Draw phase portraits on the plane $(x,y=\dot{x})$ for the following equations:

1. $\ddot{x} + 4x = 0$.

3. $\ddot{x} - x + x^2 = 0$.

5. $\ddot{x} + 2x^3 = 0$.

7. $\ddot{x} + e^x - 1 = 0$.

9. $\ddot{x} - \sin x = 0$.

11. $\ddot{x} - 4\dot{x} + 3x = 0$.

13. $\ddot{x} - \dot{x} - 2x = 0$.

15. $\ddot{x} + \dot{x} + 2x - x^2 = 0$. **17.** $\ddot{x} + 2^{\dot{x}} - x^2 = 0$.

16. $\ddot{x} + \dot{x}^2 - x^2 + 1 = 0$. **18.** $\ddot{x} + \sqrt{x^2 + \dot{x}^2} - 1 = 0$.

19. $\ddot{x} + 5\dot{x} - 4\ln\frac{x^2+1}{2} = 0.$

20. $\ddot{x} + \dot{x} + \arctan(x^2 - 2x) = 0$.

22. $\ddot{x} + (x^2 - 1)\dot{x} + x = 0.$

23. $\ddot{x} + \dot{x} - 2 \arctan \dot{x} + x = 0$.

24. $\ddot{x} + 2^{\dot{x}} - \dot{x} + x = 0$.

2. $\ddot{x} - x = 0$.

4. $\ddot{x} - 3x^2 = 0$.

6. $\ddot{x} + 2x^3 - 2x = 0$.

8. $\ddot{x} - 2^x + x + 1 = 0$.

10. $\ddot{x} + 2\cos x - 1 = 0$.

12. $\ddot{x} + 2\dot{x} + 5x = 0$.

14. $\ddot{x} + 2\dot{x} + \dot{x}^2 + x = 0$.

21. $\ddot{x} + \dot{x}^3 - \dot{x} + x = 0.$