).

Choose α̃ < α so that the spectrum of the matrix A still lies to the left of

the line Re (·) = α̃ (see (5.2.2)). We can modify (5.2.3) so that

∥
∥eAs

∥
∥ ≤ eα̃s , for s ≥ 0 .

Since ‖(f, g)′z,v‖ is bounded by some small ξ (see (5.2.4)), it follows from

(5.2.33) that

‖Z̄(t)‖ ≤ eαt + ξ

∫ t

0

eα̃(t−s)‖(Z(s), V (s))‖ ds ,

‖V̄ (t)‖ ≤ ξ

∫ τ

t

e−β(s−t)‖(Z(s), V (s))‖ ds .

Now, our desired result follows immediately: an integration of the inequalities

above shows that if

‖(Z(t), V (t))‖ ≤ Ceαt , (5.2.34)
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then

‖Z̄(t)‖ ≤

(

1 + C
ξ

α− α̃

)

eαt , ‖V̄ (t)‖ ≤ C
ξ

β − α
eαt .

Thus, if ξ is sufficiently small and C is sufficiently large, then ‖(Z̄(t), V̄ (t))‖

satisfies (5.2.34) with the same C.

We have proved the theorem for the case k = 1 and may proceed to derive

the estimates for higher-order derivatives. Suppose the theorem holds for all

derivatives of order less than or equal to some q ≥ 1. Let us prove estimates

(5.2.31) for the derivatives of order k = |k1| + |k2| = q + 1.

Denote

(Zk1,k2 , Vk1,k2) =
∂k(z, v)

∂ (z0)
k1 ∂ (v1)

k2
.

For k ≥ 2, the derivatives (Z∗
k1,k2

, V ∗
k1,k2

) of the solution (z∗, v∗) of the

boundary-value problem (5.2.11) satisfy the equation







Z∗
k1,k2

(t) =

∫ t

0

eA(t−s) ∂
kf(z∗, v∗, µ, s)

∂ (z0)
k1 ∂ (v1)

k2
ds ,

V ∗
k1,k2

(t) = −

∫ τ

t

e−B(s−t) ∂
kg(z∗, v∗, µ, s)

∂ (z0)
k1 ∂ (v1)

k2
ds .

(5.2.35)

Recall the formula

∂|p|φ(ψ(x))

∂xp
=

|p|
∑

i=1

∂iφ

∂ψi

∑

j1 + · · · + ji = p
|j1| ≥ 1, . . . , |ji| ≥ 1

Cj1,...,ji
∂|j1|ψ

∂xj1
· · · · ·

∂|ji|ψ

∂xji

for the derivatives of the superposition of functions. Here φ and ψ are some

vector functions, p and j1, . . . , ji are multi-indices, ∂iφ
∂ψi denotes the vector

of all i-th order derivatives of φ with respect to ψ; the irrelevant constant

factors Cj1,...,ji are independent of the specific functions φ and ψ. Applying

this formula to (5.2.35) it follows that (Z∗
k1,k2

, V ∗
k1,k2

) is the fixed point of the

integral operator
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Z̄k1,k2(t) =

∫ t

0

eA(t−s)f ′z,v(z
∗(s), v∗(s), µ, s)(Zk1,k2(s), Vk1,k2(s)) ds

+

k∑

i=2

∫ t

0

eA(t−s) ∂if

∂(z, v)i

∣
∣
∣
∣
(z∗(s),v∗(s))

×
∑

j

Cj1,...,ji(Z
∗
j11,j12(s), V

∗
j11,j12(s)) · · · (Z

∗
ji1,ji2(s), V

∗
ji1,ji2(s)) ds

V̄k1,k2(t) = −

∫ τ

t

e−B(s−t)g′z,v(z
∗(s), v∗(s), µ, s)(Zk1,k2(s), Vk1,k2(s)) ds

−
k∑

i=2

∫ τ

t

e−B(s−t) ∂ig

∂(z, v)i

∣
∣
∣
∣
(z∗(s),v∗(s))

×
∑

j

Cj1,...,ji(Z
∗
j11,j12(s), V

∗
j11,j12(s)) · · · (Z

∗
ji1,ji2(s), V

∗
ji1,ji2(s)) ds

(5.2.36)

where the inner summation is taken over all multi-indices j such that j11 +

· · · + ji1 = k1, j12 + · · · + ji2 = k2 and |jp1| + |jp2| ≥ 1 for all p = 1, . . . , i.

To derive the estimates (5.2.31) for (Z∗
k1,k2

, V ∗
k1,k2

) we follow the same pro-

cedure as in the case of the first derivatives. It is sufficient to check that if

(Zk1,k2(s), Vk1,k2(s)) satisfies these estimates, then (Z̄k1,k2(t), V̄k1,k2(t)) satis-

fies them as well, with the same constant C(q + 1).

Note that the second integrals in formula (5.2.36) include only the deriva-

tives of orders less than or equal to q = k − 1: since |j1| + · · · + |ji| = k, it

follows that if |jp| = k for some p = 1, . . . , i, then all the other j’s must be zero

which is not the case (the summation is taken over non-zero multi-indices).

Therefore, according to the induction hypothesis, estimates (5.2.31) hold for

(Z∗
jp1,jp2

(s), V ∗
jp1,jp2

(s)) in (5.2.36). In particular, if |k2| = 0 (no differentia-

tion with respect to v1) and |k1|α < β, then jp2 ≡ 0 and |jp1|α < β for all

p = 1, . . . , i. Thus, in this case,

‖(Z∗
jp1,jp2

(s), V ∗
jp1,jp2

(s))‖ ≤ C(q)e|jp1|αs (5.2.37)
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and

i∏

p=1

‖(Z∗
jp1,jp2

(s), V ∗
jp1,jp2

(s))‖ ≤ C(q)ie(|j11|+···+|ji1|)αs = C(q)ie|k1|αs .

(5.2.38)

If |k2| 6= 0, then at least one of jp2 is non-zero and the corresponding term in

the product can be estimated as follows:

‖(Z∗
jp′1,jp′2

(s), V ∗
jp′1,jp′2

(s))‖ ≤ C(q)e−β(τ−s)+|jp′1|ατ . (5.2.39)

All other terms may be estimated as follows:

‖(Z∗
jp1,jp2

(s), V ∗
jp1,jp2

(s))‖ ≤ C(q)e|jp1|ατ (5.2.40)

(compare with (5.2.31): we used α > 0 and t ≤ τ , so e|jp1|αt ≤ e|jp1|ατ ; we also

used β > 0 so e−β(τ−t) ≤ 1). It follows from these estimates that

i∏

p=1

‖(Z∗
jp1,jp2

(s), V ∗
jp1,jp2

(s))‖ ≤ C(q)ie−β(τ−s)e(|j11|+···+|ji1|)ατ

= C(q)ie−β(τ−s)+|k1|ατ . (5.2.41)

Finally, if |k2| = 0 but |k1|α > β, then for some multi-indices j these products

may be estimated by (5.2.38), and for the others by (5.2.41). Note that if

|k1|α > β, then e−β(τ−s)+|k1|ατ > e|k1|αs at s ≤ τ ; i.e. in this case the estimate

(5.2.41) majorizes (5.2.38). Therefore, if |k2| = 0 but |k1|α > β, then all

products in the second integrals of (5.2.36) satisfy (5.2.41), as if |k2| 6= 0.

Recall that all derivatives of f and g are uniformly bounded. Thus, it follows

from the above considerations that

‖Z̄k1,k2(t)‖ ≤

∫ t

0

ξeα(t−s)‖Zk1,k2(s)‖ ds

+







C∗(q)

∫ t

0

eα(t−s)e|k1|αs ds if |k2| = 0 and |k1|α < β ,

C∗(q)

∫ t

0

eα(t−s)e−β(τ−s)+|k1|ατ ds if |k2| 6= 0 or |k1|α > β ,
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‖V̄k1,k2(t)‖ ≤

∫ τ

t

ξe−β̃(s−t)‖Vk1,k2(s)‖ ds

+







C∗(q)

∫ τ

t

e−β̃(s−t)e|k1|αs ds if |k2| = 0 and |k1|α < β ,

C∗(q)

∫ τ

t

e−β̃(s−t)e−β(τ−s)+|k1|ατ ds if |k2| 6= 0 or |k1|α > β ,

(5.2.42)

where C∗(q) is some constant and β̃ > β is chosen close to β such that the

spectrum of the matrix B still lies strictly to the right of the line Re (·) = β̃.

This means that the following modification of the estimate (5.2.3) for the

matrix exponent holds:
∥
∥e−Bs

∥
∥ ≤ e−β̃s for s ≥ 0 .

According to (5.2.31), if |k2| = 0 and |k1|α < β, we have ‖(Zk1,k2(s),

Vk1,k2(s))‖ ≤ C(q + 1)e|k1|αs. Substituting this into (5.2.42) gives

‖Z̄k1,k2(t)‖ ≤ eαt(ξC(q + 1) + C∗(q))

∫ t

0

e(|k1|−1)αs ds

≤
ξC(q + 1) + C∗(q)

(|k1| − 1)α
e|k1|αt ,

‖V̄k1,k2(t)‖ ≤ eβ̃t(ξC(q + 1) + C∗(q))

∫ τ

t

e−(β̃−|k1|α)s ds

≤
ξC(q + 1) + C∗(q)

β̃ − |k1|α
e|k1|αt , (5.2.43)

i.e. ‖(Z̄k1,k2(t), V̄k1,k2(t))‖ also satisfies estimates (5.2.31) with the same

constant C(q + 1) provided

(ξC(q + 1) + C∗(q))max

(
1

(|k1| − 1)α
,

1

β̃ − |k1|α

)

≤ C(q + 1) .

This finishes our proof for the particular case |k2| = 0, |k1|α < β. Note that

in deriving (5.2.42) we have applied the obvious inequality (here a ≤ b)

∫ b

a

eδs ds ≤
1

|δ|

{

eδb if δ > 0 ,

eδa if δ < 0
(5.2.44)

and the condition β̃ − |k1|α > 0 was used in an essential way.
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If |k2| 6= 0 or |k1|α > β, we have

‖(Zk1,k2(s), Vk1,k2(s))‖ ≤ C(q + 1)e−β(τ−s)e|k1|ατ .

Substituting this into (5.2.42) gives

‖Z̄k1,k2(t)‖ ≤ eαt(ξC(q + 1) + C∗(q))e−βτe|k1|ατ
∫ t

0

e(β−α)s ds

≤
ξC(q + 1) + C∗(q)

(β − α)
e−β(τ−t)e|k1|ατ ,

‖V̄k1,k2(t)‖ ≤ eβ̃t(ξC(q + 1) + C∗(q))e−βτe|k1|ατ
∫ τ

t

e−(β̃−β)s ds

≤
ξC(q + 1) + C∗(q)

β̃ − β
e−β(τ−t)e|k1|ατ (5.2.45)

(we used β − α > 0 and β̃ − β > 0). It follows that if

(ξC(q + 1) + C∗(q))max

(
1

β − α
,

1

β̃ − β

)

≤ C(q + 1) ,

then ‖(Z̄k1,k2(t), V̄k1,k2(t))‖ satisfies estimates (5.2.31) with the same constant

C(q + 1).

This completes the proof of the theorem.

5.3. Theorem on invariant foliation

For our purposes, the most important property of the globally dichotomic

systems introduced in the previous section is the existence of some invariant

foliation. We will prove the existence of this foliation by considering the limit

case of the above boundary-value problem which corresponds to τ = +∞ (we

have already used such method in Sec. 2.8). Recall that we call a system of

differential equations globally dichotomic if it has the form

ż = Az + f(z, v, µ, t) ,

v̇ = Bv + g(z, v, µ, t) ,
(5.3.1)
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where z ∈ R
n, v ∈ R

m, t is the time variable and µ is a vector of parameters.

The functions f and g are C
r-smooth (r ≥ 1), and all their derivatives are as-

sumed to be uniformly bounded; moreover, their first derivatives are supposed

to be uniformly small:
∥
∥
∥
∥

∂(f, g)

∂(z, v)

∥
∥
∥
∥
< ξ (5.3.2)

for some sufficiently small constant ξ. Concerning the matrices A and B we

assume that the following estimates hold for all s ≥ 0:

∥
∥eA s

∥
∥ ≤ eαs ,

∥
∥e−B s

∥
∥ ≤ e−βs .

(5.3.3)

Choose a real γ (below γ ∈ (α, β)).

Definition 5.1. Take any point (z0, v0). Let (z0(t), v0(t)) be the trajectory

which starts with (z0, v0) at some t = t0. We denote as W s
γ (z0, v0, t0) the set

of points (z1, v1) such that the trajectory (z1(t), v1(t)) of (z1, v1) starting with

the same t = t0 satisfies

‖(z1(t), v1(t)) − (z0(t), v0(t))‖ ≤ Ceγt (5.3.4)

for all t ≥ t0. We call W s
γ (z0, v0, t0) the conventionally stable or γ-stable set

of (z0, v0) at t = t0.
5

Theorem 5.13. For any (z0, v0, t0), for any γ ∈ (α, β), the conventionally

stable set W s
γ is a Cq-smooth manifold (where q is a maximal integer such that

qα < β and q ≤ r) of the type

v = ϕ(z; z0, v0, t0, µ) ,

where the function ϕ does not depend on γ; it is defined at all z and depends

continuously on (z0, v0, µ, t0).

5Here we are concerned about the starting moment t = t0 because we consider a non-
autonomous system, so different starting moments correspond to different trajectories. Of
course, in the autonomous case where f and g do not depend on time the value of t0 does
not matter.



304 Chapter 5. Center Manifold. Local Case

Proof. As in the previous section, a solution (z(t), v(t)) satisfies the follow-

ing integral relation

z(t) = eA(t−t0)z(t0) +

∫ t

t0

eA(t−s)f(z(s), v(s), µ, s)d ,

v(t) = e−B(τ−t)v(τ) −

∫ τ

t

e−B(s−t)g(z(s), v(s), µ, s)ds

(5.3.5)

for any τ . Thus, if a point (z1, v1) belongs to the γ-stable set of a point (z0, v0),

then

z1(t) − z0(t) = eA(t−t0)(z1(t0) − z0(t0))

+

∫ t

t0

eA(t−s)[f(z1(s), v1(s), µ, s) − f(z0(s), v0(s), µ, s)]ds ,

v1(t) − v0(t) = −

∫ +∞

t

e−B(s−t)[g(z1(s), v1(s), µ, s) − g(z0(s), v0(s), µ, s)]ds

(5.3.6)

(we took into account that e−B(τ−t)eγτ → 0 as τ → +∞ for any fixed t, and

that v1(τ) − v0(τ) = O(eγτ ) by the definition of the γ-stable set).

Denote ζ(t) = z1(t) − z0(t), η(t) = v1(t) − v0(t). The solution of (5.3.6) is

a fixed point of the integral operator

ζ̄(t) = eA(t−t0)ζ0 +

∫ t

t0

eA(t−s)[f(z0(s) + ζ(s), v0(s) + η(s), µ, s)

− f(z0(s), v0(s), µ, s)]ds ,

η̄(t) = −

∫ +∞

t

e−B(s−t)[g(z0(s) + ζ(s), v0(s) + η(s), µ, s)

− g(z0(s), v0(s), µ, s)]ds ,

(5.3.7)

where ζ0 = z1(t0) − z0(t0). It follows from (5.3.7) that

‖ζ̄(t)‖ ≤ eα(t−t0)‖ζ0‖ +

∫ t

t0

eα(t−s)

∥
∥
∥
∥

∂(f, g)

∂(z, v)

∥
∥
∥
∥
· ‖ζ(s), η(s)‖ds ,

‖η̄(t)‖ ≤

∫ +∞

t

e−β(s−t)

∥
∥
∥
∥

∂(f, g)

∂(z, v)

∥
∥
∥
∥
· ‖ζ(s), η(s)‖ds .

(5.3.8)

Based on this estimate one can immediately see, that for any γ ∈ (α, β) if

a function (ζ(s), η(s)) is bounded in the γ-norm, i.e. it satisfies

‖ζ(s), η(s)‖ ≤ Ceγs (5.3.9)



5.3. Invariant foliation 305

for all s ≥ t0, then the operator (5.3.7) maps such a function into a func-

tion (ζ̄(t), η̄(t)) which satisfies the same condition. Moreover, exactly as in

Theorem 5.11 (compare with (5.2.17)), one can prove that the operator under

consideration is contracting in the γ-norm on the Banach space H[t0,+∞) of

functions satisfying (5.3.9).

Thus, according to the Banach contraction mapping principle, for any given

z1(t0), the system (5.3.6) has a unique solution (z1(t), v1(t)) which satisfies

(5.3.4). Due to uniqueness, this solution is independent of the choice of γ from

the interval (α, β).

By Theorem 3.25 the solution depends continuously on (z0, v0, t0, µ) and

on initial z = z1(t0) = z0(t0) + ζ0. In particular, we have that v = v1(t0) is

a continuous function of z = z1(t0). Thus, we have proved that the conven-

tionally stable manifold of any point z0 is a graph of some continuous function

v = ϕ(z).

Let us now prove the C
q-smoothness of the conventionally stable manifold.

It is equivalent to the C
q-smoothness of the solution (z1(t), v1(t)) of (5.3.6)

with respect to the initial condition z1(t0). By the formal differentiation of

(5.3.6), we have that the first derivative

(Z∗(t), V ∗(t)) ≡

(
∂z1(t)

∂z1(t0)
,
∂v1(t)

∂z1(t0)

)

,

when it exists, satisfies the equation

Z∗(t) = eA(t−t0) +

∫ t

t0

eA(t−s)f ′z,v(z1(s), v1(s), µ, s)(Z
∗(s), V ∗(s))ds ,

V ∗(t) = −

∫ +∞

t

e−B(s−t)g′z,v(z1(s), v1(s), µ, s)(Z
∗(s), V ∗(s))ds .

(5.3.10)

The further derivatives

(Z∗
k(t), V

∗
k (t)) ≡

(
∂kz1(t)

∂z1(t0)k
,
∂kv1(t)

∂z1(t0)k

)

must satisfy

Z∗
k(t) =

∫ t

t0

eA(t−s)f ′z,v(z1(s), v1(s), µ, s)(Z
∗
k(s), V

∗
k (s))ds+ Pk(t) ,

V ∗
k (t) = −

∫ +∞

t

e−B(s−t)g′z,v(z1(s), v1(s), µ, s)(Z
∗
k(s), V

∗
k (s))ds−Qk(t)

(5.3.11)
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where

Pk(t) =

∫ t

t0

eA(t−s)
k∑

i=2

∂if

∂(z, v)i

∣
∣
∣
∣
(z1(s),v1(s))

×
∑

j1+···+ji=k

Cj1,...,ji(Z
∗
j1(s), V

∗
j1(s)) · · · (Z

∗
ji(s), V

∗
ji(s))ds

Qk(t) =

∫ +∞

t

e−B(s−t)
k∑

i=2

∂ig

∂(z, v)i

∣
∣
∣
∣
(z1(s),v1(s))

×
∑

j1+···+ji=k

Cj1,...,ji(Z
∗
j1(s), V

∗
j1(s)) · · · (Z

∗
ji(s), V

∗
ji(s))ds.

(5.3.12)

Thus, when (Z∗
j , V

∗
j ) are known for j < k, the k-th derivative (Z∗

k , V
∗
k ) is the

fixed point of the operator

Z̄(t) =

∫ t

t0

eA(t−s)f ′z,v(z1(s), v1(s), µ, s)(Z(s), V (s))ds+ Pk(t)

V̄ (t) = −

∫ +∞

t

e−B(s−t)g′z,v(z1(s), v1(s), µ, s)(Z(s), V (s))ds−Qk(t) .

(5.3.13)

These equations are similar to Eqs. (5.2.35), (5.2.36) for the derivatives

of the solution of the boundary-value problem (5.2.11). Absolutely in the

same way as it was done there (Theorem 5.12), one can show that when

(Z∗
j (s), V

∗
j (s)) in (5.3.12) satisfy at j < k

‖Z∗
j (s), V

∗
j (s)‖ ≤ Ce(max(α,jα)+ε)s (5.3.14)

for a small ε, then at kα < β, the integral which defines Qk(t) is convergent

and

‖Pk(t), Qk(t)‖ ≤ const ekαt .

Moreover, the operator (5.3.13) maps the space of functions (Z(t), V (t))

bounded in the γ-norm into itself, provided γ ∈ (max(α, kα), β), and it is

contracting in that norm.

Thus, once (Z∗
j (s), V

∗
j (s)) satisfying (5.3.14) are known at j < k, the formal

solution (Z∗
k(s), V

∗
k (s)) of (5.3.11) exists and satisfies (5.3.14) with j = k.

Therefore, by induction we get the existence of bounded in the γ-norm (γ ∈

(max(α, kα), β)) formal derivatives (Z∗
k(s), V

∗
k (s)) up to the order q.
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To prove that the formal derivatives are the derivatives indeed, we will show

that the solution (z1(t), v1(t)) of system (5.3.6) is the limit, as τ → +∞, of a

solution (z∗τ (t), v
∗
τ (t)) of the boundary-value problem discussed in the previous

section, with the boundary data (z0 = z1(t0) = z0(t0) + ζ0, v1 = v0(τ)), and

that for each k = 1, . . . , q the k-th derivative (Z∗
kτ (t), V

∗
kτ (t)) of (z∗τ (t), v

∗
τ (t))

with respect to z0 converges to the solution (Z∗
k(t), V

∗
k (t)) of (5.3.12). Precisely,

we will prove that on any fixed finite interval of time

sup ‖(z∗τ (t), v
∗
τ (t)) − (z1(t), v1(t))‖ → 0 as τ → +∞ (5.3.15)

and

sup

∥
∥
∥
∥

∂k(z∗τ (t), v
∗
τ (t))

∂(z0)k
− (Z∗

k(t), V
∗
k (t))

∥
∥
∥
∥
→ 0 as τ → +∞

k = 1, . . . , q (5.3.16)

from which the C
q-smoothness of (z1(t), v1(t)) with respect to z0 follows im-

mediately.

To prove (5.3.15) note that the operator given by (5.3.7) is the limit of the

operator

ζ̄(t) = eA(t−t0)ζ0 +

t∫

t0

eA(t−s)
[

f(z0(s) + ζ(s), v0(s) + η(s), µ, s)

− f(z0(s), v0(s), µ, s)
]

ds ,

η̄(t) =







−

∫ τ

t

e−B(s−t)
[

g(z0(s) + ζ(s), v0(s) + η(s), µ, s)

− g(z0(s), v0(s), µ, s)
]

ds for t ≤ τ

0 for t ≥ τ

(5.3.17)

More precisely, as τ → +∞, the operator (5.3.17) defined on the space of

functions (ζ, η) which are bounded in the γ-norm for some γ ∈ (α, β) has the

operator (5.3.7) as a limit in the γ′-norm for any γ′ ∈ (γ, β). To prove this

statement it is sufficient to check that

sup
t≥t0

∥
∥
∥
∥
e−γ

′t

∫ +∞

max(t,τ)

e−B(s−t)
[

g(z0(s) + ζ(s), v0(s) + η(s), µ, s)

− g(z0(s), v0(s), µ, s)
]

ds

∥
∥
∥
∥
→ 0 as τ → +∞
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provided ‖ζ(s), η(s)‖ ≤ Ceγs. This integral can be estimated as follows:

∥
∥
∥
∥
e−γ

′t

∫ +∞

max(t,τ)

e−B(s−t)
[

g(z0(s) + ζ(s), v0(s) + η(s), µ, s)

− g(z0(s), v0(s), µ, s)
]

ds

∥
∥
∥
∥

≤ e−γ
′t

∫ +∞

max(t,τ)

e−β(s−t)‖g′(z,v)‖ ‖ζ(s), η(s)‖ds

≤ Cξe−γ
′t

∫ +∞

max(t,τ)

e−β(s−t)eγsds =
Cξ

β − γ
e(β−γ

′)te(γ−β) max(t,τ) .

Thus, since γ < γ′ < β,

sup
t≥0

∥
∥
∥
∥
e−γ

′t

∫ +∞

max(t,τ)

e−B(s−t)
[

g(z0(s) + ζ(s), v0(s) + η(s), µ, s)

− g(z0(s), v0(s), µ, s)
]

ds

∥
∥
∥
∥
≤

Cξ

β − γ
e(γ−γ

′)τ

which proves our claim because γ ′ > γ.

Since the fixed point of a contracting operator depends continuously on

parameters, it follows that as τ → +∞, the fixed point (ζ∗τ , η
∗
τ ) of (5.3.17)

tends to the fixed point (ζ∗∞, η
∗
∞) of (5.3.7) in the γ′-norm. For finite τ , the

fixed point (ζ∗τ , η
∗
τ ) of (5.3.17) represents (on the interval t ∈ [t0, τ ]) the solution

(z∗τ (t), v
∗
τ (t)) = (z0(t)+ζ

∗
τ (t), v0(t)+η

∗
τ (t)) of the boundary-value problem with

the boundary data z0 = z0(t0) + ζ0, v1 = v0(τ).

Thus, we have that (z∗τ (t), v
∗
τ (t)) converges to the solution (z1(t), v1(t)) =

(z0(t) + ζ∗∞(t), v0(t) + η∗∞(t)) of (5.3.6) in the γ′-norm, from which (5.3.15)

obviously follows.

As we noted in Sec. 5.2, the formal differentiation with respect to the bound-

ary data is the correct way to determine the derivatives of (z∗τ , v
∗
τ ). Namely,

the k-th derivative (Z∗
kτ (t), V

∗
kτ (t)) is found as the fixed point of the operator

Z̄(t) =

∫ t

t0

eA(t−s)f ′z,v(z
∗
τ (s), v

∗
τ (s), µ, s)(Z(s), V (s))ds+ Pkτ (t) ,

V̄ (t) = −

∫ τ

t

e−B(s−t)g′z,v(z
∗
τ (s), v

∗
τ (s), µ, s)(Z(s), V (s))ds−Qkτ (t)

(5.3.18)
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where

Pkτ (t) =

∫ t

t0

eA(t−s)
k∑

i=2

∂if

∂(z, v)i

∣
∣
∣
∣
(z∗τ (s),v∗τ (s))

×
∑

j1+···+ji=k

Cj1,...,ji(Z
∗
j1τ (s), V

∗
j1τ (s)) · · · (Z

∗
jiτ (s), V

∗
jiτ (s))ds

Qkτ (t) =

∫ +∞

t

e−B(s−t)
k∑

i=2

∂ig

∂(z, v)i

∣
∣
∣
∣
(z∗τ (s),v∗τ (s))

×
∑

j1+···+ji=k

Cj1,...,ji(Z
∗
j1τ (s), V

∗
j1τ (s)) · · · (Z

∗
jiτ (s), V

∗
jiτ (s))ds .

(5.3.19)

The operator (5.3.18) takes functions bounded in the γ-norm (with γ ∈

(kα, β)) into functions bounded in the same norm and it is contracting in that

norm, uniformly for all τ (see Theorem 5.12). Thus, the solution satisfies

‖Z∗
kτ (t), V

∗
kτ (t)‖ ≤ Ce(max(α,kα)+ε)t . (5.3.20)

Now, take k0 ≤ q and assume that (5.3.16) holds at all k < k0. Let us

extend the operator (5.3.18) onto the space of functions defined at all t ≥

t0, by assuming that the right hand side of the second equation in (5.3.18)

vanishes identically at t ≥ τ . As above, one can see that on the space of

functions bounded in the γ-norm (with γ ∈ (kα, β)) the integral operator

depends continuously on τ in the γ ′-norm (γ′ ∈ (γ, β)) and its limit as τ → +∞

is given by the operator (5.3.11).

Indeed, by (5.3.15) and by assumed validity of (5.3.16) for all j < k0, we

have

‖Pk(t) − Pkτ (t)‖γ′ ≤ sup
t≥t0

e−γ
′t

∫ t

t0

eα(t−s)ϕ(s, τ)ds

where ϕ(s, τ) → 0 (as τ → +∞) uniformly on any fixed bounded interval of s.

Thus,

lim
τ→+∞

‖Pk(t) − Pkτ (t)‖γ′ ≤ lim
τ→+∞

sup
t≥t(τ)

e−γ
′t

∫ t

t0

eα(t−s)ϕ(s, τ)ds (5.3.21)

for some t(τ) which tends to infinity as τ → +∞. Note that ϕ is the norm of

difference between the sums entering the integrands in (5.3.12) and (5.3.19).

Therefore, by (5.3.14) and (5.3.20),

ϕ ≤ const eγs .
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Plugging this in (5.3.21) gives

lim
τ→+∞

‖Pk(t) − Pkτ (t)‖γ′ ≤ const lim
τ→+∞

e(γ−γ
′)t(τ) = 0 .

In the same way we get

lim
τ→+∞

‖Qk(t) −Qkτ (t)‖γ′ ≤ const lim
τ→+∞

sup
t≥t(τ)

e−γ
′t

∫ +∞

max(t,τ)

e−β(s−t)eγsds

whence

lim
τ→+∞

‖Qk(t) −Qkτ (t)‖γ′ = 0 .

Absolutely analogously we prove the validity of limit transition to (5.3.11) for

the first summands in (5.3.18).

As the fixed point of a contraction operator depends continuously on a

parameter, the limit (in the γ′-norm and therefore in the usual norm on any

finite interval of t) of the solution of (5.3.18) as τ → +∞ is the solution

(Z∗
k0
, V ∗
k0

) of (5.3.11). Thus, the validity of (5.3.16) at all k < k0 ≤ q implies

its validity at k = k0. By induction we get that (5.3.16) holds at all k ≤ q

which gives the theorem.

Remark. The manifold W s
γ is the same for all γ ∈ (α, β). Thus, trajec-

tories of the points of the conventionally stable manifold of (z0, v0, t0) satisfy

(5.3.4) for any γ in this interval and, therefore, they satisfy

‖(z1(t), v1(t)) − (z0(t), v0(t))‖ = o(eγt) (5.3.22)

Note that the manifold W s
γ (z0, v0, t0, µ) is not, in general, invariant with

respect to system (5.3.1), with the only exception when the system is au-

tonomous and (z0, v0) is an equilibrium state. In this case W s
γ is the set of

points whose forward trajectories tend to the equilibrium in the γ-norm:

‖(z(t), v(t)) − (z0, v0)‖ = o(eγt) .

Hence, it is an invariant manifold by definition.

In the general case, the collection of all conventionally stable manifolds

forms an invariant foliation of the extended phase space R
n+m × R

1 (here R
1

stands for the time axis). Indeed, if some point (z1, v1) belongs to a conven-

tionally stable manifold of some other point (z0, v0), then W s
γ (z1, v1, t0, µ) =

W s
γ (z0, v0, t0, µ), by definition of W s

γ . Therefore, if two conventionally sta-

ble manifolds intersect at some point, they must coincide. Thus, the col-

lection of these manifolds is a continuous foliation indeed. To prove that
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this is an invariant foliation it is sufficient to note that XtW
s
γ (z0, v0, t0, µ) =

W s
γ (z0(t), v0(t), t0 + t, µ) (we denote as Xt the time t shift by the trajectories

of the system). If the system is autonomous, then W s
γ does not depend on

the initial moment t0, so we have an invariant foliation of the phase space.

If the system is non-autonomous and depends periodically on time with some

period T , then any surface t = t0 = const is a cross-section and the time T

shift along the trajectories of the system is the Poincaré map (z, v) 7→ (z(t0 +

T ), v(t0 + T )). Due to periodicity, W s
γ (z0, v0, t0, µ) = W s

γ (z0, v0, t0 + T, µ).

Thus, XTW
s
γ (z0, v0, t0, µ) = W s

γ (z0(t0 + T ), v0(t0 + T ), t0, µ), which implies

that on the cross-section the collection of conventionally stable manifolds is an

invariant foliation for the Poincaré map.

Thus, Theorem 5.13 establishes the existence of a continuous invariant

foliation with Cq-smooth leaves of the form v = ϕ(z; z0, v0, t0). Let us denote

Φ(z0, v0, t0, µ) =
∂ϕ

∂z

∣
∣
∣
∣
z=z0

.

The function Φ defines the field of tangents to the leaves of the invariant

foliation: {(v − v0) = Φ(z0, v0, t0, µ)(z − z0), t = t0}. This field must be

invariant with respect to the linearized system. The leaves of the invariant

foliation are recovered by integrating the field of tangents; i.e. each leaf satisfies

the equation (for each fixed t0)

∂v

∂z
= Φ(z, v, t0, µ) . (5.3.23)

Therefore, being a solution of the differential equation above, the function

v = ϕ(z; z0, v0, t0, µ) must have at least the same smoothness with respect to

the initial conditions (z0, v0, t0) and parameter µ, as the smoothness of Φ.

In general, the function Φ (and ϕ as well) is not smooth with respect to

(z0, v0, t0, µ). Let us study the question of smoothness of the foliation in more

detail. Let β̃ ≥ 0 be a constant such that for the trajectory (z(t), v(t)), the

derivatives with respect to the initial conditions (z0, v0) = (z(t0), v(t0)) and µ

satisfy the following estimates
∥
∥
∥
∥

∂k(z(t), v(t))

∂(z0, v0, µ)k

∥
∥
∥
∥
≤ const ekβ̃t. (5.3.24)

It can be proved that when the spectrum of the matrix
(
A 0

0 B

)
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lies strictly to the left of the imaginary axis, then the constant ξ in (5.3.2)

which bounds the derivatives of f and g may be taken to be so small that all

the derivatives ∂k(z(t),v(t))
∂(z0,v0,µ)k are bounded. Hence, β̃ = 0 in this case.

In general, β̃ is taken such that the spectrum of B (and A as well) lies

strictly to the left of the line Re(·) = β̃. In this case, estimates (5.3.24) hold

provided ξ is taken sufficiently small. Note that for a fixed β̃ an increase in the

order of the derivative estimated by (5.3.24) requires a decrease in the value

of the constant ξ.

It follows from the proof of Theorem 5.13 that the function Φ which defines

the tangents to the leaves of the invariant foliation is equal to V ∗(t0), where V ∗

is the solution of the system of integral equations (5.3.10) where (z1(s), v1(s))

is now equal to (z0(s), v0(s)) (the trajectory of the point (z0, v0)). Since the

functions z(t) and v(t) involved in (5.3.10) depend on the initial conditions

(z(t0), v(t0)) = (z0, v0), the solution V ∗ is also a function of (z0, v0). As in the

proof of Theorem 5.13, one can verify that the derivatives of V ∗ with respect

to (z0, v0, µ) can be found as solutions of the corresponding integral equations

obtained by a formal differentiation of (5.3.10). Namely, the k-th derivative

(Z∗0
k , V

∗0
k ) ≡

∂k

∂(z0, v0, µ)k
(Z∗, V ∗)

is the fixed point of the operator

Z̄(t) =

∫ t

t0

eA(t−s)f ′z,v(z(s), v(s), µ, s)(Z(s), V (s))ds

+

k∑

i=1

∫ t

t0

eA(t−s)

(
∂i

∂(z0, v0, µ)i
f ′z,v(z(s), v(s), µ, s)

)

· (Z∗0
k−i(s), V

∗0
k−i(s))ds ,

V̄ (t) = −

∫ +∞

t

e−B(s−t)g′z,v(z(s), v(s), µ, s)(Z(s), V (s))ds

+
k∑

i=1

∫ +∞

t

e−B(s−t)

(
∂i

∂(z0, v0, µ)i
g′z,v(z(s), v(s), µ, s)

)

· (Z∗0
k−i(s), V

∗0
k−i(s))ds .

(5.3.25)

To assure that the fixed point of this operator does give the k-th derivative

of (Z∗, V ∗) we may consider the family of operators, depending on τ , where
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the infinite upper limit of the integral in the second equation is replaced by τ ,

and then take the limit as τ → +∞.6

By (5.3.24), the derivatives

∂i

∂(z0, v0, µ)i
(f, g)′z,v(z(s), v(s), µ, s) ,

entering (5.3.25) are estimated from above as const eiβ̃s. Based on this es-

timate, one can see, as in the proof of Theorem 5.12, that the integrals in

(5.3.25) converge, provided

α+ kβ̃ < β . (5.3.26)

Moreover, for any τ , the operators in the family under consideration take the

space of the functions bounded in the γ-norm (with γ ∈ (α+kβ̃, β)) into itself,

and are contracting on this space uniformly with respect to τ .

Thus, we obtain that the function Φ is C
k where k is the maximal possible

integer such that (5.3.26) holds. Of course, the order of differentiation may

not be higher than (r − 1) because the right-hand side of (5.3.10) contains

C
r−1-smooth functions (f, g)′z,v. We arrive at the following result.

Lemma 5.2. If for some β̃ ≥ 0 all the eigenvalues of the matrices B and A lie

strictly to the left of the line Re(·) = β̃, then the foliation by the conventionally

stable manifolds is Ck-smooth (provided the constant ξ in (5.3.2) is sufficiently

small), where k is the maximal integer such that k < (β−α)/β̃ and k ≤ r− 1.

In case r = +∞ and β̃ = 0 (i.e. the eigenvalues of A and B have strictly

negative real parts) this lemma shows that the foliation is C
∞-smooth. On

the contrary, if B has eigenvalues on the imaginary axis, then β̃ must be taken

positive and for any fixed value of ξ we obtain only finitely smooth foliation.

Theorem 5.13 and Lemma 5.2 are the main technical results which we will

use to prove the center manifold theorem, and the other theorems on local

invariant manifolds throughout this book. Note that applying these results to

the system obtained from (5.3.1) by a reversion of time gives us the existence

of another invariant foliation by conventionally unstable manifolds of the form

z = ψ(v).

We emphasize that the study of the boundary-value problem of the kind

introduced in the previous section is not solely for the purposes of establishing

6Observe that for finite τ the formal derivatives of the solution are indeed the derivatives
(see the corresponding arguments in Sec. 2.8).
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the invariant manifold theorems, but is also used in the analysis of non-local

bifurcations. Bearing in mind a future application of this sort, we stress the

following observation which was, in fact, already mentioned in the proof of

Theorem 5.12.

Lemma 5.3. Let (z∗(t; z0, v1, τ, µ), v∗(t; z0, v1, τ, µ)) be the solution of the

boundary-value problem z∗(0) = z0, v∗(τ) = v1 for system (5.3.1), and let

z0 and v1 depend on τ so that (z∗(0), v∗(0)) have some finite limit (z0, v0) as

τ → +∞. Then, the derivative of v∗(0) with respect to z0 tends to a value of

the function Φ, which defines the tangent to the conventionally stable manifold,

at the point (z0, v0).

To prove this lemma, observe that by hypothesis the solution (z∗(t), v∗(t))

of the boundary-value problem tends to the trajectory of (z0, v0) uniformly on

any fixed finite interval of t. Therefore, the statement of the lemma is nothing

more but a repetition of the claim in the proof of Theorem 5.13 that at k = 1

the fixed point of the integral operator (5.3.18) (finite τ) does have the solution

of (5.3.10) (τ = +∞) as a limit. In the same way it follows from (5.3.16) that

under the assumption of Lemma 5.3, all the derivatives of v∗(0) with respect

to z0 up to the order q have a finite limit as τ → +∞ (where q is the maximal

integer such that qα < β and q ≤ r).

5.4. Proof of theorems on center manifolds

In this section we complete our proof of the center manifold theorem. In fact,

we prove a more general result which embraces all local invariant manifold

theorems of this book.

Consider a local system of differential equations

ż = Az + f(z, v, µ)

v̇ = Bv + g(z, v, µ)
(5.4.1)

defined in a small neighborhood of an equilibrium state O(0, 0). We assume

that

f(0, 0, 0) = 0 , g(0, 0, 0) = 0 , (f, g)′z,v(0, 0, 0) = 0 .

We assume also that the matrices A and B satisfy inequality (5.3.3), i.e. the

characteristic exponents corresponding to the eigenvalues of the matrix A must

lie to the left of the line Re (·) = α and the other characteristic exponents must
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lie to the right of the line Re (·) = β in the complex plane. As shown in Sec. 5.2,

this system may be extended into the whole phase space such that the resulting

system is globally dichotomic. Theorem 5.13 then implies the existence of an

invariant manifold; namely, the γ-stable set of the point O. In fact, there is

a variety of invariant manifolds, depending on how we sub-divide the phase

variables into “z” and “v” parts: different choices of α and β would lead to

different separations of the spectrum of characteristic exponents and, therefore,

to different invariant manifolds.

Theorem 5.14. Let an equilibrium state O of system (5.4.1) have n charac-

teristic exponents to the left of the line Re (·) = α in the complex plane and let

the other m characteristic exponents lie to the right of the line Re (·) = β for

some β > α. If α < 0, then at µ = 0 the system has a uniquely defined strongly

stable (non-leading) invariant C
r-manifold W ss which is tangent to {v = 0} at

O and which contains all trajectories that tend to O exponentially as t→ +∞

at a rate faster than eγt for any 0 > γ > α. If the equilibrium state does not

disappear as µ varies and if it depends continuously on µ, then W ss depends

on µ continuously as well. Moreover, if the system is C
r-smooth with respect

to all variables including µ, the manifold W ss is C
r−1 with respect to µ (the

tangents to W ss are C
r−1 with respect to all variables).

Theorem 5.15. Under the hypotheses of the previous theorem, if α > 0, then

for all small µ the system has an extended stable invariant C
q-manifold W sE

(here q is the largest integer such that qα < β and q ≤ r) which is tangent to

{v = 0} at O at µ = 0 and which contains the set N+ of all trajectories which

stay in a small neighborhood of O for all positive times. Although W sE is not

unique, any two of them have the same tangent at each point of N+. Moreover,

when W sE is written as by v = ϕsE(z), all derivatives of the function ϕsE are

uniquely defined at all points of N+, up to order q. The manifold W sE depends

continuously on µ and if the system is C
r-smooth with respect to all variables

including µ, then the manifold W sE is C
q with respect to µ.

In the proof of these theorems, the local manifolds W ss and W sE appear

as the intersection of the invariant manifold W s
γ of system (5.3.1) (obtained by

extending the local system (5.4.1) onto the whole phase space R
m+n) with a

small neighborhood of the equilibrium state O at the origin. Let us recall that

W s
γ is the γ-stable set of O and γ ∈ (α, β). In the case α < 0 we can choose

the value of γ to be negative and the uniqueness of W ss then follows directly
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from the definition: W ss is the set of all trajectories which tend to O faster

than the decrease in the exponent eγt. If α > 0, then γ > 0 and, therefore, the

manifold W s
γ becomes a set of trajectories of system (5.3.1) which diverge from

the origin sufficiently slowly. Hence, which points in a small neighborhood of

O are included in W sE depends on how we extend the local system (5.4.1) onto

the whole phase space. This implies that W sE is not uniquely defined by the

local system. Nevertheless, regardless of the method of extension of the local

system, all points of the set N+, which is composed of forward trajectories

which never leave a small neighborhood of O, belong, by definition, to the

γ-stable set of O for any γ > 0. Therefore, every manifold W sE contains N+.

The uniqueness of the tangent to W sE at any point of N+ does not follow

directly from Theorem 5.13 but this can nevertheless be extracted from its

proof. Indeed, we have shown that

∂ϕsE

∂z

∣
∣
∣
∣
z=z0

= V ∗|t=0 ,

where V ∗ is found as a solution of the integral equation






Z∗(t) = eAt +

∫ t

0

eA(t−s)
(

f ′z(z0(s), v0(s), µ)Z∗(s)

+ f ′v(z0(s), v0(s), µ, s)V
∗(s)

)

ds ,

V ∗(t) = −

∫ +∞

t

e−B(s−t)(g′z(z0(s), v0(s), µ)Z∗(s)

+ g′v(z0(s), v0(s), µ)V ∗(s)) ds .

(5.4.2)

Here, (z0(s), v0(s)) is the trajectory of the point (z0, v0) = ϕsE(z0). It follows

from the proof of Theorem 5.13 that this solution is defined uniquely along

with all derivatives with respect to z0 up to order (q− 1). Consequently, since

for (z0, v0) ∈ N+ the trajectory of this point is defined by the local system

only, it follows that the derivatives of ϕsE at all points of N+ are uniquely

defined.

Concerning the smoothness of W sE with respect to the parameters µ, we

note that in the case α > 0 we can include µ amongst the variables z upon

adding the equation µ̇ = 0 to system (5.4.1). Therefore, in this case the

smoothness with respect to µ is the same as with respect to z. If α < 0,

this no longer works, and the smoothness of the non-leading manifold with
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respect to the parameters does not follow from Theorem 5.13. We will study

this question below in a more general framework on the smoothness of an

associated invariant foliation.

Theorems 5.14 and 5.15 allow us to reconstruct the following hierarchy of

local invariant manifolds. Let us choose a coordinate frame near an equilibrium

state O such that the linear part of the system assumes the Jordan form. We

have, in general,

ẏi = Aiyi + fi(x, y, z, µ)

żj = Cjzj + hj(x, y, z, µ)

ẋ = Bx+ g(x, y, z, µ)

(5.4.3)

where the spectrum of the matrix Ai lies on the straight line Re (·) = αi in the

complex plane, the spectrum of B lies on the imaginary axis,7 and the spectrum

of a matrix Cj lies on the straight line Re (·) = βj (here the indices i and j

assume a finite range of values); the function f , g and h are nonlinearities. Let

· · · < α2 < α1 < 0 < β1 < β2 < · · · .

According to the theorems above, the following result holds.

Theorem 5.16. There exists a sequence of conventionally stable smooth local

invariant manifolds

· · · ⊂W s
−2 ⊂W s

−1 ⊂W s
0 ⊂W s

1 ⊂ · · ·

of the kind 8

W s
−i : (x, z, y1, . . . , yi−1) = ϕssi (yi, yi+1, . . . )

W s
−1 : (x, z) = ϕss1 (y)

W s
0 : z = ϕsC(x, y, µ)

W s
j : (zj+1, . . . ) = ϕsEj (x, y, z1, . . . , zj , µ) ,

where the functions ϕ vanish at zero along with the first derivatives.

7In the structurally stable case this part of the spectrum is missing.
8Here W s

j are C
q-smooth if qβj < βj+1 and q ≤ r, and W s

−i are C
r-smooth (including

W0).
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Here, the manifolds with negative indices are given by Theorem 5.14 and

the others are from Theorem 5.15. They are embedded into each other by

construction: they are the local pieces of the corresponding conventionally

stable manifolds of O for some globally defined system and the latter are

embedded into each other by definition — the trajectories which converge

to O in the γ-norm, converge to O in the γ ′-norm as well, for any γ′ > γ.

The manifold W s
0 is the center stable manifold of Sec. 5.1 and the manifold

W s
−1 is the strongly stable manifold in this case. If the equilibrium is struc-

turally stable, then there is no characteristic exponents on the imaginary axis

and the manifold W s
0 is the stable manifold of O; it coincides with W s

−1 at

µ = 0 and the manifold W s
−2 is now the non-leading manifold of Sec. 2.6 —

the other manifolds W s
−i are, consequently the manifolds W sss, W ssss, etc.,

defined in that section.

For the case of structurally stable saddles, the manifold W s
1 gives the ex-

tended stable manifold defined in Sec. 2.7. In the case where all characteristic

exponents of O have positive real parts and where O is completely unstable,

the manifold W s
1 of O is the leading unstable manifold introduced in Sec. 2.6.

By applying Theorems 5.14 and 5.15 to the system which is derived from

(5.4.1) by a reversion of time, we obtain the following sequence of convention-

ally unstable invariant manifolds

· · · ⊂Wu
−2 ⊂Wu

−1 ⊂Wu
0 ⊂Wu

1 ⊂ · · ·

where

Wu
−i : (yi+1, . . . ) = ψuEi (x, z, y1, . . . , yi, µ)

Wu
0 : y = ψuC(x, z, µ)

Wu
1 : (x, y) = ψuu1 (z)

Wu
j : (x, y, z1, . . . , zj−1) = ψuuj (zj , zj+1, . . . ) ,

where all functions ψ vanish at the origin along with their first derivatives.

This sequence includes all other invariant manifolds discussed in Chap. 2 and

in this chapter. In particular, W u
0 ∩W

s
0 is the center manifold in the structurally

unstable case, and W u
−1 ∩W

s
0 is the saddle leading manifold (see Chap. 2) in

the structurally stable case.

For the system on the invariant manifold W s
0 , the equilibrium state does

not have positive characteristic exponents. Therefore, we can use Lemma 5.2
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to assert the existence of the smooth invariant foliations on W s
0 (one should

extend first the system to the whole phase space, establish the existence of

the globally defined smooth invariant foliations and, then return to the local

system). This results in the following theorem.

Theorem 5.17. On W s
0 there is a family of strongly stable invariant C

r−1-

foliations F ss−i with C
r smooth leaves lss−i of the kind

(x, y1, . . . , yi−1) = η
(i)
ξ0,µ(yi, yi+1, . . . ) ,

where ξ0 denotes the point (x0, y0
1 , . . . , y

0
i−1) of intersection of a corresponding

leaf with the invariant manifold W u
−(i−1) ∩W

s
0 . For any point M ∈ W s

0 , the

leaves passing through M are embedded upon each other:

· · · ⊂ lss−2 ⊂ lss−1 .

If M ∈ N+ (the forward orbit of M stays in a small neighborhood of O for all

positive times), then all leaves passing through M are uniquely defined by the

system.

The foliation F ss−1 is exactly the strongly stable foliation of Sec. 5.1. It

was argued there that the existence of this foliation implies the Reduction

Theorem 5.5.

The leaf lss−i which contains the equilibrium state O is the strongly stable or

non-leading invariant manifold W s
−i of Theorem 5.16. Since η is a C

r−1-smooth

function of ξ0 and µ, the associated manifold has only C
r−1-smoothness with

respect to the parameter (when the point O does not disappear as µ varies,

and when it depends smoothly on µ).

It follows from the remark to Lemma 5.2 that for C
∞-smooth systems the

non-leading manifold is C
∞-smooth with respect to parameters, provided the

equilibrium state is structurally stable (no characteristic exponents are on the

imaginary axes). Otherwise the smoothness of W s
−i with respect to µ is finite

only.

In the same manner where Theorem 5.13 is used to establish the existence

of different kinds of invariant manifolds near an equilibrium state, we can

also use this theorem to study periodic trajectories. A system of differential

equations near a periodic trajectory L of period τ may be written in the form

(see Chap. 3)

ż = Az + f(z, v, µ, t) ,

v̇ = Bv + g(z, v, µ, t) ,
(5.4.4)
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where

f(0, 0, 0, t) ≡ 0 ,

g(0, 0, 0, t) ≡ 0 ,

f ′z,v(0, 0, 0, t) ≡ 0 ,

g′z,v(0, 0, 0, t) ≡ 0 .

The functions f and g are either τ -periodic, or τ -antiperiodic9 functions of t.

The eigenvalues of the matrices A and B are the ratios between the logarithms

of the squares of the multipliers of L and 2τ . Condition (5.3.3) implies that

the m multipliers of L must be less than eατ in absolute value, and that the

absolute values of the other n multipliers are greater than eβτ .

System (5.4.4) may be extended to all z and v outside of a small neighbor-

hood of the periodic trajectory L : (z = 0, v = 0). Applying Theorem 5.13 to

the extended system, we have that for each point M(0, 0, t0) ∈ L its γ-stable

set is a smooth manifold W s
γ (0, 0, t0). Due to (anti)periodicity, if the trajectory

of a point (z0, v0, t0) tends to a trajectory of M in γ-norm, then the trajectory

of the point σXτ (z0, v0, t0) also tends to a trajectory of M and vice versa (in

the purely periodic case we assume σ = id). This means that

σ ◦Xτ (W
s
γ (0, 0, t0)) ≡W s

γ (0, 0, t0) ,

i.e. the manifold W s
γ (0, 0, t0) is invariant with respect to the map σ ◦Xτ . This

map is nothing but the Poincaré map of the cross-section t = t0 (see Chap. 3 for

more details). Thus, we have established the existence of an invariant manifold

for the fixed point (0, 0) for the Poincaré map of the extended system. The

set of orbits starting from points on this manifold at the cross-section {t = t0}

gives the corresponding invariant manifold for the system itself. Similarly,

Lemma 5.2 can be used to assert the existence of certain smooth invariant

foliations. Now we can return to the local system, in exactly the same way as

we did in the case of equilibrium states.

Thus, we obtain a hierarchy of local invariant manifolds and foliations in

a small neighborhood of the periodic trajectory. The corresponding theorems

are the analogue of the above theorems which deal with equilibrium states.

Theorem 5.18. Let a periodic trajectory L of a C
r-smooth system have n

multipliers strictly inside the circle |(·)| = eατ in the complex plane, and let

the other m multipliers lie strictly outside the circle |(·)| = eβτ for some β > α.

9Recall that antiperiodicity means here that Xt(σ(z0, v0); t0) = σXt(z0, v0; t0 + τ) where
Xt denotes the time-t shift and σ is some involution of the (z, v)-space: σ ◦ σ = id.
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If α < 0, then at µ = 0 the system has a uniquely defined (n+ 1)-dimensional

strongly stable (non-leading) invariant C
r-manifold W ss which is tangent to

the eigensubspace corresponding to the first n multipliers at each point of L

and which contains all trajectories which, as t→ +∞, tend to L exponentially

at a rate faster than eγt for any 0 > γ > α. If the periodic trajectory does not

disappear as µ varies and if it depends continuously on µ, then W ss depends

on µ continuously as well. Moreover, if the system is C
r-smooth with respect

to all variables including µ, the manifold W ss is C
r−1 with respect to µ (the

tangents to W ss are C
r−1 with respect to all variables).

Theorem 5.19. Under the hypotheses of the previous theorem, if α > 0, then

for all small µ the system has an extended stable (n+1)-dimensional invariant

C
q-manifold W sE (here q is the largest integer such that qα < β and q ≤ r)

which is tangent to the eigensubspace corresponding to the first n multipliers

at each point of L at µ = 0, and which contains the set N+ of all trajectories

which stay in a small neighborhood of L for all positive times. Though W sE

is not unique, any two of them have the same tangent at each point of N+.

Moreover, all derivatives up to order q are uniquely defined at all points of N+.

The manifold W sE depends continuously on µ, and if the system is C
r-smooth

with respect to all variables including µ, then the manifold W sE is C
q with

respect to µ.

By choosing different partitions of the spectrum of the multipliers of L, and

by making a corresponding reformulation of the above theorems for systems

obtained by a reversal of time, we can find all types of local invariant manifolds

of periodic trajectories which were introduced in Chap. 3 (non-leading, lead-

ing, extended stable and unstable manifolds) and in Sec. 5.1 (strongly stable,

strongly unstable, center stable and center unstable manifolds).

As above, we may recast the autonomous linear part of a system near a

τ -periodic trajectory L into a Jordan form. So, we have

ẏi = Aiyi + fi(x, y, z, µ, t)

żj = Cjzj + hj(x, y, z, µ, t)

ẋ = Bx+ g(x, y, z, µ, t)

(5.4.5)

where the spectrum of the matrix Ai lies on the straight line Re (·) = αi, the

spectrum of the matrix B lies on the imaginary axis and the spectrum of the

matrix Cj lies on a straight line Re (·) = βj (here the indices i and j assume a
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finite range of values); the nonlinearities f , g and h are (anti)periodic in time.

Let

· · · < α2 < α1 < 0 < β1 < β2 < · · · .

Theorem 5.20. There exist sequences of the conventionally stable and con-

ventionally unstable smooth local invariant manifolds

· · · ⊂W s
−2 ⊂W s

−1 ⊂W s
0 ⊂W s

1 ⊂ · · ·

and

· · · ⊂Wu
−2 ⊂Wu

−1 ⊂Wu
0 ⊂Wu

1 ⊂ · · ·

of the kind10

W s
−i : (x, z, y1, . . . , yi−1) = ϕssi (yi, yi+1, . . . ; t)

W s
−1 : (x, z) = ϕss1 (y; t)

W s
0 : z = ϕsC(x, y, µ; t)

W s
j : (zj+1, . . . ) = ϕsEj (x, y, z1, . . . , zj , µ; t)

and

Wu
−i : (yi+1, . . . ) = ψuEi (x, z, y1, . . . , yi, µ, t)

Wu
0 : y = ψuC(x, z, µ, t)

Wu
1 : (x, y) = ψuu1 (z, t)

Wu
j : (x, y, z1, . . . , zj−1) = ψuuj (zj , zj+1, . . . ; t) ,

where the functions ϕ and ψ vanish at (x, y, z, µ) = 0 along with their first

derivatives.

On the invariant manifolds W s
0 and Wu

0 there exist, respectively, a family

of strongly stable and a family of strongly unstable invariant C
r−1-smooth

foliations F ss−i and Fuuj with C
r-smooth leaves lss−i and, respectively, luuj of the

kind

(x, y1, . . . , yi−1) = η
s(i)
ξ0,µ (yi, yi+1, . . . ; t0)

and

(x, z1, . . . , zj−1) = η
u(j)
ξ0,µ (zj , zj+1, . . . ; t0)

10The dependence on t is τ -periodic.
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where ξ0 denotes the point of intersection (x0, y0
1 , . . . , y

0
i−1) or (x0, z0

1 , . . . , z
0
j−1)

of a corresponding leaf with the invariant manifold W u
−(i−1) ∩W

s
0 or, respec-

tively, W s
j−1∩W

u
0 ; the value t0 defines a hyperplane {t = t0} entirely containing

the corresponding leaf. For any point M ∈ W s
0 , the leaves passing through M

are embedded each into the other:

· · · ⊂ lss−2 ⊂ lss−1 ,

and, for any point M ∈W u
0 ,

· · · ⊂ luu2 ⊂ luu1 .

If M ∈W s
0 and M ∈ N+ (the forward orbit of M stays in a small neighborhood

of L for all positive times), or if M ∈W u
0 and M ∈ N− (the backward orbit of

M stays in a small neighborhood of L for all negative times), then all strongly

stable or, respectively, strongly unstable leaves passing through M are uniquely

defined by the system.

Finally, we note that these theorems are easily reformulated in terms of the

Poincaré map: the intersection of the invariant manifolds with the cross-section

{t = t0} gives the invariant manifolds for the fixed point at the origin.



Chapter 6

CENTER MANIFOLD. NON-LOCAL CASE

The local center manifold theorem is a well-known standard tool for the study

of bifurcations in a small neighborhood of equilibrium states and periodic tra-

jectories. However, as mentioned in the previous chapter, the local bifurcations

do not exhaust all important bifurcations. It has been known since the work

of Andronov and Leontovich [40] that among the four principal types of sta-

bility boundaries of a periodic trajectory of a two-dimensional system there

are two which correspond to the disappearance of a periodic trajectory via a

homoclinic loop — the union of an equilibrium state and a trajectory which

tends to the equilibrium state both as t → +∞ and as t → −∞. Though

they are at least equally important and no separation between different types

of two-dimensional bifurcations was made in the classical work by Andronov

and Leontovich, such objects are not considered in the theory of local bifur-

cations. A global bifurcation theory which deals with homoclinic loops, and

more complicated homoclinic and heteroclinic cycles, as well as other non-

local structures of multi-dimensional systems, had emerged after the works of

Shilnikov [60–62] in the mid sixties. This theory proved to be a good source of

different models of complex dynamical behaviors, as well as various scenarios

of transitions between different types of non-local dynamics. In this book (in

the second part) we will separate that part of the global theory which deals

especially with dynamical systems with simple behavior (non-chaotic). In this

part of the book we touch only the general question of the existence of an

analogue of a center manifold in the non-local case.

We started the study of this particular problem at the beginning of the

eighties. Since then, it has attracted the attention of many researchers. The

existence of the non-local center manifold near a homoclinic loop has now

325
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been established by Turaev [73], Homburg [36] and Sandstede [56] (the latter

also embraces infinite-dimensional cases). Results on the existence of such

center manifolds for heteroclinic cycles have been derived by Shashkov [57] near

certain heteroclinic cycles. Here we give a detailed proof only for the simplest

case (when at least one leading exponent is real). We finish this chapter by

discussing necessary and sufficient conditions for the existence of the non-local

center manifold near arbitrarily complicated homoclinic and heteroclinic cycles

obtained recently by Turaev [75].

It is important to note a number of significant differences between the lo-

cal and the non-local center manifold theories. First, the dimension of the

non-local center manifold has no relation to the level of degeneracy of the as-

sociated bifurcation problem. In the local theory the dimension of the center

manifold is equal to the number of characteristic exponents on the imaginary

axis, which implies that a high dimension of the center manifold corresponds to

a large number of degeneracies in the linearized system. In contrast, even sim-

ple (codimension one) global bifurcation problems may not necessarily give rise

to a low-dimensional center manifold. Another notable distinction of global bi-

furcations from local bifurcations is that in the non-local case the smoothness

of the center manifold is not high. In fact, its smoothness does not corre-

late with the smoothness of the system and, in general, the non-local center

manifold is only C1.

Therefore, when studying specific non-local bifurcation problems, one pos-

sibly cannot apply the reduction to the center manifold directly: usually, sub-

tle questions require calculations involving derivatives of order higher than

the first order. Moreover, if the dimension of the center manifold is suffi-

ciently high, its presence gives practically no useful information. On the other

hand, if its dimension is low (dimWC = 1, 2, 3, 4), then the presence of a low-

dimensional invariant manifold which captures all trajectories remaining in its

neighborhood can tremendously simplify our understanding of the dynamics

of the system, even if the center manifold is only C1-smooth. In this case, one

can, at least, consider a low-dimensional model having some assumed smooth-

ness in order to make conjectures, which must be validated using the original

non-reduced system.

6.1. Center manifold theorem for a homoclinic loop

Consider a family of dynamical systems

ẋ = F (x, µ) (6.1.1)
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in R
n+m, n ≥ 1, m ≥ 1. Assume that F (x, µ) is of class Cr (r ≥ 1) with

respect to the phase variables x and the parameter µ. Assume also that the

following conditions are satisfied.

(A) Let the system have a structurally stable equilibrium state O of the saddle

type. Assume that the characteristic exponents (λn, . . . , λ1, γ1, . . . , γm)

of O are ordered so that

Reλn ≤ · · · ≤ Reλ1 < 0 < γ1 < Re γ2 ≤ · · · ≤ Re γm ,

where γ1 is assumed to be real.

In this case the dimension of the stable manifold W s is equal to n and

dimWu = m. Since the leading exponent γ1 is real, there exists an (m − 1)-

dimensional non-leading (strongly) unstable sub-manifold W uu ⊂Wu. Recall

that the main property of the non-leading unstable manifold asserts that as

t→ −∞ all trajectories lying in W uu must tend to O tangentially to the eigen-

space of the Jacobian matrix of the linearized system which corresponds to

the non-leading eigenvalues (γ2, . . . , γn), whereas the trajectories in W u\Wuu

must tend to 0 tangentially to the eigen-direction corresponding to the eigen-

value γ1.

We assume also that

(B) at µ = 0, the system possesses a homoclinic loop, i.e. there exists a

trajectory Γ which tends to O as t→ ±∞ (by definition, Γ ⊆W s ∩Wu).

and

(C) the homoclinic trajectory Γ does not lie in the non-leading unstable

submanifold W uu.

Assumption (C) implies that the trajectory Γ leaves the saddle point O

along the eigen-direction corresponding to the leading eigenvalue γ1, as shown

in Fig. 6.1.1.

Conditions (A), (B) and (C) play different roles: condition (A) does not

involve bifurcations: it merely selects the class of systems under consideration.

If (A) is satisfied by the system itself, then it holds also for any nearby system

(i.e. for any system whose right-hand side is close to F along with the first

derivative). Moreover, once it is satisfied at µ = 0, it remains fulfilled for all

small µ as well.
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Fig. 6.1.1. Condition (C) implies that the trajectory Γ leaves the saddle point O along the
eigen-direction corresponding to the leading eigenvalue γ1.

As for condition (B), it cannot hold for all small µ; it can be shown that

if a system has a homoclinic loop, then for some nearby system the loop may

disappear (W s and Wu would not have an intersection). Thus, condition (B)

defines µ = 0 as a bifurcational value for the parameter and specifies the

associated bifurcation phenomenon (the bifurcation of the homoclinic loop).

Generally, for any system whose right-hand side is close to F along with the

first derivative, there would exist a value of µ near zero for which the perturbed

system would also have a homoclinic loop.

Like condition (A), condition (C) does not imply any degeneracy. It just

assumes that the one-parameter family under consideration is in general po-

sition: if it is not satisfied for a given family, it can always be achieved by a

small perturbation of the right-hand side and once it is satisfied, it holds for

any close family as well.

Let q be the largest integer such that qγ1 < Re γ2. Recall (see Sec. 2.7) that

under assumption (A) there exists an invariant C
min(q,r)-smooth extended sta-

ble manifold W sE which is tangent at O to the eigenspace EsE corresponding
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Fig. 6.1.2. The extended stable manifold W sE which contains the stable manifold W s and is
tangent at the saddle point to the eigenspace corresponding to the characteristic exponents
λn, . . . , λ1, γ1. The manifold W sE it is not unique; any two of such manifolds have a common
tangent on W s. The strongly unstable sub-manifold W uu is uniquely embedded into the
smooth invariant foliation Fu on W u.

to the eigenvalues (λn, . . . , λ1, γ1). The manifold W sE contains entirely the

stable manifold W s. Though it is not defined uniquely, any two such manifolds

have the same tangent at any point of W s. Another important object (see

Sec. 5.4) is the smooth invariant foliation Fu on the unstable manifold W u

which includes the non-leading unstable manifold W uu among its leaves, see

Fig. 6.1.2.

The invariant extended stable manifold is defined locally, in a small neigh-

borhood of O. However, if we take a point belonging to a piece of the trajectory

Γ which belongs to W s
loc, then a sufficiently small piece of W sE

loc that contains

this point may be continued by the backward trajectories of the system into

a small neighborhood of any prescribed preceding point on Γ, see Fig. 6.1.3.

In the same manner, the local strongly unstable foliation is extended by the

forward trajectories of the system into the entire unstable manifold.

Since Γ lies simultaneously in W u and in W s, each point of Γ belongs to

some piece of the extended stable manifold, and to some leaf of the strongly

unstable foliation. Therefore, the following requirement makes sense.

(D) The manifold W sE is transverse to the leaves of the foliation Fu at each

point of the homoclinic trajectory Γ.
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Fig. 6.1.3. Continuation of the extended stable manifold W sE along the backward trajecto-
ries close to the homoclinic loop Γ.

Observe that condition (D) needs to be verified at only one point on the

trajectory Γ because the manifold W sE and the foliation Fu are invariant with

respect to the flow defined by the system X0. Note also that the manifold W sE

and the leaves of the foliation Fu have complementary dimensions. Therefore,

our transversality condition (D) is well-posed. Like condition (C), it is a

condition of general position.

Theorem 6.1. If conditions (A), (B), (C) and (D) hold, then there

exists a small neighborhood U of the homoclinic trajectory Γ such that for all

sufficiently small µ the system Xµ possesses an (n+ 1)-dimensional invariant

C
min(q,r)-smooth center stable manifold W sC such that any trajectory which

does not lie in W sC leaves U as t→ +∞. The manifold W sC is tangent at O

to the extended stable eigenspace EsE (Fig. 6.1.4).

The next two sections are devoted to the proof of this theorem. Note that

due to the symmetry of the problem with respect to a reversion of time, it

follows that there is a corresponding theorem on the center unstable manifold
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Fig. 6.1.4. The center stable manifold W sC .

which may be formulated as follows. As above, suppose the system has a

homoclinic loop Γ at µ = 0. Let us modify conditions (A), (C) and (D) as

follows.

(A′) Let the characteristic exponents of the point O satisfy the following

condition:

Reλn ≤ · · · ≤ Reλ2 < λ1 < 0 < Re γ1 ≤ · · · ≤ Re γm .

In this case, since the leading stable eigenvalue λ1 is real, there exists an

(n− 1)-dimensional strongly stable sub-manifold W ss ⊂W s.

(C′) Assume that the homoclinic trajectory Γ does not lie in W ss.

(D′) Assume that at each point of Γ the extended unstable manifold W uE is

transverse to the leaves of the strongly stable foliation F s, see Fig. 6.1.5.

As in the above case we can continue the invariant extended unstable

manifold along the forward trajectories, see Fig. 6.1.6.
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Fig. 6.1.5. The extended unstable manifold W uE contains W u and is tangent at the saddle
point to the eigenspace corresponding to the characterstic exponents λ1, γ1, . . . , γm. The
manifold W uE is not unique; any two of such manifolds touch each other everywhere on
W u. The strongly stable sub-manifold W ss is uniquely embedded into the smooth invariant
foliation F s on W s.

Fig. 6.1.6. Continuation of the extended unstable manifold W uE along the forward trajec-
tories close to Γ.
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Fig. 6.1.7. The center unstable manifold W uC . An inverse case to W sC .

Theorem 6.2. If the conditions (A′), (B), (C′) and (D′) hold, there exists a

small neighborhood U of the homoclinic trajectory Γ such that for suffciently

small µ the system has an (m + 1)-dimensional invariant C
min(p,r)-smooth

center unstable manifold W uC such that any trajectory outside of W uC leaves

U as t → −∞; see Fig. 6.1.7. (here p is the largest integer such that p|λ1| <

|Reλ2|). The manifold W uC is tangent at the point O to the eigenspace EuE

which corresponds to the characteristic exponents (γm, . . . , γ1, λ1).

In the case where the conditions of both Theorems 6.1 and 6.2 hold, we

have the following result

Theorem 6.3. The intersection of W uC and W sC is a two-dimensional in-

variant Cmin(p,q,r)-smooth center manifold W c. It contains all trajectories

which stay entirely in a neighborhood U for all times. The manifold W c is

tangent at O to the eigenspace EL corresponding to the leading characteristic

exponents (γ1, λ1).

This theorem reduces the problem of the bifurcations of a homoclinic loop to

a saddle (1,1) to the study of a two-dimensional system on W c (if the genericity

conditions (C), (C′), (D), (D′) are satisfied). Note the importance of the

condition that both leading exponents are real — generically, the dimension of
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the center manifold near a homoclinic loop is equal to the number of the leading

characteristic exponents (both negative and positive) and when this dimension

is greater than two, the bifurcations of such loop may be quite complicated in

some cases.

In the case of a homoclinic loop to a saddle-(1,1), the two-dimensional dy-

namics is relatively simple. Nevertheless, the reduction to the center manifold

requires some caution here. Our first observation is a low smoothness of W c.

Generally, it is only C
1 and this may present an obstacle to a straightfor-

ward transcription of two-dimensional results into higher dimensions. Thus,

the two-dimensional theory of bifurcations of a homoclinic loop developed by

E. A. Leontovich produces a hierarchy of more and more degenerate cases

(corresponding to an increasingly large number of limit cycles appearing at bi-

furcation). The study of these cases requires an increasingly higher smoothness

of the system and, of course, the naive idea of simply repeating this hierar-

chy in the multidimensional situation, by referring to Theorem 6.3, would lead

to erroneous results. Unlike the case of local bifurcations, Theorems 6.1–6.3

essentially contain results of a qualitative rather than analytic nature.

Our second observation is that the manifold W c is not local (it is not

homeomorphic to a disc). Since its tangent at O is the leading plane EL, it

coincides locally with one of the saddle leading manifolds W L
loc. At µ = 0, this

manifold must contain a piece Γ+ of the homoclinic trajectory Γ which lies in

W s
loc and a piece Γ− of Γ which lies inW u

loc. From a small neighborhood of Γ+ a

small piece of WL
loc can be continued by the forward trajectories along the loop

Γ until it reaches Γ−. The manifold obtained as a result of continuation must

return to a neighborhood of O in such a way that it can be glued smoothly

at this moment to the same local manifold WL
loc — in order that a smooth

invariant manifold WC can be formed. If the orientation is preserved, the

resulting glued manifold is a two-dimensional annulus. If not, the manifold

W c is a Möbius band. In fact, both cases are possible. Thus, in the multi-

dimensional case, the bifurcation of a homoclinic loop to a saddle-(1,1) are

reduced (generically) to a corresponding bifurcation either on the plane, or on

a two-dimensional non-orientable manifold.

6.2. The Poincaré map near a homoclinic loop

In this and the next sections we present the proof of Theorem 6.1 which is

based on a study of the Poincaré map T defined by the trajectories of the
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Fig. 6.2.1. The Poincaré map represented as a superposition of two maps: the local map

Tloc defined along the trajectories from the cross-section Sin to Sout near the saddle point
O, and the global map Tglo defined by the trajectories starting from Sout and ending on Sin

along the global part of the homoclinic loop Γ.

system in a small neighborhood U of the homoclinic loop Γ. This map may

be represented as a superposition of two maps: a local map Tloc defined near

the saddle point O, and a global map Tglo defined by trajectories along the

global part of the homoclinic trajectory Γ outside a small neighborhood of the

saddle, see Fig. 6.2.1.

In a neighborhood of the saddle O let us introduce coordinates (u, y, w),

u ∈ R
n, y ∈ R

1 and w ∈ R
m−1 such that locally, the system assumes the form

u̇ = Au+ f(u, y, w, µ) ,

ẏ = γy + g(u, y, w, µ) ,

ẇ = Bw + h(u, y, w, µ) ,

(6.2.1)

where A is an (n× n)-matrix and spectrA = {λ1, . . . , λn}, B is an (m− 1) ×

(m− 1)-matrix and spectrB = {γ2, . . . , γm}, and γ ≡ γ1. Let us choose some

λ > 0 and η > 0 such that

max{Reλ1, . . . ,Reλn} < −λ (6.2.2)

min{Re γ2, . . . ,Re γm} > η > γ . (6.2.3)
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The functions f , g, h are Cr-smooth and

(f, g, h)(0, 0, 0, 0) = 0 ,
∂(f, g, h)

∂(u, y, w, µ)

∣
∣
∣
∣
(x,y,z,µ)=0

= 0 . (6.2.4)

In these coordinates, at µ = 0, the stable manifold is tangent at O to the

space {(y, w) = 0}, the unstable manifold is tangent to {u = 0} and the strong

unstable manifold is tangent to {(u,w) = 0}.

At µ = 0 the homoclinic trajectory Γ returns to a small neighborhood of

O as t→ +∞, lying in the local stable manifold. Therefore, for some small ξ,

the trajectory intersects the surface ‖u‖ = ξ at some point M+ ∈ W s
loc. Let

us denote the coordinates of M+ as (u+, y+, w+) see Fig. 6.2.1. Choose some

small δ > 0 and consider a small area

Sin =
{
‖u‖ = ξ,

∥
∥
(
u− u+, y − y+, w − w+

)∥
∥ ≤ δ

}
. (6.2.5)

It follows from Theorem 2.4 that d
dt‖u‖ < 0 on W s

loc; i.e. ‖u‖ strictly decreases

along the trajectories in W s
loc. This implies that for a sufficiently small ξ the

surface ‖u‖ = ξ is transverse to the trajectories on W s
loc and, therefore, to all

close orbits. Consequently, being a part of this cross-section, the area S in is

transverse to the trajectories close to Γ provided that µ is sufficiently small.

Since the trajectory Γ does not lie in the non-leading unstable sub-manifold

Wuu (condition (C) of Theorem 6.1), it leaves the saddle O along the leading

direction which coincides with the y-axis. Without loss of generality, we can

assume that Γ leaves O towards positive values of y. In this case, for sufficiently

small y− > 0, the homoclinic trajectory penetrates the surface {y = y−} at

some point M− ∈ Wu
loc. Denote M− = (u−, y−, w−). Since at µ = 0 the

trajectory Γ is transverse to {y = y−}, it follows that at all small µ the small

area

Sout =
{
y = y−,

∥
∥
(
u− u−, w − w−

)∥
∥ ≤ δ

}
, (6.2.6)

is a cross-section (i.e. it intersects the trajectories of the system transversely).

At µ = 0, the trajectory of M− (the trajectory Γ) reaches the point M+ at

some finite positive time. Therefore, due to the continuous dependence of the

trajectories on initial conditions and parameters, for all small µ the trajectories

which start on Sout near M− must intersect Sin near M+. Thus, we can define

the map Tglo which maps a small neighborhood of M− on Sout into a small

neighborhood of M+ on Sin.
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All trajectories starting on Sin enter an ξ-neighborhood of the saddle point

O. If a trajectory does not belong to the local stable manifold, it leaves a

small neighborhood of O after some time. If a trajectory starting at some

point M0 ∈ Sin leaves a small neighborhood of the saddle at a point M 1

which belongs to Sout we will say that M0 and M1 are related by the local

map Tloc : M
0 7→M1.

Obviously, a trajectory which stays for all positive times in a small neigh-

borhood of the homoclinic loop must intersect Sin and Sout: after leaving a

neighborhood of the origin it must traverse along the global piece of Γ and

then return into a neighborhood of the origin across Sin, and after entering

this neighborhood at some point on Sin, it may leave only at some point on

Sout (or it may stay in a small neighborhood of O for all times thereafter

— it belongs to W s
loc in this case). By definition, the consecutive points of

intersection of a trajectory with the cross-sections are related by the map Tloc,

or by Tglo. Thus, there is a correspondence between the trajectories under

consideration and the iterations of the map T = Tglo ◦ Tloc.

Because the flight time from Sout to Sin is bounded, the map Tglo is a

Cr-diffeomorphism. Therefore, the necessary estimates on the map Tglo can

be obtained simply by Taylor series expansion. We postpone the study of the

global map to the end of this section and consider now the question on the

structure of the local map which is much less trivial (because the time the

trajectory spends in a small neighborhood of O before it reaches Sout may be

unboundedly large, and tends to infinity as the starting point tends to W s
loc).

To overcome the difficulties we use the method of the boundary-value problem

described in Sec. 2.8 and in Sec. 5.2.

Let us denote the coordinates on Sin as (u0, y0, w0) (‖u0‖ = ξ) and the

coordinates on Sout as (u1, w1). Let {y = ψs(u, µ), w = ϕs(u, µ)} be the

equation of W s
loc and {u = ψu(y, w, µ)} be the equation of W u

loc. Also let

{w = ϕsE(u, y, µ)} be the equation of the local extended stable manifold W sE
loc .

Denote by luu that leaf of the extended unstable foliation which passes through

the point M−. Let {y = ψuu(w, µ), u = ϕuu(w, µ)} be the equation of luu.

Lemma 6.1. There exist functions uloc and wloc defined on ‖u0 − u+‖ ≤

δ, ‖w1 −w−‖ ≤ δ and 0 < y0 −ψs(u0, µ) ≤ δ′ for some small δ′, such that for

two points M0 ∈ Sin and M1 ∈ Sout, the relation M1 = TlocM
0 holds if and

only if

u1 = uloc(u
0, y0, w1, µ) , w0 = wloc(u

0, y0, w1, µ) . (6.2.7)
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The functions uloc and wloc satisfy the following inequalities
∥
∥
∥
∥

∂uloc
∂(u0, y0)

∥
∥
∥
∥
≤ C e(γ−λ+ε)τ , (6.2.8)

∥
∥
∥
∥

∂uloc
∂µ

∥
∥
∥
∥
≤ C max

{

1, eγ−λ+ε)τ
}

, (6.2.9)

∥
∥
∥
∥

∂uloc
∂ω1

∥
∥
∥
∥
≤ C , (6.2.10)

∥
∥
∥
∥

∂ωloc
∂(u0, y0, µ)

∥
∥
∥
∥
≤ C , (6.2.11)

∥
∥
∥
∥

∂ωloc
∂ω1

∥
∥
∥
∥
≤ C e−(η−γ−ε)τ , (6.2.12)

where C is some positive constant, λ, η and γ satisfy conditions (6.2.2) and

(6.2.3), a small positive ε can be made arbitrarily small if δ is sufficiently small.

Here τ(y0, u0, w1, µ) is the flight time from M0 to M1; it tends to infinity as

y0 → ψs(u0, µ) and
∥
∥
∥
∥

∂γ

∂(u0, y0, µ)

∥
∥
∥
∥
≤ C e(γ+ε)τ ,

∥
∥
∥
∥

∂γ

∂ω1

∥
∥
∥
∥
≤ C . (6.2.13)

Furthermore,

lim
y0→ψs(u0,µ)

uloc = ψu(y−, w1, µ) ,

lim
y0→ψs(u0,µ)

wloc = ψs(u0, µ) ,

lim
y0→ψs(u0,µ)

∂uloc
∂w1

=
∂ψu

∂w
(y−, w1, µ) ,

lim
y0→ψs(u0,µ)

∂uloc
∂µ

=
∂ψu

∂µ
(y−, w1, µ) if γ < λ ,

lim
y0→ψs(u0,µ)

∂wloc
∂(u0, y0, µ)

=
∂ϕsE

∂(u, y, µ)
(u0, y0, µ) .

(6.2.14)

Proof. As show in Sec. 2.7, for any positive τ > 0 and for any small

(u0, y1, w1) there is a unique trajectory (u∗(t), y∗(t), w∗(t)) of the system which
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lies in a small neighborhood of the origin and which represents a solution of

the boundary-value problem:

u∗(0) = u0 , y∗(τ) = y1 , w∗(τ) = w1 .

Thus, the trajectory from a point M 0 reaches a point M1 at the moment t = τ

if and only if

u1 = u∗(τ ;u0, y1, w1, µ, τ) ,

y0 = y∗(0;u0, y1, w1, µ, τ) ,

w0 = w∗(0;u0, y1, w1, µ, τ)

(6.2.15)

(we took into account the fact that the solution (u∗, y∗, w∗) depends on the

boundary data (u0, y1, w1), on the flight time τ , and on µ; as shown in Sec. 2.8

the dependence is Cr-smooth with respect to all variables). The boundary

value problem under consideration is a special case of the boundary-value prob-

lem considered in Sec. 5.2: one should consider u as the z-variable, and (y, w)

as the v-variable in terms of that section. The estimates of Theorem (5.12)

give in our case (one should assume α = λ and β = γ − ε in (5.2.27))

∥
∥
∥
∥

∂u∗

∂(u0, τ)

∥
∥
∥
∥
≤ C e−λτ ,

∥
∥
∥
∥

∂u∗

∂(w1, µ)

∥
∥
∥
∥
≤ C

∥
∥
∥
∥

∂(y∗, w∗)

∂(y1, w1, τ)

∥
∥
∥
∥
≤ C e−(γ−ε)τ ,

∥
∥
∥
∥

∂(y∗, w∗)

∂(u0, µ)

∥
∥
∥
∥
≤ C

(6.2.16)

(here, we calculate the derivatives of (y∗, w∗) at t = 0, by formula (5.2.27a),

and the derivatives of u∗ at τ − t = 0, by formula (5.2.27b)).

As we argued in Sec. 2.8, the limit τ = +∞ corresponds to M 0 ∈W s
loc and

M1 ∈Wu
loc; i.e.

y∗ |τ=+∞ = ψs(u0, µ) ,

w∗ |τ=+∞ = ϕs(u0, µ) ,

u∗ |τ=+∞ = ψu(y1, w1, µ) .

(6.2.17)



340 Chapter 6. Center Manifold. Non-Local Case

Moreover,

∂y∗

∂(u0, µ)

∣
∣
∣
∣
τ=+∞

=
∂ψs

∂(u0, µ)
(u0, µ) ,

∂w∗

∂(u0, µ)

∣
∣
∣
∣
τ=+∞

=
∂ϕs

∂(u0, µ)
(u0, µ) ,

∂u∗

∂(y1, w1, µ)

∣
∣
∣
∣
τ=+∞

=
∂ψu

∂(y1, w1, µ)
(y1, w1, µ) .

(6.2.18)

At the same time one may write

u1 = u∗∗(τ ;u0, y0, w1, µ, τ) ,

y1 = y∗∗(τ ;u0, y0, w1, µ, τ) ,

w0 = w∗∗(0;u0, y0, w1, µ, τ)

(6.2.19)

where (u∗∗(t), y∗∗(t), w∗∗(t)) is the solution of the boundary-value problem

u∗∗(0) = u0 , y∗∗(0) = y0 , w∗∗(τ) = w1 (6.2.20)

for a system obtained from (6.2.1) via a continuation from a small neighbor-

hood of the origin onto the whole space Rn+m (note that once (6.2.15) is

satisfied, the solution stays in a small neighborhood of the origin and when ap-

plying the results of Sec. 5.2 concerning the boundary-value problem (6.2.20)

we should not worry about the influence of this continuation). The prob-

lem (6.2.20) is a particular case of the boundary-value problem considered in

Secs. 5.2, 5.3: now one should denote the variables (u, y) as the z-variable

and w as the v-variable and assume α = γ + ε and β = η. The estimates of

Theorem 5.12 give for this case (see (5.2.26a) and (5.2.26b))

∥
∥
∥
∥

∂(y∗∗, u∗∗)

∂(u0, y0, µ, τ)

∥
∥
∥
∥
≤ C e(γ+ε)τ ,

∥
∥
∥
∥

∂(y∗∗, u∗∗)

∂w1

∥
∥
∥
∥
≤ C

∥
∥
∥
∥

∂w∗∗

∂(w1, τ)

∥
∥
∥
∥
≤ C e−ητ ,

∥
∥
∥
∥

∂w∗∗

∂(u0, y0, µ)

∥
∥
∥
∥
≤ C

(6.2.21)
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(we calculate here the derivatives of w∗∗ at t = 0, from formula (5.2.26a), and

the derivatives of (u∗∗, y∗∗) at τ − t = 0, from formula (5.2.26b)).

The limit τ = +∞ was considered in Sec. 5.3. According to Lemma 5.3,

the derivatives of w∗∗ in the limit τ = +∞ coincide with the derivatives of the

function whose graph is the conventionally stable manifold of the limiting point

M0. Since the point M0 belongs to W s
loc(O) at τ = +∞, its conventionally

stable manifold coincides with the conventionally stable manifold of O — in

our case it is the extended stable manifold of W sE . Thus,

∂w∗∗

∂(u0, y0, µ)

∣
∣
∣
∣
τ=+∞

=
∂ϕsE

∂(u0, y0, µ)
(u0, ψs(u0, µ) , µ) . (6.2.22)

Due to the general symmetry of the problem with respect to a reversion in

time (see remarks in the proof of Theorem 5.12) the derivatives of u∗∗ and y∗∗

in the limit τ = +∞ coincide with the derivatives of the function whose graph

is the conventionally unstable manifold of the limiting point M 1 — in our case

it is the leaf luu of the strongly unstable foliation through M 1. Thus,

∂(y∗∗, u∗∗)

∂w1

∣
∣
∣
∣
τ=+∞

=
∂(ψuu, ϕuu)

∂w1
(w1, µ) . (6.2.23)

Fixing the value of y1 = y− which corresponds to M1 ∈ Sout one may look

at the second equation in (6.2.15) as an implicit equation for determining the

flight time τ from M0 to M1. We will prove at once that the derivative ∂y∗

∂τ

does not vanish (and it is negative). Therefore, the equation

y0 = y∗(0;u0, y−, w1, µ, τ) (6.2.24)

can be solved with respect to τ : the value τ = +∞ corresponds to y0 =

ψs(u0, µ) and since ∂y∗

∂τ < 0, a decrease in τ to a finite value is followed by a

monotonic increase in y0. Thus, this equation uniquely defines the flight time

as a function of (u0, y0, w1, µ) at y0 varying from ψs(u0, µ) to ψs(u0, µ) + δ′

for some sufficiently small δ′. Substituting the expression for τ into u∗ and

w∗∗ would give the desired functions uloc and wloc (having fixed y1 = y−

and ‖u0‖ = ξ = ‖u+‖).

By (6.2.24)

∂τ

∂y0
=

(
∂y∗

∂τ

)−1

,

∂τ

∂(u0, w1, µ)
= −

(
∂y∗

∂τ

)−1
∂y∗

∂(u0, w1, µ)
.

(6.2.25)
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To estimate these derivatives, let us compare the second equation of (6.2.15)

with the second equation in (6.2.19). We immediately have

1 =
∂y∗

∂y1

∂y∗∗

∂y0
,

0 =
∂y∗

∂(u0, w1, µ)
+
∂y∗

∂y1

∂y∗∗

∂(u0, w1, µ)
.

(6.2.26)

Note also that according to Lemma 5.1,

∂y∗

∂τ
= −

∂y∗

∂y1
ẏ

∣
∣
∣
∣
M1

−
∂y∗

∂w1
ẇ|M1 .

It follows from this equation and from (6.2.25) and (6.2.26) that

∂τ

∂(u0, y0, w1, µ)
= −

∂y∗∗

∂(u0, y0, w1, µ)

/(

ẏ|M1 −
∂y∗∗

∂w1
ẇ

∣
∣
∣
∣
M1

)

. (6.2.27)

Note that the denominator in this formula does not vanish (it is positive).

Indeed, since the trajectory Γ does not belong to W uu, it leaves the origin

tangentially to the y-axis (see Theorem 2.5). Hence, the value of w− is much

less than y−. In particular, this means that ẏ|M1 � ‖ẇ‖M1 and our claim

follows from the boundedness of ∂y∗∗

∂w1 (note that ẏ|M1 is positive since it is

equal essentially to γy−, and y− is positive).

Thus, the inverse ∂τ
∂y0 to ∂y∗

∂τ exists which proves that the flight time is

indeed uniquely defined by (u0, y0, w1, µ). The required negativeness of ∂τ
∂y0

follows from formula (6.2.27): ∂y∗∗

∂y0 is equal, by definition, to 1 at τ = 0 and

since this derivative cannot vanish at any τ (by virtue of the first equation in

(6.2.26)) it remains positive for all τ .

From the relations (6.2.27) and (6.2.21) we obtain the inequality (6.2.13).

The functions uloc and wloc are defined as

uloc(u
0, y0, w1, µ) ≡ u∗(τ(u0, y0, w1, µ);u0, y−, w1, µ, τ(u0, y0, w1, µ))

wloc(u
0, y0, w1, µ) ≡ w∗∗(τ(u0, y0, w1, µ);u0, y0, w1, µ, τ(u0, y0, w1, µ)) .

(6.2.28)

One may check now that the estimates (6.2.16), (6.2.21) and (6.2.13) imply

(6.2.8)–(6.2.12) and the limit relations (6.2.18), (6.2.22) and (6.2.23) im-

ply (6.2.14). This completes our proof of the lemma.
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The higher derivatives of the functions uloc and wloc, can also be easily esti-

mated using Theorem 5.12 and the identities (6.2.28) and (6.2.27) (in (6.2.27),

the values of ẏ and ẇ at the point M 1(u1, y−, w1) are evaluated by formulas

(6.2.1)). Omitting the obvious calculations the final result is as follow:

Lemma 6.2. In Lemma 6.1 the following estimates hold:

∥
∥
∥
∥

∂|k1|+|k2|+|k3|uloc
∂(u0, y0)k1∂µk2∂(w1)k3

∥
∥
∥
∥
≤ C e((|k1|+|k2|)(γ+ε)−λ)τ (k1 6= 0) ,

∥
∥
∥
∥

∂|k2|+|k3|uloc
∂µk2∂(w1)k3

∥
∥
∥
∥
≤ C max

(
1, e(|k2|(γ+ε)−λ)τ

)
,

∥
∥
∥
∥

∂|k1|+|k2|wloc
∂(u0, y0, µ)k1∂(w1)k2

∥
∥
∥
∥
≤







C if k2 = 0 and

|k1|(γ + ε) < η ,

C e−(η−|k1|(γ+ε))τ if k2 6= 0 or

|k1|(γ + ε) > η .

(6.2.29)

We remark that as in Lemma 6.1, those derivatives which are bounded by a

constant in these formulae have, in fact, a finite limit, equal to the derivatives

of the corresponding conventionally stable manifolds, as τ → +∞ (see remarks

after Lemma 5.3).

The estimates in Lemmas 6.1 and 6.2 are more than enough for our pur-

poses. In fact, what we need to prove the invariant manifold theorem is sum-

marized by the following lemma.

Lemma 6.3. Let us change the coordinates on the cross-sections S in and Sout

in the following way:

y0
new = y0 − ψs(u0, µ) ,

w0
new = w0 − ϕsE(u0, y0, µ) on Sin

u1
new = u1 − ψu(y1, w1, µ) on Sout

(we straighten the intersections W s
loc∩S

in and Wu
loc∩S

out and make the inter-

section W sE
loc ∩ Sin tangent to {w0 = 0} at the point M+ = Γ ∩ Sin at µ = 0).

Points M0 ∈ Sin and M1 ∈ Sout are related by the map Tloc if, and only if,

u1 = uloc(u
0, y0, w1, µ) , w0 = wloc(u

0, y0, w1, µ) (6.2.30)



344 Chapter 6. Center Manifold. Non-Local Case

where the functions uloc and wloc are now defined at y0 ∈ [0, δ′]; they satisfy

the following inequalities in the new coordinates:

∥
∥
∥
∥

∂|k1|+|k2|uloc
∂(u0, y0, µ)k1∂(w1)k2

∥
∥
∥
∥
≤ C e|k1|(γ+ε)τ , (k1 6= 0) ,

∥
∥
∥
∥

∂|k1|+|k2|wloc
∂(u0, y0, µ)k1∂(w1)k2

∥
∥
∥
∥
≤ C e−(η−|k1|(γ+ε))τ , (k2 6= 0) .

(6.2.31)

All derivatives
∂|k|uloc

∂(w1)k and
∂|k|wloc

∂(u0,y0,µ)k up to order min(q, r) are continuous

and bounded where r is the smoothness of the system and q is the largest integer

such that qγ < η. Moreover, in the new coordinates

uloc(u
0, 0, w1, µ) ≡ 0 , wloc(u

0, 0, w1, µ) ≡ 0 (6.2.32)

and
∂kwloc

∂(u0, y0, µ)k
(u0, 0, w1, µ) ≡ 0 , (6.2.33)

at k ≤ min(q, r).

This lemma follows immediately from the two previous lemmas. Observe

that it follows from (6.2.32) that

∂uloc
∂w1

≡ 0 at y0 = 0 . (6.2.34)

Let us now consider the global map Tglo : S
out 7→ Sin. Since the flight time

from Sin to Sout is bounded (and it depends smoothly on the initial point)

the map Tglo is a C
r-diffeomorphism. Somehow, it is more convenient for us

to consider the inverse map T−1
glo . Since it is C

r-smooth as well, one may write

near the point M+ the map T−1
glo : Sin → Sout in the form

(
u1 − u−(µ)
w1 − w−(µ)

)

=

(
d11 d12 d13

d21 d22 d23

)




u0 − u+

y0

w0





+

(
uglo(u

0, y0, w0, µ)
wglo(u

0, y0, w0, µ)

)

. (6.2.35)

Here (u−(µ), w−(µ)) are the coordinates of the image T−1
gloM

+ of the point

M+. At µ = 0 it is the point M− = Γ ∩ Sout. Recall that in the coordinates
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of Lemma 6.3 u−(0) = 0. The constants d11, d12, d13, d21, d22 and d23 are

matrices of dimensions n×(n−1), n×1, n×(m−1), (m−1)×(n−1), (m−1)×1

and (m − 1) × (m − 1), respectively; the functions uglo and wglo denote the

nonlinear terms.

Recall that by assumption the manifold W sE intersects transversely the

leaves of the strongly unstable foliation (condition (D)) at the points of Γ at

µ = 0. Therefore, the intersection of the tangent to the continuation of W sE

at the point M− with the tangent to the leaf luu at the same point is zero.

The tangent to W u
loc at this point is spanned to the tangent to luu and to the

phase velocity vector (u̇, ẏ, ẇ)|M− which is tangent to Γ at M−. This vector

is also contained in the tangent to W sE (because W sE contains Γ). Thus, the

intersection of the tangents to W sE and Wu
loc at M− is one-dimensional (it is

spanned on the phase velocity vector). This implies that W sE and Wu
loc meet

transversely at M−. Therefore, the image of W sE
loc ∩S

in by the map T−1
glo must

be transverse to the intersection W u
loc ∩S

out. In the coordinates of Lemma 6.3

the latter is given by {u1 = 0} and W sE
loc ∩S

in is tangent to {w0 = 0} at µ = 0.

Therefore, the transversality condition (D) transcripts in these coordinates as

a transversality of the space

u1 = (d11(0), d12(0)) ·

(
u0 − u+

y0

)

with respect to the space u1 = 0, which means that

det (d11, d12) 6= 0 . (6.2.36)

6.3. Proof of the center manifold theorem near a
homoclinic loop

In order to prove Theorem 6.1, we must establish the existence of an invariant

manifold for the inverse of the Poincaré map T−1 = T−1
glo ◦ T−1

loc on the cross-

section Sin. We achieve this by using Theorem 4.4 (a generalization of the

annulus principle).

Recall (see Lemma 6.3) that we have represented the map Tloc : M0 7→M1

in the cross-form by terms of the functions uloc and wloc which are defined

for {‖u0 − u+‖ ≤ δ, ‖w1‖ ≤ δ, y0 ∈ [0, δ′]} for some small δ and δ′. The map

T−1
glo is given by formula (6.2.35). It follows from the superposition of these
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two maps that two points (u0, y0, w0) and (ū0, ȳ0, w̄0) are related by the map

T−1 : (u0, y0, w0) 7→ (ū0, ȳ0, w̄0) if, and only if,

w̄0 = wloc(ū
0, ȳ0, w1, µ) ,

u1 = uloc(ū
0, ȳ0, w1, µ) ,

u1 − u−(µ) = d11(u
0 − u+) + d12y

0 + d13w
0 + uglo(u

0, y0, w0, µ) ,

w1 − w−(µ) = d21(u
0 − u+) + d22y

0 + d23w
0 + wglo(u

0, y0, w0, µ) ,

(6.3.1)

where (u1, w1) is an intermediate point where the backward trajectory of the

point (u0, y0, w0) intersects Sout.

Let us extend the domain of the functions involved here in the following

way. First, let us assume (uloc, wloc) ≡ 0 for y0 ≤ 0, and then change these

functions by multiplying them by some factor which vanishes outside a small

neighborhood of (u+, 0, 0):

uloc → uloc · χ

(
‖u0 − u+, y0, w1‖

ρ

)

,

wloc → wloc · χ

(
‖u0 − u+, y0, w1‖

ρ

)

,

where χ is a Cr-smooth function such that

χ(s) =

{

1, if s ≤ 1/2 ,

0, if s ≥ 1 ,
and

∣
∣
∣
∣

∂χ

∂s

∣
∣
∣
∣
< 3 . (6.3.2)

Here ρ is a small constant. One can see that such multiplications do not change

the estimates of Lemma 6.3 in an essential way, just an additional constant

factor may appear. Observe that the functions uloc and wloc are kept the same

in a small ρ2 -neighborhood of (u+, 0, 0) whereas they now vanish identically on

the boundary of the domain of definition, whence we may consider them to be

identically zero outside, without any loss of smoothness.

The same procedure may be applied to the map T−1
glo — the functions uglo

and wglo may be modified outside the ρ
2 -neighborhood of the point (u0 =

u+, y0 = 0, w0 = 0) so that they vanish at a distance ρ of that point, and this

allows one to assume that T−1
glo is defined at all (u0, y0, w0). Recall that uglo

and wglo are nonlinear functions. Hence, if ρ is sufficiently small, then the

modified map T−1
glo is very close to its linear part everywhere.
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In particular, this means (by virtue of the transversality condition (6.2.42))

that the third equation in (6.3.1) can be solved with respect to (u0, y0) as

follows:

(u0, y0) = f(u1, w0, µ) , (6.3.3)

where f is some smooth function all of whose derivatives are uniformly

bounded. Consequently, the fourth equation in (6.3.2) can be recast into the

form

w1 = g(u1, w0, µ) , (6.3.4)

where g is a smooth function with the uniformly bounded derivatives. Substi-

tuting the last equation into the second equation of (6.3.1) we obtain

u1 = uloc(ū
0, ȳ0, g(u1, w0, µ), µ) .

Since
∂uloc

∂w1 tends to zero for small ȳ0 (see Lemma 6.3), this derivative can be

made uniformly small for the modified function uloc by taking ρ small enough.

Therefore, the equation above can be solved with respect to u1. This gives

u1 = ũloc(ū
0, ȳ0, w0, µ) , (6.3.5)

where the function ũloc essentially satisfies the same estimates (given by a

Lemma 6.3) as the function uloc.

The substitution of this expression into (6.3.3) and into the first equation

of (6.3.1) represents the map T−1 in the cross-form

w̄0 = F (w0, (ū0, ȳ0)) ,

(u0, y0) = G(w0, (ū0, ȳ0)) .
(6.3.6)

One can see, using the estimates of Lemma 6.3, that the functions F and G

satisfy the conditions of Theorem 4.4 (under the weakened smoothness condi-

tions given below that theorem; observe that the function uloc is not smooth

at y0 = 0). Thus, we immediately have the existence of a Cmin(q,r)-smooth

manifold w0 = φ∗(u0, y0, µ) which is invariant with respect to the modified

map T−1. The function φ∗ is defined at all u0, y0, µ. Since the modified map

coincides with the original map T−1 in a small neighborhood of (u+, 0, 0) at

y0 ≥ 0, it follows that the intersection of the above manifold with this domain

is a smooth invariant manifold of the original map.

By construction (see the proof of the annulus principle in Sec. 4.2), forward

iterations of any point by the modified map T−1 converge exponentially to
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the “large” invariant manifold we found. This implies that all points whose

backward iterations are at a bounded distance on this manifold must lie in

this manifold. In terms of the original Poincaré map T this means that all

trajectories whose forward iterations lie in a small neighborhood of the point

(u0, 0, 0) must belong to the “small” invariant manifold.

The set of trajectories which start from points of this manifold on the

cross-section is an invariant manifold for the system of differential equations

under consideration (one should choose the pieces of the trajectories until they

remain in a small neighborhood U of the homoclinic loop). By construction,

this manifold contains all trajectories which stay in U for all positive times.

In particular, it contains the intersection W s
loc ∩ U . The point O must also be

included in the resulting invariant manifold. Note that the smoothness of the

above invariant manifold follows from the proven smoothness of its intersection

with the cross-section Sin — everywhere except at the equilibrium state O.

The smoothness of O must be verified separately, but we refrain from giving a

complete proof here because it is irrelevant for our purposes. Just note that the

resulting invariant manifold coincides locally with one of the extended stable

manifolds W sE
loc (O) from which the smoothness at O follows.

6.4. Center manifold theorem for heteroclinic cycles

The non-local center manifold theorem which we have proved for a homoclinic

loop admits a straightforward generalization onto a class of heteroclinic cycles.

Namely, suppose a family of Cr-smooth dynamical systems

ẋ = X(x, µ) (6.4.1)

depending smoothly on some vector of parameters µ has a number of saddle

equilibrium states O1, . . . , Ok which satisfy condition (A) of the previous sec-

tions: for each saddle the leading positive characteristic exponent is real and

simple. Let the stable manifold of each Oi be n-dimensional and the unsta-

ble manifold be m-dimensional. Suppose that at µ = 0, for each i = 1, . . . , k

there exists a trajectory Γi of intersection W u(Oi) ∩W
s(Oi+1) (respectively,

Wu(Ok) ∩W
s(O1) for i = k).

The trajectories Γi are called heteroclinic because Γi tends to Oi as t →

−∞ (it lies in W u(Oi)) but it tends to another equilibrium state Oi+1 as

t → +∞ (it lies in W s(Oi+1)). The union C = O1 ∪ Γ1 ∪ O2 ∪ · · · ∪ Ok ∪ Γk
is called a heteroclinic cycle or a heteroclinic contour. Note that generically
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k-independent governing parameters µ1, . . . , µk are necessary for the system

to have the cycle with k-heteroclinic trajectories.

Let us impose on the trajectories Γi the same genericity conditions given

by conditions (C) and (D) of the previous sections. Namely,

For each heteroclinic trajectory Γi, suppose that it does not lie in the

non-leading unstable submanifold W uu(Oi), and suppose that the ex-

tended stable manifold W sE(Oi+1) is transverse to the leaves of the

strongly unstable foliation Fu(Oi) of Wu(Oi) at each point of the hete-

roclinic trajectory Γi (for each i = 1, . . . , k).

Theorem 6.4. There exists a small neighborhood U of the heteroclinic cycle

C such that for all sufficiently small µ the system possesses an (n+ 1)-dimen-

sional invariant Cq-smooth1 center stable manifold W sC such that any trajec-

tory which does not lie in W sC leaves U as t → +∞. The manifold W sC is

tangent at Oi to the extended stable eigenspace EsE(Oi).

The proof is identical to that of Theorem 6.1. One may construct a local

cross-section S
(i)
in to each Γi near Oi+1. Then, consider the inverse Ti : S

(i)
in →

S
(i−1)
in of the Poincaré map (the map Ti is defined by the backward trajectories

of the system). The maps Ti can be modified exactly in the same way as in

Sec. 6.3 and, after that, they are written in the cross-form

w̄i−1 = Fi(wi, (ūi−1, ȳi−1), µ) ,

(ui, yi) = Gi(wi, (ūi−1, ȳi−1), µ) ,
(6.4.2)

where the w-variables belong to Rm−1, the (u, y)-variables to Rn and the func-

tions Fi, Gi satisfy the conditions of Theorem 4.4. One can check that denoting

x = (w1, . . . , wk) and y = ((u1, y1), . . . , (uk, yk);µ) the relations (6.4.2) (along

with the artificial equation µ = µ̄) define a cross-map

x̄ = F (x, ȳ)

y = G(x, ȳ)
(6.4.3)

which satisfy the conditions of Theorem 4.4. Thus, there exists a smooth

invariant manifold of the kind

(w1, . . . , wk) = ϕ∗((u1, y1), . . . , (uk, yk);µ) .

1The integer q must satisfy q ≤ r and qγ
(i)
1 < Re γ

(i)
2 for all Oi, where γ

(i)
1 is the leading

positive characteristic exponent of Oi and γ
(i)
2 is the next positive exponent.
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We need somewhat more: each wi here should only depend on (ui, yi, µ). The

graphs L∗
i of these dependencies would define the invariant manifold on the

extended cross-sections S
(i)
in :

TiL
∗
i = L∗

i−1 .

To prove that the invariant manifold of the map (6.4.3) has the required

structure, it is sufficient to note that the invariant manifold is obtained in

Theorem 4.4 as the limit of the iterations of an arbitrary Lipschitz manifold.

Thus, if we make as our initial guess the manifold, say, (w1 = 0, . . . , wk = 0)

which indeed represents the collection of independent surfaces on S
(1)
in , . . . , S

(k)
in ,

respectively, then just by the essence of the problem all iterations will have the

same structure. Hence their limit will also have the same structure.

The intersection of the derived surfaces L∗
i with the original local pieces of

the cross-sections S
(i)
in define the invariant manifold for the original Poincaré

map. So, the set of trajectories which start on any of these surfaces is the

desired invariant manifold of the system itself.

Note that a reversion of time allows one to obtain an analogous center

unstable manifold theorem for the case when the leading negative exponent is

real and simple for each Oi, and a theorem on two-dimensional center manifold

when both positive and negative leading exponents are real and simple, as was

done in Sec. 6.1 for a homoclinic loop.

The heteroclinic cycles under consideration represents one of the simplest

cases among a large variety of possible heteroclinic or homoclinic structures.

For example, a single saddle equilibrium state may have more than one homo-

clinic loop at some value of µ (in a two-parameter family). We distinguish two

generic cases here:

• a figure-eight — the homoclinic trajectories Γ1 and Γ2 enter the saddle

O from the opposite directions, as shown in Fig. 6.4.1,

• a homoclinic butterfly — the homoclinic trajectories Γ1 and Γ2 come

back to O along the same direction (positive y), so they are tangent to

each other at O (as t→ +∞) as shown in Fig. 6.4.2.

Note that both cases correspond to the case where condition (C) holds for

both homoclinic trajectories: they do not belong to W uu and therefore leave

O along the leading direction, namely the y-axis.
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Fig. 6.4.1. The homoclinic figure-eight for which the non-coincidence conditions are fulfilled:
the separatrix Γ1 intersects only those strongly stable leaves which are not intersected by
the separatrix Γ2.

Fig. 6.4.2. The homoclinic butterfly composed by two loops Γ1 and Γ2 which does not satisfy
the non-coincidence conditions: the strongly stable leaf of an arbitrary point P1 ∈ Γ1 lying
near the equilibrium state coincides with the strongly stable leaf of some point P2 ∈ Γ2.
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Suppose that the transversality condition (D) is fulfilled for both homo-

clinic trajectories (see Sec. 6.1). Again, revisiting the construction of the

previous section one may prove the following result.

Theorem 6.5. There exists a small neighborhood U of the homoclinic figure-

eight such that for all sufficiently small µ the system possesses an (n + 1)-

dimensional invariant Cq-smooth center stable manifold W sC such that any

trajectory which does not lie in W sC leaves U as t→ +∞. The manifold W sC

is tangent at O to the extended stable eigenspace EsE .

At the same time, near a homoclinic butterfly there obviously cannot be

an (n+ 1)-dimensional smooth invariant manifold which is tangent to E sE at

O. Indeed, the intersection of such a manifold with W u(O) would be one-

dimensional and it must contain both the homoclinic trajectories Γ1 and Γ2.

Therefore, it follows that the smooth system on the invariant manifold had

a saddle equilibrium state with a non-smooth unstable manifold (it must be

one-dimensional and contain two trajectories tangent to each other at O). This

is impossible for structurally stable saddles.

We see that the transversality condition (D) which in fact plays a cru-

cial role in the proof of the non-local center manifold is not always sufficient.

Nevertheless, simple enough necessary and sufficient conditions exist for the

non-local center manifold theorem near an arbitrarily complicated homoclinic

or heteroclinic cycle.

Let C be the union of a finite number of equilibrium states O1, O2, . . . ,

periodic trajectories L1, L2, . . . and homo/heteroclinic trajectories Γ1,Γ2, . . . :

each trajectory Γs tends to some of the trajectories Oi or Li as t → +∞,

and to the same or the another trajectory Oi or Li as t → −∞ (thus, Γs lies

in the intersection of the stable and unstable manifolds of the corresponding

trajectories. In the case of a structurally unstable equilibrium or periodic

trajectory we should consider the center stable or center unstable manifolds).

We call any such set C a heteroclinic cycle.

Suppose the following trichotomy condition holds.

There exist non-negative integers k ≥ 1, m, n (k + m + n = the dimension

of the phase space) such that for each equilibrium state or periodic trajectory

in the heteroclinic cycle, for some positive βui and βsi , exactly k characteristic

exponents λ lie in the strip

−βsi < Reλ < βui
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(this is the center part of the spectrum); n characteristic exponents lie to the

right of this strip:

Reλ > βui

and m characteristic exponents lie to the left of this strip:

Reλ < −βsi .

Schematically, we can write

ReΛss < −βsi < ReΛc < βui < ReΛuu .

To be more accurate, we take into account the gap between the center part

and the strongly stable and strongly unstable parts and write

Re Λss < −βssi < −βsi < Re Λc < βui < βuui < ReΛuu , (6.4.4)

where βuui > βui > 0, βssi > βsi > 0.

The separating values βi can be different for different equilibria and periodic

trajectories in the cycle. The important requirement is that the numbers k,

m, n of the characteristic exponents belonging to each part of the spectrum

do not depend on a specific trajectory. Note that the numbers k, m, n are

not uniquely determined by the system. For instance, if the cycle contains

only one recurrent trajectory, namely, a saddle periodic trajectory L, one may,

in principle, consider all characteristic exponents of L as critical and in this

case m = n = 0 and k equals to the dimension of the phase space, or one

may consider all characteristic exponents with negative real parts as strongly

stable, the characteristic exponents with positive real parts as strongly unstable

and only trivial characteristic exponent equal to zero is critical in this case

(i.e. k = 1); other variants corresponding to intermediate values of k are also

allowed.

Implicitly, when studying concrete multidimensional global bifurcational

problems, such a separation of the spectrum of characteristic exponents was

always done. Usually, the leading characteristic exponents are taken as critical,

and the non-leading as strongly stable and (or) strongly unstable.

We restrict our freedom in the choice of the trichotomy decomposition by an

additional requirement. Namely, we suppose that for each homo/heteroclinic

trajectory Γs in the cycle C a pair of the transversality conditions is

fulfilled.
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These conditions are analogous to conditions (D) and (D′) from Sec. 6.1.

According to Theorems 5.16, 5.17 and 5.20, a trajectory Γs which tends to an

equilibrium state Oi, or to a periodic trajectory Li, as t → +∞, lies in an

(m + k)-dimensional extended stable manifold W sE of Oi or Li and through

each point of Γs a uniquely defined m-dimensional leaf of the strongly stable

foliation Fss exists; the tangent to W sE is also uniquely defined at each point

of Γs. Analogously, the trajectory Γs in the heteroclinic cycle tends to some

equilibrium state Oj , or to a periodic trajectory Lj , as t→ −∞ and this implies

that Γs lies in an (n+ k)-dimensional extended unstable manifold W uE of Oj ,

or Lj , (the tangent toW uE is uniquely defined at each point of Γs) and through

each point of Γs a uniquely defined n-dimensional leaf of the strongly unstable

foliation Fuu exists. The manifold W sE is tangent at Oi or Li to the extended

stable invariant subspace EsE of the linearized system, corresponding to the

critical and strongly stable parts of the spectrum of characteristic exponents.

The manifold W uE is tangent at Oj , or Lj , to the extended unstable invariant

subspace EuE corresponding to the critical and strongly unstable parts of the

spectrum. The foliation Fss includes the strongly stable manifold which is

tangent at Oi, or Li, to the strongly stable invariant subspace Ess, and the

foliation Fuu includes the strongly unstable manifold which is tangent at Oj
or Lj , to the strongly unstable invariant subspace Euu.

The transversality conditions are:

At each point of each trajectory Γs ⊂ C the extended unstable manifold

is transverse to a leaf of the strongly stable foliation and the extended

stable manifold is transverse to a leaf of the strongly unstable foliation.

Observe that due to the invariance of the subspaces with respect to the

linearized system, the transversality must be verified at one point on each

trajectory Γs.

Different choices of the separation of the spectra of characteristic exponents

lead to different manifolds and foliations involved in the above transversality

conditions. For some of our choices transversality may hold, but for some it

may not hold. So these conditions do make an additional selection among

various possible trichotomic separations.

Theorem 6.6. Let q and p be the maximal integers such that βuui > qβui ,

βssi > pβsi for any equilibrium state or periodic trajectory in the cycle (the β’s

are the separating constants from (6.4.4)).
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Let a C
r-smooth (r ≥ 1) system have a heteroclinic cycle C and let the

trichotomy and transversality conditions be fulfilled. Then, in a small neigh-

borhood U of C, the system has a smooth k-dimensional invariant manifold

WC which contains C, and which is tangent at each of the equilibrium states

and periodic trajectories of C to the critical subspace E = E sE ∩Eue if and only

if any leaf of the local strongly stable and strongly unstable foliations inter-

sects the set C at not more than one point. Under this condition, the manifold

WC exists for any system C
r-close to the original system, and it varies con-

tinuously with the system.

The manifold WC is C
min(p,q,r)-smooth. It is the intersection of an

(m + k)-dimensional invariant C
min(q,r)-smooth manifold WsC and an (n +

k)-dimensional invariant C
min(p,r)-smooth manifold WuC which are tangent,

respectively, to the extended stable and extended unstable invariant subspaces

EsE and EuE at each of the equilibrium states and periodic trajectories in the

heteroclinic cycle C. All trajectories which stay in the neighborhood U for all

positive times belong to WsC and all trajectories which stay in U for all nega-

tive times belong to WuC ; hence, all trajectories which lie in U belong entirely

to the invariant manifold WC .

We do not give the proof of this theorem. It includes the above non-local

center manifold theorems of this chapter as a special cases. For example, when

we consider a single homoclinic loop, the strongly unstable manifold is a par-

ticular leaf of the strongly unstable foliation. If the homoclinic trajectory lies

in this leaf, it intersects the leaf, formally speaking, in continuum points which

prevents of existence of the smooth invariant manifold under consideration.

Thus, conditions (C) and (C′) are necessary for the theorems of Sec. 6.1 to be

valid.

When we consider a pair of homoclinic loops, the leaves of the strongly

unstable foliation are surfaces of the kind

(u, y) = ψ(w)

in the coordinates of Sec. 6.2. One may straighten the foliation so that the

leaves are the intersections of the surfaces {y = constant} with the unstable

manifold. In the case of a homoclinic figure-eight, the leaves corresponding to

y > 0 intersect the homoclinic trajectory Γ1 at one point each, and the leaves

corresponding to y < 0 intersect the homoclinic trajectory Γ2 also at only one

point each. The strongly unstable manifold — the leaf corresponding to y = 0
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— intersects the homoclinic cycle C = O ∪ Γ1 ∪ Γ2 at the point O. Thus,

Theorem 6.5 on the existence of the non-local center unstable manifold near a

homoclinic figure-eight is consistent with the general result of Theorem 6.6.

On the contrary, in the case of a homoclinic butterfly, each of the leaves

corresponding to a positive y intersects both homoclinic trajectories. Thus

our previous conclusion on the absence of the smooth invariant manifold is in

formal agreement with the latter theorem.
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SPECIAL FORM OF SYSTEMS NEAR

A SADDLE EQUILIBRIUM STATE

In the study of bifurcations of homoclinic loops and heteroclinic cycles com-

posed of saddles and their connecting trajectories we run into the problem
of getting a suitable asymptotic for the solutions of a system near a saddle

equilibrium state. It is obvious that the simpler the form of a system near the

equilibrium state the easier it is to study its behavior. The possibility of the

reduction of a system near a saddle to a good form which is suitable for many
bifurcational problems is established by Theorem 2.17 of Sec. 2.9, a complete

proof of which we present here.

Consider a family X(µ) of dynamical systems which depends on some pa-
rameters µ. Assume that X(µ) is C

r-smooth (r ≥ 2) with respect to all

variables and parameters. We may represent X(µ) in the form (see Chap. 2)

ẋ = A1(µ)x+ f1(x, y, u, v, µ) ,

u̇ = A2(µ)u+ f2(x, y, u, v, µ) ,

ẏ = B1(µ)y + g1(x, y, u, v, µ) ,

v̇ = B2(µ)v + g2(x, y, u, v, µ) ,

(A.1)

where the eigenvalues of the block-diagonal matrix

A(0) ≡

(
A1(0) 0

0 A2(0))

)

lie to the left of the imaginary axis in the complex plane, and the eigenvalues

of the block-diagonal matrix

B(0) ≡

(
B1(0) 0

0 B2(0)

)

lie to the right of the imaginary axis.

357
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Let us assume also that the eigenvalues (λ1, . . . , λm1
) of the matrix A1(0)

have the same real part, namely

Reλ1 = · · · = Reλm1
= λ, λ < 0 ,

and that the real parts of the eigenvalues (γ1, . . . , γn1
) of the matrix B1(0) are

equal to each other, i.e.,

Reγ1 = · · · = Reγn1
= γ, γ > 0 .

With regard to the eigenvalues of the matrices A2(0) and B2(0), let us assume

that the real parts of the eigenvalues of A2(0) are strictly less than λ, and

those of B2(0) are strictly larger than γ. In this case x and y are the leading

stable and unstable coordinates, respectively, and u and v are the non-leading

coordinates.

Theorem A.1. There exists a local transformation of coordinates of class

C
r−1 with respect to (x, u, y, v) (and the first derivative of the transformation

with respect to (x, u, y, v) is C
r−2 with respect to (x, u, y, v, µ))1 which brings

system (A.1) to the form

ẋ = A1(µ)x+ f11(x, u, y, v, µ)x+ f12(x, u, y, v, µ)u ,

u̇ = A2(µ)u+ f21(x, u, y, v, µ)x+ f22(x, u, y, v, µ)u ,

ẏ = B1(µ)y + g11(x, u, y, v, µ)y + g12(x, u, y, v, µ)v ,

v̇ = B2(µ)v + g21(x, u, y, v, µ)y + f22(x, u, y, v, µ)v ,

(A.2)

where fij , gij are C
r−1 with respect to (x, u, y, v) and their first derivatives

with respect to (x, u, y, v) are C
r−2 with respect to (x, u, y, v, µ), and

fij(0, 0, 0, 0, µ) = 0, gij(0, 0, 0, 0, µ) = 0 ,

f1i(x, u, 0, 0, µ) ≡ 0, g1i(0, 0, y, v, µ) ≡ 0 ,

fj1(0, 0, y, v, µ) ≡ 0, gj1(x, u, 0, 0, µ) ≡ 0 (i, j = 1, 2) .

(A.3)

Proof. System (A.1) may be reduced to the form (A.2) by a change of

variables which straightens the invariant manifolds of the saddle point. Such

1At r = ∞, the transformation is C
∞ with respect to (x, u, y, v) but it has only finite

smoothness with respect to µ.
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a transformation has the form (see Sec. 2.7)

x̃ = x− ϕ1s(y, v, µ) ,

ũ = u− ϕ2s(y, v, µ) ,

ỹ = y − ψ1u(x, u, µ) ,

ṽ = v − ψ2u(x, u, µ) ,

(A.4)

where {x = ϕ1s(y, v, µ), u = ϕ2s(y, v, µ)} and {y = ψ1u(x, u, µ), v =

ψ2u(x, u, µ)} are the equations of the stable and the unstable manifolds of the

saddle point, respectively. This transformation does not give us the identities

(A.3); by now we have that the functions fij and gij in (A.2) are C
r−1-smooth

and vanishing at the origin.

We can also recast system (A.2) into the form

ẋ = A1(µ)x+R1(x, u, µ) + ϕ1(y, v, µ)x+ ϕ2(y, v, µ)u+ . . . ,

u̇ = A2(µ)u+R2(x, u, µ) + ϕ3(y, v, µ)x+ ϕ4(y, v, µ)u+ . . . ,

ẏ = B1(µ)y + P1(y, v, µ) + ψ1(x, u, µ)y + ψ2(x, u, µ)v + . . . ,

v̇ = B2(µ)v + P2(y, v, µ) + ψ3(x, u, µ)y + ψ4(x, u, µ)v + . . . ,

(A.5)

where
Ri = fi1(x, u, 0, 0, µ)x+ fi2(x, u, 0, 0, µ)u ,

Pi = gi1(0, 0, y, v, µ)y + gi2(0, 0, y, v, µ)u ,

ϕ1 = f11(0, 0, y, v, µ), ϕ2 = f12(0, 0, y, v, µ) ,

ϕ3 = f21(0, 0, y, v, µ), ϕ4 = f22(0, 0, y, v, µ) ,

ψ1 = g11(x, u, 0, 0, µ), ψ2 = g12(x, u, 0, 0, µ) ,

ψ3 = g21(x, u, 0, 0, µ), ψ4 = g22(x, u, 0, 0, µ) ,

and
Ri(x, u, µ) = R̃i1(x, u, µ)x+ R̃i2(x, u, µ)u ,

Pi(y, v, µ) = P̃i1(y, v, µ)y + P̃i2(y, v, µ)v ,

R̃ij(0, 0, µ) ≡ 0, P̃ij(0, 0, µ) ≡ 0 ,

ϕj(0, 0, µ) ≡ 0, ψj(0, 0, µ) ≡ 0 ,

and the ellipsis denotes the terms which we will hereafter call negligible: in

the first two equations these are the terms of the form f̃(x, u, y, v, µ)x and
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f̃(x, u, y, v, µ)u such that

f̃(0, 0, y, v, µ) ≡ 0 and f̃(x, u, 0, 0, µ) ≡ 0 ,

and in the last two equations these are the terms of the form g̃(x, u, y, v, µ)y

and g̃(x, u, y, v, µ)v such that

g̃(0, 0, y, v, µ) ≡ 0 and g̃(x, u, 0, 0, µ) ≡ 0 .

Obviously, the proof of this theorem is reduced to eliminating the under-

lined terms in (A.5). To kill these terms we will carry out a series of consecutive

changes of variables

(1)
ξ1 = x+ h1(y, v, µ)x, ξ2 = u+ h2(y, v, µ)x ,

η1 = y, η2 = v ,

where hi(0, 0, µ) = 0;

(2)
ξ1 = x, ξ2 = u ,

η1 = y + s1(x, u, µ)y, η2 = v + s2(x, u, µ)y ,

where si(0, 0, µ) = 0;

(3)
ξ1 = x+ r1(x, u, µ)x+ r2(x, u, µ)u, ξ2 = u ,

η1 = y, η2 = v ,

where r1(0, 0, µ) = 0, r2(0, 0, µ) = 0;

(4)
ξ1 = x, ξ2 = u ,

η1 = y + p1(y, v, µ)y + p2(y, v, µ)v, η2 = v ,

where p1(0, 0, µ) = 0, p2(0, 0, µ) = 0 .

The change of variables (1) gets rid of the terms ϕ1 and ϕ3 in system (A.5).

By a change of variables (2) we eliminate the terms ψ1 and ψ3. By a change of

variables (3) we eliminate the terms R1. Finally by a change of variables (4)

we eliminate the terms P1, thereby reducing the original system to the desired

form.
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Step 1. Let us make a change of coordinates (1). The first equation of

system (A.5) is written as

ξ̇1 = ẋ+
∂h1

∂y
ẏx+

∂h1

∂v
v̇x+ h1(y, v, µ)ẋ

= A1(µ)x+R1(x, u, µ) + ϕ1(y, v, µ)x+ ϕ2(y, v, µ)u

+
∂h1

∂y

(

B1(µ)y + P1(y, v, µ) + ψ1(x, u, µ)y + ψ2(x, u, µ)v

)

x

+
∂h1

∂v

(

B2(µ)v + P2(y, v, µ) + ψ3(x, u, µ)y + ψ4(x, u, µ)v

)

x

+ h1(y, v, µ)

(

A1(µ)x+R1(x, u, µ) + ϕ1(y, v, µ)x+ ϕ2(y, v, µ)u

)

+ . . . .

(A.6)

Observe that the underlined summands

∂h1

∂y
ψ1(x, u, µ)yx,

∂h1

∂y
ψ2(x, u, µ)vx,

∂h1

∂v
ψ3(x, u, µ)yx ,

∂h1

∂v
ψ4(x, u, µ)vx, h1(y, v, µ)R1(x, u, µ)

are negligible (i.e. they may be written as f̃1(x, u, y, v, µ)x+ f̃2(x, u, y, v, µ)u,

where f̃i(0, 0, y, v, µ) ≡ 0 and f̃i(x, u, 0, 0, µ) ≡ 0). Note also that

R1(x, u, µ) = R(ξ1, ξ2, µ) + . . .

where the dots, as above, stand for negligible terms. Since

x = ξ1 − h1(y, v, µ)x ,

u = ξ2 − h2(y, v, µ) ,
(A.7)

we obtain

ξ̇1 = A1(µ)ξ1 +R1(ξ1, ξ2, µ) + ϕ2(η1, η2, µ)ξ2

+

[

−A1(µ)h1(y, v, µ) + ϕ1(y, v, µ) − ϕ2(y, v, µ)h2(y, v, µ)

+
∂h1

∂y

(

B1(µ)y + P1(y, v, µ)

)

+
∂h1

∂v

(

B2(µ)v + P2(y, v, µ)

)

+ h1(y, v, µ)A1(µ) + h1(y, v, µ)ϕ1(y, v, µ)

− h1(y, v, µ)ϕ2(y, v, µ)h2(y, v, µ)

]

x+ h1(η1, η2, µ)ϕ2(η1, η2, µ)ξ2 + . . . .

(A.8)
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Analogously, for the second equation in (A.5) we obtain

ξ̇2 = u̇+
∂h2

∂y
ẏx+

∂h2

∂v
v̇x+ h2(y, v, µ)ẋ

= A2(µ)u+R2(x, u, µ) + ϕ3(y, v, µ)x+ ϕ4(y, v, µ)u

+
∂h2

∂y

(

B1y + P1(y, v, µ)

)

x+
∂h2

∂v

(

B2v + P2(y, v, µ)

)

x

+ h2(y, v, µ)

(

A1(µ)x+ ϕ1(y, v, µ)x+ ϕ2(y, v, µ)u

)

+ . . .

= A2ξ2 +R2(ξ1, ξ2, µ) + ϕ4(η1, η2, µ)ξ2

+

[

−A2(µ)h2(y, v, µ) + ϕ3(y, v, µ) − ϕ4(y, v, µ)h2

+
∂h2

∂y

(

B1(µ)y + P1(y, v, µ)

)

+
∂h2

∂v

(

B2(µ)v + P2(y, v, µ)

)

+ h2(y, v, µ)A1(µ) + h2(y, v, µ)ϕ1(y, v, µ)

− h2(y, v, µ)ϕ2(y, v, µ)h2(y, v, µ)

]

x

+ h2(η1, η2, µ)ϕ2(η1, η2, µ)ξ2 + . . . .

(A.9)

The form of the third and fourth equations is not affected by such change of

variables.

We assume that the functions h1(y, v, µ) and h2(y, v, µ) satisfy the following

conditions

A1h1 − h1A1 − ϕ1 + ϕ2h2 − h1ϕ1 + h1ϕ2h2

=
∂h1

∂y
(B1y + P1) +

∂h1

∂v
(B2v + P2) ,

A2h2 − h2A2 − ϕ3 + ϕ4h2 − h2ϕ1 + h2ϕ2h2

=
∂h2

∂y
(B1y + P1) +

∂h2

∂v
(B2v + P2) .

(A.10)
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This implies that the expressions inside the square brackets in (A.8) and (A.9)

vanish. Consider next the following system of matrix equations:

Ẋ = A1X −XA1 − ϕ1 + ϕ2U −Xϕ1 +Xϕ2U ,

U̇ = A2U − UA1 − ϕ3 + ϕ4U − Uϕ1 + Uϕ2U ,

ẏ = B1y + P1 ,

v̇ = B2v + P2 .

(A.11)

Here, the matrices X ∈ R
m1×m1 and U ∈ R

m2×m1 , where m2 is the dimension

of the vector u. System (A.11) has an equilibrium state O1(0, 0, 0, 0). The

linearized system is

Ẋ = A1X −XA1 −
∂ϕ1

∂y
(0, 0, µ)y −

∂ϕ1

∂v
(0, 0, µ)v ,

U̇ = A2U − UA1 −
∂ϕ3

∂y
(0, 0, µ)y −

∂ϕ3

∂v
(0, 0, µ)v ,

ẏ = B1y ,

v̇ = B2v .

The spectrum of characteristic exponents of this system may be represented

as a union of the spectra of the following associated linear operators

X 7→ A1X −XA1 ,

U 7→ A2U − UA1 ,

y 7→ B1y ,

v 7→ B2v .

Let us now recall a well-known fact from matrix theory (see [39]), namely, for

any square matrices A and B the spectrum of the operator Z 7→ AZ − ZB

(where Z is a rectangular matrix) belongs to the set of numbers generated all

possible differences between the eigenvalues of the matrices A and B.

Then, since the eigenvalues of the matrix A2 lie to the left of the eigen-

values of the matrix A1, and the latter lie all on the line Re· = λ, it follows

that when µ = 0 the equilibrium state of system (A.11) possesses m2
1 charac-

teristic exponents on the imaginary axis, m1 ·m2 characteristic exponents in

the open left-half plane, and n1 + n2 = n characteristic exponents in the open

right-half plane. Therefore, the equilibrium state of system (A.11) has an in-

variant n-dimensional strongly unstable manifold W̃uu
1 defined by the equation
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{X = h1(y, v, µ), U = h2(y, v, µ)}. Furthermore, the functions h1(y, v, 0) and

h2(y, v, 0) satisfy conditions (A.10) because these are nothing but the condition

of the invariance of the manifold {X = h1, U = h2} with respect to (A.11).

The smoothness of h1 and h2 with respect to (y, v) coincides with the

smoothness of the system (A.11). It equals C
r−1 because by construction the

functions ϕi and ψi are C
r−1. The smoothness with respect to µ is one less;

moreover, it is only finite even when r = ∞; see Sec. 5.4).

Thus, the smooth functions h1, h2 satisfying (A.10) exist due to the theorem

on strong-unstable manifold. After making the change of variables (1) our

system takes the form (A.5), where ϕ1 ≡ 0 and ϕ3 ≡ 0.

Step 2. Carrying out the transformation (2) we obtain

ξ̇1 = A1(µ)ξ1 +R1(ξ1, ξ2, µ) + ϕ2(η1, η2, µ)ξ2 + . . . ,

ξ̇2 = A2(µ)ξ2 +R2(ξ1, ξ2, µ) + ϕ4(η1, η2, µ)ξ2 + . . . ,

η̇1 = ẏ +
∂s1
∂x

ẋy +
∂s1
∂u

u̇y + s1(x, u, µ)ẏ

= B1(µ)y + P1(y, v, µ) + ψ1(x, u, µ)y + ψ2(x, u, µ)v

+
∂s1
∂x

(

A1(µ)x+R1(x, u, µ)

)

y +
∂s1
∂u

(

A2(µ)u+R2(x, u, µ)

)

y

+ s1(x, u, µ)

(

B1(µ)y + ψ1(x, u, µ)y + ψ2(x, u, µ)v

)

+ . . .

= B1(µ)η1 + P1(η1, η2, µ) + ψ2(ξ1, ξ2, µ)η2

+

[

−B1(µ)s1(x, u, µ) + ψ1(x, u, µ)

− ψ2(x, u, µ)s2(x, u, µ) +
∂s1
∂x

(

A1(µ)x+R1(x, u, µ)

)

+
∂s1
∂u

(

A2(µ)u+R2(x, u, µ)

)

+ s1(x, u, µ)B1(µ)

+ s1(x, u, µ)ψ1(x, u, µ) − s1(x, u, µ)ψ2(x, u, µ)s2(x, u, µ)

]

y

+ s1(ξ1, ξ2, µ)ψ2(ξ1, ξ2, µ)η2 + . . . ,
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η̇2 = v̇ +
∂s2
∂x

ẋy +
∂s2
∂u

u̇y + s2(x, u, µ)ẏ

= B2(µ)v + P2(y, v, µ) + ψ3(x, u, µ)y + ψ4(x, u, µ)v

+
∂s2
∂x

(

A1x+R1(x, u, µ)

)

y +
∂s2
∂u

(

A2u+R2(x, u, µ)

)

y

+ s2(x, u, µ)v

(

B1(µ)y + ψ1(x, u, µ)y + ψ2(x, u, µ)v

)

+ . . .

= B2η2 + P2(η1, η2, µ) + ψ4(ξ1, ξ2, µ)η2

+

[

−B2(µ)s2(x, u, µ) + ψ3(x, u, µ) − ψ4(x, u, µ)s2

+
∂s2
∂x

(

A1(µ)x+R1(x, u, µ)

)

+
∂s2
∂u

(

A2(µ)u+R2(x, u, µ)

)

+ s2(x, u, µ)B1(µ) + s2(x, u, µ)ψ1(x, u, µ)

− s2(x, u, µ)ψ2(x, u, µ)s2(x, u, µ)

]

y

+ s2(ξ1, ξ2, µ)ψ2(ξ1, ξ2, µ)η2 + . . . .

We choose the functions s1 and s2 such that the expressions inside the square

brackets become identically equal to zero, i.e.

B1s1 − s1B1 − ψ1 + ψ2s2 − s1ψ1 + s1ψ2s2

=
∂s1
∂x

(A1x+R1) +
∂s1
∂u

(A2u+R2) ,

B2s2 − s2B2 − ψ3 + ψ4s2 − s2ψ1 + s2ψ2s2

=
∂s2
∂x

(A1x+R1) +
∂s2
∂u

(A2u+R2) .

(A.12)

To show that such s1 and s2 exist, consider the matrix system

ẋ = A1x+R1 ,

u̇ = A2u+R2 ,

Ẏ = B1Y − Y B1 − ψ1 + ψ2V − Y ψ1 + Y ψ2V ,

V̇ = B2V − V B1 − ψ3 + ψ4V − V ψ1 + V ψ2V ,

(A.13)
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where Y ∈ R
n2

1 and V ∈ R
n1n2 . For all small µ this system has an equilibrium

state O2(0, 0, 0, 0). The linearized system is

ẋ = A1x ,

u̇ = A2u ,

Ẏ = B1Y − Y B1 −
∂ψ1

∂x
(0, 0, µ)x−

∂ψ1

∂u
(0, 0, µ)u ,

V̇ = B2V − V B1 −
∂ψ3

∂x
(0, 0, µ)x−

∂ψ3

∂u
(0, 0, µ)u .

At µ = 0 the characteristic exponents are ordered as follows: n2
1 eigenvalues lie

on the imaginary axis, n1n2 eigenvalues lie to the left, and m eigenvalues lie

to the right of it. Hence, system (A.13) possesses an m-dimensional invariant

strongly stable manifold W ss
2 defined as {Y = s1(x, u, µ), V = s2(x, u, µ)}.

We have found the functions s1(x, u, µ) and s2(x, u, µ) which satisfy condi-

tion (A.12). Thus, the changes of variables (1) and (2) transform system (A.5)

so that ϕ1 ≡ 0, ϕ3 ≡ 0, ψ1 ≡ 0 and ψ3 ≡ 0.

Step 3. To make the change of variables (3), let us introduce the notation

x =

(
x

u

)

, y =

(
y

v

)

,

A(µ) =

(
A1(µ) 0

0 A2(µ)

)

, B(µ) =

(
B1(µ) 0

0 B2(µ)

)

,

r(x, µ) = (r1(x, µ), r2(x, µ)) , R(x, µ) =

(
R1(x, µ)

R2(x, µ)

)

,

p(y, µ) = (r1(y, µ), r2(y, µ)) , P (y, µ) =

(
P1(y, µ)

P2(y, µ)

)

.

In terms of the above new notation, the change of variables (3) assumes the

form

ξ1 = x+ r(x, µ)x, ξ2 = u, η1 = y, η2 = v

LetR(x, µ) = R̃(x, µ)x, and, consequently, R1(x, µ) = R̃1(x, µ)x andR2(x, µ) =

R̃2(x, µ)x). After the change of variables we obtain
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ξ̇1 = ẋ+
∂r

∂x
ẋx + r(x, µ)ẋ = A1(µ)x+R1(x, µ) + ϕ2(y, µ)u

+
∂r

∂x

(

A(µ)x +R(x, µ)

)

x + r(x, µ)

(

A(µ)x +R(x, µ)

)

+ . . .

= A1(µ)ξ1 + ϕ2(η1, η2, µ)ξ2 +

[

−A1(µ)r(x, µ) + R̃1(x, µ)

+
∂r

∂x
(A(µ)x + R̃(x, µ)x) + r(x, µ)A(µ) + r(x, µ)R̃(x, µ)

]

x + . . . ,

ξ̇2 = A2(µ)ξ2 + R̂2(ξ1, ξ2, µ) + ϕ4(η1, η2, µ)ξ2 + . . . ,

η̇1 = B1(µ)η1 + P1(η1, η2, µ) + ψ̂2(ξ1, ξ2, µ)η2 + . . . ,

η̇2 = B2(µ)η2 + P2(η1, η2, µ) + ψ̂4(ξ1, ξ2, µ)η2 + . . . ,

where

R̂2(0, 0, µ) ≡ 0,
∂R̂2

∂(ξ1, ξ2)
(0, 0, µ) ≡ 0 ,

ψ̂2(0, 0, µ) ≡ 0, ψ̂4(0, 0, µ) ≡ 0 .

Assume that r(x, µ) is such that the expression inside the square brackets

vanishes, i.e. assume the following condition holds

∂r

∂x
(A(µ)x + R̃(x, µ)x)

= A1(µ)r(x, µ) − r(x, µ)A(µ) − R̃1(x, µ) − r(x, µ)R̃(x, µ) .

(A.14)

Let us consider a matrix system of differential equations of the form

ẋ = A(µ)x + R̃(x, µ)x ,

Ẏ = A1(µ)Y − Y A− R̃1(x, µ) − Y R̃(x, µ) ,
(A.15)

where Y ∈ R
m1m and x ∈ R

m. For all µ sufficiently small this system has an

equilibrium state O3(0, 0) whose characteristic exponents comprise the spec-

trum of the linear operator

x 7→ A(µ)x ,

Y 7→ A1(µ)Y − Y A(µ) −
∂R̃1

∂x
(0, µ)x .

It follows that when µ = 0 the point O3 has m2
1 characteristic exponents on the

imaginary axis, (mm1 −m2
1) and m characteristic exponents to the left and to
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the right of the imaginary axis, respectively. This implies that for sufficiently

small µ system (A.15) possesses an m-dimensional invariant manifold (strongly

stable) Y = r(x, µ). This gives the existence of the function r which satisfies

condition (A.14).

The transformation (3) with such r(x, µ) brings the system to the form (A.5)

with ϕ1 ≡ 0, ϕ3 ≡ 0, ψ1 ≡ 0, ψ3 ≡ 0 and R1 ≡ 0.

Step 4. Making the change of variables (4), we obtain

ξ̇1 = A1(µ)ξ1 +R1(ξ1, ξ2, µ) + ϕ̂2(η1, η2, µ)ξ2 + . . . ,

ξ̇2 = A2(µ)ξ2 +R2(ξ1, ξ2, µ) + ϕ̂4(η1, η2, µ)ξ2 + . . . ,

η̇1 = ẏ +
∂p

∂y
ẏy + p(y, µ)ẏ = B1(µ)y + P1(y, µ) + ψ2(x, µ)v

+
∂p

∂y

(

B(µ)y + P (y, µ)

)

y + p(y, µ)

(

B(µ)y + P (y, µ)

)

+ . . .

= B1(µ)η1 + ψ2(ξ1, ξ2, µ)η2 +

[

−B1(µ)p(y, µ) + P̃1(y, µ)

+
∂p

∂y
(B(µ)y + P̃ (y, µ)y) + p(y, µ)B(µ) + p(y, µ)P̃ (y, µ)

]

y + . . . ,

η̇2 = B2(µ)η2 + P̂2(η1, η2, µ) + ψ4(ξ1, ξ2, µ)η2 + . . . ,

where P (y, µ) = P̃ (y, µ)y.

Choose the function p such that the expression inside the square brackets

is equal identically to zero, i.e.

∂p

∂y
(B(µ)y + P̃ (y, µ)y)

= B1(µ)p(y, µ) − p(y, µ)B(µ) − P̃1(y, µ) − p(y, µ)P̃ (y, µ) .

(A.16)

Obviously, the system would finally take the desired form.

To assure the existence of such function p, consider a matrix system of

differential equations of the form

Ẋ = B1(µ)X −XB(µ) − P̃1(y, µ) −XP̃ (y, µ) ,

ẏ = B(µ)y + P̃ (y, µ)y ,
(A.17)
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where X ∈ R
n1n and y ∈ R

n. For all µ sufficiently small this system pos-

sesses the equilibrium state O4(0, 0) whose characteristic exponents comprise

the spectrum of the linear operator

X 7→ B1(µ)X −XB(µ) −
∂P̃1

y
(0, µ)y ,

y 7→ B(µ)y .

When µ = 0 the characteristic exponents of O4 are as follow: n2
1 eigenvalues

lie on the imaginary axis, (n1n − n2
1) and n eigenvalues lie to the left and

to the right of the imaginary axis, respectively. Therefore, for sufficiently

small µ the system (A.17) possesses an m-dimensional invariant manifold W uu
4

(strongly unstable) of the form X = p(y, µ) where the function p satisfies

condition (A.16). This completes the proof.
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FIRST ORDER ASYMPTOTIC FOR THE

TRAJECTORIES NEAR A SADDLE

FIXED POINT

Consider a family of C
r-smooth (r ≥ 2) maps T (µ) of Rm+n in a neighborhood

of a saddle fixed point with m-dimensional stable and n-dimensional unstable

invariant manifolds.

Let the multipliers of the saddle be (λ1, . . . , λm) and (γ1, . . . , γn) where

|λk| < 1 (k = 1, . . . ,m) and |γk| > 1 (k = 1, . . . , n). Assume that the

multipliers (λ1, . . . , λm1
) are equal in absolute values to some λ, 0 < λ < 1

and the absolute values of the rest of the stable multipliers (λm1+1, . . . , λm)

are strictly less than λ. Concerning the unstable multipliers we assume that

|γ1| = · · · = |γn1
| = γ > 1 and |γk| > γ at k > n1.

Absolutely analogously to systems near an equilibrium state (see

Appendix A), the map T (µ) may be brought to the following form (by a C
r−1

change of variables)

x̄ = A1(µ)x+ f11(x, y, v, µ)x+ f12(x, u, y, v, µ)u ,

ū = A2(µ)u+ f21(x, y, v, µ)x+ f22(x, u, y, v, µ)u ,

ȳ = B1(µ)y + g11(x, u, y, µ)y + g12(x, u, y, v, µ)v ,

v̄ = B2(µ)v + g21(x, u, y, µ)y + f22(x, u, y, v, µ)v ,

(B.1)

where the eigenvalues of A1(0) are (λ1, . . . , λm1
), the eigenvalues of A2(0)

are (λm1+1, . . . , λm), those of B1(0) are (γ1, . . . , γn1
) and those of B2(0) are

(γn1+1, . . . , γn). Moreover, the C
r−1-functions1 fij and gij satisfy

1They have continuous derivatives with respect to all variables and µ up to the order
(r− 1), except for the last (r− 1)-th derivative with respect to µ alone which may not exist.
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fij(0, 0, 0, 0, µ) = 0, gij(0, 0, 0, 0, µ) = 0 ,

f11(x, 0, 0, µ) ≡ 0, g11(0, 0, y, µ) ≡ 0 ,

f12(x, u, 0, 0, µ) ≡ 0, g12(0, 0, y, v, µ) ≡ 0 ,

fj1(0, y, v, µ) ≡ 0, gj1(x, u, 0, µ) ≡ 0 .

(B.2)

We pay special attention to the reduction to this form because it enables

one to obtain good estimates for the solutions of the boundary-value problem

(see Sec. 3.7) near the saddle fixed point. Namely, let the functions ξ1,2
k , η1,2

k

define the solution of the boundary-value problem: the point (x1, u1, y1, v1)

is the image of the point (x0, u0, y0, v0) by the map T (µ)k (acting in a small

neighborhood of the origin) if and only if (x1, u1) = (ξ1k, ξ
2
k)(x

0, u0, y1, v1) and

(y0, v0) = (η1
k, η

2
k)(x

0, u0, y1, v1). Let λ0(µ) and γ0(µ) be such that for all j ≥ 0

‖A1(µ)j‖ ≤ const · λ0(µ)j , ‖B1(µ)−j‖ ≤ const · γ0(µ)−j . (B.3)

For example, when there is only one stable leading multipliers (m1 = 1 and

λ1 is real), then λ0(µ) = λ1(µ); if there is a pair of complex-conjugate stable

leading multipliers (m1 = 2 and λ1 = λ∗2 is not real), then λ0(µ) = Reλ1(µ).

Analogously, γ0(µ) = γ1(µ) if n1 = 1; and γ0(µ) = Reλ1(µ) if n1 = 2 and

γ1 = γ∗2 is not real.

Since A and B depend smoothly on µ, we also have

∥
∥
∥
∥

∂q

∂µq
(
A1(µ)j

)
∥
∥
∥
∥
≤ const · jqλ0(µ)j ,

∥
∥
∥
∥

∂q

∂µq
(
B1(µ)−j

)
∥
∥
∥
∥
≤ const · jqγ0(µ)−j

(B.4)

at q = 1, . . . , r − 1.

Let us also introduce the quantities λ′ and γ′, satisfying λ2
0 < λ′ < λ0 and

γ0 < γ′ < γ2
0 , such that for all j ≥ 0

‖A2(µ)j‖ ≤ const · (λ′)j , ‖B2(µ)−j‖ ≤ const · (γ′)−j , (B.5)

and the same estimates hold true for all the derivatives with respect to µ.

Lemma B.1. If identities (B.2) hold, then

ξ1k = A1(µ)kx0 + o(λ0(µ)k), η1
k = B1(µ)−ky1 + o(γ0(µ)−k) , (B.6)

ξ2k = o(λ0(µ)k), η2
k = o(γ0(µ)−k) . (B.7)
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where the terms o(λk0) and o(γ−k0 ) are C
r−1-smooth and all their derivatives

with respect to (x0, u0, y1, v1) are also of order o(λk0) and o(γ−k0 ) respectively,

the derivatives which involve differentiation q times with respect to µ are

estimated, respectively, as o(kqλk0) and o(kqγ−k0 ) (q = 0, . . . , r − 2).

Proof. Let us denote

fi = fi1x+ fi2u and gi = gi1y + gi2v . (B.8)

It is sufficient to show (see Sec. 3.7) that the solution {(x0, u0, y0, v0), . . . ,

(xk, uk, yk, vk)} of the system

xj = Aj1x
0 +

j−1
∑

s=0

Aj−s−1
1 f1(xs, us, ys, vs, µ) ,

uj = Aj2u
0 +

j−1
∑

s=0

Aj−s−1
2 f2(xs, us, ys, vs, µ) ,

yj = B
−(k−j)
1 y1 −

k−1∑

s=j

B
−(s+1−j)
1 g1(xs, us, ys, vs, µ) ,

vj = B
−(k−j)
2 v1 −

k−1∑

s=j

B
−(s+1−j)
2 g2(xs, us, ys, vs, µ)

(B.9)

satisfies, given small (x0, u0, y1, v1), the following estimates:

‖xj −Aj1x
0‖ ≤ λj0ϕ1(k) ,

‖uj‖ ≤ λj0ϕ2(j) ,

‖yj −B
−(k−j)
1 y1‖ ≤ γ

−(k−j)
0 ψ1(k) ,

‖vj‖ ≤ γ
−(k−j)
0 ψ2(k − j)

(B.10)

where ϕi and ψi are some positive sequences tending to zero.

Moreover, the analogous estimates must hold for all derivatives of the ex-

pressions in the left-hand side of (B.10) with respect to (x0, u0, y1, v1, µ) while

ϕi and ψi may depend on the order of the derivative.

As we showed in Sec. 3.7, the solution of (B.9) is the limit of successive

approximations {(x
(n)
0 , u

(n)
0 , y

(n)
0 , v

(n)
0 ), . . . , (x

(n)
k , u

(n)
k , y

(n)
k , v

(n)
k )} (n → +∞)



374 Appendix B

computed as

x
(n+1)
j = Aj1x

0 +

j−1
∑

s=0

Aj−s−1
1 f1(x

(n)
s , u(n)

s , y(n)
s , v(n)

s , µ) ,

u
(n+1)
j = Aj2u

0 +

j−1
∑

s=0

Aj−s−1
2 f2(x

(n)
s , u(n)

s , y(n)
s , v(n)

s , µ) ,

y
(n+1)
j = B

−(k−j)
1 y1 −

k−1∑

s=j

B
−(s+1−j)
1 g1(x

(n)
s , u(n)

s , y(n)
s , v(n)

s , µ) ,

v
(n+1)
j = B

−(k−j)
2 v1 −

k−1∑

s=j

B
−(s+1−j)
2 g2(x

(n)
s , u(n)

s , y(n)
s , v(n)

s , µ) ,

(B.11)

starting with the initial guess (x
(1)
0 , u

(1)
0 , y

(1)
0 , v

(1)
0 ) = 0.

Thus, to prove some estimates on the solution of (B.9), we may assume that

the n-th successive approximation satisfies these estimates and then, based on

this assumption, we must check that the (n + 1)-th approximation satisfies

them too; of course, the estimators must be independent on n.

We have already proved in this way (see Lemma 3.3) that for any λ̄ > λ0

and γ̄ < γ0

‖xj , uj‖ ≤ Kλ̄j , ‖yj , vj‖ ≤ Kγ̄j−k (B.12)

where K is some positive constant (which depends on the specific choice of λ̄

and γ̄). Let us now check, that fulfillment of the identities (B.2) allows one to

improve these estimates: namely, one can put λ̄ = λ0 and γ̄ = γ0 in (B.12).

Indeed, assume that the n-th approximation satisfies

‖x
(n)
j ‖ ≤ Kxλ

j
0, ‖u

(n)
j ‖ ≤ Kuλ

j
0 ,

‖y
(n)
j ‖ ≤ Kyγ

j−k
0 , ‖v

(n)
j ‖ ≤ Kvγ

j−k
0 .

(B.13)

We must verify that with the appropriate choice of the constants Kx, Ku, Ky,

Kv the (n+ 1)-th approximation satisfies

‖x
(n+1)
j ‖ ≤ Kxλ

j
0, ‖u

(n+1)
j ‖ ≤ Kuλ

j
0 ,

‖y
(n+1)
j ‖ ≤ Kyγ

j−k
0 , ‖v

(n+1)
j ‖ ≤ Kvγ

j−k
0 .

(B.14)
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Plugging (B.12), (B.13) into (B.11) gives

‖x
(n+1)
j ‖ ≤ λj0ε+

j−1
∑

s=0

λj−s−1
0 (δK2

xλ
2s
0 + CKuγ

s−k
0 λs0) ,

‖u
(n+1)
j ‖ ≤ (λ′)jε+

j−1
∑

s=0

(λ′)j−s−1(CK2λ̄2s + δKuλ
s
0) .

(B.15)

Here, C is some constant, ε bounds the norm of (x0, u0, y1, v1). Note that

identities (B.2) were taken into account: we estimate ‖f22‖ by a constant δ

which may be made arbitrarily small by decreasing the size of the neighbor-

hood of the saddle fixed point under consideration, and ‖f21‖ is estimated as

‖f21(x, y, v)‖ ≤ ‖f21(0, y, v)‖ + sup ‖f ′
21x‖ · ‖x‖ ≤ C‖x‖. In the same way

we have ‖f11(x, y, v)‖ ≤ sup ‖f ′
11x‖ · ‖x‖ and, since f ′

11x ≡ 0 at (y, v) = 0, it

follows that ‖f11(x, y, v)‖ ≤ δ‖x‖ where δ may be taken arbitrarily small. For

the function f12 identities (B.2) imply ‖f12‖ ≤ C‖y, v‖.

We have from (B.15) that ‖x
(n+1)
j ‖ ≤ λj0ε + λj−1

0 δK2
x/(1 − λ0) +

λj−1
0 CKuγ

j−k
0 /(γ0 − 1), and ‖u

(n+1)
j ‖ ≤ (λ′)jε + (λ′)jCK2/(λ′ − λ̄2) +

λj0δKu/(λ0 − λ′) from which the estimate (B.14) for (x, u)
(n+1)
j follows, pro-

vided Kx and Ku are chosen such that

Kx ≥ ε+
δK2

x

λ0(1 − λ0)
+

CKu

λ0(γ0 − 1)
,

Ku ≥ ε+
CK2

λ′ − λ̄2
+Ku

δ

λ0 − λ′
.

The required estimates for (y, v)
(n+1)
j are obtained in the same way, due to the

symmetry of the problem.

Thus, the solution of (B.11) (as well as all the successive approximations)

satisfies

(xj , uj) = O(λj0), (yj , vj) = O(γ
−(k−j)
0 ) . (B.16)

Let us now assume that the n-th approximation satisfies (B.10). Based on

identities (B.2), the function f1 is estimated as

‖f1‖ ≤ sup
x

‖f ′11x‖ · ‖x‖
2 + sup ‖f ′

12(y,v)‖ · ‖u‖ · ‖y, v‖ . (B.17)

Since f ′11x → 0 as (y, v) → 0, it follows from (B.16) and from the assumed

validity of (B.10), that on the n-th approximation

‖f1(x
(n)
s , u(n)

s , y(n)
s , v(n)

s , µ)‖ ≤ ϕ̃1(k − s)λ2s
0 + Cγs−k0 λs0ϕ2(s) (B.18)
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where C is some constant, ϕ2 is an estimator for u in (B.10) and ϕ̃1 is a positive

function (independent on the choice of ϕi and ψi in (B.10)) which tends to zero

as k − s→ +∞.

Analogously,

‖f2(x
(n)
s , u(n)

s , y(n)
s , v(n)

s , µ)‖ ≤ ϕ̃2(s)λ
s
0 + δϕ2(s)λ

s
0 (B.19)

where δ may be taken as small as necessary by decreasing the size of the

neighborhood of the saddle, and ϕ̃2(s) → 0 as s → +∞ (ϕ̃2 gives an upper

bound for ‖f21‖ at fixed x = x
(n)
s ; by (B.2) it tends to zero as x→ 0).

By (B.18), (B.19) we obtain, respectively,

∥
∥
∥
∥
∥

j−1
∑

s=0

λ−s0 f1(x
(n)
s , u(n)

s , y(n)
s , v(n)

s , µ)

∥
∥
∥
∥
∥
≤

j−1
∑

s=0

λs0ϕ̃1(k − s) + C

j−1
∑

s=0

γs−k0 ϕ2(s)

and
∥
∥
∥
∥
∥

j−1
∑

s=0

(λ′)−sf2(x
(n)
s , u(n)

s , y(n)
s , v(n)

s , µ)

∥
∥
∥
∥
∥
≤

j−1
∑

s=0

(
λ0

λ′

)s

[ϕ̃2(s) + δϕ2(s)] .

Thus (see (B.11)), (x, u)(n+1) will satisfy (B.10) if

ϕ1(k) =

k−1∑

s=0

λs0ϕ̃1(k − s) + C

k−1∑

s=0

γs−k0 ϕ2(s) (B.20)

and

ϕ2(j) =

(
λ′

λ0

)j

(ε+
1

λ′

j−1
∑

s=0

(
λ0

λ′

)s

[ϕ̃2(s) + δϕ2(s)]) . (B.21)

It is well known, that the sum of the kind

k−1∑

s=0

αsϕ(k − s)

tends to zero as k → +∞ for any α < 1 and any sequence ϕ which tends to

zero as k−s→ +∞. Therefore, Eq. (B.20) defines indeed a converging to zero

sequence ϕ1(k) provided ϕ2(s) tends to zero as s→ +∞.

The sequence ϕ2(j) is given by (B.21) which can be rewritten as

ϕ2(j + 1) =
λ′

λ0

(

1 +
δ

λ′

)

· ϕ2(j) +
1

λ0
· ϕ̃2(j) .
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Since λ′

λ0

(
1 + δ

λ′

)
< 1 for sufficiently small δ and since ϕ̃2(j) → 0 as j → ∞, it

follows from this formula that ϕ2(j) tends to zero indeed.

By the symmetry of the problem, appropriate functions ψ1 and ψ2 are

found in an absolutely analogous way. We have proved the estimates (B.10).

To complete the lemma we need to show that analogous estimates hold for all

derivatives of the solution (xj , uj , yj , vj) of (B.9).

It is shown in Sec. 3.7 that the successive approximations converge to the

solution of the boundary-value problem along with all derivatives. Thus, we

may assume that the n-th approximation satisfies2

‖Dpx
(n)
j −Dp

(
A1(µ)jx0

)
‖ ≤ kp2λj0ϕ

(p)
1 (k) ,

‖Dpu
(n)
j ‖ ≤ kp2λj0ϕ

(p)
2 (j) ,

‖Dpy
(n)
j −Dp

(
B1(µ)−(k−j)y1

)
‖ ≤ kp2γ

−(k−j)
0 ψ

(p)
1 (k) ,

‖Dpv
(n)
j ‖ ≤ kp2γ

−(k−j)
0 ψ

(p)
2 (k − j) ,

(B.22)

for some converging to zero sequences ϕ1,2 and ψ1,2 which are independent

of n but may depend on the order |p| of the derivative. Then, based on this

assumption, we must show that the derivatives of the next approximation

{(x
(n+1)
j , u

(n+1)
j , y

(n+1)
j , v

(n+1)
j )}kj=0 satisfy the same estimates.

In fact, we need to check these estimates only for x
(n+1)
j and u

(n+1)
j ; the

analogous conclusion concerning y
(n+1)
j and v

(n+1)
j will follow from the sym-

metry of the problem.

The differentiation of (B.11) gives

Dpx
(n+1)
j = Dp

(
A1(µ)jx0

)
+

j−1
∑

s=0

Dp

(

A1(µ)j−s−1f1(x
(n)
s , u(n)

s , y(n)
s , v(n)

s , µ)
)

,

Dpu
(n+1)
j = Dp

(
A2(µ)ju0

)
+

j−1
∑

s=0

Dp

(

A2(µ)j−s−1f2(x
(n)
s , u(n)

s , y(n)
s , v(n)

s , µ)
)

.

2We use a notation Dp = ∂p1+p2

∂(x0,u0,y1,v1)p1∂µp2
(here p = (p1, p2)).
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By (B.4), (B.5) we have

‖Dpx
(n+1)
j −Dp

(
A1(µ)jx0

)
‖ ≤ const · λj−1

0

∑

p′1=p1, p
′
2=0,...,p2

kp2−p
′
2

×

j−1
∑

s=0

λ−s0

∥
∥
∥Dp′f1(x

(n)
s , u(n)

s , y(n)
s , v(n)

s , µ)
∥
∥
∥ ,

‖Dpu
(n+1)
j ‖ ≤ const · (λ′)j

[

1 +
∑

p′1=p1, p
′
2=0,...,p2

j−1
∑

s=0

(λ′)−s

×
∥
∥
∥Dp′f2(x

(n)
s , u

(n)
s , y

(n)
s , v

(n)
s , µ)

∥
∥
∥

]

.

(B.23)

Now, in the same way as before, to prove the lemma we must check that

the estimates analogous to (B.18) and (B.19) hold for the derivatives Dpf1,2
for any p:

‖Dpf1(x
(n)
s , u(n)

s , y(n)
s , v(n)

s , µ)‖ ≤ [β1(k − s)λ2s
0 + β2(s)γ

s−k
0 λs0]k

p2 (B.24)

and

‖Dpf2(x
(n)
s , u(n)

s , y(n)
s , v(n)

s , µ)‖ ≤ [β3(s) + δϕ
(p)
2 (s)]λs0k

p2 (B.25)

where δ may be taken arbitrarily small by decreasing the size of the neigh-

borhood of the saddle fixed point under consideration and β1,2,3 are some se-

quences converging to zero; moreover, β3 is independent of the specific choice

of the estimators ϕ
(p)
1,2 and ψ

(p)
1,2 in (B.22), and β1,2 are independent of ϕ

(p)
1

and ψ
(p)
1 (nevertheless, β1,2,3 may depend on ϕ and ψ corresponding to the

derivatives of lower orders).

By the chain rule, the derivativesDpfi(x
(n)
s , u

(n)
s , y

(n)
s , v

(n)
s , µ) are estimated

by the sum

const ·
∑

q1,q2,q3

∥
∥
∥
∥

∂q1+q2+q3fi
∂(x, u)q1∂(y, v)q2∂µq3

(x(n)
s , u(n)

s , y(n)
s , v(n)

s , µ)

∥
∥
∥
∥

×‖Dl1(x
(n)
s , u

(n)
s )‖ · · · ‖Dlq1

(x
(n)
s , u

(n)
s )‖

×‖Dlq1+1
(y

(n)
s , v

(n)
s )‖ · · · ‖Dlq1+q2

(y
(n)
s , v

(n)
s )‖

(B.26)

where q1,2,3 are nonnegative integers such that q1 + q2 + q3 ≤ p1 + p2 and

l’s are pairs of nonnegative integers such that l11 + · · · + lq1+q2,1 = p1 and

l12 + · · · + lq1+q2,2 + q3 = p2.
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By assumption, the estimates for the derivatives ‖Dlu
(n)
s ‖ and ‖Dlv

(n)
s ‖ are

given by (B.22). Since ϕ1 and ψ1 are independent of j, there exists a constant

C independent of the specific choice of ϕ and ψ such that when (B.22) is

fulfilled

‖Dlx
(n)
s ‖ ≤ Cλs0k

l2 , ‖Dly
(n)
s ‖ ≤ Cγ

−(k−s)
0 kl2 (B.27)

for all sufficiently large k.

Thus, the estimate (B.26) is rewritten as

const ·
∑

q1,q2,q3

∥
∥
∥
∥

∂q1+q2+q3fi
∂(x, u)q1∂(y, v)q2∂µq3

(x(n)
s , u(n)

s , y(n)
s , v(n)

s , µ)

∥
∥
∥
∥

× λq1s0 γ
q2(s−k)
0 kp2−q3 . (B.28)

Obviously, in the estimate for f1, the terms with q1 ≥ 2 and q2 ≥ 1 fit

(B.24), and all terms with q1 ≥ 2 in the estimate for f2 fit (B.25). Note also,

that

∂q2+q3fi
∂(y, v)q2∂µq3

≡
∂q2+q3fi1

∂(y, v)q2∂µq3
· x(n)

s +
∂q2+q3fi2

∂(y, v)q2∂µq3
· u(n)

s = o(λs0)

(we use (B.10), (B.16) and the identities (B.2) which give that ∂q2+q3fi1

∂(y,v)q2∂µq3
→ 0

as x→ 0). Hence, the terms with q1 = 0 and q2 ≥ 1 in the estimate (B.28) for

f1, and all terms with q1 = 0 in the estimate for f2 also fit (B.24) and (B.25),

respectively.

The case q1 = 0, q2 = 0 corresponds to the differentiation with respect to

µ alone (i.e. p1 = 0 and p2 = q3). Recall that the (r − 1)-th derivative with

respect to µ may not exist, therefore we must estimate the derivatives ∂q3f1
∂µq3

only at q3 ≤ r − 2. These derivatives are smooth with respect to (x, u, y, v),

therefore we may write (using that f1 ≡ 0 at (y, v) = 0; see (B.2))

∥
∥
∥
∥

∂q3f1
∂µq3

∥
∥
∥
∥
≤ ‖y, v‖ · sup

∥
∥
∥
∥

∂

∂(y, v)

∂q3f1
∂µq3

∥
∥
∥
∥
.

Thus, the term under consideration is estimated exactly like other terms with

q1 = 0.

The last remaining terms to examine in (B.26) are (q1 = 1)

∥
∥
∥
∥

∂

∂x

∂q2+q3fi
∂(y, v)q2∂µq3

∥
∥
∥
∥
· γ

q2(s−k)
0 λs0k

p2−q3
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and ∥
∥
∥
∥

∂

∂u

∂q2+q3fi
∂(y, v)q2∂µq3

∥
∥
∥
∥
· γ

q2(s−k)
0 o(λs0)k

p2−q3 .

Note that f ′
ix → 0 as (x, u) → 0 (see (B.2)). Hence, both the terms above

are estimated by γ
q2(s−k)
0 o(λs0)k

p2 ; i.e. they fit (B.25) and, if q2 ≥ 1, they fit

(B.24).

It remains to consider the case q1 = 1, q2 = 0 for f1. To satisfy (B.24) we

have to show that ∥
∥
∥
∥

∂

∂(x, u)

∂q3f1
∂µq3

∥
∥
∥
∥
· λ−s0

tends to zero as k − s → +∞, but this obviously follows from (B.16) because

f1 = f11x+ f12y and both f1i vanish at (y, v) = 0 (see (B.2)).

We have proved that the derivatives Dpfi(x
(n)
s , u

(n)
s , y

(n)
s , v

(n)
s , µ) satisfy

estimates (B.24) and (B.25). Note that for the derivatives of x
(n)
s and y

(n)
s we

used only estimates (B.27) which are independent of the choice of ϕ and ψ

in (B.22). Thus, the estimators β1,2 in (B.24) are independent of ϕ1 and ψ1

indeed. The only terms in (B.26) which might give a contribution in (B.25)

dependent on ϕ
(p)
1,2 and ψ

(p)
1,2 are

‖f ′2u‖ · ‖Dpu
(n)
s ‖ and ‖f ′2v‖ · ‖Dpv

(n)
s ‖ .

The first term here is estimated as δλs0ϕ
(p)
2 (s)kp2 where δ may be taken arbi-

trarily small. The second term is estimated as

kp2ψ
(p)
2 (k − s) · (‖f ′

21v‖‖x
(n)
s ‖ + ‖f ′22v‖‖u

(n)
s ‖)

which gives, for sufficiently large k, the estimate o(λs0)k
p2 (see (B.16),(B.2))

independently of the choice of ϕ
(p)
1,2 and ψ

(p)
1,2 . All this is in a complete agreement

with (B.25).

Now, the validity of estimates (B.22) for the next approximation {(x
(n+1)
j ,

u
(n+1)
j , y

(n+1)
j , v

(n+1)
j )}kj=0 follows from (B.24), (B.25) exactly in the same way

like the validity of (B.10) follows from (B.18), (B.19). The lemma is proved.

Remark. In the same way, slightly better estimates where o(λk0) and

o(γ−k0 ) terms are replaced, respectively, by O((λ′)k) and O((γ′)−k) in (B.6)

and (B.7) may be obtained for the functions ξ, η and their derivatives up to

the order (r − 2) in case the map is at least C
3-smooth (see Gonchenko and

Shilnikov [27]).
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b λ k cos(λt+ a), k large,” J. Lond. Math. Soc. 20, 180–189.

[20] Chen, K. T. [1963] “Equivalence and decomposition of vector fields about

an elementary critical point,” Amer. J. Math. 85(4), 693–722.

[21] Coddington, E. A. and Levisnon, N. [1955] Theory of Ordinary Differential

Equations (McGraw-Hill Book Company: New York).



Bibliography 383

[22] Denjoy, A. [1932] “Sur les courbes définies par les équations différentielles
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Amer. J. Math. 79, 809–824.



Bibliography 387

[72] Sternberg, S. [1958b] “On the structure of local homeomorphisms of

Euclidian n-space, II,” ibid. 80, 623–631.

[73] Turaev, D. V. [1984] “On a case of bifurcations of a contour composed by

two homoclinic curves of a saddle,” in Methods of Qualitative Theory of

Differential Equations (Gorky State University: Gorky), pp. 162–175.

[74] Turaev, D. V. [1991] “On bifurcations of dynamical systems with two

homoclinic curves of the saddle,” Ph.D. thesis, Nizhny Novgorod State

University, Russia.

[75] Turaev, D. V. [1996] “On dimension of non-local bifurcational problems,”

Int. J. Bifurcation and Chaos 2(4), 911–914.

[76] Shilnikov, L. P. [1994] “Chua’s Circuit: Rigorous results and future prob-

lems,” Int. J. Bifurcation and Chaos 4(3), 489–519.

[77] Mira, C. [1997] “Chua’s Circuit and the qualitative theory of dynamical

systems,” Int. J. Bifurcation and Chaos 7(9), 1911–1916.

[78] Madan, R. N. [1993] Chua’s Circuit : A Paradigm for Chaos (World Sci-

entific: Singapore).

[79] Pivka, L., Wu, C. W. and Huang, A. [1996] “Lorenz equation and Chua’s

equation,” Int. J. Bifurcation and Chaos 6(12B), 2443–2489.

[80] Wu, C. W. and Chua, L. O. [1996], “On the generality of the unfolded

Chua’s Circuit,” Int. J. Bifurcation and Chaos 6(5), 801–832.

[81] Chua, L. O. [1998] CNN : A Paradigm for Complexity (World Scientific:

Singapore).



Index

α-limit point, 14
α-limit set, 14
γ norm, 289
λ-lemma, 160
ω-limit point, 14

absorbing domain, 12
algebraic automorphism of a torus, 257
Andronov, 105, 106
Andronov-Vitt, 203
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autonomous normal forms, 218

Banach principle of contraction map-
pings, 223

base, 279
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center stable, 282
center stable manifold, 282
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Denjoy, 265
devil staircase, 267
dicritical node, 26
diffeomorphism, 7
discrete dynamical system, 7
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exponential, 37
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extended stable invariant subspace, 46,
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extended stable manifold, 84
extended unstable invariant subspace,
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extended unstable manifold, 84

figure-eight, 350
fixed point, 114, 115, 125
Floquet multipliers, 195
Floquet theorem, 198
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foliation, 279, 282
fundamental matrix, 195

general, 328
global, 325
global map, 335
global stable, 79
global unstable, 79
globally dichotomic, 287
Grobman–Hartman, 61, 129
group property, 2

Hadamard’s theorem, 142
heteroclinic cycle, 325, 348, 352
high-dimensional, 37
high-dimensional linear maps, 125
homeomorphisms, 6
homoclinic butterfly, 350
homoclinic cycles, 325
homoclinic loop, 104, 325–327, 334
homoclinic trajectory, 9

identity map, 124
integral curve, 2

invariance of a set, 8
invariant, 9, 282
invariant foliation, 272, 302, 310
invariant manifold, 64, 79, 280
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invariant torus, 242, 258
inverse map, 253
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leading invariant, 126
leading invariant manifold, 141
leading invariant subspace, 44
leading plane, 32
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leaf, 279
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limit cycle, 16, 111
linear systems, 24, 37
linearized map, 114
linearized system, 21, 22
local bifurcation, 271
local case, 269
local map, 335
local stable manifold, 132
local theory, 19
local unstable manifold, 132
locally invariant, 70
locally topologically equivalent, 63
loops, 325
Lyapunov, 199, 202
Lyapunov exponents, 104, 197
Lyapunov surfaces, 203

Maier, 266
manifold, 71
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minimal set, 10
multipliers, 112, 115, 204

negative semi-trajectory, 6
node (+), 140
node (−), 140
non-homogeneous system, 93
non-leading, 44, 84, 126
non-leading direction, 25, 32
non-leading manifold, 65, 69, 70, 137
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non-local, 325
non-resonant functions, 106, 215
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normal coordinates, 186, 192
normal forms, 103, 277

orbital stability, 204
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ordinary differential equations, 1
orientable curve, 6
Ovsyannikov-Shilnikov, 108

partial order, 100
period, 7, 111
periodic orbit, 111
periodic point, 7
periodic solutions, 111
periodic trajectory, 3, 4, 14, 111, 115,

205, 284
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persistence, 258
phase trajectory, 2, 6
Poincaré, 101, 265
Poincaré map, 112, 334
Poincaré region, 101
Poincaré return time, 10, 189
point, 8
point ω-limit, 13
point Poisson stable, 9
Poisson-stable, 9
Poisson-stable trajectories, 9
positive semi-trajectory, 6

properties group, 6

qualitative integration, 12
qualitative investigation, 24
quasi-minimal set, 10
quasi-periodic flow, 11
quasi-periodic function, 239
quasi-periodic trajectory, 11

recurrent trajectory, 10
reduction theorem, 277, 278
repelling, 205
representative point, 4
rescaling of time, 5
resonance, 95, 96, 209
resonant (hyper)plane, 101
resonant set, 96
rotation number, 265
rough, 24, 115
Routh–Hurwitz criterion, 23

saddle, 28, 34, 46, 78, 119, 128
saddle equilibrium state, 79, 357
saddle fixed point, 128, 141, 153, 154
saddle map, 228
saddle periodic trajectories, 111, 201,

207
saddle type, 45
saddle-focus, 34, 46, 128, 153
saddle-focus (1,2), 46
saddle-focus (2,1), 46
saddle-focus (2,2), 46
saddle-node, 61
scheme, 18
self-limited trajectory, 14
semi-trajectories, 14
separatrix, 18, 29
set minimal, 10
shortened normal form, 110
Siegel region, 101
sink, 64
skeleton, 18
small denominators, 102
smooth conjugacy theorem, 276
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smooth dynamical system, 8
solution, 1
special trajectory, 17
stability region, 270
stable, 128
stable focus, 26, 32, 74, 123, 127
stable invariant manifold, 132
stable invariant subspace, 29, 128
stable manifold, 208
stable node, 25, 31, 45, 74, 119
stable node (−), 127
stable node (+), 127
stable subspace, 36
stable topological node, 64
Sternberg, 103, 212
straightening, 71
strange attractors, 12
strong stable foliation, 279
strong unstable, 282
strongly stable, 44, 126
structurally stable, 24, 111, 115
structurally stable equilibrium, 21, 56
structurally stable periodic trajecto-
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structurally unstable, 284
sub-manifolds, 84
synchronization problems, 264

theorem Birkhoff, 10
theorem on the leading manifold, 141
theorem on the non-leading manifold,
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time-reverse, 5
topological classification, 56
topological conjugacy, 128
topological saddles, 64
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topologically conjugate fixed points, 133
topologically equivalent, 17, 59
trajectory, 7
trajectory equivalent, 18
trajectory of the Poincaré map, 114
trajectory Poisson-stable, 9
trajectory special, 17

triangular form, 272
truncated, 110

unstable, 128
unstable focus, 30, 34, 78, 123
unstable invariant manifold, 132
unstable invariant subspace, 30, 128
unstable node, 30, 34, 45, 78, 119
unstable subspace, 36

variational equation, 2, 91, 92, 194
velocity field, 7

wandering point, 8
weak resonances, 104
Wronsky formula, 197


