
Question I. Determine if the following systems are topologically equiv-
alent or not:

(a)

{
ẋ = x
ẏ = −y and

{
ẋ = x(x2 + y2)
ẏ = −y(x2 + y2)

(b)

{
ẋ = x+ 1
ẏ = −y and

{
ẋ = (x+ 1)(x2 + y2)
ẏ = −y(x2 + y2)

(c)

{
ẋ = x
ẏ = −y and

{
ẋ = y
ẏ = −x

(d)

{
ẋ = y
ẏ = x− x2 and

{
ẋ = y
ẏ = x2 − x3

Solutions (5 points each, all unseen). I(a): The right-hand sides of the
equations coincide up to a multiplication to a non-negative scalar that van-
ish only at the equilibrium state. Therefore they have identical sets of phase
curves, hence they are topologically equivalent.

I(b). First system has one equilibrium (at (x = −1, y = 0) the second
one has two equilibria (at (x = −1, y = 0) and at at (x = 0, y = 0)). Hence,
they are not topologically equivalent.

I(c). The first system has no periodic solutions (it is a linear saddle), the
second system (a harmonic oscillator) has infinitely many periodic solutions.
Hence, there is no topological equivalence.

I(d). First system has an integral H = y2

2
− x2

2
+ x3

3
. The solution

that corresponds H = 0 and x < 0, y < 0 satisfies the equation ẋ = y =
x
√

1 + 2|x|/3, and it tends to infinity as t grows. The second system has an

integral H = y2

2
− x3

3
+ x4

4
, all level sets of which are bounded, so this system

has no unbounded solutions. Hence, there is no topological equivalence.
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Question II. (a) Prove that given any (n × n)-matrix A(t) and an n-
vector b(t) that depend continuously on t, every solution x(t) of the equation

dx

dt
= A(t)x+ b(t), x ∈ Rn,

is defined for all t ∈ (−∞,+∞).

(b) Let a bounded region U be defined by condition F (x) < 0 where
F : Rn → R1 is a smooth scalar function. The boundary ∂U of the region
U is given by F (x) = 0. Assume that the right-hand side f of the system
dx

dt
= f(x), x ∈ Rn, is a smooth function such that

F ′(x) · f(x) < 0

everywhere on ∂U . Prove that for every x0 ∈ U the solution of the system
that starts at the point x = x0 at t = 0 exists for all t ≥ 0.

(c) Consider a differential equation on the straight line
dx

dt
= f(x), x ∈

R1. Prove that every bounded solution of this system tends to an equilibrium
state as t→ +∞.

Solutions (a- 6 points, b,c - 7 points each, all seen or seen similar). II(a):
Define u = x2, note that u is a nonnegative scalar. We have

du

dt
= 2x · dx

dt
= 2x · A(t)x+ 2x · b(t),

so

du

dt
≤ 2‖A(t)‖‖x‖2+2‖x‖ ‖b(t)‖ = 2‖A(t)‖u+2‖b(t)‖

√
u ≤ (2‖A(t)‖+‖b(t)‖+1)u.

By comparison principle, u(t) ≤ v(t) at t ≥ 0 where v solves

dv

dt
= (2‖A(t)‖+ ‖b(t)‖+ 1)v,

i.e.

x2(t) = u(t) ≤ C exp[

∫ t

0

(2‖A(s)‖+ ‖b(s)‖+ 1)ds].
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Thus, x(t) cannot tend to infinity at a finite positive time. By the change
t → −t we obtain an equation of the same form, so x(t) cannot tend to
infinity at any finite negative time too. Hence, x(t) remains defined for all t.

II(b) For any initial condition x0 on the boundary of U , we have
d

dt
F (x(t)) =

F ′(x) · f(x) < 0, hence F (xt) < F (x0) = 0 for t > 0 small enough, and
F (xt) > 0 at t < 0 small enough, i.e. the orbit of x0 must enter U as t grows
and get outside of U as t decreases. In particular, it shows that once the
phase point is inside U its forward orbit cannot leave U : to do this, it must
hit the boundary, which would mean, as we just proved, that the orbit was
outside of U before, a contradiction. Hence the orbit cannot tend to infinity,
hence it exists for all t ≥ 0.

II(c). If the initial condition is at an equilibrium state, then it remains at
the equilibrium state and there is nothing to prove. If the initial condition
x0 for an orbit xt is not at the equilibrium state, i.e. f(x0) 6= 0, then
f(xt) 6= 0 for all times (if f(xτ ) = 0 at some time τ , that would mean that
the point xτ is an equilibrium, but then xt would be a constant function of t,
so f(xt) will also be a constant, hence f(x0) = f(xτ ) = 0, a contradiction).
Thus, dx/dt = f(xt) will keep a constant sign for all t, i.e. xt will be a
monotone function. So, if xt is bounded, there exists a limit x∗ = limt→+∞ xt.
If x∗ is not an equilibrium, then f(x∗) 6= 0. By continuity of f we have
f(x∗) = limt→+∞ f(xt) = limt→+∞

dx
dt

, so f(x∗) 6= 0 implies dx/dt stays
bounded away from zero for all large t. This implies at least linear increase
(or decrease) of xt with time, which contradicts to the assumption xt is
bounded. Hence, the limit x∗ of xt must be an equilibrium state.
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Question III. Consider the following system on a plane
dx

dt
= y,

dy

dt
= x+ x2 − y

(a) Prove that every bounded orbit of this system tends to an equilibrium
both as t→ +∞ and as t→ −∞.

(b) Find all equilibria and determine their stability.

(c) Describe the set of all bounded orbits. How many orbits does this set
contain?

Solutions (seen similar, parts unseen; a - 7 points, b - 5 points, c - 8

points). III(a). It is enough to check that the energy H = y2

2
− x2

2
− x3

3
is a

Lyapunov function (i.e. it strictly decreases along any orbit which is not an
equilibrium). We have

dH

dt
= −y2 < 0 if y 6= 0,

d3H

dt3
|y=0 = −2(ẏ)2 = −2x2(x+ 1)2 < 0 if x 6∈ {0,−1},

i.e. H indeed is strictly increasing unless (x = 0, y = 0) or (x = −1, y = 0).

III(b). The equilibria have just been found: O1(0, 0) and O2(−1, 0). The

linearisation matrix of the system at O1 is A1 =

(
0 1
1 −1

)
, its determinant

is negative, so O is a saddle. The linearisation matrix of the system at O2

is A2 =

(
0 1
−1 −1

)
; we have det(A) > 0, tr(A) < 0, hence O2 is a stable

equilibrium.

III(c). By III(a), the bounded orbits are equilibria O1 and O2 and, pos-
sibly, unstable separatrices of the saddle O1 unless they tend to infinity. As
t → −∞, the function H on these separatrices tends to H(O1) = 0, hence
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the separatrices near O1 are tangent to the line y = x; one of the separa-
trices, W+, goes towards x > 0, y > 0 and the other, W−, goes towards
x < 0, y < 0. The region x > 0, y > 0 is forward invariant (since ẋ > 0 at
x = 0, y > 0 and ẏ > 0 at y = 0, x > 0), therefore W+ cannot tend to O2

as t → +∞, hence W+ is unbounded. The separatrix W− must stay in the
region H < 0, hence it cannot cross the line x = 0, hence it must stay at
x < 0, hence it cannot tend to infinity (H > 0 at large y or at large |x| if
x < 0). Thus W− is a bounded orbit, so it tends to O2. We see that the set
of bounded orbits consist of 3 orbits: the points O1, O2 and the separatrix
W− that connects O1 and O2.
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Question IV.Consider the following map of a plane T : (x, y) 7→ (x̄, ȳ)

x̄ = y, ȳ = 7− x− 8 sin y.

(a) Prove that this map has infinitely many bounded orbits.

(b) How many points of period k does this map have?

(c) Prove that this map has an uncountable set of bounded non-periodic
orbits.

Solutions (a - 10 points; b,c -5 points each; a,b - seen similar, c- unseen).
IV(a): Take the square Π : {0 ≤ x ≤ π, 0 ≤ y ≤ π} and write the map in
the cross-form on Π:

x̄ = fj(x, ȳ), y = fj(x, ȳ),

where j = 1 or 2, and

f1 = arcsin(
1

8
(7− x− ȳ)) f2 = π − arcsin(

1

8
(7− x− ȳ)).

As (x, ȳ) runs Π, the value of f1 stays inside (0, π/2), and f2 stays inside
(π/2, π), which implies that T−1(Π)∩Π consists of 2 connected components,
Π1 and Π2, where Πj corresponds to y ∈ range{fj}. The map is hyperbolic
on these: to check this one must verify that

‖∂fj
∂x
‖+ ‖∂fj

∂ȳ
‖ < 1

on Πj . This inequality reduces to

1

4| cos f |
< 1

or

| sin f | <
√

15

4
⇐⇒ 1

8
|7− x− ȳ| <

√
15

4
,

which is indeed true for (x, ȳ) ∈ Π: the maximum of |7 − x − ȳ| on Π is
achieved at (, 0) and equals to7 < 2

√
15. Thus, we have a hyperbolic map on
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a Markov partition with two components, i.e. a Smale horseshoe. The set of
all orbits that never leave Π is in one-to-one correspondence with the set of
all bi-infinite sequences of 0’s and 1’s; this set is infinite.

IV(b): By IV(b), the number of points of period k equals to the number
of periodic sequences of zeros and ones of period k, i.e. to the number of all
binary sequences of length k, i.e. to 2k.

IV(c): The number of all infinite binary sequences is uncountable, hence
the set of all bounded orbits is uncountable. The number of periodic orbits
is countable, so the set of all bounded non-periodic orbits is uncountable.
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Mastery Question. Prove chaotic behaviour for the equation

ẍ− x+ 2x3 = A sin t

at all small A > 0.

Solution. (20 points, seen similar). The equation is a time periodic
perturbation of a Hamiltonian system with a Hamiltonian function H =
1
2
ẋ2− 1

2
x2 + 1

2
x4. At A = 0 the equation has a homoclinic loop in the energy

level H = 0; the equation of the loop is found from

H = 0⇐⇒ ẋ = ±x
√

1− x2,

which gives

x0(t) =
1

cosh(t)
.

The Melnikov function is given by

M(θ) = 2A

∫ +∞

−∞
ẋ0(t) sin(t+ θ)dt = 2AC cos θ,

where

C =

∫ +∞

−∞
ẋ0 sin tdt = −

∫ +∞

−∞
x0(t) cos tdt,

i.e.

C = −
∫ +∞

−∞

cos t

cosh t
dt.

At A 6= 0 and C 6= 0 we have M(π/2) = 0 and M ′(π/2) 6= 0, which will
prove that the system has a transverse homoclinic (hence chaotic behaviour),
if we show that C 6= 0 indeed. The integral C is computed by the method of
residues:

C = −Re

∫ +∞

−∞

eit

cosh t
dt = −Re

∞∑
k=0

eizk

sinh(zk)

∮
|z−zk|=ρ

dz

z − zk
,

where zk = iπ
2
(2k + 1) are the roots of cosh z which lie in the upper half-

plane.This gives

C = −2π
∞∑
k=0

(−1)ke−
π
2
(2k+1) = − π

cosh π
6= 0.

End of the proof.
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